Abstract
In this work we present the ASPARTIX-V system, an ASP-based solver for reasoning in abstract argumentation. It supports all the classical reasoning tasks in abstract argumentation, e.g., credulous and skeptical reasoning, as well as enumeration of extensions. ASPARTIX-V extends the ASPARTIX system suite by incorporation of recent ASP language constructs (e.g. conditional literals), domain heuristics within ASP, and multi-shot methods. In this light ASPARTIX-V deviates from the traditional focus of ASPARTIX on monolithic approaches (i.e., one-shot solving via a single ASP encoding) to further enhance performance towards its participation in the recent editions of the International Competition on Computational Models of Argumentation (ICCMA).

Keywords
Abstract Argumentation, ASP, System description

1. Introduction
Abstract argumentation frameworks (AFs) as introduced by Dung [2] are a core formalism for many problems and applications in the field of formal argumentation. In a nutshell, AFs formalize statements as arguments together with a relation denoting conflicts between arguments. Semantics of these AFs give a handle to resolve the conflicts between statements by selecting coherent subsets of the arguments. This selection is solely based on the relation between the arguments and considers arguments as abstract entities. Several different semantics to select coherent subsets of arguments have already been proposed by Dung [2] but numerous other semantics have been introduced later on which lead to a multitude of argumentation semantics (see [3]).

A prominent line of research in the field of computational argumentation has focused on
implementations of reasoning procedures for abstract argumentation (see, e.g., [4]) and cumulated in the biennial International Competition on Computational Models of Argumentation (ICCMA)\(^1\) which has been established in 2015. There are two kinds of approaches to such systems. First, the direct approach of implementing dedicated algorithms for argumentation problems which are often based on some kind of labelling propagation (see, e.g., [5]). Second, the reduction-based approach where the argumentation problem is encoded in some other formalism for which sophisticated solvers already exist. Prominent target formalisms for the later are answer-set programming (ASP) [6, 7] and propositional logic with SAT-solving technology; see [8] for an overview.

In this paper we consider the ASPARTIX\(^2\) system that exploits ASP technology to solve argumentation reasoning problems and describe the ASPARTIX-V (Answer Set Programming Argumentation Reasoning Tool - Vienna) version in its 2021 edition which is dedicated to the reasoning tasks of ICCMA’21. We discuss the specifics of ASPARTIX-V and differences to earlier versions of ASPARTIX. This includes incorporation of recent ASP language constructs (e.g. conditional literals), domain heuristics within ASP, and multi-shot methods. In particular, since the 2019 version of ASPARTIX-V we partially deviate from an earlier focus on monolithic approaches (i.e., one-shot solving via a single ASP encoding) to further enhance performance.

In the remainder of the paper we first recall the necessary argumentation background and the tracks of the ICCMA competition. We then give an overview on the ASPARTIX system and explain the aim of our ASPARTIX-V edition. In the main part we discuss technical specifics of the ASPARTIX-V21 edition. Note that this is an updated version of earlier submitted system descriptions of various ASPARTIX versions [1, 9, 10, 11, 12, 13].

2. Preliminaries

In this section we briefly introduce the necessary background on abstract argumentation and discuss the tracks of the ICCMA competition, i.e. the tasks that are supported by ASPARTIX-V.

2.1. Abstract Argumentation

Let us introduce argumentation frameworks [2] and recall the semantics relevant for this work (for a comprehensive introduction, see [3]).

Definition 1. An argumentation framework (AF) is a pair \(F = (A, R) \) where \(A \) is a finite set of arguments and \(R \subseteq A \times A \) is the attack relation. The pair \((a, b) \in R \) means that \(a \) attacks \(b \), and we say that a set \(S \subseteq A \) attacks (in \(F \)) an argument \(b \) if \((a, b) \in R \) for some \(a \in S \). An argument \(a \in A \) is defended (in \(F \)) by a set \(S \subseteq A \) if each \(b \) with \((b, a) \in R \) is attacked by \(S \) in \(F \).

Semantics for argumentation frameworks are defined as functions \(\sigma \) which assign to each AF \(F = (A, R) \) a set \(\sigma(F) \subseteq 2^A \), with each set \(S \in \sigma(F) \) called an extension. We consider for \(\sigma \) the functions \(cf, naive, grd, stb, adm, com, cf2, ideal, prf, sem, stg, stg2, \) and \(stradm \) which

\(^1\)www.argumentationcompetition.org

\(^2\)www.dbai.tuwien.ac.at/research/argumentation/aspartix/
stand for conflict-free, naive, grounded, stable, admissible, complete, cf2, ideal, preferred, semi-
stable, stage, stage2, and strongly admissible extensions, respectively. Towards the definition
of these semantics we introduce the following notation. For a set \(S \subseteq A \), we denote the
set of arguments attacked by (resp. attacking) \(S \) in \(F \) as \(S_F^+ = \{ x \mid S \text{ attacks } x \text{ in } F \} \) (resp.
\(S_F^- = \{ x \mid x \text{ attacks some } s \in S \text{ in } F \} \), and define the range of \(S \) in \(F \) as \(S_F^{\cap} = S \cup S_F^+ \).

We are now prepared to give the formal definitions of the abstract argumentation semantics
we will consider.

Definition 2. Let \(F = (A, R) \) be an AF. A set \(S \subseteq A \) is conflict-free (in \(F \)), if there are no
\(a, b \in S \), such that \((a, b) \in R \). \(cf(F) \) denotes the collection of conflict-free sets of \(F \). For a
conflict-free set \(S \in cf(F) \), it holds that

- \(S \in \text{stb}(F) \), if each \(a \in A \setminus S \) is attacked by \(S \) in \(F \);
- \(S \in \text{naive}(F) \), if there is no \(T \supset S \) such that \(T \in cf(F) \);
- \(S \in \text{adm}(F) \), if each \(a \in S \) is defended by \(S \) in \(F \);
- \(S \in \text{com}(F) \), if \(S \in \text{adm}(F) \) and each \(a \in A \) defended by \(S \) in \(F \) is contained in \(S \);
- \(S \in \text{grd}(F) \), if \(S \in \text{com}(F) \) and there is no \(T \subset S \) such that \(T \in \text{com}(F) \);
- \(S \in \text{prf}(F) \), if \(S \in \text{adm}(F) \) and there is no \(T \supset S \) such that \(T \in \text{adm}(F) \);
- \(S \in \text{ideal}(F) \), if \(S \) is a \(\subseteq \)-maximal admissible set that is contained in each preferred
extension of \(F \);
- \(S \in \text{sem}(F) \), if \(S \in \text{adm}(F) \) and there is no \(T \in \text{adm}(F) \) with \(S_R^{\cap} \subset T_R^{\cap} \);
- \(S \in \text{stg}(F) \), if there is no \(T \in \text{cf}(F) \), with \(S_R^{\cap} \subset T_R^{\cap} \);

Notice that \(\text{grd}(F) \), \(\text{ideal}(F) \) respectively, always yields a unique extension, the grounded,
ideal respectively, extension of \(F \).

The recursive definitions of \(\text{cf2}(F) \), \(\text{stg2}(F) \), and \(\text{stradm}(F) \) require additional concepts
like strongly connected components (SCCs) and related notions. For the formal definitions,
refer to [14], [15], and [16], respectively.

Example 1. Consider the AF \(F = (A, R) \), with arguments \(A = \{a, b, c, d, e\} \) and attacks
\(R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\} \). The graph representation of \(F \) is as follows.

```
  a --- b    c   d --- e
```

Considering the extensions of \(F \), we have \(\text{stb}(F) = \text{stg}(F) = \text{sem}(F) = \{\{a, d\}\} \). The admissible sets of \(F \) are \(\emptyset, \{a\}, \{c\}, \{d\}, \{a, c\} \) and \(\{a, d\} \) and thus the set of preferred extensions is
\(\text{prf}(F) = \{\{a, c\}, \{a, d\}\} \) and the complete extensions are \(\{a\}, \{a, c\} \) and \(\{a, d\} \). The naive extensions are \(\{a, d\}, \{a, c\} \) and \(\{b, d\} \). Finally, the grounded extension is \(\{a\} \) and coincides with
the ideal extension.
2.2. Tracks of ICCMA (Tasks Supported by ASPARTIX-V)

The International Competition on Computational Models of Argumentation (ICCMA) provides a unified setting to compare the performance of state-of-the-art argumentation solvers. As ASPARTIX-V is fine-tuned for the ICCMA, the supported reasoning tasks correspond to the ICCMA tracks.

Its fourth edition, the ICCMA’21 had four types of tracks, the classical (static) tracks, the dynamic tracks, the structured argumentation tracks, and a track dedicated to approximate algorithms. In the classical tracks the solver is given an argumentation framework and has to solve a specific reasoning task while in the dynamic tracks the solver is given an initial argumentation frameworks and a list of updates to that framework and the reasoning task has to be evaluated after each update to the framework. The structured tracks feature Assumption-based Argumentation [17]. As the ASPARTIX-V system supports only the classical tracks we will focus on these tracks here.

We next describe the reasoning tasks that are considered in the classical tracks of ICCMA. They correspond to the standard reasoning problems studied in the literature (see, e.g., [18]).

- **DC-σ**: Decide Credulous acceptance of an argument w.r.t. a semantics σ: Given $F = (A, R)$, $a \in A$ decide whether $a \in E$ for some extension $E \in \sigma(F)$.
- **DS-σ**: Decide Skeptical acceptance of an argument w.r.t. a semantics σ: Given $F = (A, R)$, $a \in A$ decide whether $a \in E$ for all extensions $E \in \sigma(F)$.
- **SE-σ**: compute Some σ-Extension: Given $F = (A, R)$ return some $E \in \sigma(F)$.
- **CE-σ**: Count all σ-Extensions: Given $F = (A, R)$ give the number of $E \in \sigma(F)$.
- **EE-σ**: Enumerate all σ-Extensions: Given $F = (A, R)$ return all $E \in \sigma(F)$.

Notice that that EE-σ was part of ICCMA in previous editions but was replaced by CE-σ in ICCMA’21. For σ, seven semantics were considered, namely complete, preferred, stable, semi-stable, stage, grounded and ideal.

3. The ASPARTIX System and its ASPARTIX-V Edition

The ASPARTIX system was one of the first systems that supported efficient reasoning for a broad collection of abstract argumentation semantics starting with the work of Gaggl et al. (see, e.g., [9]) and has been continuously expanded and improved since then (see, e.g., [10, 11, 12, 13, 19]). Apart from classical abstract argumentation frameworks, ASPARTIX also supports a broad range of enhancements of AFs by, e.g., preferences [20] or recursive attacks [21].

Newest developments of the ASPARTIX system include implementations to compute extensions and to perform reasoning tasks in SETAFs, i.e., argumentation frameworks with collective attacks [22]. It has been furthermore extended to perform claim-based reasoning by a recent implementation of claim-augmented argumentation frameworks (CAFs) [23] which generalize AFs by an additional function which assigns a claim to each argument (which is considered as the argument’s conclusion). Due to the broad coverage of both argumentation semantics as
well as generalizations of AFs, the ASPARTIX system is frequently used as reference system in the literature.

ASPARTIX is based on answer-set programming (ASP) and the idea of characterizing argumentation semantics via ASP encodings. With such an encoding of a semantics one can easily apply state-of-art systems for ASP to solve diverse reasoning tasks or to enumerate all extensions of a given AF. Given an AF as input, in the apx format of ICCMA, ASPARTIX delegates the main reasoning to an answer set programming solver (e.g., \[24\]), with answer set programs encoding the argumentation semantics and reasoning tasks. The basic workflow is shown in Figure 1, i.e., the AF is given in apx format (facts in the ASP language), and the AF semantics and reasoning tasks are encoded via ASP rules, possibly utilizing further ASP language constructs. For more information on the ASPARTIX system and its derivatives in general the interested reader is referred to the systems web-page:

www.dbai.tuwien.ac.at/research/argumentation/aspartix/

In this work we shall focus on ASPARTIX-V in its 2019 and 2021 versions which are derivatives of ASPARTIX tuned towards the tracks of ICCMA’19 and ICCMA’21 respectively. That is, ASPARTIX-V is restricted to AFs and supports all the standard tasks of both ICCMA’19 and ICCMA’21, i.e. credulous/skeptical acceptance, computing all/some extension(s), and counting extensions for complete, preferred, stable, semi-stable, stage, grounded, and ideal semantics (as well as the other semantics mentioned in the previous section that are not part of the ICCMA). In the following we highlight specifics of the current version and in particular differences to prior versions.

Since the 2019 version of the ASPARTIX system we deviate from classical ASPARTIX design virtues. First, while traditional ASPARTIX encodings are modular in the sense that fixed encodings for semantics can be combined with the generic encodings of reasoning tasks, we use semantics encodings specific to a reasoning task. Second, when appropriate, we apply multi-shot methods for reasoning, which is in contrast to the earlier focus on so-called monolithic encodings, where one uses a single ASP-encoding and runs the solver only once (as illustrated in Figure 1). Third we make use of advanced features of the ASP-language, and utilize clingo\(^4\) [24] v5.3.0 and v4.4.0.

\(^4\)https://potassco.org/
In its 2021 edition, the shell scripts implementing the ICCMA interface have been rewritten to avoid issues with concurrent calls to the systems. Moreover, ASPARTIX-V21 is the first version implementing the counting extensions tasks, as required by ICCMA’21.

Next, we list and overview some of the ASP-techniques used in the ASPARTIX system since its 2019 version. First, we exploit the concept of conditional literals [25, Section 3.1.11], which has first been applied for ASP-encodings of argumentation semantics in [12]. For example, we simplified the encoding of grounded semantics (cf. Listing 1). Moreover, conditional literals enable us to give ASPARTIX style encodings of the translations from AF semantics to ASP semantics provided in [26]. Second, we exploit clingo domain heuristics [27] (see also [25, Chapter 10]), in order to compute subset-maximal extensions while only specifying constraints for the base semantics [28].

4. Implementation Details

When not stated otherwise, for a supported semantics we provide an ASP-encoding such that when combined with an AF in the apx format the answer-sets of the program are in a one-to-one correspondence with the extensions of the AF. Given an answer-set of such an encoding the corresponding extension is given by the \(\text{in}(\cdot) \) predicate, i.e., an argument \(a \) is in the extensions iff \(\text{in}(a) \) is in the answer-set. With such an encoding we can exploit a standard ASP-solver to compute some extension (SE) by computing an answer-set; enumerate all extensions (EE) by enumerating all answer-sets (likewise, counting extensions (CE) by giving the number of answer sets); decide credulous acceptance (DC) of an argument \(a \) by adding the constraint \(\leftarrow \neg \text{in}(a) \) to the program and testing whether the program is satisfiable, i.e., \(a \) is credulously accepted if there is at least one answer set; and decide skeptical acceptance (DS) of an argument \(a \) by adding the constraint \(\leftarrow \text{in}(a) \) to the program and testing whether the program is unsatisfiable, i.e., \(a \) is skeptically accepted if there is no answer set.

4.1. Conditional Literals

We make use of the conditional literal [25]. In the head of a disjunctive rule literals may have conditions, e.g. consider the head of rule “\(p(X) : q(X) \leftarrow \)”. Intuitively, this represents a head of disjunctions of atoms \(p(a) \) where also \(q(a) \) is true. Rules might as well have conditions in their body, e.g. consider the body of rule “\(\leftarrow p(X) : q(X) \)”, which intuitively represents a conjunction of atoms \(p(a) \) where also \(q(a) \) is true.

A bottleneck of previous encodings for grounded semantics was the grounding step of the solver, i.e., the instantiation of variables with constants typically produces large programs. By utilizing conditional literals we were able to provide a compact encoding (cf. Listing 1) with significant smaller grounded programs.

Listing 1: Encoding for grounded semantics (using conditional literals)

\[
\begin{align*}
\text{in}(X) & \leftarrow \text{arg}(X), \text{defeated}(Y) : \text{att}(Y,X). \\
\text{defeated}(X) & \leftarrow \text{arg}(X), \text{in}(Y), \text{att}(Y,X).
\end{align*}
\]

Moreover, conditional literals allow for an ASPARTIX style implementation of the translations from argumentation framework to grounded logic programs provided in [26]. For example
consider our one line encoding of stable semantics in Listing 2 and the encoding of preferred semantics in Listing 3.

Listing 2: Encoding for stable semantics (using conditional literals)
\[
in(Y) \leftarrow \text{arg}(Y), \neg \text{in}(X) : \text{att}(X,Y).
\]

Listing 3: Encoding for preferred semantics (using conditional literals)
\[
defended(X) | defeated(X) \leftarrow \text{arg}(X).
defended(X) \leftarrow \text{arg}(X), defeated(Y) : \text{att}(Y,X).
defeated(X) \leftarrow defended(Y), \text{att}(Y,X).
defended(X), \neg defeated(Y), \text{att}(Y,X).
defeated(X), not defeated(Y) : \text{att}(Y,X).
in(X) \leftarrow defeated(X), not defeated(X).
\]

4.2. Domain Heuristics

Clingo provides an option to specify user-specific domain heuristics in the ASP-program which guides the ASP-solver. In particular one can define heuristics in order to select the answer-sets that are subset-maximal/minimal w.r.t. a specified predicate. Inspired by [28] we use such heuristics to compute preferred extensions by utilizing an encoding for complete semantics and identifying the subset-maximal answer-sets w.r.t. the \text{in}(\cdot) predicate (cf. Listing 4). Moreover, we use domain heuristics and three-valued labelling-based characterizations of complete semantics via the predicates \text{in}(\cdot), \text{out}(\cdot), and \text{undec}(\cdot) in order to compute the subset-maximal ranges of complete and conflict-free sets, i.e. we compute the subset-minimal answer-sets w.r.t. the \text{undec}(\cdot) predicate. This can be exploited for computing some semi-stable or stage extensions. However, the domain heuristics only return one witnessing answer-set for each minima and thus this technique is not directly applicable to the corresponding enumerations tasks (we would miss some extensions if several extensions have the same range). In the next section we present a multi-shot method addressing this problem.

Listing 4: Encoding for preferred semantics (using domain heuristics)
\[
%% Complete labellings
\text{in}(X) | \text{out}(X) | \text{undec}(X) \leftarrow \text{arg}(X).
\text{in}(X) \leftarrow \text{arg}(X), \text{out}(Y) : \text{att}(Y,X).
\text{out}(X) \leftarrow \text{in}(Y), \text{att}(Y,X).
\leftarrow \text{in}(X), \neg \text{out}(Y), \text{att}(Y,X).
\leftarrow \text{out}(X), \neg \text{in}(Y) : \text{att}(Y,X).
\leftarrow \text{in}(X), \text{out}(X).
\leftarrow \text{undec}(X), \text{out}(X).
\leftarrow \text{undec}(X), \text{in}(X).
%% We now apply heuristics to get the complete labeling with subset−maximal \text{in}(\cdot) set
\text{heuristic} \text{in}(X) : \text{arg}(X). [1,\text{true}]
\]
4.3. Multi-shot Methods

We utilize multi-shot strategies and pre-processing of the AF for several semantics and reasoning tasks. In the current section, we briefly describe these methods.

For credulous and skeptical reasoning with complete, preferred, grounded, and ideal semantics we do not need to consider the whole framework but only those arguments that have a directed path to the query argument (notice that this does not hold true for stable, semi-stable and stage semantics). We perform pre-processing on the given AF that removes arguments without a directed path to the queried argument before starting the reasoning with an ASP-solver.

For computing the ideal extension we follow a two-shot strategy that is inspired by algorithms proposed earlier for ideal semantics [29, 30]. That is, we first use an encoding for complete semantics and the brave reasoning mode of clingo to compute all arguments that are credulously accepted/attacked w.r.t. preferred semantics. Second, we use the outcome of the first call together with an encoding that computes a fixed-point corresponding to the ideal extension. For reasoning with ideal semantics we use an encoding for ideal sets and perform credulous reasoning on ideal sets in the standard way.

Semi-stable extensions correspond to those complete labellings for which the set of undecided arguments is subset-minimal. In our approach, we utilize an encoding for complete semantics extended by an undec(·) predicate and process the answer-sets. We check whether models without an undec(·) predicate have been computed; in that case, semi-stable extensions coincide with stable extensions. In the other case, we compute all subset-minimal sets among all undecided sets using the set class in python and return the corresponding models.

For enumerating and counting stage extensions we use a multi-shot strategy. First we use the domain heuristics to compute the maximal ranges w.r.t. naive semantics (as each range maximal conflict-free set is also subset-maximal it is sufficient to only consider naive sets, i.e. subset-maximal conflict free sets). Second, for each of the maximal ranges we start another ASP-encoding which computes conflict-free sets with exactly that range (this is equivalent to computing stable extension of a restricted framework). Each of these extensions corresponds to a different stage extension of the AF.

For reasoning with semi-stable and stage semantics we use a multi-shot strategy similar to that for enumerating the stage extensions. First we use domain heuristics to compute the maximal ranges w.r.t. complete or naive semantics. In the second step we iterate over these ranges and perform skeptical (credulous) reasoning over complete extensions (conflict-free sets) with the given range. For skeptical acceptance, we answer negatively as soon as a counterexample to a positive answer is found when iterating the extensions; otherwise, after processing all maximal ranges we answer with YES. Analogously, for credulous acceptance, we check in each iteration whether we can report a positive answer; otherwise, after processing all maximal ranges, we return NO.

5. Discussion

The results of the ICCMA’21 competition were just announced very recently (see http://argumentationcompetition.org/2021/results.html) and thus we cannot yet provide a detailed
analysis. Notable ASPARTIX-V21 won the subtrack on stage semantics, was scored second in the subtrack for ideal semantics, and scored third in the subtrack for semi-stable semantics.

We next briefly discuss the performance of the previous 2019 version at ICCMA’19 (detailed results of the competition are published at https://www.iccma2019.dmi.unipg.it/results/results-main.html). The competition was dominated by the \(\mu \)-toksia system by Niskanen and Järvisalo [31], an optimized system based on modern SAT-solving technology which won all the tracks of the competition and only failed to solve two of the benchmark instances in the given time-limit of 600 seconds.

The ASPARTIX-V19 system scored third in the overall evaluation of the competition, scored second in 8 of the 24 tracks and scored second in the aggregated evaluation of complete and stable semantics. Moreover, for 16 tracks ASPARTIX-V19 solved all instances of the competition within the given time-limit. Noteworthy, ASPARTIX-V19 was to only system to solve the enumeration task under stage semantics for the \texttt{n256p3q08n.apx} instance.

The ICCMA’19 results also reported different kinds of errors in the results of the ASPARTIX-system, which we investigated and shall discuss in the following. This errors include wrong results, malformed output, crashed computations and for enumeration tasks incomplete list of extensions which are not due to a timeout. The affected tasks are skeptical acceptance under preferred and semi-stable semantics, credulous acceptance under semi-stable semantics, stage and ideal semantics and enumeration of semi-stable and stage semantics.

The main reason for these errors seems to be side-effects of concurrent calls to the solver. Towards understanding the erroneous results, we performed additional experiments. For these experiments we considered all skeptical and credulous acceptance instances of the competition where ASPARTIX-V19 returned an erroneous result or crashed and reran the ASPARTIX-V19 docker on these instances in an isolated setting. For all but one instance we got the correct results. In this isolated setting ASPARTIX-V19 only reported one wrong result for skeptical reasoning with semi-stable semantics on the \texttt{Small-result-b86.apx} instance. This seems to be due to a bug in the used ASP solver, which can be resolved by using an earlier version of the solver (we got correct results with clingo 4.4.0). For the enumeration tasks we investigated selected instances with erroneous / incomplete results and again got correct results when running them in an isolated setting and on the other hand could generate erroneous results by concurrent calls to the solver. The errors related to concurrent calls and a bug in the used ASP solver have been addressed in the current ASPARTIX-V21 version.

From our development work and the results achieved in the international competition, we conclude that (i) a performance increase was achieved by utilizing advanced language features of ASP, across multiple reasoning tasks covering several levels of complexity of the polynomial hierarchy (e.g., argumentative reasoning tasks considered in the ICCMA range from polynomial-time decidable to being complete for a class on the second level of the polynomial hierarchy), (ii) said language features, furthermore, provide means for compact and accessible modeling of problem shortcuts in the ASP language, however care needs to be taken when designing systems that interface ASP solvers, and (iii) while our prototype was outperformed by the SAT based approach of \(\mu \)-toksia, performance of ASPARTIX-V19 does not lag behind for several cases. Indeed, as witnessed by the uniquely solved instance only by ASPARTIX-V19, certain shortcuts included in ASPARTIX-V19 can lead to complementary performance for families of instances.
Acknowledgments

This research has been supported by the Vienna Science and Technology Fund (WWTF) through project ICT19-065, and by the Austrian Science Fund (FWF) through projects P30168, P32830, and Y698.

References

