
Università degli studi di Firenze

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES DIMAI

Master’s degree in Applied Mathematics

Master’s thesis

The Quadratic Assignment Problem

Metaheuristic approaches

Candidate:

Tommaso Mannelli Mazzoli
Matricola 6462050

Thesis advisor:

Stefania Bellavia
Università degli studi di Firenze

Research supervisor:

Angel Felipe Ortega
Universidad Complutense de Madrid

Thesis submitted in 2020

colophon

This document was typeset using LATEX document processing system
originally developed by Leslie Lamport, based on TEX typesetting system
created by Donald Knuth.
The typographic package classicthesis was used. The bibliography was
processed by Biblatex.
The LATEX code of this document can be found on GitHub at
https://github.com/Tommaso-Mannelli-Mazzoli/masters-thesis.

https://github.com/Tommaso-Mannelli-Mazzoli/masters-thesis

ii

To Michelangelo.

Abstract

This thesis deals with the Quadratic Assignment Problem (QAP).
The QAP is an NP-hard combinatorial optimization problem.
The goal of this thesis is to describe the problem, some of its refor-

mulations and applications and to investigate a number of heuristic and
metaheuristic methods.

We implemented greedy and local search heuristic algorithms, then, we
use them to construct more advanced metaheuristic methods which provide
better solutions. We studied and implemented metaheuristics such as Ant
Colony Optimization, Tabu search, Variable Neighborhood Search.

These methods have been implemented in Fortran language and the
codes have been made available in the GitHub repository. Numerical results
obtained on several instances from the QAPLIB library are also shown.

C O N T E N T S

Introduction viii
Notations x
Preface xi

i theory

1 the quadratic assignment problem 2

1.1 Description and formulations 2

1.1.1 Combinatorial formulation 2

1.1.2 Lawler’s general formulation 3

1.1.3 Algebraic formulation 3

1.1.4 Inner product formulation 4

1.1.5 Trace formulation . 5

1.1.6 Kronecker product formulation 6

1.2 Variants . 6

1.2.1 QBAP . 7

1.2.2 Quadratic semi-assignment problem 7

2 applications 8

2.1 Hospital Layout . 8

2.2 Wedding banquet . 9

2.3 Backboard wiring . 9

2.4 Keyboard design . 10

2.5 Dartboard design . 10

ii practice

3 heuristic algorithms 14

3.1 Local search algorithms . 14

3.1.1 Preliminary definitions and results 14

3.1.2 Preliminary on 2-optimum algorithms 16

3.1.3 2-optimum: First improvement 17

3.1.4 2-optimum: Best improvement 19

3.1.5 Preliminary on 3-optimum algorithms 21

3.1.6 3-optimum: first improvement 24

3.1.7 3-optimum: best improvement 25

3.1.8 Implementation and comparison 29

3.2 Constructive methods . 32

3.2.1 An introductory example 32

3.2.2 Greedy1 . 34

3.2.3 Greedy2 . 35

3.2.4 Greedy3 . 36

3.2.5 Implementation and Comparison 36

4 metaheuristic algorithms 38

4.1 Tabu search . 39

4.2 Ant Colony Optimization . 46

4.2.1 Hybrid Ant System . 46

4.2.2 Implementation . 46

4.2.3 Parameters calibration 49

4.3 Variable neighborhood Search 50

4.3.1 Local search . 50

4.3.2 Variable neighborhood Search 51

iv

CONTENTS v

4.3.3 Variable Neighborhood Descent 52

4.3.4 GVNS . 53

5 computational results 57

5.1 QAPLIB Library . 57

5.2 NEOS . 58

5.3 Comparison of algorithms . 58

6 conclusions and future works . 60

6.1 Future Works . 60

6.2 Concluding Remarks . 60

a proof of theorem 3 .1 61

b proof of theorem 3 .2 63

Bibliography 65

L I S T O F F I G U R E S

Figure 1 Backboard of Steinberg’s problem. 9

Figure 2 A dartboard. 11

Figure 3 2optFirst algorithm, Objective function values versus
the iterations. 19

Figure 4 2optBest algorithm, Objective function values versus
iterations. 21

Figure 5 Graphical description of Neos4 instance. 32

Figure 6 Fred Glover . 38

Figure 7 Skorin-Kapov . 39

Figure 8 Local search procedure 51

Figure 9 VNS procedure . 52

Figure 10 GVNS procedure. 56

vi

L I S T O F TA B L E S

Table 1 Facilities of Outpatient department. 8

Table 2 Name of local search algorithms 16

Table 3 Example of 2optfirst algorithm 19

Table 4 Example of best improvement algorithm 21

Table 5 Example of 3optFirst. 27

Table 6 Example of 3optBest 28

Table 7 Comparison of local search algorithms on instance
tai12a. 29

Table 8 Comparison of local search algorithms for several
instances . 31

Table 9 Comparison of Greedy algorithms. 37

Table 10 Tabu Search for Tai12a 44

Table 11 Tabu Search for Chr20c 44

Table 12 Tabu Search for Nug30 44

Table 13 Tabu Search for Lipa60b 45

Table 14 Tabu Search for Wil100 45

Table 15 Tabu Search for Esc128 45

Table 16 Parameters of ACO algorithm 49

Table 17 Comparison of metaheuristic algorithms 59

vii

L I S T O F A L G O R I T H M S

1 2-optimum, first improvement 18

2 2-optimum: best improvement 20

3 3-optimum: first improvement 24

4 3-optimum: best improvement 26

5 Greedy1 . 35

6 Greedy3 algorithm . 36

7 Tabu search . 41

8 ACO algorithm . 47

9 Local search procedure. 50

10 VND algorithm . 53

11 VNDfirst algorithm . 54

12 GVNS pseudo code . 55

13 GVNSfirst . 56

viii

I N T R O D U C T I O N

T
his dissertation deals with the numerical solution of the Quadratic
Assignment Problem (QAP). It is one of the most studied and
complex problem in the field of optimization, and it has lots of
applications. The first formulation of the problem was introduced

by Koopmans and Beckmann [23] in 1957 and can described as follows:

Given n facilities and n possible locations, one wants to assign
each facility to one location in order to minimize a prescribed cost
function. This cost function depends on the known flow fij from
facility i to facility j and on the distance drs between location r
and location s.

The goal of the thesis is to describe the problem, its formulations, to
implement heuristic and metaheuristic algorithms to obtain an approximated
solution and to compare them.

A first reformulation of the problem employing permutation is the fol-
lowing. Consider the locations set as a vector

v = (1, 2, . . . , n),

therefore the solution is a permutation of the entries of v. That is, it is a
permutation π : {1, . . . , n} → {1, . . . , n} such that π(i) = r means to assign
the facility i to location r.

We will use one-note notation. Thus, π will be denoted as follows:

π =
[
π(1), π(2), . . . , π(n)

]
.

This problem, even if it does not look so difficult at first sight, is actually
pretty hard. First of all the optimal solution we are looking for is integer,
and the exact algorithms (i.e. algorithms designed to provide an optimal
solution) are extremely expensive for large scale problems. Moreover, the
problem is not linear (as the name suggests, is quadratic). Therefore, for
n > 30 the computational time of exact algorithms is prohibitive [5, p. 210].

There, we chose to follow a metaheuristic approach. Heuristic algorithms
do not guarantee to find an optimal solution and generally they return a
sub-optimal solution. However, they are problem-dependent and may get
trapped in local optima. Note that this is a trouble, since our goal is to
achieve a global optimum.

As stated in the book [16, p. ix], metaheuristics are “solution methods
that orchestrate an interaction between local improvement procedures and
higher level strategies to create a process capable of escaping from local
optima and performing a robust search of a solution space”. Metaheuristic
algorithms are less problem dependent than heuristic methods and usually
reach a sub-optimal solution with a reasonable computational cost, but it is
not possible to assess the quality of the provided approximation due to the
lack of an optimality measure.

Finally, note that the QAP is NP-hard [30, Theorem 2.1].

ix

introduction x

document organization The remainder of this document is organized
in the following manner:

• Chapter 1 provides background knowledge on the Quadratic Assign-
ment Problem. We describe the original problem, two variants and
many equivalent formulations.

• Chapter 2 describes some applications of QAP to the real world. The
hospital Layout problem is described in Section 2.1, while the problem
of organizing guests around a table is discussed in Section 2.2. The
choice of assigning letters in a keyboard presented in Section 2.4.
Finally, in Section 2.5 we give an overview of the problem of arranging
20 numbers around a dartboard, which can be expressed as a QAP
instance.

• Chapter 3 introduces heuristic algorithms. In Section 3.1 we give
preliminary definitions of neighborhood of a permutation; then, we
study and compare local search algorithms, used to improve the current
solution in order to obtain a local optimum. In Section 3.2 constructive
algorithms are described and compared.

• Chapter 4 introduces metaheuristic algorithms. In Section 4.1 the Tabu
Search algorithm is described, in Section 4.2 the “bio-inspired” Ant
Colony Optimization algorithm is studied, while in Section 4.3 the
Variable Neighborhood Search algorithm is analyzed.

• In Chapter 5 a brief introduction of the instances used is presented
to evaluate the performance of metaheuristic algorithms presented in
Chapter 4. Then, the performance of such methods are discussed.

• In Chapter 6 we propose a few possible enhancements and future
developments. Finally, we sum up what we achieved with this work.

N O TAT I O N S

In this text vectors and matrices are denoted by boldface, italic symbols (like
w and M) while sets by capital italic (like I). The following notation is used
through the text.

Simbol Meaning Note

I generic set
|I| cardinality of set I
N set of natural numbers N = {1, 2, . . . }
[n] set of first n natural numbers [n] = {1, 2, 3, . . . , n}
π permutation
Sn set of permutation of n elements
s.t. subject to restrictions of the problem
w.r.t. with respect to
PD percentage deviation
v vector
A matrix
AT transpose of a matrix
〈A, B〉 inner product
A⊗ B Kronecker product
tr A trace of the matrix A tr A = ∑n

i=1 aii

xi

P R E FA C E

T
his thesis was written within the Agreement between Universidad

Complutense de Madrid (Madrid, Spain) and Università degli Studi
di Firenze (Florence, Italy). As prescribed by the agreement, I was
a visiting scholar for a period of 6 months, from September 2019 to

February 2020.
During this period, I approached the field of Operative Research. I had

the opportunity to study in Prof. Angel Felipe Ortega’s Advanced Optimization
Techniques course at UCM. Within this course, I became interested in heuristic
methods and Prof. Ortega agreed to supervise my Master’s thesis project on
Quadratic Assignment Problem.

My thesis advisor at University of Florence is Prof. Stefania Bellavia. She
helped me to place my work in a broader context, making it more organic
and to improve the presentation, with a constant, scrupulous and meticulous
labor limae.

I would like to thank Prof. Bellavia and Prof. Ortega for their invaluable
guidance, for their dedication and their patience.

xii

https://www.scienze.unifi.it/upload/sub/convenzione-complutense-testo-firmato.pdf

Part I

T H E O RY

1T H E Q UA D R AT I C A S S I G N M E N T P R O B L E M

I
n this chapter we will describe formulations and variants of the Quadratic
Assignment Problem. There are several equivalent formulations of the
QAP, each one exploiting a different feature of the structure of the
problem. Different formulations lead to different solution approaches.

Other formulations and variants can be found in [5, Ch. 7].

1.1 description and formulations

A set of n facilities has to be allocated to a set of n locations. We are given
three matrices:

• F ∈ Rn×n, where F = (fij) and fij is the flow between facility i and
facility j. Therefore, fij could be viewed as the amount of supplies
transported between the two facilities. Hence, it is the cost per unit
length.

• D ∈ Rn×n, where D = (drs) and drs is the distance between location r
and location s. Note that drs is a length.

• C ∈ Rn×n, where C = (cir) and cir is the cost of placing facility i at
location r. Note that ciπ(i) is a cost.

1.1.1 Combinatorial formulation

The feasible set is the set of permutation of n elements Sn.
If π ∈ Sn, the product fij dπ(i)π(j) is the transportation cost associated to

assigning facility i to location π(i) and facility j to location π(j). That is, the
transportation cost is given by the product flow times distances.

Each term ciπ(i) +∑n
j=1 fijdπ(i)π(j) represents the total cost, related to facil-

ity i given by the cost for installing it at location π(i) plus the transportation
costs to all facilities j, if installed at locations π(1), π(2), . . . , π(n).

Hence, the QAP can be written as

Combinatorial formulation

min
π∈Sn

[
n

∑
i=1

n

∑
j=1

fijdπ(i)π(j) +
n

∑
i=1

ciπ(i)

]
(1)

In future, z(π) will denote the quadratic term of the objective function

z(π) =
n

∑
i=1

n

∑
j=1

fijdπ(i)π(j). (2)

An instance of the QAP with input matrices F, D, C is denoted by QAP(F, D, C).
If there is no linear term (hence, C is the null matrix), we just write
QAP(F, D).

2

1.1 description and formulations 3

1.1.2 Lawler’s general formulation

A more general version of the QAP was considered by Lawler [25], who
introduced a four-index cost array1 K = (kirjs) instead of the three matrices F,
D and C. The relationship between the three matrices and K is the following:

kirjs = fijdrs for i 6= j or r 6= s, (3)

kirir = fiidrr + cir for i, r ∈ {1, . . . , n}. (4)

Moreover, note that the objective function can be re-written as follows:

n

∑
i=1

 fiidπ(i)π(i) + ciπ(i) +
n

∑
j=1
j 6=i

fijdπ(i)π(j)

 =
n

∑
i=1

kiπ(i)iπ(i) +
n

∑
j=1
j 6=i

kiπ(i)jπ(j)


=

n

∑
i=1

 n

∑
j=1

kiπ(i)jπ(j)

 .

According to this notation, the general form of the QAP is

Lawler’s general formulation

min
π∈Sn

[
n

∑
i=1

n

∑
j=1

kiπ(i)jπ(j)

]
(5)

The combinatorial formulation (1) is the most known, but there are others,
totally equivalent, that we are going to describe.

1.1.3 Algebraic formulation

An other formulation is the algebraic one, which contains binary variables.
Let xir such that

xir =

{
1 if the facility i is assigned to location r
0 otherwise.

Hence the QAP can be formulated as

Algebraic formulation

min

[
n

∑
i=1

n

∑
j=1

n

∑
r=1

n

∑
s=1

fijdrsxirxjs +
n

∑
i=1

n

∑
r=1

cirxir

]

s.t
n

∑
i=1

xir = 1 ∀r ∈ {1, . . . , n}

n

∑
r=1

xir = 1 ∀i ∈ {1, . . . , n}

xir ∈ {0, 1} ∀i, j ∈ {1, . . . , n}

(6)

Using Lawler’s general form (5) this formulation can be written as
1 We denoted the 4-dimensional array K by sans-serif font in order to distinguish it from 2-

dimensional matrices.

1.1 description and formulations 4

Algebraic formulation in Lawler’s form

min

[
n

∑
i=1

n

∑
j=1

n

∑
r=1

n

∑
s=1

kirjsxirxjs

]

s.t
n

∑
i=1

xir = 1 ∀r ∈ {1, . . . , n}

n

∑
r=1

xir = 1 ∀i ∈ {1, . . . , n}

xir ∈ {0, 1} ∀i, j ∈ {1, . . . , n}

(7)

1.1.4 Inner product formulation

The combinatorial formulation (1) can be written in a more compact way
using the inner product of permutation matrices.

Definition 1.1 (Permutation Matrix). Let n ∈ N and P be an n× n binary
matrix. P is called a permutation matrix if

n

∑
i=1

pij = 1 for every j = 1, . . . , n and
n

∑
j=1

pij = 1 for every i = 1, . . . , n2.

Therefore, every permutation matrix is a matrix with one (and only one) 1
for every row and column. This suggest its name: for every permutation
π ∈ Sn exists one and only one permutation matrix Xπ = (xir) such that:

xir =

{
1 if π(i) = r;
0 otherwise.

For example, if n = 4 the permutation π = [4, 2, 3, 1] is associated to the
permutation matrix:

Xπ =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 . (8)

Hence, given a vector v ∈ Rn, the vector w := Xπ · v is obtained permuting
the entries of v according to the permutation π, i.e.,

wi = vπ(i) ∀i ∈ {1, . . . , n}.

In fact, if we consider the permutation matrix described in (8), we obtain

Xπ · v =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0




v1
v2
v3
v4

 =


v4
v2
v3
v1

 .

If A and B are two matrices n× n, we can define their inner product 〈A, B〉.
2 Hence the matrix X = (xir) in equation (6) is a permutation matrix.

1.1 description and formulations 5

Definition 1.2 (Inner product of two matrices). Let A = (aij) and B = (bij)
be two real matrices n× n. We define the inner product3 of A and B as the
real number defined by

〈A, B〉 :=
n

∑
r=1

n

∑
s=1

arsbrs.

Letting Xπ be a permutation matrix and xij its entry (i, j), we note that

(
Xπ D XT

π

)
ij
=

n

∑
r=1

xir
(

D XT
π

)
rj

=
n

∑
r=1

xir

(
n

∑
s=1

drsxjs

)

=
n

∑
r=1

n

∑
s=1

xirdrsxjs.

(9)

By (6) and (9) it follows that the QAP can be rewritten as

Inner product formulation

min
[
〈F, XDXT〉+ 〈C, X〉

]
s.t X is a permutation matrix

(10)

1.1.5 Trace formulation

Definition 1.3 (Trace of a Matrix). Let A = (aij)ij be a matrix n × n. We
define trace of A as the real number given by the sum of its diagonal elements:

tr A =
n

∑
i=1

aii

Proposition 1.1. Let A, B be two n× n matrices, then we get some simple proper-
ties of the trace:

1. tr (A + B) = tr A + tr B;

2. tr AT = tr A;

3. tr (AB) = tr (ATBT);

4. 〈A, B〉 = tr (ATB).

We can rewrite (10) using the trace operator, in fact

〈F, XDXT〉+ 〈C, X〉 4
= tr

(
FTXBXT

)
+ tr

(
CTX

)
3
= tr

(
FXDTXT

)
+ tr

(
CXT

)
1
= tr

(
FXDTXT + CXT

)
= tr

(
(FXDT + C)XT

)
3 Sometimes in literature this operation is called Hadamard product, from the French mathematician

Jacques Hadamard.

1.2 variants 6

Therefore the equation (10) can be rewritten as

Trace formulation

min
[
tr
(
(FTXD + C)XT

)]
s.t. X is a permutation matrix.

(11)

The trace formulation of the QAP was used by Finke, Burkard e Rendl
[14] to introduce eigenvalue bounds for QAP.

1.1.6 Kronecker product formulation

A further reformulation can be observed exploiting the Kronecker product
of two matrices.

Definition 1.4 (Kronecker product). Let A ∈ Rm×n and B ∈ Rr×s two
matrices. We define the Kronecker product A⊗ B ∈ Rmr×ns as the matrix
formed by all possible products aijbhk:

A⊗ B =

 a11B a12B . . . a1nB
...

...
. . .

...
am1B am2B . . . amnB

 .

Now, let X be a permutation matrix. We can consider the four-index cost
array K introduced in equation (3), as “matrix of matrices”, so every n× n
matrix Kir is formed by the elements kirjs with fixed indices i and r and
variable indices j, s = 1, 2, . . . , n. Using this notation we get

〈K, X ⊗ X〉 =
〈K11 . . . K1n

...
. . .

...
Kn1 . . . Knn


x11X . . . x1nX

...
. . .

...
xn1X . . . xnnX

〉

=
n

∑
i=1

n

∑
r=1

xir〈Kir, X〉

=
n

∑
i=1

n

∑
r=1

n

∑
j=1

n

∑
s=1

kirjsxirxjs,

which is the objective function from (7). This lead us to the Kronecker
product formulation of the QAP.

Kronecker product formulation

min 〈K,Y〉
s.t. Y = X ⊗ X

X is a permutation matrix

(12)

1.2 variants

There are some variants in literature. We are going to show some of the
principal ones. Many others can be found in [5, Ch. 9].

1.2 variants 7

1.2.1 QBAP

The most known variants of the QAP is the Quadratic Bottleneck Assignment
Problem (QBAP), that is obtained by replacing the sums in the objective
function of a QAP with the maximum operator.

The QBAP can be formulated as

min
π∈Sn

[
max

(
max

1≤i,j≤n
fijdπ(i)π(j), max

1≤i≤n
ciπ(i)

)]
. (13)

Basically all QAP applications give rise to a QBAP model as well, because
it often makes sense to minimize the largest cost instead of the overall cost
incurred by some decisions.

1.2.2 Quadratic semi-assignment problem

The quadratic semi-assignment problem (semi-QAP) has the same objective
function as the QAP but allows the solution not to be permutations: they
map the set of integers N = {1, 2, . . . , n} to the set M = {1, 2, . . . , m} with
n > m (so there are more facilities than locations and there is no limit to the
number of facilities we can assign to the same location)

We can write the semi-QAP in the algebraic form as

min

[
n

∑
i=1

n

∑
j=1

m

∑
r=1

m

∑
s=1

fijdrsxirxjs +
n

∑
i=1

m

∑
r=1

cirxir

]

s.t
m

∑
r=1

xir = 1 i = 1, . . . , n

xir ∈ {0, 1} i = 1, 2, . . . , n j = 1, 2, . . . , m

(14)

The semi-QAP is NP-hard, as an instance of QAP(F, D, C) can always be
transformed into an equivalent instance of semi-QAP by adding slack vari-
ables.

From now on, the matrix C will be the null matrix, hence, no linear term
will appear in the objective function.

2A P P L I C AT I O N S

A
s the name said, the Quadratic Assignment Problem was firstly

studied to solve the problem involving assignment of n facilities to
n locations. Nevertheless. QAP appears in several seemingly un-

related decision problems such as keyboard design [4], schedul-
ing [17], arrangements of micro array chips [7], numerical analysis [3], forest
park management [2], Traveling Salesman Problem (TSP) [30, 8] and so on.
In this chapter we describe some of these applications; many others can be
found on [5].

2.1 hospital layout

In 1975 the Ahmed Mahe Hospital of Cairo (Egypt) was composed by six
major departments. One of them (the Outpatient) is formed by 19 clinics,
listed in table 1.

The problem was to find the optimal layout of the department minimizing
the total distance traveled by patients. Alwalid Elshafei [12] modeled this as
a QAP. This problem has dimension n = 19.

The problem is symmetric, since every patient must return to the first
clinic he visited to mark off his card.

The distance matrix D = (dij) contains the distances between the clinics i
and j. The flow matrix F = (fij) contains flows between clinics r and s on a
yearly basis.

The highest flow is 76687: between Receiving and Recording and General
Practitioner. The second one (40951) is between General Practitioner and
Pharmacy. The third one (13732) is between Receiving and Recording and
Dental clinic. Moreover, the flow between facilities 15 and 16 was set 99999,
to force them to be in two adjacent locations in the final solution.

The distances between locations were measured by tracing the paths
taken by patients while moving from a clinic to another. Whenever the
movement involved a change in floors, the corresponding vertical distance
was multiplied by 3 [12].

Table 1: Facilities of Outpatient department.

Facility Clinic Facility Clinic

1 Receiving and Recording 11 X-Ray
2 General Practitioner 12 Orthopedic
3 Pharmacy 13 Psychiatric
4 Gynecological & Obstetric 14 Squint
5 Medicine 15 Minor Operations
6 Pediatric 16 Minor Operations
7 Surgery 17 Dental
8 Ear, Nose & Throat 18 Dental Surgery
9 Urology 19 Dental Prosthetic
10 Laboratory

8

2.2 wedding banquet 9

Elshafei and Bazaraa eliminated nearly 20% of unnecessary traffic by
patients, resulting in an overall more effective treatment center. As a result,
their findings were implemented in a new layout of the department [12].

In 1978 Krarup [24] described a related problem for Regensburg Clinic, in
Germany. In 2015 Feng and Su [13] applied this model to the Tongji hospital,
Shanghai (China), reducing the average walking time for the outpatients by
11.55%. In 2016 Helbert et al [21] followed a similar approach for Hannover
Medical School, Germany.

2.2 wedding banquet

In 1970 Muller [29] described the following situations: we want to arrange n
wedding guests around a table minimizing the annoyance between them or, if
we prefer, maximizing the total pleasantness.

We know the distances dij between seat i and j. We can consider any
form of tables (rectangular, round, . . .) or sets of tables. The only thing that
matters is knowing the relative distance between seats.
As regards guests, we consider the intensity of relationship frs between
every guest r and s. High values of frs correspond to a good relationship.

The value of frs can be related to several characteristics:
age, relationship status, interest groups, degrees of ac-
quaintance, sympathy. For example, the author (which has
not yet organized any wedding) thinks that kids should
be placed together, and near their parents. Note that the
spouses should know how good the relationships between

guests are. Finally, note that in general frs 6= fsr.
The wedding banquet problem can be described as follows:

min
π∈Sn

[
n

∑
i=1

n

∑
j=1

fijdπ(i)π(j)

]
. (15)

As we can see, this is the combinatorial form of the QAP.

2.3 backboard wiring

This problem was studied by Leon Steinberg in 1961 [32].
The goal of this problem is to minimize the length of connections between

units that have to be placed on a rectangular grid, as shown in figure 1. The
dimension of the problem is n = 36.

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

Figure 1: Backboard of Steinberg’s problem.

As an example, consider two points Pi = (xi, yi) and Pj = (xj, yj). We can
refer to their distance dij = d

(
Pi,Pj

)
in (at least) three different ways:

2.4 keyboard design 10

a) Manhattan distance (or 1-norm): in this case

da
ij = |xi − xj|+ |yi − yj|.

b) Squared Euclidean distance:

db
ij =

(
xi − xj

)2
+
(
yi − yj

)2 .

c) Euclidean distance multiplied by 1000:

dc
ij = 1000 ·

√(
xi − xj

)2
+
(
yi − yj

)2.

The distance matrix D = (dij) contains the distance between each pair of
positions, depending on the distance considered.

The flow matrix F = (frs) (the same for all the three distances) provides
the number of connections to make between the units r and s.

The goal is to minimize the total length of wire used to interconnect the
components.

2.4 keyboard design

This problem was firstly studied by Burkard and Offerman in 1977 [4].
The goal is to find out what would be, in theory, the best typewriter

keyboards for various languages and for mechanical or electrical machines.
Since the number of letters on ISO basic Latin alphabet is 26, the size of

this problems is n = 26.
The distance matrix D corresponds to the time between the typing of

two keys (the time depends on the fact that the machine is an electrical or a
mechanical one).

The flow matrix F contains the frequencies of appearance of two letters
in a given language [34].

As four different languages and two typewriters are considered, there are
eight problems of this type.

English, French, German and Dutch languages are considered in litera-
ture [34]. The proposed methods yield improvements of 7-10% compared
with the international standard keyboard.

In 2009 Dell’Amico et al [10] studied the problem of designing a single-
finger keyboard for smartphones.

2.5 dartboard design

The game of darts consists in hitting sectors of a circular target (called
dartboard) with darts in order to obtain the greatest possible score.

Let us focus on the numbers around the dartboard, shown in figure 2. As
we can see, there are 20 numbers (from 1 to 20), each one corresponding to
a sector of the dartboard. Why these specific numbers were chosen? If we
look at the number 20 (the biggest one) we can see that its closest numbers
are 1 and 5. Hence, aiming the sector with 20 has a great risk, since doing a
mistake results in loosing many points. This implies a maximization problem:
choosing the numbers around a dartboard to maximize the risk.

2.5 dartboard design 11

20 1
18

4

13

6

10

15

2
17319

7

16

8

11

14

9

12
5

Figure 2: A dartboard.

The current scoring system was devised
in 1896 by Brian Gamlin values [11]. In
1991 Eiselt and Laporte [11] described this
problem as an instance of QAP.

Let π(k) denote the number placed
in position k on the dartboard (starting
from an arbitrary position) and let π =
[π(1), . . . , π(20)] be any permutation of the
numbers 1, . . . , 20. In the following lines,
π(k) must be interpreted as π(k mod 20)
whenever k < 1 or k > 20.

Now, consider a player aiming at π(k).
Let us suppose that he hits π(k) with prob-

ability p0, π(k± 1) with probability p1 and, in general, π(k± t) with proba-
bility pt (t = 0, . . . , 10). Since pt are probabilities, it must be

p0 + 2
9

∑
t=1

pt + p10 = 1. (16)

As suggested by Eiselt and Laporte [11], it seems realistic enough to restrict
ourselves to the case where players never hit more than two sectors away
from their target. Therefore, we assume that pt = 0 for t > 2.

Thus, equation (16) implies

p0 = 1− 2p1 − 2p2. (17)

Moreover, we may assume p2 = θp1 with θ ∈ (0, 1).
Hence, for every k ∈ {1, . . . , 20}, the expected deviation from the aimed

score is

p1

(
|π(k + 1)− π(k)|+ |π(k− 1)− π(k)|

)
+ θp1

(
|π(k + 2)− π(k)|+ |π(k− 2)− π(k)|

)
= p1

[(
|π(k + 1)− π(k)|+ |π(k− 1)− π(k)|

)
+ θ
(
|π(k + 2)− π(k)|+ |π(k− 2)− π(k)|

)]
(18)

Notice that in (18) the probability p1 is constant and, if we sum for k, every
term is counted twice.

Therefore, the objective function z to be maximized is

z =
20

∑
k=1
|π(k + 1)− π(k)|+ θ

20

∑
k=1
|π(k + 2)− π(k)|. (19)

Now, fix a permutation π ∈ S20. This problem has an equivalent binary
programming form. For every i, j ∈ {1, . . . , 20}, define the binary variables
xij as equal to 1 if (in the permutation π) i is followed immediately by j
(i.e. if π(k) = i and π(k + 1) = j for some k), and equal to 0 otherwise. In
practice,

xij =

{
1 if exists k such that π(k) = i and π(k + 1) = j;
0 otherwise.

(20)

First, we note that X = (xij) is a permutation matrix. Secondly, for i, j ∈
{1, . . . , n} it follows that

|i− j| xij 6= 0 ⇐⇒ ∃k such that i = π(k) and j = π(k + 1)

⇐⇒ |i− j| xij = |π(k + 1)− π(k)|.
(21)

2.5 dartboard design 12

Now, similar to (21), for i, j, l ∈ {1, . . . , n}, we get

|i− l| xij xjl 6= 0 ⇐⇒ ∃k such that i = π(k), j = π(k + 1) and l = π(k + 2)

⇐⇒ |i− l| xij xjl = |π(k + 2)− π(k)|.
(22)

Therefore, summing each terms on (21) and (22), the objective function
in (19) can be rewritten:

z =
20

∑
i=1

20

∑
j=1
|i− j| xij + θ

20

∑
i=1

20

∑
j=1

20

∑
l=1
|i− l| xij xjl . (23)

Finally, the problem can be written in the following form:

max

[
20

∑
i=1

20

∑
j=1
|i− j| xij +

20

∑
i=1

20

∑
j=1

20

∑
l=1
|i− l|θ xij xjl

]

s.t
n

∑
i=1

xij = 1 ∀j ∈ {1, . . . , n}

n

∑
j=1

xij = 1 ∀i ∈ {1, . . . , n}

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}

(24)

Which can be expressed as a QAP instance (see [11, p. 116]).

Part II

P R A C T I C E

3H E U R I S T I C A L G O R I T H M S

C
omputing optimal solutions is intractable for many optimization
problems of industrial and scientific importance. Unlike exact
optimization algorithms, i.e., methods theoretically supported,
heuristics do not guarantee the optimality of the obtained per-

mutation, but they provide sub-optimal solutions. Moreover, they do not
asses how close the obtained permutations are from the optimal ones. In
this chapter we will describe two type of methods: local search and greedy
algorithms. Local search algorithms are used by metaheuristic algorithms
to improve the objective function, while greedy methods provide an initial
permutation used by metaheuristic methods to start with. For each one we
will report preliminary results.

notation

Since one-line notation is used, often we will consider the permutation π as a
vector π̃, where π(i) = j becomes π̃i = j.

3.1 local search algorithms

As the name suggests, local search algorithms seek a local optimum, i.e., an
optimum in a neighborhood.

3.1.1 Preliminary definitions and results

We present some theoretical definitions and result.

Definition 3.1 (Distance between permutation). Let π, σ ∈ Sn be two permu-
tations. Define the distance between π and σ as the numbers of indices at
which the corresponding images are different, i.e.,

dist(π, σ) := |{i : π(i) 6= σ(i)}|.

Sometimes this distance is called Hamming distance, from the American
mathematician Richard Hamming.

Remark 3.1. This distance is also a topological distance. Moreover, we can
observe that there are no permutations with distance 1 between them.

Definition 3.2 (Neighborhood of radius r). Let π ∈ Sn be a permutation and
r ≥ 1 be an integer number. Define the neighborhood of center π and radius r
as follows:

Nr(π) := {σ ∈ Sn | dist(π, σ) = r}.

Remark 3.2. From remark 3.1 it follows that r cannot be 1.

Definition 3.3 (Composition of permutations). Let π, σ ∈ Sn. The permuta-
tion π · σ such that

(π · σ) (i) = π (σ(i)) ∀i = 1, . . . , n

is called a composition of π and σ.

14

3.1 local search algorithms 15

Definition 3.4. Let π ∈ Sn be a permutation. The support of π is the set

supp (π) := {i | i ∈ {1, 2, . . . , n}, π(i) 6= i}

of the elements “moved” by π.

Definition 3.5 (r-exchange). Let π, σ ∈ Sn be two permutations and r ∈ N

such that 2 ≤ r ≤ n. If supp(σ) = r, then π · σ is called a r-exchange of π.

For example, let π = [3, 1, 4, 2], σ = [2, 1, 3, 4] and τ = [1, 4, 2, 3].
First, note that |supp(σ)| = |{1, 2}| = 2 and |supp(τ)| = |{2, 3, 4}| = 3.
Then, via composition we obtain that

π · σ = [3 , 1 , 4, 2] · [2 , 1 , 3, 4] = [1 , 3 , 4, 2]

is a 2-exchange and

π · τ = [3, 1 , 4 , 2] · [1, 4 , 2 , 3] = [3, 2 , 1 , 4]

is a 3-exchange.
Proposition 3.1 conveys the idea of the magnitude of a neighborhood Nr

is. We did not find a proof of this in the literature, therefore we include it for
sake of completeness

Proposition 3.1. Let π ∈ Sn a permutation. It follows that

1. The family of sets
{
{π}, N2(π), N3(π), . . . , Nn(π)

}
is a partition of Sn;

2. |Nr(π)| =
(

n
r

)
r!

r

∑
i=2

(−1)i

i!
for every π ∈ Sn.

Proof. The first statement follows from the definition of the neighborhood Nr.
As regards the second point, let π ∈ Sn be a permutation.
First, note that there are (n

r) possible way to choose a subset of r elements
from a set of n numbers.

Now, without loss of generality, we can consider π = id, where id is the
identity permutation, i.e., id(i) = i for every i = 1, . . . , n.

The number of possible permutation after a r-exchange with π is equiva-
lent to the numbers of permutation of r elements with no fixed points (called
derangements).

Therefore, for every π ∈ Sn, |Nr(π)| = (n
r) · !r, where !r is the number of

derangement of a set of size r.
It is well-known [36, (1)] that the number of derangement of r elements is

!r = r! ·
r

∑
i=0

(−1)i

i!
.

Finally, the second statement follows, since ∑r
i=0

(−1)i

i! = ∑r
i=2

(−1)i

i! .

Corollary 3.1. From point 2, it follows that

• |N2(π)| = (n
2) =

n2−n
2 .

• |N3(π)| = 2 (n
3) =

n3−3n2+2n
3 .

Corollary 3.1 implies that doing a complete visit of N2 requires O(n2)
operations, while visiting N3 requires O(n3) operations.

Definition 3.6. A permutation π∗ ∈ Sn is called a r-optimum (or r- optimal)
if z(π∗) ≤ z(σ) for every σ ∈ Nr(π∗). An algorithm is called r-optimum if it
provides a r-optimal permutation.

3.1 local search algorithms 16

Table 2: Name of local search algorithms

Name of the algorithm r Abbreviation

2-optimum first improvement 2 2optFirst

2-optimum best improvement 2 2optBest

3-optimum first improvement 3 3optFirst

3-optimum best improvement 3 3optBest

Basics on r-optimum algorithms

We are going to study two kinds of r-optimum algorithms:

1. First improvement: this algorithm explores the r-neighborhood cen-
tered in the initial permutation and stops as soon as a reduction of the
value of the objective function is obtained. Then, the exploration starts
again from the r-neighborhood centered in the best permutation found.
In the worst case (i.e., when no improvement is found), a complete
evaluation of the neighborhood is performed.

2. Best improvement: this algorithm tries every r-exchange and chooses
the best one. Hence, the exploration of the r-neighborhood is exhaus-
tive, and all possible moves are examined to select the best neighboring
permutation. This form of exploration may result in a longer running
time for large neighborhoods.

For r = 4 proposition (3.1) tell us that visiting the whole neighbor has a
computational cost of O(n4) operations. Thus, it is not worth to investigate
cases for r ≥ 4. Therefore, this thesis focuses on cases r = 2 and r = 3.

Every r-optimum algorithm has the same input and output:

input The starting permutation p.

output The final permutation m and its objective function value zm = z(m).

Finally, we will discuss briefly the notation used in the next pages.

Notation

For sake of clarity, in the following pages πi1i2 will denote the composition
of π · σ.

For example, if π = [3, 1, 4, 2], then π12 = [1, 3, 4, 2].
Sometimes we will refer to this 2-exchange as {1, 2} → {2, 1}.
In table 2 we report the algorithms we considered and the abbreviation

we will use to refer to them.

3.1.2 Preliminary on 2-optimum algorithms

The first 2-optimum algorithm for QAP was studied by Charles H. Heider in
1973 [20].

In order to reduce the overall computational cost associated to evaluation
of the objective function z, it is possible to proceed as follows.

Let π ∈ Sn and fix two indices i1 6= i2 of [n]. In the following results let
πi1i2 denote the permutation obtained by π, exchanging the indices i1 and i2,
i.e.,

3.1 local search algorithms 17

πi1i2(i) :=


π(i2) if i = i1;
π(i1) if i = i2;
π(i) otherwise.

Definition 3.7. Let π ∈ Sn and fix two indices i1 6= i2 ∈ [n]. Let ∆(π; i1, i2)
be defined as

∆(π; i1, i2) : =
(

fi1i1 − fi2i2
) (

dπ(i2)π(i2) − dπ(i1)π(i1)

)
+
(

fi1i2 − fi2i1
) (

dπ(i2)π(i1) − dπ(i1)π(i2)

)
+ ∑

j/∈{i1,i2}

{ (
fi1 j − fi2 j

) (
dπ(i2)π(j) − dπ(i1)π(j)

)
+
(

f ji1 − f ji2
) (

dπ(j)π(i2) − dπ(j)π(i1)

) }
.

(25)

Remark 3.3. If the matrices F and D are symmetric, then the formula (25)
becomes

∆(π; i1, i2) = 2 ∑
j/∈{i1,i2}

(
f ji1 − f ji2

) (
dπ(j)π(i2) − dπ(j)π(i1)

)
. (26)

Remark 3.4. The evaluation of ∆(π; i1, i2) requires 2(n − 2) + 2 = 2n − 2
products and 6n− 7 sums. In the symmetric case, the evaluation requires
n− 1 products and 3n− 6 sums. In every case, ∆ can be evaluated in O(n)
operations.

Theorem 3.1. Let π ∈ Sn be a permutation and i1 6= i2 be two indices. Then,

z(πi1i2) = z(π) + ∆(π; i1, i2). (27)

We did not find a proof of this in the literature, therefore we include it in
Appendix A for the sake of completeness.

Observe that theorem 3.1 allows us to evaluate the difference between a
permutation π and its 2-exchange πi1i2 with a cost of O(n) operations.

Taking account that the straightforward evaluation of a quadratic objec-
tive function has a cost of O(n2), we got the conclusion that the approach
described below, exploiting the structure of the problem, allows us to save
some computational time.

3.1.3 2-optimum: First improvement

Description of the algorithm

A detailed description of this algorithm can be found in pseudo code 1.
We can see that there are two DO cycles (lines 4-5), in order to try every

2-exchange of the current permutation m.
In every step, the algorithm evaluates the term ∆ until it finds a 2-

exchange which improves the current permutation (lines 6 - 11). This is
achieved by the IF cycle in line 7: if ∆(m, i1, i2) < 0, then the 2 exchange mi1i2
has a lower objective function value than m.

Then, the algorithm performs the 2-exchange and starts again from mi1i2
(lines 9-10).

The algorithm stops whenever there are no 2-exchange that improve the
current permutation, i.e., when ∆(m, i1, i2) ≥ 0 for every i1, i2 ∈ {1, . . . , n}.

3.1 local search algorithms 18

Algorithm 1: 2-optimum, first improvement
Input: n,F,D, p
Output: m, zm
/* initialization */

1 Evaluate zp = z(p);
2 m← p;
3 zm ← zp;
/* main loop */

4 for i1 = 1, . . . , n− 1 do
5 for i2 = i1 + 1, . . . , n do
6 Evaluate ∆(m; i1, i2);
7 if ∆(m; i1, i2) < 0 then
8 zm ← zm + ∆(m; i1, i2);
9 Do the 2-exchange m← mi1i2 ;

10 Go to step 4;
11 end
12 end
13 end
14 Stop: m is 2-optimal with value zm.

Hence, the final permutation is 2-optimum because there are no more
2-exchange available and every 2-exchange increase the objective function
value.

Note that this is a finite termination algorithm because there are a finite
number of permutations. Thus, the algorithm performs a finite numbers of
iterations.

Complexity of the algorithm

In the best case, an incrementing 2-exchange is always found in the first
attempt, so in lines 5 - 12 the algorithm requires only one ∆-evaluation.

The cost of evaluating ∆ is O(n) operations.
Hence, the final cost of lines 4 - 13 in the best case is O(n) operations.
In the worst case, the incrementing 2-exchange is found at the end of the

loops in steps 4-5. Since the algorithm tests every possible 2-exchange, the
number of evaluations done in lines 4 - 13 is

n−1

∑
i1=1

n

∑
i2=i1+1

1 =
n−1

∑
i1=1

(n− i1)

=
n−1

∑
i1=1

n−
n−1

∑
i1=1

i1

= n · (n− 1)− n
2
· (n− 1)

=
n(n− 1)

2
=

(
n
2

)
,

(28)

as a further evidence of the proposition 3.1.
Since the evaluation cost of ∆ is O(n) operations, the total cost of lines

4-13 in worst case is O(n3).
These costs are repeated for every 2-exchange made. There are no way to

evaluate a priori how many 2-exchanges the algorithm is gonna do, but we
are going to try some tests in Section 3.1.8.

3.1 local search algorithms 19

Table 3: Example of 2optfirst algorithm

Indices Permutation Cost Remarks

i1 i2 1 2 3 4

1 2 3 4 908 Initial permutation
1 2 926 No improvement
1 3 1008 No improvement
1 4 1052 No improvement
2 3 1136 No improvement
2 4 850 Exchange locations 2 and 4

1 4 3 2 850 Start again
1 2 930 No improvement
1 3 790 Exchange locations 1 and 3

3 4 1 2 790 Start again
1 2 834 No improvement
1 3 850 No improvement
1 4 1066 No improvement
2 3 1018 No improvement
2 4 1008 No improvement
3 4 824 No improvement

3 4 1 2 790 Best permutation found

0 2 4 6 8 10 12 14

iteration

750

800

850

900

950

1000

1050

1100

1150

c
o
s
t

2optFirst

optimum

Figure 3: 2optFirst algorithm, Objective function values versus the iterations.

An example

A basic example is described in table 3. Instance Neos4 was used. See
Section 5.2 for more details.

The quality of a permutation is defined by the Percent Deviation (PD)
from the best known solution, calculated according to

PD(z, zBKS) :=
z− zBKS

zBKS
· 100, (29)

where z is the obtained permutation and zBKS is the best known solution (or
the optimum) of the corresponding problem.

In this case, the 2-optimal permutation achieved is an optimum. This is, in
general, not true. In figure 3 we plotted the objective function values versus
the iterations. As we can see, as soon as the algorithm finds a permutation
reducing the cost value, it starts again from this permutation, exploring its
r-neighborhood.

3.1.4 2-optimum: Best improvement

Description of the algorithm

A detailed description of this algorithm can be found in pseudo code 2.

3.1 local search algorithms 20

Algorithm 2: 2-optimum: best improvement
Input: n,F,D,p
Output: m, zm
/* initialization */

1 Evaluate zp = z(p);
2 m← p;
3 zm ← zp;
4 dmin ← 0;
/* main loop */

5 for i1 = 1, . . . , n− 1 do
6 for i2 = i1 + 1, . . . , n do
7 Evaluate ∆(m; i1, i2);
8 if ∆(m; i1, i2) < dmin then
9 j1 ← i1;

10 j2 ← i2;
11 dmin ← ∆(m; j1, j2);
12 end
13 end
14 end
15 if dmin < 0 then /* If m is the new best permutation found */

16 zm ← zm + dmin;
17 Do the 2-exchange m← mi1i2 ;
18 Go to step 4;
19 end
20 if dmin = 0 then stop: m is 2-optimal with value zm;

The best improvement algorithm starts from a permutation p with objective
function value z(p) = zp; it sets m = p, zm = zp and initializes dmin at 0
(lines 1-4).

There are two DO cycles, in order to try every possible 2-exchange of p
(lines 5 - 6).

For every i1 and i2, algorithm evaluates the term ∆(m; i1, i2) (line 7) and
it computes the following term (lines 8-12):

dmin := min
{

∆(m; i1, i2)
∣∣ i1 ∈ {1, . . . , n− 1}, i2 ∈ {i1 + 1, . . . , n}

}
.

Now, if dmin < 0, then the 2-exchange is applied and m and zm are updated
(lines 15 - 17).

The algorithm starts again from the new m (line 18).
This procedure is repeated until dmin = 0 (note that dmin cannot be

positive, since it is initialized as 0).
Observe that since there are a finite numbers of permutations, the algo-

rithm ends in a finite number of iterations.
In case dmin = 0, every possible 2-exchange does not improve the objective

function. Therefore, m is 2-optimal with objective function zm (line 20).

Complexity of the algorithm

Note that 2optBest algorithm corresponds to the worst case of 2optFirst.
Hence its computational cost is O(n3), as shown in equation (28).

3.1 local search algorithms 21

Table 4: Example of best improvement algorithm

Indices Permutation Cost Remarks

i1 i2 1 2 3 4

1 2 3 4 908 Initial permutation
1 2 926 No improvement
1 3 1008 No improvement
1 4 1052 No improvement
2 3 1136 No improvement
2 4 850 Improvement: store indices
3 4 864 Improvement, but worst than 850

1 2 3 4 864 Exchange locations 2 and 4
1 4 3 2 850 Start again

1 2 930 No improvement
1 3 790 Improvement: store indices
1 4 990 No improvement
2 3 982 No improvement
2 4 908 No improvement
3 4 960 No improvement

1 4 3 2 960 Exchange locations 1 and 3
3 4 1 2 790 Start again

1 2 834 No improvement
1 3 850 No improvement
1 4 1066 No improvement
2 3 1018 No improvement
2 4 1008 No improvement
3 4 824 No improvement

3 4 1 2 790 Best permutation found

0 2 4 6 8 10 12 14 16 18 20

iteration

750

800

850

900

950

1000

1050

1100

1150

c
o
s
t

2optBest

optimum

Figure 4: 2optBest algorithm, Objective function values versus iterations.

An example

A basic example is described in table 4. Instance Neos4 was used. See
section 5.2 for more details.

Note the main differences between Tables 4 and 3: when 2optBest find an
improvement of the objective function, it stores the indices of the improving
2-exchange.

As we can see, the algorithm achieves the optimal solution. Figure 4

shows the variation of objective function value. We can clearly see that every
cycle is repeated three times.

3.1.5 Preliminary on 3-optimum algorithms

The 3-optimum algorithm was first proposed by G. A. Croes [9] in 1958 for
Travelling Salesman Problem.

3.1 local search algorithms 22

These 3-optimum algorithm are similar to the 2-optimum algorithms
except that they consider swapping three facilities at a time.

With three distinct indices i1,i2,i3, one can obtain two kind of 3-exchanges:

1. {i1, i2, i3} → {i2, i3, i1}.

2. {i1, i2, i3} → {i3, i1, i2}.

If π ∈ Sn is a permutation and i1,i2,i3 ∈ [n] are three distinct indices, define
π1

i1i2i3
∈ N3(π) as the permutation such that

π1
i1i2i3(j) :=


π(i2) if j = i1;
π(i3) if j = i2;
π(i1) if j = i3;
π(j) otherwise.

(30)

and π2
i1i2i3
∈ N3(π) as

π2
i1i2i3(j) :=


π(i3) if j = i1;
π(i1) if j = i2;
π(i2) if j = i3;
π(j) otherwise.

(31)

For example, if π = [3, 1, 4, 2], then

π2
123 = [1, 3, 4.2] and π1

123 = [4, 3, 1, 2] .

Definition 3.8. Let π ∈ Sn be a permutation and i1,i2,i3 ∈ [n] three distinct
indices. Define ∆1(π; i1, i2, i3) and ∆2(π; i1, i2, i3) as follows.

∆1(π; i1, i2, i3) := fi1 i1

(
dπ(i2)π(i2) − dπ(i1)π(i1)

)
+ fi1 i2

(
dπ(i2)π(i3) − dπ(i1)π(i2)

)
+ fi1 i3

(
dπ(i2)π(i1) − dπ(i1)π(i3)

)
+ fi2 i1

(
dπ(i3)π(i2) − dπ(i2)π(i1)

)
+ fi2 i2

(
dπ(i3)π(i3) − dπ(i2)π(i2)

)
+ fi2 i3

(
dπ(i3)π(i1) − dπ(i2)π(i3)

)
+ fi3 i1

(
dπ(i1)π(i2) − dπ(i3)π(i1)

)
+ fi3 i2

(
dπ(i1)π(i3) − dπ(i3)π(i2)

)
+ fi3 i3

(
dπ(i1)π(i1) − dπ(i3)π(i3)

)
+ ∑

j/∈{i1 ,i2 ,i3}

[
fi1 j

(
dπ(i2)π(j) − dπ(i1)π(j)

)
+ fi2 j

(
dπ(i3)π(j) − dπ(i2)π(j)

)
+ fi3 j

(
dπ(i1)π(j) − dπ(i3)π(j)

)
+ f ji1

(
dπ(j)π(i2) − dπ(j)π(i1)

)
+ f ji2

(
dπ(j)π(i3) − dπ(j)π(i2)

)
+ f ji3

(
dπ(j)π(i1) − dπ(j)π(i3)

)]
.

(32)

and
∆2(π; i1, i2, i3) := fi1 i1

(
dπ(i3)π(i3) − dπ(i1)π(i1)

)
+ fi1 i2

(
dπ(i3)π(i1) − dπ(i1)π(i2)

)
+ fi1 i3

(
dπ(i3)π(i2) − dπ(i1)π(i3)

)
+ fi2 i1

(
dπ(i1)π(i3) − dπ(i2)π(i1)

)
+ fi2 i2

(
dπ(i1)π(i1) − dπ(i2)π(i2)

)
+ fi2 i3

(
dπ(i1)π(i2) − dπ(i2)π(i3)

)
+ fi3 i1

(
dπ(i2)π(i3) − dπ(i3)π(i1)

)
+ fi3 i2

(
dπ(i2)π(i1) − dπ(i3)π(i2)

)
+ fi3 i3

(
dπ(i2)π(i2) − dπ(i3)π(i3)

)
+ ∑

j/∈{i1 ,i2 ,i3}

[
fi1 j

(
dπ(i3)π(j) − dπ(i1)π(j)

)
+ fi2 j

(
dπ(i1)π(j) − dπ(i2)π(j)

)
+ fi3 j

(
dπ(i2)π(j) − dπ(i3)π(j)

)
+ f ji1

(
dπ(j)π(i3) − dπ(j)π(i1)

)
+ f ji2

(
dπ(j)π(i1) − dπ(j)π(i2)

)
+ f ji3

(
dπ(j)π(i2) − dπ(j)π(i3)

)]
.

(33)

3.1 local search algorithms 23

Remark 3.5. In symmetric QAP(F,D), equations (32) and (33) reduce to

∆1(π; i1, i2, i3) := 2
{

fi1 i2

(
dπ(i2)π(i3) − dπ(i1)π(i2)

)
+ fi1 i3

(
dπ(i2)π(i1) − dπ(i1)π(i3)

)
+ fi2 i3

(
dπ(i1)π(i3) − dπ(i2)π(i3)

)
+ fi3 i3

(
dπ(i1)π(i1) − dπ(i3)π(i3)

)
+ ∑

j/∈{i1 ,i2 ,i3}

[
f ji1

(
dπ(j)π(i2) − dπ(j)π(i1)

)
+ f ji2

(
dπ(j)π(i3) − dπ(j)π(i2)

)
+ f ji3

(
dπ(j)π(i1) − dπ(j)π(i3)

)]}
and

∆2(π; i1, i2, i3) := 2
{

fi1 i2

(
dπ(i1)π(i3) − dπ(i1)π(i2)

)
+ fi1 i3

(
dπ(i2)π(i3) − dπ(i1)π(i3)

)
+ fi2 i3

(
dπ(i1)π(i2) − dπ(i2)π(i3)

)
+ fi3 i3

(
dπ(i1)π(i1) − dπ(i3)π(i3)

)
+ ∑

j/∈{i1 ,i2 ,i3}

[
f ji1

(
dπ(j)π(i3) − dπ(j)π(i1)

)
+ f ji2

(
dπ(j)π(i1) − dπ(j)π(i2)

)
+ f ji3

(
dπ(j)π(i2) − dπ(j)π(i3)

)]
.
}

Remark 3.6. The evaluation of ∆1 and ∆2 requires 6n− 9 products and 12n− 8
sums. Respectively, in symmetric case, the evaluation of them requires 3n− 5
products and 6n− 12 sums.

In every case, they can be evaluated in O(n) operations.

Theorem 3.2. Let π ∈ Sn be a permutation and i1, i2, i3 ∈ [n] three distinct indices.
Then one has

• z
(

π1
i1i2i3

)
= z(π) + ∆1(π; i1, i2, i3)

• z
(

π2
i1i2i3

)
= z(π) + ∆2(π; i1, i2, i3)

We did not find a proof of this in the literature, therefore we include it
here for the sake of completeness. The proof can be found on Appendix B.

3.1 local search algorithms 24

3.1.6 3-optimum: first improvement

Description of the algorithm

A detailed description of this algorithm can be found in pseudo code 3.

Algorithm 3: 3-optimum: first improvement
Input: n,F,D,p
Output: m, zm
/* initialisation */

1 Read p;
2 Evaluate zp ← z(p);
3 zm ← zp ;
/* main loops */

4 for i1 = 1, . . . , n− 2 do
5 for i2 = i1 + 1, . . . , n− 1 do
6 for i3 = i2 + 1, . . . , n do
7 Evaluate ∆1(m; i1, i2, i3);
8 if ∆1(m; i1, i2, i3) < 0 then
9 Do the 3-exchange m← mi1i2i3 ;

10 zm ← zm + ∆1(m; i1, i2, i3);
11 Goto step 4;
12 end
13 Evaluate ∆2(m; i1, i2, i3);
14 if ∆2(m; i1, i2, i3) < 0 then
15 Do the 3-exchange m← mi1i2i3 ;
16 zm ← zm + ∆2(m; i1, i2, i3);
17 Goto step 4;
18 end
19 end
20 end
21 end
22 Stop: m is 3-optimal with objective function value zm.

This algorithm is fairly similar to 2optFist. In fact, the algorithm updates
that permutation as soon as it founds an improvement obtained by a 3-
exchange.

The main difference is that there are two possible 3-exchanges that can
be done. Thus, the algorithm evaluates both ∆1 and ∆2 terms.

Complexity of the algorithm

In the best case, the algorithm immediately finds an improving 3-exchange
with ∆1 < 0. Hence in this case, for every 3-exchange, the computational
cost of 3optFirst is O(n) operations.

In the worst case, the algorithm will find the improving 3-exchange only
at the end of each iterations. Equation (34) shows us that 3optFirst, in the

3.1 local search algorithms 25

worst case, requires (n
3) = O(n3) loops, therefore the total cost in the worst

case is O(n4) operations.

n−2

∑
i1=1

(
n−1

∑
i2=i1+1

(
n

∑
i3=i2+1

1

))
=

n−2

∑
i1=1

(
n−1

∑
i2=i1+1

(n− i2)

)

=
n−2

∑
i1=1

(n− i1)(n− i1 − 1)
2

=
n−2

∑
i1=1

(
n− i1

2

)

=
n−1

∑
j=2

(
j
2

)
=

n−1

∑
j=0

(
j
2

)
=

(
n
3

)
,

(34)

where we used the known identity

n

∑
j=0

(
j

m

)
=

(
n + 1
m + 1

)
(see (5.10) in Concrete Mathematicsby D. E. Knuth, O. Patashnik, and R.
Graham).

An example

A basic example is described in table 5, where 3optFirst starts with initial
permutation [1, 2, 3, 4, 5]. Instance Neos5 was used; see section 5.2 for more
details.

The optimal solution of Neos5 instance is π = [5, 4, 1, 2, 3] with z(π) =
628. As we can see, the algorithm did not find the optimum, but 656, with
4% Percent Deviation (PD).

3.1.7 3-optimum: best improvement

A detailed description of this algorithm can be found in pseudo code 4.
The algorithm is very similar to 2optBest. In fact, it evaluates all two

types of all possible 3-exchanges from the current permutation m.
In dmin is stored the best value found by doing 3-exchanges, i.e., the

greatest difference from zm.
The indices j1,j2 and j3 that realized this exchange, are stored too.
Then the algorithm updates the permutation with the best one found and

starts again (line 27 - 31).
It stops when a permutation that is not improving by any 3-exchange is

obtained (line 33).

Complexity of algorithm

The computational cost of 3optBest is the same as the worst case of 3optFirst.

An example

A basic example is described in table 5. Instance Neos5 was used; see
section 5.2 for more details.

Like 3optFirst algorithm, 3optBest did find 656 with 4% Percent Devia-
tion (PD) from the optimum.

3.1 local search algorithms 26

Algorithm 4: 3-optimum: best improvement
Input: n,F,D,p
Output: m, zm
/* initialisation */

1 Evaluate zp = z(p);
2 m← p;
3 zm ← zp;
4 dmin ← 0;
/* main loops */

5 for i1 = 1, . . . , n− 2 do
6 for i2 = i1 + 1, . . . , n− 1 do
7 for i3 = i2 + 1, . . . , n do
8 Evaluate ∆1(m; i1, i2, i3);
9 if ∆1(m; i1, i2, i3) < dmin then
10 j1 ← i1;
11 j2 ← i2;
12 j3 ← i3;
13 l ← 1 ;
14 dmin ← ∆1(m; j1, j2, j3);
15 end
16 Evaluate ∆2(m; i1, i2, i3);
17 if ∆2(m; i1, i2, i3) < dmin then
18 j1 ← i1;
19 j2 ← i2;
20 j3 ← i3;
21 l ← 2 ;
22 dmin ← ∆2(m; j1, j2, j3);
23 end
24 end
25 end
26 end
27 if dmin < 0 then
28 if l = 1 then Do the 3-exchange m← m1

j1 j2 j3
;

29 else if l = 2 then Do the 3-exchange m← m2
j1 j2 j3

;

30 zm ← zm + dmin;
31 Go to step 4;
32 end
33 if dmin = 0 then stop: m is 3-optimal with value zm;

3.1 local search algorithms 27

Table 5: Example of 3optFirst.

Indices Permutation Cost Remarks

i1 i2 i4 1 2 3 4 5

1 2 3 4 5 900 Initial permutation
1 2 3 836 Exchange locations 1, 2 and 3 with π1

2 3 1 4 5 836 Start again
1 2 3 780 Exchange locations 1, 2 and 3 with π1

3 1 2 4 5 780 Start again
1 2 3 780 No improvement
1 2 4 780 No improvement
1 2 5 780 No improvement
1 3 4 744 Exchange locations 1, 3 and 4 with π1

2 1 4 3 5 744 Start again
1 2 3 660 Exchange locations 1, 2 and 3 with π2

4 2 1 3 5 660 Start again
1 2 3 660 No improvement
1 2 4 656 Exchange locations 1, 2 and 4 with π2

3 4 1 2 5 656 Start again
1 2 3 656 No improvement
1 2 4 656 No improvement
1 2 5 656 No improvement
1 3 4 656 No improvement
1 3 5 656 No improvement
1 4 5 656 No improvement
2 3 4 656 No improvement
2 3 5 656 No improvement
2 4 5 656 No improvement
3 4 5 656 No improvement

3 4 1 2 5 656 Best permutation found

3.1 local search algorithms 28

Table 6: Example of 3optBest algorithm starting from initial permutation [1, 2, 3, 4, 5].

Indices Permutation Cost Remarks

i1 i2 i4 1 2 3 4 5

1 2 3 4 5 900 Initial permutation
1 2 3 836 ∆1 < 0: store indices
1 2 3 780 ∆2 < 0: store indices
1 2 4 968 No improvement
1 2 5 876 No improvement
1 3 4 660 ∆2 < 0: store indices
1 3 5 844 No improvement
1 4 5 1056 No improvement
2 3 4 880 No improvement
2 3 5 864 No improvement
2 4 5 872 No improvement
3 4 5 920 No improvement

Exchange locations 1, 3 and 4 with π2

4 2 1 3 5 660 Start again
1 2 3 880 No improvement
1 2 4 656 ∆2 < 0: store indices
1 2 5 792 No improvement
1 3 4 836 No improvement
1 3 5 732 No improvement
1 4 5 844 No improvement
2 3 4 900 No improvement
2 3 5 816 No improvement
2 4 5 852 No improvement
3 4 5 864 No improvement

Exchange locations 1, 2 and 4 with π2

3 4 1 2 5 656 Start again
1 2 3 792 No improvement
1 2 4 836 No improvement
1 2 5 788 No improvement
1 3 4 848 No improvement
1 3 5 756 No improvement
1 4 5 792 No improvement
2 3 4 836 No improvement
2 3 5 724 No improvement
2 4 5 732 No improvement
3 4 5 900 No improvement

3 4 1 2 5 656 Best permutation found

3.1 local search algorithms 29

Table 7: Comparison of local search algorithms on instance tai12a. The column
headers 2F, 2B, 3F, 3B stands for 2optFirst, 2optBest, 3optFirst and 3optBest

respectively. Finally, IP stands for the initial permutation. We also report the mean,
the minimum and the maximum value obtained for PD, ne, nr.

IP IPD PD ne nr

2F 2B 3F 3B 2F 2B 3F 3B 2F 2B 3F 3B

π1 51.4 11.8 15.2 10.4 7.3 237 462 1292 2640 11 6 20 5
π2 45.0 11.0 7.7 10.6 8.1 241 462 723 2200 15 6 12 4
π3 36.3 10.1 12.3 12.2 12.2 182 462 620 2200 7 6 8 4
π4 39.5 10.1 9.4 12.5 4.7 373 396 841 2640 17 5 20 5
π5 50.6 10.0 6.5 11.1 11.1 250 594 1135 2640 18 8 17 5
π6 34.3 5.7 6.4 9.1 8.5 534 858 2408 2200 14 12 18 4
π7 37.5 15.9 15.9 9.7 15.5 107 198 1189 1320 8 2 12 2
π8 33.6 10.3 7.3 8.6 9.1 193 726 2274 3080 13 10 19 6
π9 39.6 14.1 8.1 5.8 6.9 186 528 3104 2640 10 7 18 5
π10 53.8 11.8 4.6 4.4 8.9 367 594 1917 2200 19 8 24 4
π11 32.0 10.5 11.0 8.2 7.2 242 396 1127 1760 8 5 10 3
π12 37.6 12.7 12.0 9.2 3.3 202 396 1213 3520 7 5 10 7

mean 40.9 11.2 9.7 9.3 8.6 260 506 1487 2420 12 7 16 5
min 32.0 5.7 3.3 4.4 3.3 107 198 620 1320 7 2 8 2
max 53.8 15.9 15.9 12.5 15.5 534 858 3104 3520 19 12 24 7

3.1.8 Implementation and comparison

In order to compare local search algorithms, we used instances from QAPLIB [6]
library’s web page. More details can be found in section 5.1.

We implemented local search algorithms in Fortran and make it available
on GitHub [26].

In table 7 we tested 2-optimum algorithms on instance Had12. The algo-
rithms take in input the permutation πi defined as

πi = [i, i + 1, . . . , n, 1, 2, . . . , i− 1] ,

for i ∈ {1, 2, . . . , n}.
In the following tables we report:

• ne: the numbers of ∆ evaluations.

• nr: the numbers of r-exchanges realized; this number represents how
many r-exchanges the algorithm performed.

• PD: the percent deviation from optimal point, as defined in (29).

• IPD: the initial PD, the PD of the initial permutation.

• mean, min and max : mean, maximum and minimum over the 12 runs.

Note that final results strongly depends on the initial permutation.
For example, the initial permutation π7 is bad (15.5% PD). The 2optfirst

algorithm provides a permutation with 3.5% PD, while, the starting permu-
tation π3 is worse (18.5% PD), but the algorithm’s result has only a 0.2%
PD.

In general, looking at the means and the minimums, first-improvement
algorithms outputs are better than best-improvement ones. This could
support the strategy “Do less, get better” used sometimes in real life.

In table 8 the four algorithms are compared on several instances. We
divided the instances in two categories: real world and random. More details
can be found in section 5.1.

http://anjos.mgi.polymtl.ca/qaplib/inst.html
https://github.com/Tommaso-Mannelli-Mazzoli/QAP/blob/master/local_search.f90

3.1 local search algorithms 30

The goal here is not analyzing the objective function value, remember
that these are heuristic algorithm, that are generally used in more complex
strategies.

Our goal is to compare local search algorithms in order to assess if it is
worth doing more evaluations (hence, using 3-optimum or best-improvement
algorithms) or not.

The first thing we can observe, is that there is not a very sensible difference.
Actually, 3-optimum algorithms frequently reached slightly better PD, but
often the difference is under the 1%.

The main difference consists in ne: the number of the evaluations of ∆.
In general 3-optimum algorithms perform much more evaluations than its
corresponding 2-optimum, growing with at least one order of magnitude.
Sometimes, the grow was two order of magnitude (2F and 3F in kra32,
2B and 3B in nug28). Remember that each evaluation of ∆ has a cost of
O(n) operations. Thus, for kra32, the 3optBest algorithm does 5.73× 106

operations.
On the other hand, the number of r-exchange performed by first-improvement

algorithms is higher than that those required by best-improvement method.
3-optimum algorithms on average provide better permutations at ex-

penses of a higher computational cost.

3.
1

l
o

c
a

l
s

e
a

r
c

h
a

l
g

o
r

i
t

h
m

s
3

1

Table 8: Comparison of local search algorithms for several instances. All results are averaged over n runs.

Instance IPD PD ne nr

2F 2B 3F 3B 2F 2B 3F 3B 2F 2B 3F 3B

Real-world instances

bur26a 9.1 0.4 0.3 0.3 0.2 5604 7238 50 005 85 000 97 21 104 15
bur26b 9.8 0.5 0.4 0.3 0.3 6397 6825 39 572 81 800 108 20 123 15
bur26c 9.0 0.4 0.4 0.3 0.2 5815 7550 47 262 80 400 97 22 103 15
bur26d 9.9 0.4 0.5 0.3 0.2 5639 6762 43 511 81 200 105 20 117 15
bur26e 10.1 0.4 0.5 0.2 0.2 6169 7200 53 125 81 800 102 21 109 15
bur26f 11.2 0.5 0.6 0.3 0.3 6963 6837 51 339 80 000 117 20 137 14
bur26g 9.6 0.5 0.3 0.3 0.3 5426 7800 51 251 85 600 98 23 110 15
bur26h 10.7 0.6 0.4 0.4 0.4 7261 7150 45 866 77 600 118 21 125 14
kra30a 48.3 6.7 7.1 5.7 5.9 7168 9381 93 188 125 048 62 21 73 14
kra30b 46.8 5.2 5.5 3.7 3.7 8335 8758 92 554 129 920 65 19 73 15
kra32 51.0 6.9 6.0 4.5 3.9 7728 10 788 119 572 179 180 69 21 85 17

Random instances

nug12 33.0 6.4 5.6 5.6 5.2 255 418 1170 2090 9 5 10 4
nug14 32.0 6.1 5.2 3.9 4.1 501 754 3098 4940 16 7 19 6
nug15 33.1 5.4 3.1 3.6 4.9 700 1015 3931 6006 19 9 21 6
nug16a 34.6 5.6 4.5 4.2 3.9 786 1290 4305 9030 22 10 25 7
nug16b 36.4 6.2 5.2 4.5 4.1 869 1193 5579 9170 22 9 21 7
nug17 32.5 3.5 4.0 3.7 2.9 965 1552 6111 13 200 26 10 29 9
nug18 32.3 3.8 4.5 3.5 4.0 1333 1658 7730 13 691 29 10 30 7
nug20 33.2 3.9 4.5 3.8 3.4 1962 2669 11 891 24 624 36 13 37 10
nug21 39.8 4.9 4.3 4.0 3.8 2509 3340 20 198 30 907 42 15 42 11
nug22 37.6 4.4 4.5 2.7 3.3 3634 3937 32 819 37 520 50 16 52 11
nug24 29.9 3.9 5.0 3.7 3.7 4285 4772 34 072 52 961 47 16 46 12
nug25 31.9 3.2 4.1 2.9 3.9 5356 5544 51 062 60 904 56 18 57 12
nug27 34.1 4.7 4.9 3.6 4.1 4584 7904 35 982 86 017 61 22 56 14
nug28 34.8 4.2 4.3 3.4 4.3 4502 8937 46 306 103 428 59 23 61 15
nug30 30.5 3.3 4.2 2.7 3.7 10 158 10 353 112 246 132 356 77 23 80 15
rou12 30.8 5.6 6.5 5.4 6.4 268 467 1225 2017 14 6 15 4
rou15 31.5 6.5 7.5 5.3 5.7 556 903 3559 6370 19 8 22 6
rou20 24.5 5.0 4.3 4.4 4.0 1107 2090 7679 18 696 28 10 30 7

3.2 constructive methods 32

5555

4040

2222

5353

6262

5353

AA BB

CC

DD

(a) Locations.

22

33

11

44

11

44 33

22

(b) Facilities.

Figure 5: Graphical description of Neos4 instance.

3.2 constructive methods

This section describes constructive algorithms: these algorithms start with
an empty permutation and iteratively select a facility and assign it to a
free location. In this thesis three constructive algorithms are proposed, the
differences among them are in the rules used to select the current facility
and its location.

These algorithms we are going to present are greedy. Thus, at every
iteration they choose the best and immediate benefit.

Greedy algorithms can achieve a permutation which can be very far from
the optimal one, therefore they are usually used only to create a good starting
permutation for more advanced meta-heuristic methods.

3.2.1 An introductory example

As an example, we consider Neos4 instance, as described in 5.2.

Description of the example

Matrices F and D are symmetric and defined as shown below:

F =


0 3 0 2
3 0 0 1
0 0 0 4
2 1 4 0

 and D =


0 22 53 53

22 0 40 62
53 40 0 55
53 62 55 0


In this example, we are going to use different notations. Locations will

be denoted with capital sans-serif fonts (like X). This is done to convey the
geometric idea that locations are points on the 2D-plane. Facilities will be
denoted as usual by numbers 1, . . . , 4.

A permutation π is the 4-tuple of letters permuted so that πi is the
location of facility i. For instance, π1 = B means that we place facility 1 into
location B.

We can imagine the situation graphically (Fig. 5).
In figure 5a are shown locations of the Neos4 instance.
Locations (hence, the four point of the plane) are in green, while their

distances are in black. Note that locations A and B are fairly close to each
other. Instead, the other locations are far from each other, with similar
distances. Our naive, basic intuition (but very useful for this section) suggest
that facilities with the highest flow should be placed on locations A and B.

3.2 constructive methods 33

On the other hand, figure 5b shows facilities of the same instance. Facili-
ties are in blue, while flows are in black. Thicker lines correspond to higher
flows. If the flow is 0, then no line is displayed. As we can see, facility 3 is
connected only with facility 4, with a flow of 4 (the highest one). If Thus, our
intuition proposes to place facility 3 and 4 close, while it is not necessary to
place facilities 2 and 4 close to each other, since they only have a flow of 1.

In fact, the optimal solution of this instance is π = [C,D,A,B] with an
objective function value of z(π) = 790. As we can see, facility 3 is placed on
location A and facility 4 on location B. This follows our previously intuition.

Three basic algorithms

So, how can one devise a greedy algorithm? Remember that we want to
minimize the quantity

4

∑
i=1

4

∑
j=1

fijdπ(i)π(j)

Since there must be a starting assignment, let us suppose that we are assign-
ing location A to facility 1. Therefore, we set π1 = A.

Now, how can we choose a second facility and a second location?
Our first idea was to, at each step, minimize both flow and distance at

the same time. This was a bad idea, since this choice is very good at the
beginning, but later it has a severe impact on magnitude of last assignments.

Therefore, thinking about it, we have identified three different approaches:

first approach We start choosing facility with maximum flow from 1,
this is 2. Now, the problem is to find the location to put facility 2.
We choose location that minimizes the sum of distance from location
already chosen. In this case, since we only chose A, the location which
minimizes the distance from A, this is B. Hence, we set π2 = B.

For the third assignment, we start choosing facility (not already taken)
with highest flow from 2, is 4. For locations, we just evaluates the two
sums: dAC + dBC = 53 + 40 = 93 and dAD + dBD = 53 + 62 = 115.
Since we want the minimum distance, we choose C. Therefore, we just
set π4 = C.

The last possible assignment is π3 = D. The final permutation built by
this approach is π = [A,B,D,C] with objective function value z(π) =
864.

second approach This approach is fairly similar to the first one with the
roles of facility and locations exchanged. So, we start choosing location
with the minimal distance A, is B. Now, we want to find facility which
maximizes the flow from already chosen facilities. This is simply facility
2. Thus, we set π2 = B.

For the third location we choose the closest one (not already taken)
to B, which is C. Which facility comes now? Let us just do the math:
f13 + f23 = 0 + 0 = 0 and f14 + f24 = 2 + 1 = 3. Since we want to
maximize the flux, we set π4 = C.

The last one is forced, so π3 = D. The final permutation is again
π = [A,B,D,C] with objective function value z(π) = 864.

third approach This approach is the simplest one. Choose the facilities
with maximum flow from facility 1 and assign it to the closest location

3.2 constructive methods 34

from A. In this case, location B is assigned to facility 2, therefore we set
π2 = B.

Now, 2 has a positive flow only with facility 4, so we will chose that. As
regards locations, C is the closest one to B. Therefore, we set π4 = C.

Last pair of facility/location is forced, hence π3 = D. So, this approach
builds again permutation π = [A,B,D,C] with objective function value
z(π) = 864.

We will transform these three approaches into three different algorithms,
which will be named as Greedy1, Greedy2, Greedy3.

Some observations follows:

• All these three methods are quite greedy. They tend to do the best at
every step. The difference is that the third one is “greedier” than the
other two, since it considers only the current step, and not the past.

• We obtained three times the same final permutation. This is, in general,
not true.

• Greedy3 seems to be the fastest one, since no sum evaluation is neces-
sary and it only looks for minimum/maximum in a vector.

• Greedy3 is not an innovative strategy, this procedure is similar to the
greedy algorithm for TSP proposed in [22].

From now on, we return to the standard notations. Hence, facilities and
locations will be denoted by numbers.

We are now going to describe the three algorithms in details.
Every greedy algorithm presented has three parameters on input: q, n1,

n2 and two on output: p and zp.

input The three parameters q ∈ {0, 1}, n1, n2 ∈ {1, . . . , n} are used for the
first assignment. They act as follows:

• If q = 1, then algorithm assigns facility n1 to location n2. Hence,
p(n1) = n2.

• If q = 0, then algorithm tries every possible initial assignment and
chooses the best one. In this case, the algorithm does not use n1
and n2 and can result in longer running time.

output The final permutation is stored as p , a vector of n components. zp
represents the objective function value of p, i.e., zp = z(p).

Each of the three greedy algorithms creates two vectors v and l, one for
facilities and one for locations. These vectors represent the choice of the
algorithm at each step.

Therefore, vi means that in step i the algorithm choose the facility vi (and
same thing for li). Thus at each step, after choosing vi and li, the algorithm
add a new entry at the final vector p, by setting pvi = li.

3.2.2 Greedy1

This algorithm represents the first approach we discussed in section 3.2.1.
Pseudocode 5 describes the algorithm in the symmetric case with q = 0.
As we said lines 1-3 represent the first assignment.

3.2 constructive methods 35

Algorithm 5: Greedy1 algorithm
Input: n,F, D,n1, n2
Output: p, zp
/* initialisation */

1 v1 ← n1;
2 l1 ← n2;
3 pv1 ← l1;
/* main loop */

4 for i = 1, . . . , n− 1 do
5 Choose vi+1, the facility with maximum flow from fi;
6 Choose li+1, the location minimizing ∑i

j=1 fli+1,j · ds,j;
7 pvi+1 ← li+1;
8 end
9 Evaluate zp = z(p);

For the second assignment (and so on), Greedy1 chooses facility v2 which
maximizes the flow from and to the previous ones (line 5); therefore

vi+1 = arg max
{

max
{

fvis
}

, max
{

fsvi

}}
.

After that, the algorithm chooses location li+1, where facility vi+1 will be
placed. Location li+1 is chosen such that it minimizes the total flow sent to
facilities already in place (line 6). In other words,

li+1 = arg min

{
∑

(k,j)∈Ω

(
fvikdsj + fkvi

djs
) ∣∣∣ s ∈ [n], s 6= l1

}
(35)

where [n] = {1, 2, . . . , n} and Ω is the set of pairs facility-location already
assigned.

This procedure repeats for i = 1, . . . , n− 1 (line 4).
After choosing vi+1 and li+1, Greedy1 updates the final permutation

setting pvi+1 = li+1 (line 7).
In the case q = 0, the algorithm starts again with every possible choice of

n1 and n2. The best objective function value is stored.
We implemented Greedy1 algorithm in Fortran language and made it

available on GitHub [26].

3.2.3 Greedy2

The second greedy algorithm follows the second approaches in 3.2.1. Hence,
it is similar to the first one, with the role of facilities and locations exchanged.

Therefore, using the same notations as before, location li+1 is the closest
one to li.

As regards facilities, vi+1 is chosen as

vi+1 = arg min

{
∑

(k,j)∈Ω

(
fsk dli+1 j + fks djli+1

) ∣∣∣ s ∈ [n], s 6= vk ∀k

}
.

The Fortran code we implemented for Greedy2 can be found on GitHub.

https://github.com/Tommaso-Mannelli-Mazzoli/QAP/blob/master/Greedy1.f90
https://github.com/Tommaso-Mannelli-Mazzoli/QAP/blob/master/Greedy2.f90

3.2 constructive methods 36

3.2.4 Greedy3

The third greedy algorithm follows the third approach described in 3.2.1.
For facilities, in each step, the algorithm consider the facility (not already

chosen) with highest flow to the previous one.
For locations, Greedy3 considers the closest location (not already chosen)

to the current one.
In pseudo code 6 it is shown the Greedy3 algorithm for symmetric case.

The Fortran code we implemented and used can be found on GitHub [26].

Algorithm 6: Greedy3 algorithm
Input: n,F,D,n1, n2
Output: p, zp
/* initialisation */

1 f1 ← n1;
2 l1 ← n2;
3 p f1 ← l1;
/* main loop */

4 for i = 1, . . . , n− 1 do
5 vi+1 is the facility with maximum flow from vi;
6 li+1 is the closest location to li;
7 pvi+1 ← li+1;
8 end
9 Evaluates zp = z(p).

3.2.5 Implementation and Comparison

We compared these three algorithms in order to choose which algorithm
use to provide starting permutation for metaheuristic algorithms, that are
described in the next chapter.

Table 9 shows percentage of deviation for various instance of QAP. The
case q = 0 was chosen for every algorithm.

We can see that all these greedy methods are not very precise, especially
on instances lipaxxb. Nevertheless, as we stated at the beginning, they are
commonly use only to built an initial guess for more advanced metaheuristic
algorithms.

Moreover, note that Greedy3 is much faster than the other two (often with
a difference of one order of magnitude), as a confirm of what we supposed.
Thus, we will use it for metaheuristic methods presented in the next chapter,
despite it shows larger PD values than Greedy1.

https://github.com/Tommaso-Mannelli-Mazzoli/QAP/blob/master/Greedy3.f90

3.2 constructive methods 37

Table 9: Comparison of Greedy algorithms. PD is the percentage deviation from the
best known solution, t is the running time in seconds.

Instance Greedy1 Greedy2 Greedy3

PD t PD t PD t

lipa20a 3.18 0.0 5.89 0.0 3.10 0.0
lipa20b 0.00 0.0 29.68 0.0 0.00 0.0
lipa30a 2.78 0.1 4.17 0.1 2.62 0.0
lipa30b 0.00 0.1 29.18 0.1 12.03 0.0
lipa40a 2.11 0.5 3.49 0.5 2.03 0.0
lipa40b 15.08 0.5 30.53 0.5 19.33 0.1
lipa50a 1.74 1.4 3.12 1.3 1.72 0.1
lipa50b 16.58 1.4 30.00 1.4 22.50 0.1
lipa60a 1.58 3.3 2.74 3.2 1.60 0.2
lipa60b 21.19 3.3 32.14 3.2 23.21 0.3
lipa70a 1.45 6.9 2.49 6.8 1.37 0.5
lipa70b 21.11 6.9 32.46 7.0 25.69 0.5
lipa80a 1.28 13.2 2.25 12.9 1.22 0.8
lipa80b 22.23 13.2 33.80 13.0 26.18 0.8
lipa90a 1.17 23.5 1.99 22.3 1.12 1.3
lipa90b 23.31 23.1 33.51 22.6 25.23 1.2
sko42 9.88 0.6 32.95 0.6 18.91 0.1
sko49 8.22 1.3 31.46 1.2 16.40 0.1
sko56 8.44 2.4 31.14 2.4 17.52 0.1
sko64 7.34 4.5 28.48 4.4 15.41 0.2
sko72 7.81 8.0 26.65 7.6 15.08 0.4
sko81 6.51 14.2 26.39 13.5 14.44 0.6
sko90 7.10 23.6 24.95 23.0 13.90 0.9
sko100a 6.31 39.5 22.88 38.0 14.30 1.4
sko100b 6.60 38.8 23.82 37.0 13.52 1.2
sko100c 6.91 38.7 24.26 36.8 13.75 1.3
sko100d 6.04 40.0 23.57 37.9 13.13 1.3
sko100e 6.69 39.8 23.98 37.1 13.42 1.2
sko100f 6.53 40.3 23.87 38.4 14.10 1.4

4M E TA H E U R I S T I C A L G O R I T H M S

The word heuristic has its origin in the old Greek word ενρισκείν

(heuriskein), which means the art of discovering new strategies (rules)
to solve problems. The term metaheuristic was introduced by Fred

W. Glover in 1986 [18, p. 541], a professor of University of Colorado. In
the referred article Future paths for integer programming and links to artificial
intelligence, he used this term only once in all the document:

Tabu search may be viewed as a “meta-heuristic” superimposed on
another heuristic.

Figure 6:
Fred Glover

In fact, the Greek suffix meta means “upper level methodology”.
Metaheuristic algorithms were designed in order to solve

problems too difficult for the heuristic algorithms. Hence,
metaheuristics provide “acceptable” solutions in a reasonable
time for solving hard and complex problems in science and
engineering. This explains the significant growth of interest in
metaheuristic domain. Unlike exact optimization algorithms,
metaheuristics do not guarantee the optimality of the obtained
solutions [35].

There are two types of metaheuristic algorithms:

population based They can be viewed as an iterative im-
provement in a population of permutations. At first the population is
initialized, then a new one is generated and finally these populations
are integrated into a new one using a selection procedure. The search
process is stopped when a stopping criterion is satisfied. Some of
Population based algorithms are Ant Colony Optimization, Genetic
Algorithms, Memetic Algorithms [35].

single-solution based While solving optimization prob-
lems, single-solution based metaheuristics improve a sin-
gle solution. They can be viewed as “walks” through
neighborhoods or search trajectories through the search
space of the problem. Tabu Search, Simulated Anneal-
ing, GRASP, Variable Neighborhood Search belong to this
class of metaheuristics [35].

There are three central concepts in metaheuristics:

neighborhood We define a neighborhood of a feasible solution π ∈ Sn
as a generic function N : π → P(Sn) that maps a solution to a set of
solutions.

intensification Exploitation of the best solutions. Often this is achieved
by doing a local search starting from the current solution.

diversification Exploration of the search space, in order to escape from
local minimum.

We are going to describe three different metaheuristic algorithms:

• Tabu Search. We implemented the original algorithm in [31].

38

4.1 tabu search 39

• Ant Colony Optimization. We elaborated a new strategy for the diver-
sification phase with respect to [15].

• Variable Neighborhood Search. We did not find an implementation
of this algorithm for QAP in literature; hence, we devised a new
implementation ex novo.

4.1 tabu search

Introduction

The history of Tabu Search (TS) is described in the following table.

Year Event

1986 Tabu Search algorithm is proposed by Glover [18]
1990 Skorin-Kapov implements tabu search for QAP [31]
1991 Éric Taillard implements robust tabu search for QAP [33]
1994 Battiti and Tecchiolli [1] implements reactive tabu search for QAP
2011 Misevicius [27] implements iterated tabu search (ITS) for QAP

In his famous paper of 1986, Fred Glover introduced Tabu1 Search algorithm
as follows:

From an AI point of view, tabu search deviates to an extent from what might
be expected of intelligent human behavior. Humans are often hypothesized to
operate according to some sort of random (probabilistic) element which promotes
a certain level of “inconsistency”. The resulting tendency to deviate from a charted
course, sometimes regretted as a source of error, can also prove a source of gain.
Such a mechanism has been postulated to be useful, even fundamental, to human
ingenuity.

TS is one of the most studied and used algorithm for QAP. In several cases,
the methods of this class provide solutions very close to optimality and are
among the most effective, if not the best, to tackle the difficult problems at
hand. Therefore, these successes have made TS extremely popular [16].

Figure 7:
Jadranka
Skorin-
Kapov

The main idea of TS is to forbid certain moves. This is done
in order to escape from local optima. To do this, a tabu list was
adopted. It is an array of size s (called tabu tenure), that stores
the past evolution of the algorithm.

Since there is a rich variety of strategies and tools, there is
a lot of freedom in the implementation of a TS.

The first TS algorithm for QAP was presented by Jadranka
Skorin-Kapov, Stony Brook University, New York. Her algo-
rithm starts with an initial permutation π and begin an inten-
sification phase using a local search algorithm; she used the
neighborhood N2, as defined in section 3.2. She forbid the
2-exchange of two units that were swapped during the previous s iterations,
inserting them into the tabu list, i.e., every time a 2- exchange is performed,
the algorithm inserts the two indices swapped into the tabu list.

After one year, the robust tabu search (roTS) was defined by Éric Taillard,
École polytechnique fédérale de Lausanne (Lausanne, Switzerland). Based
on Skorin-Kapov work, they used the same neighborhood but a different
tabu list. For every facility i and location j, the latest iteration at which the
facility i occupied location j is recorded. A 2-exchange πi1i2 is tabu if both
i1 and i2 are assigned to locations they had occupied in the last s iterations.
The tabu tenure varies in a cyclic random manner between a lower value

1 The name comes from Polynesian word tàpu that means prohibited.

4.1 tabu search 40

smin = b0.9nc and an high value smax = d1.1ne. This value is updated every
2 · smax iterations.

In 1994, Roberto Battiti and Giampietro Tecchiolli, Instituto Nazionale di
Fisica Nucleare (Trento, Italy), introduced the reactive tabu search (ReTS).
They still used neighborhood N2, but the algorithm evolved in a more
complex way. In fact, ReTS reacts during the evolution of the search by
increasing the tabu tenure when a solution is repeated along the search, and
decreasing it if no repetition occurs for a certain number of iterations . They
used hashing functions, binary trees, bucket lists as tool to store the solution
and to check if a neighbour solution was already visited [5]. The numerical
results show that ReTS is competitive with ro-TS in terms of number of
iterations performed to reach the best known solution [5].

In 2011, Alfonsas Misevicius , Kaunas University of Technology, (Kaunas,
Lithuania) implemented [27] iterated tabu search (ITS). He combined the roTS
with a special type of mutation. As regards tabu tenure, he differentiated
from Taillard’s approach. The tabu tenure s various s in a deterministic way:
each time it reached a value smax, it drops to a lower value smin. For small
size problems (n ≤ 50) he used smin = b0.2nc and smax = d0.4ne. For larger
problems (n > 50) he used smin = b0.1nc and smax = d0.2ne.

Now we are going to describe the algorithm in details.

Description of the algorithm

In our implementation, we followed the main idea of Skorin-Kapov’s work.
We consider two types of memories:short-term memory and long-term

memory.

short-term memory This memory consists of a tabu list with tabu
tenure s. This list is used to prevent revisiting previously visited
solutions. This is done in order to achieve diversification.

long-term memory This memory stores information on the visited so-
lutions during the search. The idea of long-term memory is to record
the frequency with which each movement has been realized since the
beginning of the algorithm. In our implementation, long-term memory
provide an intensification phase.

An other important ingredient is the aspiration criterion. It is essentially
a condition that, if holds, allows tabu solutions to be accepted. The most
common criterion is to accepts the tabu moves that generate solutions better
than the best one found so far.

Pseudo code 7 sketches the idea of the algorithm.
The short-term memory is an array of size s where the best local moves

performed are stored. Every time that an improvement of the objective
function by a 2-exchange occurs, the move performed is stored in the tabu
list, hence it is prohibited. Since the dimension of list is finite, when the list
is full the next move will replace the oldest one (this is why it forms the
short-term memory: it records only the s previous moves).

We implemented long-term memory as an n× n matrix M = (mij). Each
entry of M is related to the quality of the 2-exchange done, e.g., if the 2-
exchange {1, 2} → {2, 1} improves the current solution, then we store this
information on M, updating the matrix as follows:

M12 ← M12 + 1 and M21 ← M21 + 1.

input Tabu tenure s, penalty parameter µ, maximum time tmax.

4.1 tabu search 41

output The obtained solution pbest and its objective function value zbest.

Algorithm 7: Tabu search
Input: n, F, D, µ, s, tmax
Output: pbest, zbest
/* initialization */

1 Build an initial solution p with objective function zp = z(p) by Greedy3 algorithm;
2 zbest ← zp;
3 pbest ← p;
4 M ← 0;
5 D̃ ← D;
/* main loop */

6 Call CPU_TIME t;
7 while t < tmax do

/* improvement of the current solution */

8 dmin ← 0;
9 Starting from p, search an admissible local 2-optimum ptemp ∈ N2(p) with

objective function value ztemp. This is obtained by a 2-exchange of indices (j1, j2);
10 dmin ← ∆(p; j1, j2);

/* update short-term memory */

11 Add the pair (j1, j2) to tabu list;
12 if dmin < 0 then
13 zp ← ztemp;
14 p← ptemp;

/* update long-term memory */

15 mj1 j2 = mj1 j2 + 1;
16 mj2 j1 = mj2 j1 + 1;
17 if zp < zbest then
18 zbest ← zp;
19 pbest ← p;
20 end
21 Call CPU_TIME t;
22 Go to 7;
23 end

/* create a new solution using long-term memory */

24 D̃ ← D̃ + µM ;
25 Use Greedy3 with matrices F and D̃ to create a new permutation p with objective

function zp;
26 Call CPU_TIME t;
27 end

Initialization

At first algorithm builds an initial permutation. In our implementation it is
provided by the by Greedy3 method (line 1). The output permutation and its
objective function provided by Greedy3 are denoted by p and zp.

The long-term matrix is initialized as the null matrix (line 4). A copy of
distance matrix D is stored in matrix D̃ (line 5).

Improvement of the current solution

The algorithm looks for an improvement of the current solution (lines 9-
10). This is done in our implementation by a modified version of 2optBest
algorithm.

The difference with 2optBest algorithm is that not every move is allowed.
At each step, TS controls if the current indices i1 and i2 belong to tabu-list. If
this is the case, 2optBest variant skips to the next pair of indices.

4.1 tabu search 42

It is possible to overcome the tabu restriction for a pair (j1, j2) if the
2-exchange {j1, j2} → {j2, j1} improves the best solution obtained by far
pbest.

The term dmin is stored (line 10). It is the best improvement of the
objective function value obtained.

If dmin = 0, this means that the best 2-exchange found does not improve
the current solution. Therefore, ptemp is an admissible local optimum. The
term admissible means that it does not belong to the tabu list, or it belongs
but provides an improvement of the best permutation found so far pbest.

On the other hand, if dmin < 0, then there is indeed an improvement
of the objective function value. Suppose that {j1, j2} → {j2, j1} is the best
admissible 2-exchange. Then, the 2-exchange is applied and its objective
function value is updated (lines 13-14).

Moreover, if the permutation after the 2-exchange is the best found so far,
the algorithms update pbest and zbest (lines 18-20).

This procedure repeats until the actual permutation p cannot be improved
any more (dmin ≥ 0).

Updating of the memories

The short-term memory is updated: the two indices j1 and j2 enter in the
tabu list (line 11).

If the tabu list is full, it starts again by substituting the first two index of
the list with j1 and j2. This idea was taken from Skorin-Kapov [31].

As regards long-term memory, the matrix M is updated by increasing
mj1,j2 and mj2,j1 by 1 (lines 15-16). This memory, unlike tabu list, is never
reset its value. Therefore, the indices j1 and j2 remain in M until the end of
the algorithm.

Creation of a new permutation

At this point the matrix D̃ is updated as D̃ ← D̃ + µM where µ is an input
penalty parameter (line 24).

In our runs, we set

µ = k · 1
n2

n

∑
j=1

n

∑
i=1

dij. (36)

This allow us to adapt the magnitude of µM to the one of matrix D;
If µ > 0, the algorithms increases distance between locations frequently

swapped, therefore tries to achieve diversification.
On the other hand, if µ < 0, then distance between locations frequently

swapped decreases, hence the algorithm stimulates frequent moves to be
chosen.

Finally, a constructive algorithm is used to create another solution p∗

from the updated matrix D. Here the algorithm starts again, setting p← p∗.
Note that the only Greedy3 algorithm uses the updated matrix D̃, the rest

of the algorithm still uses the original distance matrix D.

Implementation and parameters calibration

We implemented algorithm 7 in Fortran language. The code can be found on
GitHub [26].

https://github.com/TDS-Firenze/QAP/blob/master/TABU_SEARCH.f90

4.1 tabu search 43

Since the dimension of the instances are very different, we are going to
do two separate calibrations: one for small dimensions (n < 50) and an other
one for large dimensions (n ≥ 50).

The algorithm stops whenever the execution time exceeds the input value
tmax. We chose tmax = 30 s for n < 50 and tmax = 60 s for n ≥ 50.

Finally, we run the code on a i7-9750H processor with 2.60 GHz clock
frequency.

The parameters we have to calibrate are

• the parameter k used in (36);

• the size of tabu list s; if its value is too small, cycling may occur in the
search process while if its value is too large, appealing moves may be
forbidden and leading to the exploration of lower quality solutions,
producing a larger number of iterations to find the solution desired.

To calibrate them, we vary the parameters in a reasonable range and
then we took the values providing best objective function values at average.
Like the previous chapter, we evaluated the Percent Deviation (PD) from the
optimal solution.

After some tests we found that the bests values of k were between −1 and
−2, hence we explored it more deeply. Finally, the range of tested parameter
values is

• k ∈ {1,−1,−1.2,−1.4,−1.6,−1.8,−2,−5,−10,−20}

• s ∈ {8, 10, 15, 20, 25, 50, 100, 200}

The following pages contain tables where we highlighted in green the

optimal solution (or the best known solution) and in blue good solutions,
even if they were not the optimal.

Small dimension

Instances used to calibrate are

tai12a We achieved the optimum for several (k, s) (table 10) . In most of
the cases, the percent error of the solution is less than 4%.

chr20c We achieved the optimum for s = 20, 50 and k = −1.8 (table 11) .
Other good result were obtained for s = 150 and k = −1.8,−2,−5,−10,−20.

nug30 The best solution we achieve (Table 12) has a percent error of 0.03%
with k = −5,−10,−20 and s = 20. All other solutions are pretty good,
since they always are under 2% of percent error, except for k = 1.

Large dimension

We used the following instances:

lipa60b As we can see in table 13 we reached the optimal solution 7 times:
for µ = −1 and s = 25, 50, 100, 150, for µ = −1.2 and s = 8 and finally
for s = 150 and µ = −1.8. The instance is asymmetric.

wil100 The optimal solution is not known. Every solutions we found has
less than 1% of error from the best known solution (which is 64).

esc128 As we can see in table 15, We reached the optimum many times. No-
tice that TS provides optimal solution for every s if k = −1.8,−2,−5,−10.

4.1 tabu search 44

s k

1 −1 −1.2 −1.4 −1.6 −1.8 −2 −5 −10 −20

8 6.38 0 0 0 0 0 0 3.84 3.84 3.84

10 6.30 0 0 0 0 0 0 2.08 0 0

15 6.30 0 0 0 0 0 0 0 0 0

20 6.30 0 0 0 2.80 2.80 2.08 2.08 2.08 2.08

25 6.30 2.80 2.80 2.08 0 2.08 0 0 0 0

50 6.30 3.84 3.84 2.80 2.80 2.08 3.84 0 0 0

100 6.30 0 2.08 2.08 2.08 2.08 0 2.08 2.08 2.08

150 6.30 6.89 6.89 2.08 2.08 2.08 0 0 2.80 2.80

Table 10: Tabu Search for Tai12a

s k

1 −1 −1.2 −1.4 −1.6 −1.8 −2 −5 −10 −20

8 41.61 6.82 20.11 6.04 18.92 13.75 13.75 13.75 13.75 13.75
10 41.61 21.67 4.72 18.22 15.90 19.37 19.37 19.37 19.37 19.37
15 39.57 20.72 18.58 11.51 24.62 18.98 18.98 18.98 18.98 18.98
20 39.57 18.88 20.18 19.30 4.72 0 19.37 19.37 19.37 19.37
25 39.57 18.53 19.81 22.43 19.37 20.80 20.80 20.80 20.80 20.80
50 39.57 13.75 15.90 15.20 16.69 0 28.72 28.72 28.72 28.72
100 36.22 17.83 18.82 18.22 18.53 20.80 20.61 20.61 20.61 20.61
150 36.22 26.79 18.89 18.22 16.39 4.74 4.74 4.72 4.72 4.72

Table 11: Tabu Search for Chr20c

Conclusions

The choice of k = 1 did not perform well in any instance. This reflects
the fact that, for our TS algorithm, intensification is a better strategy than
diversification.

For small dimension, we decided to choose s = 20 and k = −1.8, since it
provides the optimal solution for Chr20c and for Tai12a and Nug30 the sum
of the error is minimal: only 2.9%.

For large dimension, we chose s = 20 and k = −1.4, since it provides the
optimal solution for Lipa60b and Esc128, while only an error of 0.48% for
Wil100.

s k

1 −1 −1.2 −1.4 −1.6 −1.8 −2 −5 −10 −20

8 2.45 0.98 1.27 0.78 1.44 0.95 0.95 1.96 1.96 1.96
10 2.45 1.08 0.36 0.78 1.40 1.67 1.67 1.24 1.24 1.24
15 2.45 0.69 1.08 0.98 0.49 0.88 0.88 1.34 1.34 1.34
20 2.45 0.85 0.88 1.47 1.47 0.82 1.86 0.10 0.10 0.10
25 2.45 0.95 0.98 0.59 1.24 0.69 0.91 0.88 0.88 0.88
50 2.45 1.05 0.62 1.14 0.46 0.75 0.69 1.01 1.01 1.01
100 2.02 0.85 0.98 0.52 1.27 1.11 1.18 0.52 0.52 0.52
150 2.45 1.08 1.27 1.24 0.69 1.21 1.08 0.95 0.95 0.95

Table 12: Tabu Search for Nug30

4.1 tabu search 45

s k

1 −1 −1.2 −1.4 −1.6 −1.8 −2 −5 −10 −20

8 19.90 19.13 0 19.03 19.15 19.05 19.05 19.05 19.05 19.05
10 19.90 19.19 18.92 18.82 18.91 19.02 19.02 19.02 19.02 19.02
15 19.54 19.09 18.90 19.44 18.92 19.11 18.92 18.92 18.92 18.92
20 19.90 19.09 19.03 0 18.89 19.14 19.21 18.89 18.89 18.89

25 19.90 0 18.90 19.44 18.92 19.11 18.92 18.92 18.92 18.92

50 19.90 0 19.14 18.86 18.90 19.03 19.03 19.03 19.03 19.03

100 19.83 0 19.00 19.06 19.03 19.08 19.03 19.08 19.08 19.08

150 19.58 0 18.87 19.10 19.04 0 19.042 19.04 19.04 19.04

Table 13: Tabu Search for Lipa60b

s k

1 −1 −1.2 −1.4 −1.6 −1.8 −2 −5 −10 −20

8 0.69 0.60 0.69 0.54 0.65 0.75 0.75 0.47 0.47 0.47
10 0.68 0.60 0.69 0.64 0.65 0.77 0.63 0.47 0.47 0.47
15 0.73 0.60 0.72 0.60 0.65 0.82 0.65 0.59 0.59 0.59
20 0.83 0.60 0.72 0.48 0.65 0.67 0.71 0.79 0.79 0.79
30 0.87 0.60 0.74 0.62 0.58 0.69 0.66 0.72 0.72 0.72
50 0.67 0.60 0.74 0.62 0.58 0.69 0.66 0.72 0.72 0.72
100 0.59 0.60 0.62 0.54 0.65 0.60 0.68 0.55 0.55 0.55
150 0.66 0.60 0.70 0.65 0.58 0.64 0.69 0.69 0.69 0.69

Table 14: Tabu Search for Wil100

s k

1 −1 −1.2 −1.4 −1.6 −1.8 −2 −5 −10 −20

8 9.38 3.31 3.13 3.13 0 0 0 0 0 0

10 9.38 3.13 0 0 0 0 0 0 0 0

15 9.38 3.13 0 0 0 0 0 0 0 0

20 9.38 3.13 0 0 0 0 0 0 0 0

25 9.38 3.13 0 0 0 0 0 0 0 0

50 9.38 3.13 0 0 0 0 0 0 0 0

100 9.38 3.13 0 0 0 0 0 0 0 0

150 9.38 3.13 3.13 3.13 9.38 0 0 0 0 0

Table 15: Tabu Search for Esc128

4.2 ant colony optimization 46

4.2 ant colony optimization

Ant Colony Optimization algorithm (ACO) was initiated by Dorigo in 1991.
The principle of this method is based on the way Argentine ants Iridomyrmex
humilis search for food and find their way back to the nest [19]. At first, ants
explore the area surrounding their nest at random. Then, during the return
trip, ants leave a pheromone trail on the ground, in order to guide other ants
toward the source of food. The quantity of pheromone left depends on the
amount of food found. Pheromone trail evaporates if no one pass there any
more.

This algorithm is population based. Hence, at first m initial solutions
(the ants) are generated. Then, it comes intensification: each ant is improved
in a local search phase. Finally, before the start of the next iteration, the
pheromone trail is updated reflecting the “experience” of the ants.

4.2.1 Hybrid Ant System

Inspired by Gambardella, Taillard and Dorigo [15] we implemented a variant
of ACO known as Hybrid Ant System (HAS). Nevertheless, we will still refer
to this algorithm as ACO.

In this implementation the pheromone trail is a n× n matrix T = (τij),
where the entry τij measures how good is assigning facility i to location j.
Pseudo code 8 outlines main steps of ACO.

4.2.2 Implementation

Pheromone trail initialization

In the original algorithm by Gambardella et al [15], pheromone trail matrix
T was initialized by setting every component to the same value τ0 = 1

100zbest
,

where zbest is the best know value of the objective function.
Instead, we tried another approach: two matrices M1 and M2 are used

and then combined to form matrix T .
First, the two matrices M1 and M2 are initialized to 0.
Then, n initial permutations are built, by setting

πi = [i, i + 1, . . . , n, 1, 2, . . . , i− 1] ∀i ∈ 1, . . . , n

After that, for every permutation πi, 2optBest algorithm is applied with the
following remarks:

• Every 2-exchange made (hence, every improvement of the solution) is
stored: if indices p and q of πi are swapped, therefore we update the
matrix M2 as follows:

M2(p, πi(p))← M2(p, πi(p))− 1, M2(q, πi(q))← M2(q, πi(q))− 1,

M2(p, πi(q))← M2(p, πi(q)) + 1, M2(q, πi(p))← M2(q, πi(p)) + 1.

Finally, since we want M2 to be positive, we set M2 ← M2 + min(M2).

• At the end of local search procedure, a final permutation π̃i is found.
Thus, M1 is updated as follows:

M1(r, π̃i(r))← M1(r, π̃i(r)) + 1 ∀r ∈ {1, . . . , n}.

4.2 ant colony optimization 47

Algorithm 8: ACO algorithm
Input: n, F, D, tmax
Output: pbest, zbest

1 Initialize pheromone trail matrix T ;
2 while t < tmax do
3 Generate m random initial permutation π1, . . . , πm;
4 Improve π1, . . . , πm with 2optFirst algorithm;
5 Let πbest be the best permutation among π1, . . . , πm;

/* solution manipulation */

6 for k = 1, . . . , m do
7 Apply R 2-exchanges to πk to obtain π̂k;
8 Apply 2optFirst to π̂k to obtain π̃k;

/* intensification */

9 if intensification is active then
10 πk ← best permutation between πk and π̃k;
11 else
12 πk ← π̃k

13 end
14 end
15 Deactivate intensification;
16 if exists k such that z(πk) < zbest then
17 Update πbest;
18 Activate intensification;
19 end

/* pheromone trail updating */

20 Update pheromone trail matrix T ;
/* diversification */

21 if S loops have been performed without improving πbest then
22 Perform a diversification: T ← 0;
23 end
24 end

4.2 ant colony optimization 48

Finally, pheromone trail matrix T is built summing M1 and M2:

T ← M1 + M2.

In a nutshell, τij tells us how good is the assignment π(i) = j.

Initialization of solutions

As in [15], m random permutations are chosen. Each permutation is opti-
mized using a local search procedure. Gambardella [15] used a variant of
first improvement algorithm. Instead, we used our 2optFirst algorithm.

Manipulation of solutions

In [15], a number of R 2-exchanges are applied to each permutation πk.
These operations provides m new permutations π̂1, . . . , π̂m. We followed the
same procedure. These R swaps are performed as follows:

First, an index r is chosen, randomly between 1 and n.
Then, a second index s 6= r is chosen and the elements πk

r and πk
s are

swapped in the current solution πk.
The second index s is chosen according to following policy:

• With probability given by a parameter q, s is chosen such that τrπs + τsπr

is maximum. This means that s is the best 2-exchange for r we can do,
according to pheromone trail matrix T .

• With probability (1− q), s is chosen with a probability proportional to
the values contained in T . More precisely, s is chosen with probability

τrπs + τsπr

∑j 6=r

(
τrπj + τjπr

) . (37)

Note that setting M2 ≥ 0 allows τij to be positive. Therefore, expression (37)
is indeed a density of probability.

After the 2-exchange, 2optfirst algorithm is applied to every permuta-
tion π̂k, obtaining m 2-optima: π̃1 . . . , π̃m.

Intensification

The intensification mechanism is activated when the best solution produced
so far πbest has been improved. Intensification remains active while at least
one solutions is improved during an iteration. Therefore:

• If intensification is active, then each permutation starts its next iteration
as the best permutation between πk and π̃k.

• If intensification is not active, then the permutation is maintained as π̃k.

Pheromone trail update

Pheromone trail is updated by taking into account only the best solution πbest.
Firstly, the pheromone trail T is weakened by setting τij = (1− α) · τij

where 0 < α < 1 is a parameter that controls evaporation of the trail. A value
of α close to 0 implies that pheromone is more persistent, while a value
close to 1 implies high degree of evaporation (thus, a shorter memory of the
system).

4.2 ant colony optimization 49

Secondly, T is reinforced by considering the best permutation obtained
so far πbest. In [15], authors update the pheromone trail T as follows:

τiπbest(i) ← τiπbest(i) +
β

zbest
∀i ∈ {1, . . . , n}. (38)

Instead, we followed an other approach: The algorithm builds matrices
M1 and M2 in the same way of pheromone trail initialization, but only
considering πbest instead of all the m permutations.

Finally, we update T as follows:

T ← T + (M1 + M2) . (39)

Diversification

Diversification mechanism is activated if, during the last S loops, no improve-
ment to the best generated solution is detected. Diversification consists in
erasing all the information contained in the pheromone trail and in randomly
generating other m solutions (line 22).

Complexity

The complexity of the algorithm can be evaluated as follows: most time
consuming part of the algorithm is the local search procedure, which has a
computational cost of O(n3) operations. This is repeated Im times, where I
is the number of loops performed. Hence, the total cost of ACO is O

(
Imn3).

4.2.3 Parameters calibration

Table 16 shows us the parameters that must be calibrated, the tested ranges
and the chosen values.

Table 16: Parameters of ACO algorithm

Name Symbol Value Range tested

Probability q 0.85 {0.15, 0.50, 0.85}
Number of 2-exchanges performed R 2 {5, 10, 15}
Evaporation α 0.25 {0.15, 0.25}
Maximum number of non improving loops S 5n {n, 2n, 5n}
Number of ants m 10 {5, 10, 20}

We tested various values of each parameters for 6 instances: tai12a,
chr20c, nug30, lipa60b, wil100 and esc128.

In this case, we did not make any distinctions between small and large
dimensions instances, since no substantially differences were found.

We chose a number of ants m equal to 10, to limit the computation time
required for the algorithm.

The parameter S was set equal to 5n. For S ≤ n, the algorithm provides
poorly solution with high percentage deviation, even for small dimension
instances.

As regards the other parameters, they were experimentally found to be
good and robust for the instance tested, providing an output permutation
with less than 1% of PD.

4.3 variable neighborhood search 50

4.3 variable neighborhood search

Introduction

The Variable Neighborhood Search algorithm (VNS) was introduced by
Pierre Hansen and Nenad Mladenovic in 1997 [28] for the Traveling Salesman
Problem (TSP). The literature of VNS for QAP is not as extended as for Tabu
Search or Ant Colony Optimization.

The main idea of the algorithm is to use several neighborhood structures
and, when a local optimum is found, to move from one to another.

Now, we present some essential definitions and facts about neighborhood
structures. More detail can be found in [16, Ch. 3].

Let us start with two definitions.

Definition 4.1 (Neighborhood structure). A function N : Sn → P(Sn) that
maps a feasible solution π ∈ Sn to a set of a solutions N (π) ⊆ Sn is called a
neighborhood structure.

Definition 4.2 (Local optimum). A solution π∗ is called a local optimum with
respect to the neighborhood structure N if there is no feasible solution
σ ∈ N (π∗) such that z(σ) ≤ z(π∗).

Essentially, we can consider N (π) as a set of permutations close to π.
Therefore, the operator N allows us to obtain new feasible solutions

realizing a determined operation on an initial solution.
Note that neighborhoods Nr defined by (3.2) are an example of neighbor-

hood structures, since they map a permutation π into the set of permutations
that can be reached by π by a r-exchange.

4.3.1 Local search

Description of the algorithm

This procedure is a generalization of the local search algorithms discussed in
section 3.1.

Pseudo code 9 shows the local search algorithm.

Algorithm 9: Local search procedure.
Input: An initial permutation s1, a neighborhood structure N
Output: A local optimum s∗ w.r.t. N

1 repeat
2 Examine N (s1);
3 if exists s2 ∈ N (s1) such that z(s2) ≤ z(s1) then
4 s1 ← s2;
5 else
6 s∗ ← s1;
7 Exit;
8 end
9 until a local optimum s∗ is found;

Imagine to fix a neighborhood structure N , with an initial permutation s1.
Then, the local search starts, and the algorithm exhaustively examines

every permutation in N (s1) (line 4).
After investigating N (s1), there are two possibilities:

1. A permutation s2 such that z(s2) < z(s1) is found.

4.3 variable neighborhood search 51

Figure 8: Local search procedure, starting from initial point s1.

2. No better permutation is found. Therefore, s1 is a local optimum in N1,
i.e., z(s1) = min {z(p) | p ∈ N (s1)}.

In the first case, the algorithm repeats setting s1 ← s2. In the second case,
the algorithm stops (lines 4-8).

Since the number of permutations is finite, in a finite number of steps
the algorithm provides a local optimum with respect to the neighborhood
structure N (line 9).

Note that in Section 3.1, the neighborhood structure N of local search
algorithm was Nr, for r = 2 or r = 3.

Figure 8 sketches an idea of the local search procedure. The pink oval
represents the neighborhoods structure. The local search starts from s1,
looks for a “better” solution on N (s1) and finds s2. Then, it continues until
arriving at s5, which is a local optimum w.r.t. N . Thus, it stops.

Two final remarks:

• The algorithm stops when it finds a local optimum.

• The search is limited to only one neighborhood structure.

The first point suggests us that local search procedure should be used as
a part of an intensification method, combined with other technique to escape
from local optima.

As regards the second point, the algorithm that solves this problem is the
Variable neighborhood Search (VNS).

4.3.2 Variable neighborhood Search

The basic idea of Variable Neighborhood Search algorithm (VNS) is a sys-
tematic change of neighborhood both within a descent phase to find a local
optimum and in a perturbation phase to get out of the corresponding val-
ley [16, Ch. 3].

Suppose we have {N1,N2, . . . ,Nk}, a finite set of pre-selected k neighbor-
hood structures.

Hence, every time a local optimum is reached, the algorithm changes the
neighborhood structure and searches a local optimum belonging to the new
neighborhood. Once it is reached, VNS starts again from the beginning, with
the first neighborhood structure.

Figure 9 shows us a VNS procedure with three different neighborhood
structures. The algorithm starts with s1 and explores the first neighborhood

4.3 variable neighborhood search 52

Figure 9: VNS procedure

(in red). If s1 is a local optimum w.r.t. N1, then it explores N2(s1) and finds
s2. Now, it starts again looking for a local optimum w.r.t. N1(s2) and so on.
The algorithm stops as soon as he finds a local optimum w.r.t. all the three
neighborhood structures.

VNS algorithm is based on three simple facts [16]:

fact 1 A local minimum with respect to one neighborhood structure is not
necessarily so for another.

fact 2 A global minimum is a local minimum with respect to all possible
neighborhood structures.

fact 3 For many problems, local minima with respect to one or several Nj
are relatively close to each other.

There are three different ways to use Facts 1-3:

1. Deterministic;

2. Stochastic.

3. Both deterministic and stochastic.

In Section 4.3.3 we will focus on Variable neighborhood Descent (VND) , an
algorithm which belongs to the first approach.

In Section 4.3.4 we will study the General Variable Neighborhood Search
(GVNS), an example of the third approach.

4.3.3 Variable Neighborhood Descent

The Variable neighborhood Descent algorithm (VND) performs a change
of neighborhoods in a deterministic way. As the name says, it is a descent
method, hence it could be implemented as an intensification phase of more
sophisticated algorithm.

Pseudo code 10 describes a general VND method.

Description of the algorithm

As usual, let us suppose we have a set of prefixed neighborhood structures
{Nk | k = 1, . . . , kmax} and an initial permutation s.

The algorithm starts doing a local search with respect to the first neigh-
borhood structure N1. A local optimum s′ w.r.t. N1 is found (line 3).

Now there are two cases:

4.3 variable neighborhood search 53

Algorithm 10: VND algorithm

Input: s,
{
N1, . . . ,Nkmax

}
;

Output: s∗, a local optimum w.r.t. all neighborhood structures
1 k← 1;
2 while k ≤ kmax do
3 Do a local search in Nk(s); a local optimum s̃ w.r.t. Nk is found;
4 if z(s̃) < z(s) then
5 s← s̃;
6 k← 1;
7 else
8 k← k + 1;
9 end

10 end
11 s∗ ← s;

1. If z(s′) < z(s) then s′ is a better permutation than s, therefore the
algorithms starts again exploring N1(s′) (lines 5-6).

2. If z(s′) = z(s), then s′ is a local optimum with respect to N (s), the
algorithm explores the next neighborhood structure N2(s′) (line 8).

This procedure is repeated until a local optimum w.r.t. all neighborhood
structures is found (lines 2-10). Note that z(s′) > z(s) cannot occur, since s′

is a local optimum with respect to Nk(s).
The final solution s is a local optimum with respect to all neighborhood

structures (line 11).

Implementation

We implemented VND in the most immediate way. We used the neighbor-
hood structures defined in 3.2, in particular we used N2 and N3.

We know that there are two strategies for a local search on these neighbor-
hood: first-improvement and best-improvement. Therefore, we implemented
two algorithms:

• VNDfirst, that uses a first-improvement strategy.

• VNDbest, that uses a best-improvement strategy.

Pseudocode 11 shows the VNDfirst algorithm. The best-improvement
version is totally similar, except for lines 6 and 9, where algorithms 2optBest
and 3optBest are called.

Note that VND algorithm only achieves intensification, therefore we still
lack some procedure for diversification phase. Here it will come the GVNS
algorithm.

4.3.4 GVNS

A more general approach is the General Variable neighborhood Search
algorithm (GNVS).

Description of the algorithm

GVNS introduces a new set of neighborhood structures
{
P1, . . . ,Phmax

}
.

Hence, we have two sets of neighborhood structures:

4.3 variable neighborhood search 54

Algorithm 11: VNDfirst algorithm

Input: n, F, D, πstart, zstart;
Output: πbest, zbest;

1 πbest ← πstart;
2 zbest ← zstart;
3 k← 1;
4 while k ≤ 2 do
5 if k = 1 then
6 Call 2optFirst(pbest, zbest, π, zπ)
7 end
8 else if k = 2 then
9 Call 3optFirst(pbest, zbest, π, zπ)

10 end
11 if zπ < zbest then
12 zbest ← zπ ;
13 πbest ← π;
14 k← 1;
15 else
16 k← k + 1;
17 end
18 end
19 Stop: πbest is 2-optimal and 3-optimal;

• The set
{
N1, . . . ,Nkmax

}
which will be used in VND algorithm (intensi-

fication phase).

• The set
{
P1, . . . ,Phmax

}
which will be used to move randomly (diversi-

fication phase).

In general, these two sets can be totally different even in the number of
elements (kmax 6= hmax).

Pseudo code 12 conveys an idea of the algorithm.
First, the algorithm builds an initial point s (line 1).
Then, the main loop starts (line 2). At first, a diversification is applied:

the initial permutation s is moved in a random way (we will discuss this step
in the next section) into another permutation s′ belonging to P1(s) (line 4).

After that, in order to achieve intensification, VND algorithm is applied to
s′ and provides a permutation s′′ which is local optimum w.r.t. N1, . . . ,Nkmax

(line 5).
Now there are two cases:

1. If z(s′′) < z(s), then the algorithm starts again with the diversification
phase updating permutation s as s′′ (line 7).

2. If z(s′′) ≥ z(s) , then the neighborhood P2 is considered. A perturba-
tion is applied and the permutation s′′ is randomly moved into another
permutation belonging to P2(s′′) (lines 10-12).

This procedure is repeated until h > hmax (line 16). In this case, s∗ is a
local optimum w.r.t. neighborhood structures N1, . . . ,Nkmax .

In general, s∗ is not an optimum for the other neighborhood structures Ph,
since their role is just to provide diversification perturbing solution.

The stopping criterion we chose is the execution time tmax and a maxi-
mum number of 10 000 loops without any improvement.

4.3 variable neighborhood search 55

Algorithm 12: GVNS pseudo code

Input: a set of neighborhood structures
{
N1, . . . ,Nkmax

}
for VND

algorithm, a set of neighborhood structures {P1, . . . ,Phmax}
for diversification phase

Output: s∗ local optimum w.r.t. N1, . . .Nkmax

1 Construct an initial solution s;
2 while stopping criterion do
3 h← 1;

/* diversification */

4 Perturbation: choose at random s′ ∈ Ph(s);
/* intensification */

5 Realize a VND starting from s′, obtaining s′′;
6 if z(s′′) < z(s) then
7 s← s′′;
8 Go to step 3;
9 end

10 if h ≤ hmax then
11 h← h + 1;
12 Go to step 4;
13 else
14 Exit
15 end
16 end
17 s∗ ← s;
18 s∗ is the minimum w.r.t. neighborhood structures N1,N2, . . . ,Nkmax .

Figure 10 shows GVNS procedure with three neighborhood structures.
The algorithm starts with an initial permutation s1 (obtained after a

diversification phase, which is omitted in the figure for sake of clarity).
Then, a VND is applied and a new permutation s2 is obtained. Then, the

diversification phase starts again.
This procedure repeats until the stopping criterion.

Implementation

For the intensification phase we used VNDfirst and VNDbest algorithms,
with neighborhood structures {N2, N3}. Since there are two VND procedures,
we implemented two GVNS algorithms: GVNSfirst and GVNSbest.

As regards the GVNS algorithms, we added one extra neighborhood
structure: {N2, N3,P}, where P(π) is the neighborhood (a singleton) formed
by dividing the permutation π in two and swapping the first part with the
second one.

For example,

If π = [1,4 , 3,2], then P(π) = [3,2 , 1,4]

Thus, in our case, kmax = 2 and hmax = 3.
Input and output are the same on every algorithm:

input The initial solution p and zp is its objective function value.

output The best found solution pbest and zbest its objective function value.

4.3 variable neighborhood search 56

Figure 10: GVNS procedure.

As we can see, there are no parameters to calibrate.
Pseudo code 13 explains GVNDfirst algorithm. The best-improvement

version is the same, exchanging only line 17.
The stopping criterion we chose is the execution time tmax and a maxi-

mum number of 10 000 loops without any improvement.

Algorithm 13: GVNSfirst
Input: n, F, D, p, zp
Output: pbest, zbest
/* initialization */

1 pbest ← p;
2 zbest ← z;
/* main loop */

3 repeat
4 j← 1 ;
5 while j ≤ 3 do

/* diversification */

6 if j > 3 then exit;
7 else if j = 1 then
8 Do a random 2-exchange {i1, i2} on p;
9 zp ← zp + ∆(p; i1, i2)

10 else if j = 2 then
11 Do a random 3-exchange {i1, i2, i3} on p;
12 zp ← zp + ∆1(p; i1, i2, i3)
13 else if j = 3 then
14 Swap the first half of p with the second half, call it again p;
15 Evaluate the objective function zp of p;
16 end

/* intensification */

17 Call VNDfirst algorithm;
18 if z(p) < z(pbest) then
19 pbest ← p;
20 zbest ← z;
21 Go to 4

22 end
23 j← j + 1 ;
24 end
25 until stopping criterion;

5C O M P U TAT I O N A L R E S U LT S

5.1 qaplib library

QAPLIB [6] is an online library of instances, solutions and lower bounds.
The QAPLIB home page was created by Stefan Karisch in 1991.

According to [34], QAPLIB’s instances can be classified into four groups:

unstructured, randomly generated instances Instances with the
distance and flow matrix entries generated randomly according to an
uniform distribution.

These instances are among the hardest to solve exactly. Nevertheless,
most iterative search methods find solutions within 1%/2% from the
best known solutions relatively fast.

unstructured instances with grid-distances Instances with the
distance matrix D defined as the Manhattan distance between grid
points on a n1 × n2 2 grid and with random flows.

real life instances These instances are discussed later.

real-life like instances These instances are generated in such a way
that the matrix entries resemble the distribution found in real-life
problems

Real life instances

These instances arise from practical applications. There are five group of real
life instances. In chronological order they are:

• Steinberg’s [32] (1961). This instance is described in section 2.3. There
are three instances, the first one has a distance matrix corresponding
to Manhattan distances, the second the square of Euclidean distances
and the third Euclidean distances. These instances are denoted Ste36a,
Ste36b, Ste36c. Their size is n = 9× 4 = 36 and they are asymmetric.
They are solved optimally.

• Elshafei’s (1977). This problem is described in section 2.1. The size of
the problem is n = 19. It is denoted Els19 and it is solved optimally.

• Burkard and Offermann (1977). This instance is described in section 2.4.
The size is n = 26. Since four different languages and two variety of
typewriters are considered, there are eight problems of this type. Since
there are 26 ‘Latin’ letters, the size of the problems is n = 26. They
are denoted Bur26a,. . . , Bur26h and they are solved optimally. These
instances are asymmetric.

• J. Krarup and P.M. Pruzan(1981). This instance is similar to Elshafei’s
one. There are three instances, denoted by Kra30a, Kra30b and Kra32.

The real-life instances have in common that the flow matrices have (in
contrast to the previously mentioned randomly generated instances) many
zero entries and the remaining entries are clearly not uniformly distributed.

57

5.2 neos 58

5.2 neos

Other instances can be found on NEOS webpage on https://neos-guide.

org/content/quadratic-assignment-problem.
They have small size : n = 4, 5, 6, 7, 8, 9. Thus, we will denote them as

Neos4, . . . , Neos9. Every instance is symmetric.

5.3 comparison of algorithms

In table 17 metaheuristic algorithms are compared. As we can see, Ant
Colony Optimization algorithm performed fairly well, especially with in-
stances of low dimension. In particular, he provided the optimal solution for
every bur26x instances and most of the Nugent.

On the other hand, GVNSfirst sometimes performed better than ACO
with instances of higher dimension, e.g., sko42,sko72, sko100b-f and wil50).
Note that GVNSfirst provided the optimal solution of sko42 and sko72.
Nevertheless, he failed in sko56 and sko64, with a 6% PD.

GVNSbest in general performed worse than GVNSfirst with some excep-
tions (sko49, the already cited sko56, sko64, nug22,nug25).

As regards Tabu Search, it did not perform well in general. The minimum
of PD provided is 0.54% for bur26h, while the other algorithms reached the
optimal solution. Often it provide a permutation with more than 5% of PD.

https://neos-guide.org/content/quadratic-assignment-problem
https://neos-guide.org/content/quadratic-assignment-problem

5.3 comparison of algorithms 59

Table 17: Comparison of metaheuristic algorithms.The results are the minimum over
5 independent runs. For each instance we set tmax = 60 s. Instances for which the
optimal value is not known are marked with “*”.

Instance TS ACO GVNSfirst GVNSbest

bur26a 0.97 0.00 0.00 0.11
bur26b 1.15 0.00 0.17 0.17
bur26c 1.25 0.00 0.00 0.00
bur26d 1.62 0.00 0.00 0.00
bur26e 1.40 0.00 0.00 0.00
bur26f 1.94 0.00 0.00 0.02
bur26g 1.19 0.00 0.00 0.00
bur26h 0.54 0.00 0.00 0.00
nug12 9.69 0.00 0.00 1.38
nug14 7.50 0.00 0.39 1.97
nug15 9.22 0.00 0.00 0.87
nug16a 9.19 0.00 0.00 1.49
nug16b 13.71 0.00 0.00 0.00
nug17 9.01 0.00 0.00 0.00
nug18 12.12 0.00 0.00 0.73
nug20 11.67 0.00 0.70 1.09
nug21 12.06 0.00 0.16 0.33
nug22 10.85 0.00 0.50 0.00
nug24 13.19 0.00 0.00 0.69
nug25 8.12 0.00 0.16 0.11
nug27 6.38 0.00 0.00 0.84
nug28 10.61 0.12 0.00 0.66
nug30 9.96 0.07 0.00 1.57
sko42* 7.94 0.11 0.00 0.04
sko49* 6.78 0.42 1.00 0.03
sko56* 5.60 0.38 5.00 0.49
sko64* 5.03 0.39 5.00 0.24
sko72* 4.76 0.44 0.00 0.27
sko81* 4.42 0.99 1.33 1.41
sko90* 4.43 1.06 0.98 1.34
sko100a* 3.99 0.67 0.79 1.00
sko100b* 3.89 1.38 0.67 1.24
sko100c* 4.00 1.06 0.58 1.22
sko100d* 4.05 1.31 0.54 1.52
sko100e* 3.85 1.38 1.44 1.48
sko100f* 4.42 1.03 1.06 1.87
tho30 12.86 0.00 0.29 2.47
tho40* 11.89 0.20 0.05 0.93
tho150* 4.58 0.76 1.38 1.45
wil50* 2.65 0.15 0.03 0.43
wil100* 1.93 0.31 0.37 0.93

6C O N C L U S I O N S A N D F U T U R E W O R K S .

6.1 future works

We can list some possible future developments:

evaluation of 2, 3-exchanges As regards local search algorithms, we
can observe that the 3-exchange {i1, i2, i3} → {i2, i3, i1} can be obtained by
performing two 2-exchanges: {i1, i2, i3} → {i2, i1, i3} → {i2, i3, i1}.

The same thing occurs with the 3-exchange {i1, i2, i3} → {i3, i1, i2}, in fact
{i1, i2, i3} → {i2, i1, i3} → {i3, i1, i2}.

One can observe that both contains the 2-exchange {i1, i2, i3} → {i2, i1, i3}.
This allows us to reduce the number of operations needed to evaluate
∆1(π; i1, i2, i3) and ∆2(π; i1, i2, i3).

A 3-optimum algorithm implemented with this technique will provide
2-optimal and 3-optimal solutions with a computational cost of O(n)
operations.

improvement of tabu search algorithm As we saw in Chapter 5,
Tabu Search algorithms did not perform well. There can be many
reasons for that. One possible solution is to modify the algorithm,
adding more parameters, which are typically used in modern TS.
An other possibility is to use an adaptive algorithm to for the auto-
calibration of parameters (like Particle Swarm Optimization, PSO).

new algorithms Of course there are lots of possible new algorithms to
implement. One can cite Simulated Annealing, Genetic Algorithm,
Memetic algorithm, GRASP, Bee Colony Optimization, and so on and
so forth. Another approach could be to make an hybrid method mixing,
for example, Tabu Search with Ant Colony Optimization.

6.2 concluding remarks

We presented the QAP, an optimization problem that challenged hundreds
of researches since 1957.

The goal of this thesis was to study, implement, compare heuristic and
metaheuristic algorithms. Every aspect of the goal has been accomplished
and has been an educative experience.

60

AP R O O F O F T H E O R E M 3 . 1

Theorem. Let π ∈ Sn be a permutation and i1 6= i2 be two indices. Then,

z(πi1i2) = z(π) + ∆(π; i1, i2). (40)

Proof.
Applying definition (2) it follows that

z(πi1i2)− z(π) =
n

∑
i=1

n

∑
j=1

fijdπi1 i2 (i)πi1 i2 (j) −
n

∑
i=1

n

∑
j=1

fijdπ(i)π(j)

=
n

∑
i=1

n

∑
j=1

fij

[
dπi1 i2 (i)πi1 i2 (j) − dπ(i)π(j)

]
.

(41)

Let K = {i1, i2}. Note that the sums can be split into different ones 1:

n

∑
i=1

n

∑
j=1

= ∑
j 6∈K

n

∑
i=1

+ ∑
j∈K

n

∑
i=1

= ∑
j/∈K

∑
i 6∈K︸ ︷︷ ︸

p

+ ∑
j/∈K

∑
i∈K︸ ︷︷ ︸

N

+
n

∑
i=1

∑
j∈K︸ ︷︷ ︸

B

.

The first sum p is null, since π(i) = πi1i2(i) for every i /∈ K and therefore
every term is 0.

As regards N, we obtain

N = ∑
j/∈K

∑
i∈K

fij

[
dπi1 i2 (i)πi1 i2 (j) − dπ(i)π(j)

]
= ∑

j/∈K

{
fi1 j

[
dπ(i2)π(j) − dπ(i1)π(j)

]
+ fi2 j

[
dπ(i1)π(j) − dπ(i2)π(j)

]}
= ∑

j/∈K

{(
fi1 j − fi2 j

)
dπ(i2)π(j) +

(
fi2 j − fi1 j

)
dπ(i1)π(j)

}
= ∑

j/∈K

(
fi1 j − fi2 j

) (
dπ(i2)π(j) − dπ(i1)π(j)

)
.

(42)

Doing same calculus on B, we get

B =
n

∑
i=1

∑
j∈K

fij

[
dπi1 i2 (i)πi1 i2 (j) − dπ(i)π(j)

]
=

n

∑
i=1

{
fii1

[
dπi1 i2 (i)π(i2) − dπ(i)π(i1)

]
+ fii2

[
dπi1 i2 (i)π(i1) − dπ(i)π(i2)

]}
=

n

∑
j=1

{
f ji1

[
dπi1 i2 (j)π(i2) − dπ(j)π(i1)

]
+ f ji2

[
dπi1 i2 (j)π(i1) − dπ(j)π(i2)

]}
.

(43)

1 Terms of the sums are omitted for sake of clarity.

61

proof of theorem 3 .1 62

Where in the last step we changed the name of the variable from i to j. Then,
the sum can be split again :

B = ∑
j∈K

{
f ji1

[
dπi1 i2 (j)π(i2) − dπ(j)π(i1)

]
+ f ji2

[
dπi1 i2 (j)π(i1) − dπ(j)π(i2)

]}
+ ∑

j/∈K

{
f ji1

[
dπi1 i2 (j)π(i2) − dπ(j)π(i1)

]
+ f ji2

[
dπi1 i2 (j)π(i1) − dπ(j)π(i2)

]}
.

(44)

The first sum can be written explicitly:

∑
j∈K

{
f ji1

[
dπi1 i2 (j)π(i2) − dπ(j)π(i1)

]
+ f ji2

[
dπi1 i2 (j)π(i1) − dπ(j)π(i2)

]}
= fi1i1

[
dπ(i2)π(i2) − bπ(i1)π(i1)

]
+ fi1i2

[
dπ(i2)π(i1) − dπ(i1)π(i2)

]
+ fi2i1

[
dπ(i1)π(i2) − dπ(i2)π(i1)

]
+ fi2i2

[
dπ(i1)π(i1) − dπ(i2)π(i2)

]
=
(

fi1i1 − fi2i2
) (

dπ(i2)π(i2) − dπ(i2)π(i1)

)
+
(

fi1i2 − fi2i1
) (

dπ(i2)π(i1) − dπ(i1)π(i2)

)
.

(45)

Finally, putting together (42), (43) and (45), we get

z(πi1i2)− z(π) = ∑
j/∈K

(
fi1 j − fi2 j

) (
dπ(i2)π(j) − dπ(i1)π(j)

)
+ ∑

j/∈K

(
f ji1 − f ji2

) (
dπ(j)π(i2) − dπ(j)π(i1)

)
=
(

fi1i1 − fi2i2
) (

dπ(i2)π(i2) − dπ(i2)π(i1)

)
+
(

fi1i2 − fi2i1
) (

dπ(i2)π(i1) − dπ(i1)π(i2)

)
.

BP R O O F O F T H E O R E M 3 . 2

Theorem. Let π ∈ Sn be a permutation and i1, i2, i3 ∈ [n] three distinct indices.
Then one has

• z
(

π1
i1i2i3

)
= z(π) + ∆1(π; i1, i2, i3).

• z
(

π2
i1i2i3

)
= z(π) + ∆2(π; i1, i2, i3).

Proof.
It is sufficient to evaluate the differences z

(
π1

i1i2i3

)
− z(π) and z

(
π2

i1i2i3

)
−

z(π).
We will do the first evaluation, the second one is, mutatis mutandis, totally

similar. For sake of clarity we will denote π1
i1i2i3

as π̃. Taking inspiration
from theorem 3.1,

z(π̃)− z(π) =
n

∑
i=1

n

∑
j=1

fijdπ̃(i)π̃(j) −
n

∑
i=1

n

∑
j=1

fijdπ(i)π(j)

=
n

∑
i=1

n

∑
j=1

fij

[
dπ̃(i)π̃(j) − dπ(i)π(j)

]
.

(46)

Let K = {i1, i2, i3}. The sum can be split into two parts:

∑
j/∈K

n

∑
i=1

fij

[
dπ̃(i)π̃(j) − dπ(i)π(j)

]
︸ ︷︷ ︸

B

+ ∑
j∈K

n

∑
i=1

fij

[
dπ̃(i)π̃(j) − dπ(i)π(j)

]
︸ ︷︷ ︸

N

.

As regards B, we can note that those i such that i /∈ K produce a null term,
hence the sum ∑i/∈K ∑j/∈K is equal to 0. Thus,

∑
j/∈K

∑
i∈K

fij

[
dπ̃(i)π̃(j) − dπ(i)π(j)

]
= ∑

j/∈K

{
fi1 j

[
dπ(i2)π(j) − dπ(i1)π(j)

]
+ fi2 j

[
dπ(i3)π(j) − dπ(i2)π(j)

]
+ fi3 j

[
dπ(i1)π(j) − dπ(i3)π(j)

] }
.

(47)

For N, with the same idea we get

∑
j∈K

n

∑
i=1

fij

[
dπ̃(i)π̃(j) − dπ(i)π(j)

]
=

n

∑
i=1

{
fii1

[
dπ̃(i)π(i2) − dπ(i)π(i1)

]
+ fii2

[
dπ̃(i)π(i3) − dπ(i)π(i2)

]
+ fii3

[
dπ̃(i)π(i3) − dπ(i)π(i3)

] }
i→j
=

n

∑
j=1

{
f ji1

[
dπ̃(j)π(i2) − dπ(j)π(i1)

]
+ f ji2

[
dπ̃(j)π(i3) − dπ(j)π(i2)

]

63

proof of theorem 3 .2 64

+ f ji3

[
dπ̃(j)π(i3) − dπ(j)π(i3)

] }
=

n

∑
j/∈K

{
f ji1

[
dπ(j)π(i2) − dπ(j)π(i1)

]
+ f ji2

[
dπ(j)π(i3) − dπ(j)π(i2)

]
+ f ji3

[
dπ(j)π(i3) − dπ(j)π(i3)

] }
+ fi1i1

[
dπ(i2)π(i2) − dπ(i1)π(i1)

]
+ fi1i2

[
dπ(i2)π(i3) − dπ(i1)π(i2)

]
+ fi1i3

[
dπ(i2)π(i1) − dπ(i1)π(i3)

]
+ fi2i1

[
dπ(i3)π(i2) − dπ(i2)π(i1)

]
+ fi2i2

[
dπ(i3)π(i3) − dπ(i2)π(i2)

]
+ fi2i3

[
dπ(i2)π(i1) − dπ(i2)π(i3)

]
+ fi3i1

[
dπ(i1)π(i2) − dπ(i3)π(i1)

]
+ fi3i2

[
dπ(i1)π(i3) − dπ(i3)π(i2)

]
+ fi3i3

[
dπ(i1)π(i1) − dπ(i3)π(i3)

]
.

Putting (46) and (47) together, we obtain

z(π̃)− z(π) =
n

∑
j/∈K

{
f ji1

[
dπ(j)π(i2) − dπ(j)π(i1)

]
+ f ji2

[
dπ(j)π(i3) − dπ(j)π(i2)

]
+ f ji3

[
dπ(j)π(i3) − dπ(j)π(i3)

]
+ fi1 j

[
dπ(i2)π(j) − dπ(i1)π(j)

]
+ fi2 j

[
dπ(i3)π(j) − dπ(i2)π(j)

]
+ fi3 j

[
dπ(i1)π(j) − dπ(i3)π(j)

] }
+ fi1i1

[
dπ(i2)π(i2) − dπ(i1)π(i1)

]
+ fi1i2

[
dπ(i2)π(i3) − dπ(i1)π(i2)

]
+ fi1i3

[
dπ(i2)π(i1) − dπ(i1)π(i3)

]
+ fi2i1

[
dπ(i3)π(i2) − dπ(i2)π(i1)

]
+ fi2i2

[
dπ(i3)π(i3) − dπ(i2)π(i2)

]
+ fi2i3

[
dπ(i3)π(i1) − dπ(i2)π(i3)

]
+ fi3i1

[
dπ(i1)π(i2) − dπ(i3)π(i1)

]
+ fi3i2

[
dπ(i1)π(i3) − dπ(i3)π(i2)

]
+ fi3i3

[
dπ(i1)π(i1) − dπ(i3)π(i3)

]
,

which is equal to ∆1(π, i1, i2, i3) on formula (32).

B I B L I O G R A P H Y

[1] Roberto Battiti and Giampietro Tecchiolli. “The continuous reactive
tabu search: Blending combinatorial optimization and stochastic search
for global optimization”. In: Annals of Operations Research 63.2 (Apr.
1996), pp. 151–188. doi: https://doi.org/10.1007/BF02125453 (cit. on
p. 39).

[2] Jan Bos. “Zoning in Forest Management: a Quadratic Assignment
Problem Solved by Simulated Annealing”. In: Journal of Environmental
Management 37.2 (Feb. 1993), pp. 127–145. doi: 10.1006/jema.1993.
1010 (cit. on p. 8).

[3] M.J. Brusco and S. Stahl. “Using Quadratic Assignment Methods to
Generate Initial Permutations for Least-Squares Unidimensional Scal-
ing of Symmetric Proximity Matrices”. In: Journal of Classification 17.2
(July 2000), pp. 197–223. doi: 10.1007/s003570000019 (cit. on p. 8).

[4] R. E. Burkard and J. Offermann. “Entwurf von Schreibmaschinentas-
taturen mittels quadratischer Zuordnungsprobleme”. In: Zeitschrift
für Operations Research 21.4 (Aug. 1977), B121–B132. doi: 10.1007/
bf01918175 (cit. on pp. 8, 10).

[5] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment
Problems. Society for Industrial and Applied Mathematics, Jan. 2012.
doi: 10.1137/1.9781611972238 (cit. on pp. viii, 2, 6, 8, 40).

[6] Rainer E. Burkard, Stefan E. Karisch, and Franz Rendl. “QAPLIB –
A Quadratic Assignment Problem Library”. In: Journal of Global Opti-
mization 10.4 (1997), pp. 391–403. doi: https://doi.org/10.1023/A:
1008293323270 (cit. on pp. 29, 57).

[7] Sergio A de Carvalho Jr and Sven Rahmann. “Microarray layout as
quadratic assignment problem”. In: German Conference on Bioinformatics.
Gesellschaft für Informatik eV. 2006 (cit. on p. 8).

[8] Eranda Çela. The Quadratic Assignment Problem. Springer US, 1998. doi:
10.1007/978-1-4757-2787-6 (cit. on p. 8).

[9] G. A. Croes. “A Method for Solving Traveling-Salesman Problems”. In:
Operations Research 6.6 (Dec. 1958), pp. 791–812. doi: 10.1287/opre.6.
6.791 (cit. on p. 21).

[10] Mauro Dell’Amico et al. “The single-finger keyboard layout problem”.
In: Computers & Operations Research 36.11 (Nov. 2009), pp. 3002–3012.
doi: 10.1016/j.cor.2009.01.018 (cit. on p. 10).

[11] H. A. Eiselt and Gilbert Laporte. “A Combinatorial Optimization Prob-
lem Arising in Dartboard Design”. In: Journal of the Operational Research
Society 42.2 (Feb. 1991), pp. 113–118. doi: 10.1057/jors.1991.21 (cit.
on pp. 11, 12).

[12] Alwalid N. Elshafei. “Hospital Layout as a Quadratic Assignment
Problem”. In: Operational Research Quarterly (1970-1977) 28.1 (1977),
p. 167. doi: 10.2307/3008789 (cit. on pp. 8, 9).

65

https://doi.org/https://doi.org/10.1007/BF02125453
https://doi.org/10.1006/jema.1993.1010
https://doi.org/10.1006/jema.1993.1010
https://doi.org/10.1007/s003570000019
https://doi.org/10.1007/bf01918175
https://doi.org/10.1007/bf01918175
https://doi.org/10.1137/1.9781611972238
https://doi.org/https://doi.org/10.1023/A:1008293323270
https://doi.org/https://doi.org/10.1023/A:1008293323270
https://doi.org/10.1007/978-1-4757-2787-6
https://doi.org/10.1287/opre.6.6.791
https://doi.org/10.1287/opre.6.6.791
https://doi.org/10.1016/j.cor.2009.01.018
https://doi.org/10.1057/jors.1991.21
https://doi.org/10.2307/3008789

bibliography 66

[13] Xiongfeng Feng and Qiang Su. “An applied case of quadratic assign-
ment problem in hospital department layout”. In: 2015 12th International
Conference on Service Systems and Service Management (ICSSSM). IEEE,
June 2015. doi: 10.1109/icsssm.2015.7170278 (cit. on p. 9).

[14] Gerd Finke, Rainer E. Burkard, and Franz Rendl. “Quadratic Assign-
ment Problems”. In: Surveys in Combinatorial Optimization. Elsevier,
1987, pp. 61–82. doi: 10.1016/s0304-0208(08)73232-8 (cit. on p. 6).

[15] L M Gambardella, D Taillard, and M Dorigo. “Ant colonies for the
quadratic assignment problem”. In: Journal of the Operational Research
Society 50.2 (Jan. 1999), pp. 167–176. doi: 10.1057/palgrave.jors.
2600676 (cit. on pp. 39, 46, 48, 49).

[16] M. & Potvin Gendreau. Handbook of Metaheuristics. Ed. by Michel Gen-
dreau and Jean-Yves Potvin. Springer International Publishing, 2019.
doi: 10.1007/978-3-319-91086-4 (cit. on pp. viii, 39, 50–52).

[17] A. M. Geoffrion and G. W. Graves. “Scheduling Parallel Production
Lines with Changeover Costs: Practical Application of a Quadratic
Assignment/LPApproach”. In: Operations Research 24.4 (Aug. 1976),
pp. 595–610. doi: 10.1287/opre.24.4.595 (cit. on p. 8).

[18] Fred Glover. “Future paths for integer programming and links to
artificial intelligence”. In: Computers & Operations Research 13.5 (Jan.
1986), pp. 533–549. doi: 10.1016/0305-0548(86)90048-1 (cit. on pp. 38,
39).

[19] S. Goss et al. “Self-organized shortcuts in the Argentine ant”. In: Natur-
wissenschaften 76.12 (Dec. 1989), pp. 579–581. doi: 10.1007/bf00462870
(cit. on p. 46).

[20] Charles H. Heider. “Ann-step, 2-variable search algorithm for the
component placement problem”. In: Naval Research Logistics Quarterly
20.4 (Dec. 1973), pp. 699–724. doi: 10.1002/nav.3800200409 (cit. on
p. 16).

[21] Stefan Helber et al. “A hierarchical facility layout planning approach
for large and complex hospitals”. In: Flexible Services and Manufacturing
Journal 28.1-2 (Feb. 2015), pp. 5–29. doi: 10.1007/s10696-015-9214-6
(cit. on p. 9).

[22] B. Kim, Jaeik Shim, and Min Zhang. “Comparison of TSP Algorithms
Project for Models in Facilities Planning and Materials Handling De-
cember 1998”. In: 2001. url: https://pja.mykhi.org/4sem/NAI/
rozne/Comparison%20of%20TSP%20Algorithms/Comparison%20of%

20TSP%20Algorithms.PDF (cit. on p. 34).

[23] Tjalling C. Koopmans and Martin Beckmann. “Assignment Problems
and the Location of Economic Activities”. In: Econometrica 25.1 (Jan.
1957), p. 53. doi: 10.2307/1907742 (cit. on p. viii).

[24] Jakob Krarup and Peter Mark Pruzan. “Computer-aided layout design”.
In: Mathematical Programming in Use. Springer Berlin Heidelberg, 1978,
pp. 75–94. doi: 10.1007/bfb0120827 (cit. on p. 9).

[25] Eugene L. Lawler. “The Quadratic Assignment Problem”. In: Manage-
ment Science 9.4 (July 1963), pp. 586–599. doi: 10.1287/mnsc.9.4.586
(cit. on p. 3).

[26] Tommaso Mannelli Mazzoli. QAP. GitHub. 2020. url: https://github.
com/Tommaso-Mannelli-Mazzoli/QAP (cit. on pp. 29, 35, 36, 42).

https://doi.org/10.1109/icsssm.2015.7170278
https://doi.org/10.1016/s0304-0208(08)73232-8
https://doi.org/10.1057/palgrave.jors.2600676
https://doi.org/10.1057/palgrave.jors.2600676
https://doi.org/10.1007/978-3-319-91086-4
https://doi.org/10.1287/opre.24.4.595
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1007/bf00462870
https://doi.org/10.1002/nav.3800200409
https://doi.org/10.1007/s10696-015-9214-6
https://pja.mykhi.org/4sem/NAI/rozne/Comparison%20of%20TSP%20Algorithms/Comparison%20of%20TSP%20Algorithms.PDF
https://pja.mykhi.org/4sem/NAI/rozne/Comparison%20of%20TSP%20Algorithms/Comparison%20of%20TSP%20Algorithms.PDF
https://pja.mykhi.org/4sem/NAI/rozne/Comparison%20of%20TSP%20Algorithms/Comparison%20of%20TSP%20Algorithms.PDF
https://doi.org/10.2307/1907742
https://doi.org/10.1007/bfb0120827
https://doi.org/10.1287/mnsc.9.4.586
https://github.com/Tommaso-Mannelli-Mazzoli/QAP
https://github.com/Tommaso-Mannelli-Mazzoli/QAP

bibliography 67

[27] Alfonsas Misevicius. “An implementation of the iterated tabu search
algorithm for the quadratic assignment problem”. In: OR Spectrum 34.3
(Oct. 2011), pp. 665–690. doi: 10.1007/s00291-011-0274-z (cit. on
pp. 39, 40).

[28] N. Mladenovic and P. Hansen. “Variable neighborhood search”. In:
Computers and Operations Research 24.11 (Nov. 1997), pp. 1097–1100. doi:
10.1016/s0305-0548(97)00031-2 (cit. on p. 50).

[29] Heiner Müller-Merbach. Optimale Reihenfolgen. Springer Berlin Heidel-
berg, 1970. doi: 10.1007/978-3-642-87727-8 (cit. on p. 9).

[30] Sartaj Sahni and Teofilo Gonzalez. “P-Complete Approximation Prob-
lems”. In: Journal of the ACM (JACM) 23.3 (July 1976), pp. 555–565. doi:
10.1145/321958.321975 (cit. on pp. viii, 8).

[31] Jadranka Skorin-Kapov. “Tabu Search Applied to the Quadratic As-
signment Problem”. In: ORSA Journal on Computing 2.1 (Feb. 1990),
pp. 33–45. doi: https://doi.org/10.1287/ijoc.2.1.33 (cit. on pp. 38,
39, 42).

[32] Leon Steinberg. “The Backboard Wiring Problem: A Placement Al-
gorithm”. In: SIAM Review 3.1 (Jan. 1961), pp. 37–50. doi: 10.1137/
1003003 (cit. on pp. 9, 57).

[33] E. Taillard. “Robust taboo search for the quadratic assignment prob-
lem”. In: Parallel Computing 17.4-5 (July 1991), pp. 443–455. doi: https:
//doi.org/10.1016/S0167-8191(05)80147-4 (cit. on p. 39).

[34] Éric D. Taillard. “Comparison of iterative searches for the quadratic
assignment problem”. In: Location Science 3.2 (Aug. 1995), pp. 87–105.
doi: 10.1016/0966-8349(95)00008-6 (cit. on pp. 10, 57).

[35] El-Ghazali Talbi. “Metaheuristics”. In: (June 2009). doi: 10 . 1002 /

9780470496916 (cit. on p. 38).

[36] Eric W. Weisstein. “Derangement”. In: MathWorld–A Wolfram Web Re-
source. (). url: https://mathworld.wolfram.com/Derangement.html
(cit. on p. 15).

https://doi.org/10.1007/s00291-011-0274-z
https://doi.org/10.1016/s0305-0548(97)00031-2
https://doi.org/10.1007/978-3-642-87727-8
https://doi.org/10.1145/321958.321975
https://doi.org/https://doi.org/10.1287/ijoc.2.1.33
https://doi.org/10.1137/1003003
https://doi.org/10.1137/1003003
https://doi.org/https://doi.org/10.1016/S0167-8191(05)80147-4
https://doi.org/https://doi.org/10.1016/S0167-8191(05)80147-4
https://doi.org/10.1016/0966-8349(95)00008-6
https://doi.org/10.1002/9780470496916
https://doi.org/10.1002/9780470496916
https://mathworld.wolfram.com/Derangement.html

	Introduction
	Notations
	Preface
	Theory
	The quadratic assignment problem
	Description and formulations
	Combinatorial formulation
	Lawler's general formulation
	Algebraic formulation
	Inner product formulation
	Trace formulation
	Kronecker product formulation

	Variants
	QBAP
	Quadratic semi-assignment problem

	Applications
	Hospital Layout
	Wedding banquet
	Backboard wiring
	Keyboard design
	Dartboard design

	Practice
	Heuristic algorithms
	Local search algorithms
	Preliminary definitions and results
	Preliminary on 2-optimum algorithms
	2-optimum: First improvement
	2-optimum: Best improvement
	Preliminary on 3-optimum algorithms
	3-optimum: first improvement
	3-optimum: best improvement
	Implementation and comparison

	Constructive methods
	An introductory example
	Greedy1
	Greedy2
	Greedy3
	Implementation and Comparison

	Metaheuristic algorithms
	Tabu search
	Ant Colony Optimization
	Hybrid Ant System
	Implementation
	Parameters calibration

	Variable neighborhood Search
	Local search
	Variable neighborhood Search
	Variable Neighborhood Descent
	GVNS

	Computational results
	QAPLIB Library
	NEOS
	Comparison of algorithms

	Conclusions and future works.
	Future Works
	Concluding Remarks

	Proof of theorem 3.1
	Proof of theorem 3.2
	Bibliography

