
0/20

�

�

�

�

�

�

	

13th Int’l Workshop on the Principles of Diagnosis (DX-2002), Semmering, Austria, May 4th, 2002

Why does my program fail?
Isolating failure causes automatically

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/20

�

�

�

�

�

�

	

Diagnostics under Total Control

In classical diagnosis settings,

• measuring is expensive (hence simulation and models)

• experimentation is expensive (hence diagnosis)

1/20

�

�

�

�

�

�

	

Diagnostics under Total Control

In classical diagnosis settings,

• measuring is expensive (hence simulation and models)

• experimentation is expensive (hence diagnosis)

But what if. . .

• . . . the subject of diagnosis can be arbitrarily examined?

• . . . experimentation is cheap and automatic?

• . . . we can actually verify whether a cause is a cause?

Welcome to the world of automated debugging!

2/20

�

�

�

�

�

�

	

A True Story

Mozilla: Netscape’s open source web browser

Developed by dozens of Netscape engineers and zillions of
volunteers

Mozilla bug #24735, reported by anantk@yahoo.com:

Ok the following operations cause mozilla to crash
consistently on my machine

-> Start mozilla

-> Go to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to
.50 (I use the file /var/tmp/netscape.ps)

-> Once it’s done printing do the exact same thing again on
the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

3/20

�

�

�

�

�

�

	

Why does Mozilla crash?

We want to determine the cause of the Mozilla crash:

The cause of any event (“effect”) is a preceding event
without which the effect would not have occurred.

— Microsoft Encarta

3/20

�

�

�

�

�

�

	

Why does Mozilla crash?

We want to determine the cause of the Mozilla crash:

The cause of any event (“effect”) is a preceding event
without which the effect would not have occurred.

— Microsoft Encarta

To prove causality, we must show experimentally that

1. the effect occurs when the cause occurs

2. the effect does not occur when the cause does not occur

In our case, the effect is Mozilla crashing.
The cause must be something different – e.g. the HTML input.

4/20

�

�

�

�

�

�

	

Our Issue: Simple Causes

A cause alone does not suffice – the cause must be simple, too:

• Simple test case ⇒ simple program state

• Simple test case ⇒ general representative

Mozilla BugAThon – Volunteers simplify test cases:

Pledges Reward
5 bugs invitation to the Gecko launch party

10 bugs the invitation, plus an attractive Gecko stuffed animal
12 bugs same, but animal autographed by the Father of Gecko
15 bugs the invitation, plus a Gecko T-shirt
17 bugs same, but T-shirt signed by the grateful engineer
20 bugs same, but T-shirt signed by the whole raptor team

Can’t we automate this?

5/20

�

�

�

�

�

�

	

Simplifying HTML Input

Basic idea: We use an automated test to simplify HTML pages,
until each character is relevant for the failure:

1 〈896 lines〉 ✘

5/20

�

�

�

�

�

�

	

Simplifying HTML Input

Basic idea: We use an automated test to simplify HTML pages,
until each character is relevant for the failure:

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘

5/20

�

�

�

�

�

�

	

Simplifying HTML Input

Basic idea: We use an automated test to simplify HTML pages,
until each character is relevant for the failure:

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔

5/20

�

�

�

�

�

�

	

Simplifying HTML Input

Basic idea: We use an automated test to simplify HTML pages,
until each character is relevant for the failure:

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘

5/20

�

�

�

�

�

�

	

Simplifying HTML Input

Basic idea: We use an automated test to simplify HTML pages,
until each character is relevant for the failure:

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
58 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
59 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔

5/20

�

�

�

�

�

�

	

Simplifying HTML Input

Basic idea: We use an automated test to simplify HTML pages,
until each character is relevant for the failure:

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
58 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
59 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
60 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 ✔

5/20

�

�

�

�

�

�

	

Simplifying HTML Input

Basic idea: We use an automated test to simplify HTML pages,
until each character is relevant for the failure:

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
58 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
59 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
60 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 ✔
61 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✘

5/20

�

�

�

�

�

�

	

Simplifying HTML Input

Basic idea: We use an automated test to simplify HTML pages,
until each character is relevant for the failure:

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
58 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
59 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
60 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 ✔
61 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✘
62 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10 characters〉 ✘

...

5/20

�

�

�

�

�

�

	

Simplifying HTML Input

Basic idea: We use an automated test to simplify HTML pages,
until each character is relevant for the failure:

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
58 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
59 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
60 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 ✔
61 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✘
62 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10 characters〉 ✘

...
75 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
76 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
77 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔

...

5/20

�

�

�

�

�

�

	

Simplifying HTML Input

Basic idea: We use an automated test to simplify HTML pages,
until each character is relevant for the failure:

1 〈896 lines〉 ✘
2 〈448 lines〉 ✘
3 〈224 lines〉 ✘
4 〈112 lines〉 ✔
5 〈112 lines〉 ✘
6 〈56 lines〉 ✔
...

57 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈40 characters〉 ✘
58 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
59 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✔
60 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈30 characters〉 ✔
61 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈20 characters〉 ✘
62 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈10 characters〉 ✘

...
75 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
76 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔
77 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✔

...
90 <SELECT NAME="priority" MULTIPLE SIZE=7> 〈8 characters〉 ✘

Simplified bug report: Printing <SELECT> crashes.

6/20

�

�

�

�

�

�

	

The Delta Debugging Algorithm

Given: test, c✔, c✘ · c✔ ⊆ c✘ ∧ test(c✔) = ✔∧ test(c✘) = ✘.

6/20

�

�

�

�

�

�

	

The Delta Debugging Algorithm

Given: test, c✔, c✘ · c✔ ⊆ c✘ ∧ test(c✔) = ✔∧ test(c✘) = ✘.

Goal: c′✘ = ddmin(c✘) such that c✔ ⊆ c′✘ ⊆ c✘, test(c′✘) = ✘

and each element of c′✘ is relevant for the failure.

6/20

�

�

�

�

�

�

	

The Delta Debugging Algorithm

Given: test, c✔, c✘ · c✔ ⊆ c✘ ∧ test(c✔) = ✔∧ test(c✘) = ✘.

Goal: c′✘ = ddmin(c✘) such that c✔ ⊆ c′✘ ⊆ c✘, test(c′✘) = ✘

and each element of c′✘ is relevant for the failure.

Let ∆ = c′✘ − c✔ = ∆1 ∪∆2 ∪ · · · ∪∆n

6/20

�

�

�

�

�

�

	

The Delta Debugging Algorithm

Given: test, c✔, c✘ · c✔ ⊆ c✘ ∧ test(c✔) = ✔∧ test(c✘) = ✘.

Goal: c′✘ = ddmin(c✘) such that c✔ ⊆ c′✘ ⊆ c✘, test(c′✘) = ✘

and each element of c′✘ is relevant for the failure.

Let ∆ = c′✘ − c✔ = ∆1 ∪∆2 ∪ · · · ∪∆n in

ddmin(c✘) = ddmin2(c✘,2) where ddmin2(c′✘, n) =
ddmin2(c✔ ∪∆i,2) if ∃i · test(c✔ ∪∆i) = ✘

6/20

�

�

�

�

�

�

	

The Delta Debugging Algorithm

Given: test, c✔, c✘ · c✔ ⊆ c✘ ∧ test(c✔) = ✔∧ test(c✘) = ✘.

Goal: c′✘ = ddmin(c✘) such that c✔ ⊆ c′✘ ⊆ c✘, test(c′✘) = ✘

and each element of c′✘ is relevant for the failure.

Let ∆ = c′✘ − c✔ = ∆1 ∪∆2 ∪ · · · ∪∆n in

ddmin(c✘) = ddmin2(c✘,2) where ddmin2(c′✘, n) =
ddmin2(c✔ ∪∆i,2) if ∃i · test(c✔ ∪∆i) = ✘

ddmin2
(
c′✘ −∆i,max(n− 1,2)

)
if ∃i · test(c′✘ −∆i) = ✘

6/20

�

�

�

�

�

�

	

The Delta Debugging Algorithm

Given: test, c✔, c✘ · c✔ ⊆ c✘ ∧ test(c✔) = ✔∧ test(c✘) = ✘.

Goal: c′✘ = ddmin(c✘) such that c✔ ⊆ c′✘ ⊆ c✘, test(c′✘) = ✘

and each element of c′✘ is relevant for the failure.

Let ∆ = c′✘ − c✔ = ∆1 ∪∆2 ∪ · · · ∪∆n in

ddmin(c✘) = ddmin2(c✘,2) where ddmin2(c′✘, n) =
ddmin2(c✔ ∪∆i,2) if ∃i · test(c✔ ∪∆i) = ✘

ddmin2
(
c′✘ −∆i,max(n− 1,2)

)
if ∃i · test(c′✘ −∆i) = ✘

ddmin2
(
c′✘,min(2n, |∆|)) if n < |∆|

c′✘ otherwise

6/20

�

�

�

�

�

�

	

The Delta Debugging Algorithm

Given: test, c✔, c✘ · c✔ ⊆ c✘ ∧ test(c✔) = ✔∧ test(c✘) = ✘.

Goal: c′✘ = ddmin(c✘) such that c✔ ⊆ c′✘ ⊆ c✘, test(c′✘) = ✘

and each element of c′✘ is relevant for the failure.

Let ∆ = c′✘ − c✔ = ∆1 ∪∆2 ∪ · · · ∪∆n in

ddmin(c✘) = ddmin2(c✘,2) where ddmin2(c′✘, n) =
ddmin2(c✔ ∪∆i,2) if ∃i · test(c✔ ∪∆i) = ✘

ddmin2
(
c′✘ −∆i,max(n− 1,2)

)
if ∃i · test(c′✘ −∆i) = ✘

ddmin2
(
c′✘,min(2n, |∆|)) if n < |∆|

c′✘ otherwise

Number of tests: between 2 log2(|c✘ − c✔|) and |c✘ − c✔|2;
no less than 2|c′✘|.∆: arbitrary circumstances (input, code changes, threads. . .)

7/20

�

�

�

�

�

�

	

GCC eats up Desktop

Simplifying complex inputs can be expensive.

double bug(double z[], int n) {
int i, j;

i = 0;
for (j = 0; j < n; j++) {
i = i + j + 1;
z[i] = z[i] ∗ (z[0] + 0.0);

}
return z[n];

}

bug.c causes the GNU compiler (GCC 2.95.2) to crash:

linux$ gcc -O bug.c
gcc: Internal error: program cc1 got fatal signal 11
linux$ _

8/20

�

�

�

�

�

�

	

Simplifying GCC Input

Once again, we simplify the GCC input bug.c.

Problem: Even if we take the C syntax into account, there are
still unresolved test outcomes ()

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘
2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . }
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘
5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . }
6 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘
7 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
...

Determining the simplified input requires 857 tests:

g(double z[],int n){int i,j;for(;;){i = i+ j + 1;z[i] = z[i]∗ (z[0]+ 0);}return z[n];}

9/20

�

�

�

�

�

�

	

Simplifying vs. Isolating

Problem: To simplify the entire input can be expensive

Alternative approach: We do not simplify the entire input, but
the difference with respect to a working input.

Simplifying
✘

⇓
⇓
⇓

✘

✔

9/20

�

�

�

�

�

�

	

Simplifying vs. Isolating

Problem: To simplify the entire input can be expensive

Alternative approach: We do not simplify the entire input, but
the difference with respect to a working input.

Simplifying
✘

⇓
⇓
⇓

✘

✔

Isolating
✘

⇓
✘

✔

⇑
✔

9/20

�

�

�

�

�

�

	

Simplifying vs. Isolating

Problem: To simplify the entire input can be expensive

Alternative approach: We do not simplify the entire input, but
the difference with respect to a working input.

Simplifying
✘

⇓
⇓
⇓

✘

✔

Isolating
✘

⇓
✘

✔

⇑
✔

Larger context – but fewer tests and smaller causes

10/20

�

�

�

�

�

�

	

Isolating Failure Causes

We isolate the failure-inducing GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

10/20

�

�

�

�

�

�

	

Isolating Failure Causes

We isolate the failure-inducing GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . }

10/20

�

�

�

�

�

�

	

Isolating Failure Causes

We isolate the failure-inducing GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

10/20

�

�

�

�

�

�

	

Isolating Failure Causes

We isolate the failure-inducing GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . }

10/20

�

�

�

�

�

�

	

Isolating Failure Causes

We isolate the failure-inducing GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

10/20

�

�

�

�

�

�

	

Isolating Failure Causes

We isolate the failure-inducing GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . }

10/20

�

�

�

�

�

�

	

Isolating Failure Causes

We isolate the failure-inducing GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

10/20

�

�

�

�

�

�

	

Isolating Failure Causes

We isolate the failure-inducing GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘
...

19 . . . z[i] = z[i]∗ (z[0]+ 0.0); . . . ✘
18 . . . z[i] = z[i]∗ (z[0]+ 0.0); . . . ✔

...

+ 0.0 is the failure cause – after only 19 tests (≈ 2 seconds)

10/20

�

�

�

�

�

�

	

Isolating Failure Causes

We isolate the failure-inducing GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘
...

19 . . . z[i] = z[i]∗ (z[0]+ 0.0); . . . ✘
18 . . . z[i] = z[i]∗ (z[0]+ 0.0); . . . ✔

...

+ 0.0 is the failure cause – after only 19 tests (≈ 2 seconds)

(Compare this to, say, 1 man-hour to isolate bad PostScript code :−)

11/20

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 0.0 is just the beginning of a cause-effect
chain within the GCC run.

Each difference induces later state changes.
But only some of these effects are relevant for the failure.
Goal: Isolate failure-inducing state changes!

12/20

�

�

�

�

�

�

	

Deltas between States

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

12/20

�

�

�

�

�

�

	

Deltas between States

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔

12/20

�

�

�

�

�

�

	

Deltas between States

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0

12/20

�

�

�

�

�

�

	

Deltas between States

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔

12/20

�

�

�

�

�

�

	

Deltas between States

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4

12/20

�

�

�

�

�

�

	

Deltas between States

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4

12/20

�

�

�

�

�

�

	

Deltas between States

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4
5 32 74 15 0x81fc4a0 ✔

12/20

�

�

�

�

�

�

	

Deltas between States

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4
5 32 74 15 0x81fc4a0 ✔

Life is not so simple – we must also determine structural
differences and apply them!

13/20

�

�

�

�

�

�

	

The GCC Memory Graph

We extract the program state as graph:
Vertices are variables, edges are references

42991 vertices
44290 edges

14/20

�

�

�

�

�

�

	

Structural Differences

On graphs, one can compute structural differences:∆15 creates a variable, ∆20 deletes one

r✔

r✘
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22
()->next

20

∆15−−→
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

∆20

y ∆20

y

()->next ()->nextlist

14 18 22
()->next

15

()->nextlist

14 18 22

()->next

20

∆15−−→
()->next ()->nextlist

14 18 22
()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

15/20

�

�

�

�

�

�

	

Relevant State Differences

Our prototype HOWCOME examines the state of cc1 in
combine instructions: 871 nodes (= variables) are different

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

�

Tests executed

Delta Debugging Log

cpass
cfail

15/20

�

�

�

�

�

�

	

Relevant State Differences

Our prototype HOWCOME examines the state of cc1 in
combine instructions: 871 nodes (= variables) are different

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

�

Tests executed

Delta Debugging Log

cpass
cfail

Only one variable causes the failure:

$m = (struct rtx def *)malloc(12)
$m->code = PLUS
first loop store insn->fld[1]...rtx = $m

16/20

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, HOWCOME has determined these failure causes:

Cause-effect chain for ’./gcc/cc1’
Arguments are ‘-O’ ‘bug.i’ (instead of ‘-O’ ‘ok.i’)
therefore at ‘main’,
argv[2] = "bug.i"
(instead of "ok.i")

16/20

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, HOWCOME has determined these failure causes:

Cause-effect chain for ’./gcc/cc1’
Arguments are ‘-O’ ‘bug.i’ (instead of ‘-O’ ‘ok.i’)
therefore at ‘main’,
argv[2] = "bug.i"
(instead of "ok.i")

therefore at ‘combine instructions’,
*first loop store insn->fld[1].rtx->
fld[1].rtx->fld[3].rtx->fld[1].rtx = 〈new variable〉

16/20

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, HOWCOME has determined these failure causes:

Cause-effect chain for ’./gcc/cc1’
Arguments are ‘-O’ ‘bug.i’ (instead of ‘-O’ ‘ok.i’)
therefore at ‘main’,
argv[2] = "bug.i"
(instead of "ok.i")

therefore at ‘combine instructions’,
*first loop store insn->fld[1].rtx->
fld[1].rtx->fld[3].rtx->fld[1].rtx = 〈new variable〉

therefore at ‘if then else cond’,
link->fld[0].rtx->fld[0].rtx = &link
(instead of i1dest)

therefore the run fails.

Total running time: 6 seconds

16/20

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, HOWCOME has determined these failure causes:

Cause-effect chain for ’./gcc/cc1’
Arguments are ‘-O’ ‘bug.i’ (instead of ‘-O’ ‘ok.i’)
therefore at ‘main’,
argv[2] = "bug.i"
(instead of "ok.i")

therefore at ‘combine instructions’,
*first loop store insn->fld[1].rtx->
fld[1].rtx->fld[3].rtx->fld[1].rtx = 〈new variable〉

therefore at ‘if then else cond’,
link->fld[0].rtx->fld[0].rtx = &link
(instead of i1dest)

therefore the run fails.

Total running time: 6 seconds
(+ 90 minutes for extracting the memory graph through GDB)

17/20

�

�

�

�

�

�

	

Perspectives

Program understanding is still in its infancy:

Visualization does not scale. See GCC graph with
43,000 nodes.

Program analysis scales badly. In real programs, 80–85% are
possible causes of a variable value – with static and
dynamic analysis!

Real code – a challenge. Real programs are opaque, parallel,
distributed, dynamic, multilingual.

Can experimental approaches like Delta Debugging help?

18/20

�

�

�

�

�

�

	

You press the Button

19/20

�

�

�

�

�

�

	

Conclusion

Delta Debugging

• provides automatic and precise isolation of failure causes
(= failure-inducing differences)

• automatic = automatic test is only requirement

• precise = much higher precision than program analysis

Determining Failure Causes

• requires a working run as reference

• must be able to capture and alter circumstances of the run

• does not require further knowledge about the program

http://www.st.cs.uni-sb.de/dd/

http://www.st.cs.uni-sb.de/dd/

20/20

�

�

�

�

�

�

	

Read More
Automated Debugging: Are We Close?

(A. Zeller) IEEE Computer, November 2001, pp. 26–31.

Simplifying and Isolating Failure-Inducing Input.
(A. Zeller + R. Hildebrandt) IEEE Transactions on Software
Engineering 28(2), February 2002, pp. 183–200.

Isolating Failure-Inducing Thread Schedules.
(J.-D. Choi + A. Zeller) Proc. ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2002),
Rome, July 2002.

Yesterday, my program worked. Today, it does not. Why?
(A. Zeller) Proc. ACM SIGSOFT Conference (ESEC/FSE), Toulouse,
September 1999, Springer LNCS 1687, pp. 253–267.

Automated Debugging.
(A. Zeller) Morgan Kaufmann Publishers, Spring 2003.

http://www.st.cs.uni-sb.de/dd/

http://www.st.cs.uni-sb.de/dd/

21/20

�

�

�

�

�

�

	

More Case Studies

Event Edges Vertices Deltas Tests
sample at main 26 26 12 4
sample at shell sort 26 26 12 7
sample at sample.c:37 26 26 12 4
cc1 at main 27139 27159 1 0
cc1 at combine instructions 42991 44290 871 44
cc1 at if then else cond 47071 48473 1224 15
bison at open files 431 432 2 2
bison at initialize conflicts 1395 1445 431 42
diff at analyze.c:966 413 446 109 9
diff at analyze.c:1006 413 446 99 10
gdb at main.c:615 32455 33458 1 0
gdb at exec.c:320 34138 35340 18 7

In all cases, exactly one variable was the failure cause.

22/20

�

�

�

�

�

�

	

Perspectives

✔ Approach has been filed for patent (Bayernpatent/FhG)

✔ Ernst-Denert-Preis 2001 for Diploma thesis (R. Hildebrandt)

✔ Automatic narrowing of cause transitions:
“From when is a[0] relevant and a[2] no more?”

✔ Combination with program analysis:
“What could have caused the variable value?”

✔ Book “Automated Debugging”
dpunkt/Morgan Kaufmann, Spring 2003

✔ Case studies (many + large + complex)

23/20

�

�

�

�

�

�

	

Delta Debugging: Applications

Failure-inducing Input.
Effect: Mozilla crashes when printing Bugzilla web page.
Cause: A <SELECT>-Tag in the HTML input.

Failure-inducing Code Changes.
Effect: After upgrading from GDB 4.16 to GDB 4.17,
DDD ignores program arguments.
Cause: Text “arguments” changed to “arg list”.

Failure-inducing Thread Switches. (with IBM Research)
Effect: The Java program raytracer sometimes works,
sometimes it does not.
Cause: Data race at 33rd thread switch.

Failure-inducing Program States.
Effect: GCC crashes when compiling bug.c.
Cause: Cycle in the RTL tree after optimizing +0.0

24/20

�

�

�

�

�

�

	

The Dangers of Abstraction

A true story: The code

b = a;
printf("b = %d\n", b);

prints “b = 0” – a failure.

Variable b depends on a, but is a a cause?

No, since the printf format does not match the type of b:

double b = a;
printf("b = %d\n", b);

Whatever the value of a und b,
this code will always print “b = 0”.

(Is there any general program analysis which detects this?)

25/20

�

�

�

�

�

�

	

The HOWCOME Prototype

Debuggee

Debugger (GDB)

State Extraction and Comparison

Isolation of Relevant States (Delta Debugging)

Extraction of Cause-Effect Chains

Relevant Deltas

State Deltas

State

Test
Results

Deltas

Event
Selection

Control State

26/20

�

�

�

�

�

�

	

The End

Any questions?

	Diagnostics under Total Control
	A True Story
	Why does Mozilla crash?
	Our Issue: Simple Causes
	Simplifying HTML Input
	The Delta Debugging Algorithm
	GCC eats up Desktop
	Simplifying GCC Input
	Simplifying vs. Isolating
	Isolating Failure Causes
	What's going on in GCC?
	Deltas between States
	The GCC Memory Graph
	Structural Differences
	Relevant State Differences
	The GCC Cause-Effect Chain
	Perspectives
	You press the Button
	Conclusion
	Read More
	More Case Studies
	Perspectives
	Delta Debugging: Applications
	The Dangers of Abstraction
	The HOWCOME Prototype
	The End

