
Modeling High School Timetabling as Partial Weighted
maxSAT

Emir Demirović, Nysret Musliu

Vienna University of Technology
Database and Artificial Intelliegence Group
{demirovic,musliu}@dbai.tuwien.ac.at

Abstract. High School Timetabling (HSTT) is a well known and wide spread problem. The
problem consists of coordinating resources (e.g. teachers, rooms), times, and events (e.g. lec-
tures) with respect to various constraints. Unfortunately, HSTT is hard to solve and even
simple variants of HSTT are NP-complete problems. We propose a new detail modeling of the
general HSTT as SAT, in which all constraints are treated as hard constraints. In order to
take into account soft constraints, we extend the SAT model to Partial Weighted maxSAT. In
addition, we have developed a SMT approach, in which constraints are incrementally added
rather then processed all at once. We perform detailed experiments on instances taken from
the Third International Timetabling Competition 2011 (ITC 2011) benchmark repository in
order to determine the most appropriate maxSAT solvers and cardinality constraint encod-
ings, evaluate the developed SMT approach, and compare our maxSAT approach with the
state-of-the-art exact Integer Programming (IP) approach and the ITC 2011 results. The re-
sults show that maxSAT is competitive for HSTT and outperforms the state-of-the-art exact
IP approach in the used instances. Moreover, we show that combining several maxSAT solvers
completely outperforms IP.

Keywords: High school timetabling, maxSAT, SAT encodings, cardinality constraints, XH-
STT, SMT, ITC2011

1 Introduction

The problem of high school timetabling (HSTT) is to coordinate resources (e.g. rooms, teachers,
students) with times in order to fulfill certain goals (e.g. scheduling lectures). Every high school
requires some form of timetabling which is a well known and wide spread problem. The difference
between a good and a bad timetable can be significant, as timetables directly contribute to the quality
of the educational system, satisfaction of students and staff, etc. Every timetable affects hundreds
of students and teachers for prolonged amounts of time, since each timetable is typically used for at
least a semester, making HSTT an extremely important and responsible task. However, constructing
timetables by hand can be time consuming, very difficult, and error prone. Thus, developing high
quality algorithms which would generate automatically timetables is of great importance.

Unfortunately, High School Timetabling is hard to solve and just finding a feasible solution
of simple variants of High School Timetabling has been proven to be NP-complete [?]. Apart
from the fact that practical problems can be very large and have many different constraints, high
school timetabling requirements vary from country to country. Due to this, many variations of the
timetabling problem exist. A lot of research has been done and HSTT is still an active field of
research, even having its own specific HSTT competition ITC 2011.

In order to standardize the formulation for HSTT, researches have recently proposed a general
high school timetabling problem formulation [?] called XHSTT. This formulation has been endorsed
by the Third International Timetabling Competition 2011 (ITC 2011) [?,?] which attracted 17

II

competitors from across the globe. In this work, we consider the general HSTT problem formulation
(XHSTT).

Algorithm for XHSTT are mostly based on heuristic (incomplete) algorithms, as discussion in
Section 3. These algorithms aim to provide upper bounds to the problem by searching through only
a limited part of the search space. In this work, we consider an exact approach, which contrary
to the heuristic algorithms, exhaustively explores the complete search space. In general, the first
step in devising a complete algorithm is to precisely capture the problem definition using some
mathematical formalism, which is difficult to do when there are many constraints and complex
interaction between entities and constraints, as in XHSTT.

We model the complex formalism of XHSTT using only Boolean variables and basic logical
connectives. Hard constraints are translated into propositional Boolean formulas (SAT). To account
for the soft constraints, the model is extended with the use of Partial Weighted maxSAT. By using
our modeling any solution of cost c for the Partial Weighted maxSAT formula can be directly
translated into a XHSTT solution with cost c.

However, there are several additional difficulties. Apart from precisely modeling the problem
using the restrictive language of propositional logic, one needs to take care of important special cases
in order to significantly simplify the encodings in practice, as well as consider different modeling
options in the form of cardinality constraints. In addition, there are many different maxSAT solvers,
each with their own solving techniques.

To experimentally evaluate our approach, we took all relevant XHSTT instances (see Section
7.1) and out of the pool of 39 instances we were able to model 27 of them. The remaining 12
instances were not modeled because the currently used maxSAT formulation for XHSTT does not
support resource assignments in general. We have a specific modeling for resource assignments
(Assign Resource Constraints and related constraints) for two instances, but our current model is
not practical for other instances with resource assignments.

We discuss these special cases, and empirically evaluate different cardinality constraint modelings
and solvers, in order to determine the best modeling for XHSTT. We show that competitive results
can be obtained by modeling XHSTT as Partial Weighted maxSAT. Our method is compared to
the state-of-the-art Integer Programming approach, and computational results demonstrate that we
outperform IP on the used instances. If we allowed to combine several maxSAT solvers, we are able
to completely outperform IP. Furthermore, we have experimented with a SMT approach, in which
soft constraints are gradually added throughout the search.

It is important to note that the competing IP approach relies on using Gurobi, a highly engineered
piece of software, while we use publicly available (and in some cases open source) maxSAT solvers
that are not so heavily engineered and still provide good results. In addition, the maxSAT model
presented here plays a crucial role in the recently developed heuristic algorithm, which uses maxSAT
in a large neighborhood search algorithm [?].

It is worth mentioning that in [?] a SAT encoding is studied for a related, albeit different problem,
namely the Curriculum-based course timetabling (CTT) problem. Unfortunately, many important
constraints of the general HSTT problem cannot be formulated as CTT. For example, Limit Idle
Times constraint, which typically limits the number of idle times between lessons a teacher has,
is an extremely important constraint in XHSTT and cannot be modeled in CTT. Many of CTT
constraints are special cases of XHSTT ones or can be adapted for XHSTT. All of the constraints
in CTT but one can be modeled as XHSTT. The translation of CTT into XHSTT has been studied
in [?]. Because of this, new and more generalized encodings must be explored in order to model
XHSTT.

To summarize, we state our main contributions explicitly:

– We show that XHSTT can be modeled as Weighted Partial maxSAT despite the fact that XH-
STT is very general and has many different constraints, including both hard and soft constraints.

III

All constraints are included in their general formulations, with the exception of resource assign-
ment constraint. Important alternative encodings for special cases are discussed, which includes
a special case of resource assignments as well.

– We investigate empirically the performance of our model using 27 out of 39 instances from the
Third International Timetabling Competition 2011 benchmark repository. We compare differ-
ent maxSAT solvers and cardinality constraint encodings to determine the most appropriate
combinations, evaluate a SMT approach, compare with the state-of-the-art Integer Program-
ming approach, and show how well our maxSAT approach would perform if it was submitted
to the International Timetabling Competition 2011. Based on the results we conclude that our
developed exact approach outperforms the state-of-the-art IP approach. Moreover, we show that
combining several maxSAT solvers completely outperforms IP.

– We created maxSAT instances based on XHSTT. These instances were submitted to the maxSAT
Competition 2014 and have been used since. They have proven to be challenging benchmarks
for maxSAT solvers.

Some of the results of this paper [?] have been presented in the LaSh 2014 workshop with no
formal proceedings.

The rest of the paper is organized as follows: in Section 2, we give an informal overview of
XHSTT, followed by Section 3 where we discuss related work. In Section 4, we give a detailed
mathematical formulation of the XHSTT problem which we previously informally described. Our
maxSAT modeling of XHSTT is given in Section 5, after which we describe our SMT approach in
Section 6. Detailed experimental results are given in Section 7, where several important questions
are answered. Finally, in Section 8 we give concluding remarks and ideas for future work.

2 Problem Description

High School Timetabling has been extensively studied in the past. However, a lot of work has been
done in isolation, because each country has its own educational system which resulted in many
different timetabling formulations. Thus, it was difficult to compare algorithms and the state-of-
the-art was unclear. To solve this issue and encourage timetabling research, researchers have agreed
on a standardized general timetabling formulation called XHSTT [?]. This formulation was general
enough to be able to model education systems from different countries and was endorsed by the
International Timetabling Competition 2011. This is the formulation used in this work.

The general High School Timetabling formulation specifies three main entities: times, resources,
and events. Times refer to the available discrete time units, such as Monday 9:00-10:00 and Monday
10:00-11:00. Resources correspond to available rooms, teachers, students, etc. The main entities are
the events, which in order to take place require certain times and resources. An event could be a
mathematics lecture, which requires a math teacher (who needs to be determined) and a specific
student group (both the teacher and the student group are considered resources) and two units of
time (two times). Events are to be scheduled into one or more solution events or subevents. For
example, a mathematics lecture with a total duration of four hours can be split into two subevents
with a duration of two hours each, but can also be scheduled as a single subevent with a duration
of four hours (constraints may restrict the durations of subevents).

Constraints impose limits on what kind of assignments are desirable. They may state that a
teacher can teach no more than five lessons per day, that younger students should attend more
demanding subjects (e.g. mathematics) in the morning, etc. It is important to differentiate between
hard and soft constraints. The former are very important and are given precedence over the latter,
in the sense that any single violation of a hard constraint is more important than all soft constraints
violations combined. Thus, one aims to satisfy as many hard constraint violations as possible, and
then optimize for the soft constraints. In the general formulation, any constraint may be declared

IV

hard or soft and no constraint is predefined as such, but rather left as a modeling option based
on the specific timetabling needs. Additionally, each constraint has several parameters, such as the
events or resources it applies to and to what extent (e.g. how many idle times are acceptable during
the week), its weight, and other properties, allowing great flexibility.

We now give an informal overview of all the constraints in XHSTT (as reported in [?]). There is
a total of 16 constraints (plus preassignments of times or resources to events, which are not listed).

Constraints related to events:

1. Assign Time Constraints - assign the specified number of times to specified events.
2. Split Events Constraints - limits the minimum and maximum duration of subevents and the

amount of subevents that may be derived from specified events. Distribute Split Events Con-
straints (below) gives further control on subevents.

3. Distribute Split Events Constraints - limits the number and duration of subevents for specified
events.

4. Prefer Times Constraints - specified times are preferred over others for specified events.
5. Avoid Split Assignments Constraints - assign the same resource for all subevents derived from

the same event.
6. Spread Events Constraints - specified events must be spread out during the week.
7. Link Events Constraints - specified events must take place simultaneously.
8. Order Events Constraints - specified events must be scheduled one after the other with a specified

number of times in between.

Constraints related to resources:

1. Assign Resource Constraints - assign specified resources to specified events.
2. Prefer Resources Constraints - specified resources are preferred over others for specified events.
3. Avoid Clashes Constraints - specified resources cannot be used by two or more subevents at the

same time.
4. Avoid Unavailable Times Constraints - specified resources cannot be used at specified times.
5. Limit Idle Times Constraints - specified resources within specified days must have their number

of idle times lie between given values.
6. Cluster Busy Times Constraints - specified resources’ activities must all take place within a

minimum and maximum number of days.
7. Limit Busy Times Constraints - specified resources within specified days must have their number

of busy times lie between given values.
8. Limit Workload Constraints - specified resources must have their workload lie between given

values.

We give a detailed description of the problem in Section 4.

3 Related work

Heuristic methods were historically the dominant approaches for XHSTT, as they were able to
provide good solutions in reasonable amounts of time even when dealing with large instances, albeit
not being able to always obtain or prove optimality. Recently exact methods have been proposed
and had success in obtaining good results and proving bounds, but require significantly more time
(days or weeks). In this section, we discuss the other exact approaches for XHSTT and then give
an overview on the heuristic algorithm.

XHSTT has been modeled with Integer Programming (IP) in [?]. This exact approach is able to
compute good (and in some cases optimal) solutions as well as lower bounds over longer periods of
time using Gurobi (a commercial optimization solver).

V

Satisfiability Modulo Theory (SMT) using bitvectors has been investigated for XHSTT in [?]
[?]. The main advantage of the bitvector-SMT approach is to provide compact ways of representing
XHSTT which is useful when developing local search algorithms, rather than serving as a complete
algorithm.

Furthermore, several IP-based techniques have been introduced for similar HSTT problems which
provide bounds and good solutions after long running times [?] [?] [?].

Overall, the majority of the research work has been focused on developing heuristic algorithms.
Therefore, we believe our work on using maxSAT for XHSTT is a significant contribution to the
exact approach side for XHSTT. Below we continue to list important work for XHSTT that is based
on heuristics.

A Large Neighborhood Search algorithm with IP has been developed in [?] which is more efficient
than pure IP when given limited time. In a similar style, a maxSAT has been using within a Large
Neighborhood Search framework [?], which is based on the maxSAT formulation given in this work.
Related to these approaches, a fix-and-optimize IP-based hybrid approach is reported in [?].

All of the best algorithms in the International Timetabling Competition 2011 (ITC 2011) were
algorithms based on heuristics. The winner was the group GOAL, followed by Lectio and HySST.
In GOAL, an initial solution is generated, which is further improved with Simulated Annealing
and Iterated Local Search, using seven different neighborhoods [?]. Lectio uses an Adaptive Large
Neighborhood Search [?] with nine insertion methods based on the greedy regret heuristics [?] and
fourteen removal methods. HySST uses a Hyper-Heuristic Search [?].

Afterwards, the winning team of ITC 2011 has developed several new Variable Neighborhood
Search (VNS) approaches [?]. All of the VNS approaches have a common search pattern: from one
of the available neighborhoods, a random solution is chosen, after which a descent method is applied
and the resulting solution is accepted if it is better than the previous best. Each iteration starts
from the best solution. The most successful VSN algorithm was the Skewed Variable Neighborhood
in which a relaxed rule is used to accept the new solution, taking into consideration the cost of the
new solution as well as its distance from the best solution. A related approach is Late Acceptance
Hill Climbing for XHSTT [?], in which a solution is accepted based on its comparison with the
previous k solutions, where k is a parameter.

Kingston [?] introduced an efficient heuristic algorithm called KHE14 which directly focuses on
repairing defects (violations of constraints). Constraint violations are examined individually and
specialized procedures are developed for most constraints to repair them. The algorithm is designed
to provide high quality solutions in a small amount of time, but does not necessarily outperform
other methods with respect to solution quality.

A new modeling approach to XHSTT based on bitvectors in given in [?]. This modeling is suitable
for local search algorithms and has been shown to provide significant speed ups when compared to
the KHE, a leading engine for developing XHSTT algorithms. Additionally, it can also be used to
represent XHSTT as a SMT bitvector problem, but the SMT approach is currently not competitive.

Even though significant work has been done for XHSTT, many problems are still not solved
efficiently or optimally. Therefore, calculating high quality solutions and providing new modeling
approaches are important issues in this domain.

4 Formal description of XHSTT

We give a description of XHSTT, similar as in [?], but with a mathematical formulation. The main
entities of XHSTT are events (e.g. lessons that need to be scheduled). Each event has a predetermined
duration (e.g. a Math lesson has duration of two hours) and requirements for resources (e.g a lesson
requires one teacher and one room). These resource can be predetermined or left open to the solver
to assign them. Events can be split into subevents as previously described in Section 2.

VI

Resources are partitioned depending on their resource type (e.g. teachers, students, rooms, etc).
Apart from this, resources have no other special properties, but are used extensively in constraints
which imposes limits on their usage.

Both events, resources, and times can be grouped in groups. A particular event, resource, or time
can be included in any number of groups. Groups are used when defining constraints.

We now discuss the auxiliary functions and variables used in order to describe XHSTT. Note
that within the constraint descriptions we will include additional helper functions in order to ease
the notation.

4.1 Variables

1. Xe,i,t = 1 if event e subevent i takes place at time t and Xe,i,t = 0 otherwise.
2. Se,i,t = 1 if event e subevent i starts at time t and Se,i,t = 0 otherwise. The starting time of a

subevent is the first time in which it takes place.
3. Xr,t = 1 if resource r is being used at time t by an event and Xr,t = 0 otherwise.

4.2 Functions

1. duration(e) - gives the duration for an event e. This value is fixed within an instance.
2. nmbr subevents(e) - computes the number of subevents event e has been divided into. Note that

this number is determined by the end solution and is not fixed up front, although constraints
may impose restrictions.

3. duration subevent(e, i) - gives the duration of the i− th subevent of event e. Formally, it is the
number of consecutive ones in Xe,i,t.

4. events(R) - computes the set of all events to which resource R has been assigned to. Formally,
it returns the set of all events for which the variables Xe,i,t,r have nonzero values. Similar to
nmbr subevents, this is determined by the end solution and is not fixed up front, although
constraints may impose restrictions.

5. step(x) = 1 if x > 0, otherwise step(x) = 0.
6. bound violation(x, a, b) = |a − x| ∗ step(a − x) + |x − b| ∗ step(x − b). If the value x lies in the

interval [a, b], it will evaluate to zero. Otherwise, it will evaluate to how far x is from the interval.
This function is important as it is frequently used in XHSTT, as a common constraint is that
a certain property value should be within a given interval (hard constraint), or as close to it as
possible (soft constraint).

7. equal(a, b) = 1− step(a− b)− step(b− a). Evaluates to one if the arguments a and b are equal
and zero otherwise.

4.3 Constraints

Each constraint applies to a subset of events, resources, and times. These will be denoted by the index
spec, e.g. Espec, Tspec, Rspec. These subsets are in general different from constraint to constraint.
Note that it is possible to have several constraints of the same type, but with different subsets
defined for them. For example, the constraint Prefer Times Constraint which states that certain
events (e ∈ Espec) are preferred to be scheduled in certain times (time ∈ Tspec). For example, we
may have two constraints of type Prefer Times Constraint, but each of them can have different sets
Espec and Tspec, indicating that different events have different preferred times.

The computation of the total violation for a constraint is some in several steps. First, for each
point of application, the integer value called deviation is computed. A cost function is applied to
the sum of all deviations and the value produced is multiplied by a weight in order to obtain the
total cost for the constraint. Each constraint is labeled as hard or soft. The goal is to minimize

VII

the sum of the violations of hard constraints and then minimize the sum of the violations of soft
constraints. Note that no constraint is predefined as hard or soft, as this is left for the instance
modeler to determine based on specific timetabling needs.

A point of application is the object to which the constraint applies. For example, for Prefer
Times Constraint a point of application is a single event. The way a deviation is computed is unique
and will be described for each constraint individually. Finally, there are three cost functions that
can be applied to the deviations: linear, quadratic, and step. The linear makes no changes to the
deviation, the quadratic function squares the deviation, while the step function evaluates to 1 if the
deviation is non zero and evaluates to 0 otherwise.

We now go through every constraint in detail.

Assign Time Constraints Every event must be assigned a certain amount of times. For example,
if a lecture lasts for two hours, two times must be assigned to it. Formally, it imposes that specified
events should be assigned times equal to their duration. The point of application is an event and
the deviation for a single event e is calculated as follows:

deviationatc(e) = (
∑

i=[1,nmbr subevents(e)]

∑
t∈T

Xe,i,t)− duration(e) (1)

Split Events Constraints This constraint has two parts. The first part limits the number of
starting times an event may have within certain time frames. For example, an event may have
at most one starting time during each day, preventing it from being fragmented within days. The
second part limits the duration of the event for a single subevent. For example, if four times must
be assigned to a Mathematics lecture, we may limit that the minimum and maximum duration of
a subevent is equal to 2, thus ensuring that the lecture will take place as two blocks of two hours,
forbidding having the lecture performed as one block of four hours.

Formally, it limits the minimum dmin and maximum dmax duration of subevents and the min-
imum Amin and maximum Amax amount of subevents that may be derived from specified events.
The point of application is an event and the deviation for a single event e is calculated as follows:

asplit =
∑

i=[0,nmbr subevents(e)]

within bounds(duration subevent(e, i), Amin, Amax) (2)

deviationsplitec(e) = within bounds(nmbr subevents(e), dmin, dmax) + asplit (3)

Distribute Split Events Constraints This constraint specifies the minimum and maximum
number of starting times of a specified duration. For example, if duration(e) = 10, we may impose
that the lecture should be split so that at least two subevents must have duration three.

Formally, it limits the minimum Amin and maximum Amax amount of subevents of specified
duration d for specified events. The point of application is an event and the deviation for a single
event e is calculated as follows:

k =
∑

i=[0,nmbr subevents(e)]

equal(duration subevent(e, i), d) (4)

deviationdsec(e) = within bounds(k,Amin, Amax) (5)

VIII

Prefer Times Constraints This constraint specifies for certain events which times are allowed
(hard constraint) or preferred (soft constraint). If an optional parameter d is given, then this con-
straint only applies to subevents of duration d. For example, a lesson of duration=2 must be sched-
uled on Monday, excluding the last time on Monday.

Formally, let notPrefT imes denote the set of times which are not preferred. The point of
application is an event and the deviation for a single event e is calculated as follows:

deviationptc(e) =
∑

i=[0,nmbr subevents(e)]

∑
t∈notPrefTimes

Se,i,t ∗ duration subevent(e, i) (6)

If the constraint specified the optional parameter d, then the inner expression of the above
equation should be multiplied by (equal(duration subevent(e, i), d)).

Spread Events Constraints Certain events must be spread across the timetable, e.g. in order to
avoid situations in which an event would completely be scheduled only in one day.

Formally, it imposes that minimum Amin and maximum Amax amount of starting times in
specified time groups (sets of times) for events from specified event groups (sets of events). The
point of application is an event group and the deviation for a single event group eg is calculated as
follows:

Beg,tg =
∑
e∈eg

∑
i=[0,nmbr subevents(e)]

∑
t∈tg

Se,i,t (7)

deviationspreadec(e) =
∑

tg∈TGspec

within bounds(Beg,tg, Amin, Amax) (8)

Avoid Clashes Constraints Specified resources can only be used by at most one event at a time.
For example, a student may attend at most one lecture at any given time.

Formally, it imposes that specified resources cannot be used by two or more subevents at the same
time. The point of application is a resource and the deviation for a single resource r is calculated
as follows:

k(t) = ((
∑

e∈events(r)

∑
i=[0,nmbr subevents(e)]

Xe,i,t)− 1) (9)

deviationacc(r) =
∑
t∈T

step(k(t)) ∗ k(t) (10)

Limit Idle Times Constraints This constraint specifies the minimum and maximum number of
times in which a resource can be idle during the times in the specified time groups. For example,
a typical constraint is to impose that teachers should not have any idle times. An idle time for a
resource within a time group is a time in which it is not used, but is being used at some time before
or after within the time group. Note that the first and last time within a time group cannot be idle
times.

Formally, it imposes the minimum idlemin and maximum idlemax amount of idle times for
specified resources within specified time groups. The point of application is a resource and the
deviation for a single resource r is calculated as follows:

before(tg, j, r) = step(
∑

t∈tg∧t<j

Xr,t) (11)

IX

after(tg, j, r) = step(
∑

t∈tg∧t>j

Xr,t) (12)

I(tg, j, r) = before(tg, j, r) ∗ (1−Xr,t) ∗ after(tg, j, r) (13)

k =
∑

tg∈TGspec

∑
t∈tg

I(tg, t, r) (14)

deviationlitc(r) = within bounds(k, idlemin, idlemax) (15)

Avoid Unavailable Times Constraints Specified resources are unavailable at certain times. For
example, a teacher might be unable to work on Friday.

Formally, it imposes that specified resources cannot be used at specified times. Let UT denote
the set of unavailable times. The point of application is a resource and the deviation for a single
resource r is a calculated as follows:

deviationautc(r) =
∑
t∈UT

Xr,t (16)

Cluster Busy Times Constraints This constraint specifies the minimum and maximum number
of specified time groups in which a specified resource can be busy. For example, we may specify that
a teacher must fulfill all of his or her duties in at most three days of the week.

Formally, it imposes that specified resources’ activities must all take place within a minimum
Amin and maximum Amax amount of specified time groups. The point of application is a resource
and the deviation for a single resource r is calculated as follows:

a(tg, r) = step(
∑
t∈tg

Xr,t) (17)

k =
∑

tg∈TGspec

a(tg, r) (18)

deviationcbtc(r) = within bounds(k,Amin, Amax) (19)

Limit Busy Times Constraints This constraints imposes limits on the number of times a resource
can become busy within a certain time group, if the resource is busy at all during that time group.
For example, if a teacher teaches on Monday, he or she must teach at least for three hours. This
is useful for preventing situations in which teachers or students would need to come to school to
attend only a lesson or two.

Formally, it imposes that specified resources the minimum Amin and maximum Amax amount
of busy time within specified time groups. As a special case, if a resource is not busy at all within
a time group, then the deviation cost is ignored for that time group. The point of application is a
resource and the deviation for a single resource r is calculated as follows:

a(tg, r) =
∑
t∈tg

(20)

deviationlbtc(r) =
∑

tg∈TGspec

(within bounds(a(tg, r), Amin, Amax) ∗ step(a(tg, r)) (21)

X

Link Events Constraints Certain events must be held at the same time. For example, physical
education lessons for all classes of the same year must be held simultaneously.

Formally, it imposes that specified events from specified event groups must take place at the
same time. The point of application is an event group and the deviation for a single event group eg
is calculated as follows:

a(eg, t) =
∑
e∈eg

∑
i=[0,nmbr subevents(e)]

Xe,i,t (22)

deviationlec(eg) =
∑
t∈T

step(a(eg, t)) ∗ (1− equal(a(eg, t), |eg|)) (23)

Order Events Constraints This constraint specifies that one event can start only after another
one has finished. In addition to this, optional parameters Bmin and Bmax which define the minimum
and maximum separations between the two events. The constraint specifies a set of pairs of events
to which it applies.

Formally, it imposes that two specified events must take place one after the other with a minimum
Bmin and maximum Bmax times between them. The point of application is a pair of events and the
deviation for a single pair of events ep is calculated as follows:

a = max
{
t + duration subevent(ep(e1), i)|Xep(e1),i,t = 1

}
(24)

b = min
{
t|Xep(e2),i,t = 1

}
(25)

deviationoec(ep) = within bounds(b− a,Bmin, Bmax) (26)

5 Modeling XHSTT as maxSAT

We model XHSTT with Partial Weighted maxSAT. Once a XHSTT instance has been modeled as
maxSAT, any satisfiable assignment of cost c for the maxSAT formulation directly corresponds to
a XHSTT solution of cost c.

We use two approaches for solving XHSTT. The first one is to model all constraints as maxSAT
and give the resulting formula to a maxSAT solver to calculate a solution. The second approach is
an iterative one in which we start with a relaxed version of the original problem by omitting all soft
constraints and iteratively add them during the solution process. This second approach corresponds
to a SMT approach as described in Section 4. As is shown in Section 7, the first approach is more
successful than the second one.

We now give a description of the maxSAT problem, the modeling of XHSTT as maxSAT, and
give more details on the SMT approach.

5.1 SAT and maxSAT

The Satisfiability problem (SAT) is a decision problem where it is asked if there exists an assignment
of truth values to variables such that a propositional logic formula is true (that is, the formula is
satisfied). A propositional logic formula is built from Boolean variables using logic operators (such
as ∧ AND, ∨ OR, and ¬ NOT) and parentheses. The formula is usually given as a conjunction
of clauses (in Conjunctive Normal Form). A clause is a disjunction of literals, where a literal is a
variable or its negation. For example, the formula (X1 ∨ X2) ∧ (¬X1 ∨ ¬X3) has three variables
(X1, X2, and X3), two clauses, and is said to be satisfiable because there exists an assignment,

XI

namely (X1, X2, X3) = (true, false, false), which satisfies the formula. However, had we inserted
the clause (¬X1 ∨ X2 ∨ X3) the same assignment would no longer satisfy the formula. Instead of
writing ¬X1 it is common to write X1 and this is the notation used in this work.

The extension of SAT considered in this work is Partial Weighted maxSAT, in which clauses
are partitioned into two types: hard and soft clauses. Each soft clause is given a weight. The goal
is to find an assignment which satisfies the hard clauses and minimizes the sum of the weights of
the unsatisfied soft clauses. For more information about SAT and maxSAT, the interested reader is
referred to [?].

5.2 Cardinality Constraints

Cardinality constraints impose limits on the truth values assign to a set of literals. These are
atLeast k[xi : xi ∈ X], atMost k[xi : xi ∈ X] and exactly k[xi : xi ∈ X], which constraint
that at least, at most or exactly k literals out of the specified ones must or may be assigned to
true. For example, atMost 2{x1, x2, x3, x4} would enforce that at most two of the given literals
may be assigned true, which would make the assignment (x1, x2, x3, x4) = (1, 0, 1, 1) infeasible and
(x1, x2, x3, x4) = (1, 0, 0, 0) feasible. Cardinality constraints are used frequently when modeling XH-
STT as maxSAT.

We differentiate hard and soft cardinality constraints. Hard cardinality constraints are the tra-
ditional ones which strictly forbid certain assignments of truth values to literals. Soft cardinality
constraints are similar to hard ones, except that instead of forbidding certain assignments they pe-
nalize them and are added to the cost function. In our case, the penalty is greater depending on the
severity of the violation. For example, for the soft cardinality constraint atMost 2{x1, x2, x3, x4}, the
assignment (x1, x2, x3, x4) = (1, 0, 0, 0) would incur no penalty, while assignments (x1, x2, x3, x4) =
(1, 0, 1, 1) and (x1, x2, x3, x4) = (1, 1, 1, 1) would incur a penalty of 1 and 2.

Many different encodings for cardinality constraints exist (e.g. see [?], [?]), each typically requir-
ing a different amount of auxiliary variables and clauses. In the following we describe the ones used
in our implementation in more detail.

Combinatorial Encoding One way to encode the cardinality constraints is to forbid all unde-
sired assignments. We refer to this as the combinatorial encoding. In our instances in most cases
the exponential growth of clauses is acceptable, but to avoid cases where it would blow up we
use an alternative encoding (details given later on in the experimental phases). For example, for
atMost 2{x1, x2, x3, x4} we forbid every possible combination of three literals simultaneously being
set to true, giving the following clauses: (x1∨x2∨x3), (x1∨x2∨x4), (x1∨x3∨x4) and (x2∨x3∨x4).

Bit Adders The idea is to regard each literal as a 1-bit number, take the sum of all the chosen
literals by using a series of adders which sum a binary number and a 1-bit number. The end
result is a binary representation of the number of literals set. Appropriate clauses would then
be created to forbid specified outputs, which influences which inputs are feasible. For example, for
atMost 1{x1, x2, x3} we encode two adders. The first adder computes the sum of x1 and x2 and
outputs two bits (auxiliary variables) which represent the result of the addition as a binary number
(e.g. for (x2, x1) = (1, 1), the output will be (a12, a11) = (1, 0)). The second adders takes this sum
and adds it with x3 and the results is stored in auxiliary variables a22 and a21. Now, in order to
encode atMost 1, we add the following clauses which forbid the final result to obtain values 2 and
3 in binary form: (a22 ∨ a21) and (a22 ∨ a21). Therefore, whenever two or more literals are assigned
values true one of the two clauses will be unsatisfied, which enforces the constraint atMost 1 as
desired. The number of clauses and auxiliary variables is O(nlog(n)). We note this encoding use
unit propagation to set unassigned literals to false after kmax literals are set to true as some other

XII

encodings and is not optimal with respect to its size, but we wanted to evaluate how well it would
perform in practice.

Sequential Encoding This encoding was given in [?] for the atMost k case. For completeness,
we describe the encoding here with slightly lower number of auxiliary variables as well as include
atLeast k case in the encoding. The Sequential encoding [?] is closely related to unary numbers.
The unary number representation for an integer n as given in [?] is:

∧
∀i∈[1,n−1]

(ui ⇒ ui−1). (27)

The interpretation is that the value assigned with this representation is equal to i, where i is
the largest number such that ui = >. For example, if we wish to encode a variable that can receive
values from the interval [0, 5], we need to create five auxiliary variables ai. If the variable is assigned
value 3, then the first three auxiliary variables will be set to true, while the rest will be false:
(a1, a2, a3, a4, a5) = (1, 1, 1, 0, 0).

We now continue with the Sequential encoding as given in [?]. Given a set of literals {xi : i ∈
[1..n]} for which we wish to encode a cardinality constraint, the main idea of the encoding is to
calculate the sum of all literals, similar as in the Bit Adder encoding, but this time using the unary
number representation instead of a binary number representation, as addition with unary numbers
is simple. This is done by encoding n unary numbers where the i-th unary number represents the
i-th partial sum of the literals. We then forbid specified assignments of values to the unary numbers
to enforce the desired encoding.

For example, for atMost 1{x1, x2, x3}, we require three unary numbers to store three partial
sums. For the assignment (x1, x2, x3) = (1, 0, 1), the unary numbers representing partial sums will
take values 1, 1 and 2: (u11, u12, u13) = (1, 0, 0), (u21, u22, u23) = (1, 0, 0) and (u31, u32, u33) =
(1, 1, 0). Because we are encoding atMost 1, we add clauses which forbid the last partial sum to
obtain the value 2 and greater, making the previous assignment infeasible. However, if the assignment
was (x1, x2, x3) = (0, 0, 1), then the partial sums would be (u11, u12, u13) = (0, 0, 0), (u21, u22, u23) =
(0, 0, 0) and (u31, u32, u33) = (1, 0, 0), which is a feasible assignment.

Taking into consideration the presented idea and after doing some optimization to remove re-
dundant clauses, we arrive at the following:

We denote kmax and kmin to be the maximum and minimum number of literals which may be
set to true and with Si,j we denote the j-th variable of the i-th unary number. Note that the i-th
unary number representing the i-th partial sum we need min(i + 1, kmax) auxiliary variables (e.g.
for the 1st unary number, which represents the partial sum of the first two literals, there is no need
to use more than two auxiliary variables, as the partial sum can be at most two). This fact will also
be used in the encoding indicies. Since we are constraining that at most kmax can be set, therefore
each partial sum only needs to represent a number in the interval [0, kmax] (meaning kmax auxiliary
variables are needed), rather than the complete partial sum which ranges from [0, n].

If the i-th partial sum was greater or equal than m, then (i + 1)-th partial sum must also be
greater or equal than m:

∧
∀i∈[0..n)

∀j∈[0..,kmax)
(i+1≥kmax∨j≤i)

(Si,j ⇒ S(i+1),j) (28)

If the i-th literal is set to true, then the i-th partial sum should be at least greater than the
(i− 1)-th partial sum:

XIII

∧
∀i∈[1..n)

∀j∈[1..,kmax)
(i+1≥kmax∨j≤i)

(xi ∧ S(i−1),(j−1) ⇒ S1,j) (29)

If the i-th literal is set to true, the corresponding i-th partial sum must be equal to at least one
(without this constraint, having all partial sums equal to zero would be considered a valid solution):∧

∀i∈[0..n)

(xi ⇒ Si,0) (30)

The difference between the (i + 1)-th and the i-th partial sum cannot be greater than 1:∧
∀i∈[0..n)

∀j∈[0..,kmax−1)
(i+1≥kmax∨j≤i)

(Si,j ⇒ S(i+1),(j+1)) (31)

If the difference between the (i+1)-th and the i-th partial sum is at least equal to one, this must
be because the (i + 1)-th literal is true:

Corner cases: ∧
∀j∈[0..,kmax)

(Si,j ⇒ xi) (32)

General cases: ∧
∀i∈[0..n−1)
∀j∈[0..,kmax)

(i+1≥kmax∨j≤i)

(Si,j ∧ S(i+1),j ⇒ xi+1) (33)

The previous constraints were to ensure that the partial sums are calculated correctly. Note that
it is not always necessary that the partial sums are calculated correctly, it is enough to make sure that
their values do not exceed the desired value. Because of this, if we only wish to encode atMost k, we
can remove 32, since e.g. if kmax = 3 and we only have one literal set to true, having the partial sums
being set to the value three will still be a valid solution, even though they are not correct partial
sum. A similar situation holds if only atLeast k is required, where we can ignore 31. Note that
if we wish to encode both atMost kmax and atLeast kmin using the same partial sums (auxiliary
variables), then all of the encodings must be included. In our implementation, both equations are
always used, as explained in the soft version of this encoding.

Now, in order to encode atLeast kmin (with kmin 6= 0) or atMost kmax (with kmax 6= n), we
encode the following:

The last partial sum must be at least equal to kmin and the following unit clause enforces this:

(Sn−1,kmin−1) (34)

If a partial sum has reached the maximum value kmax, then its appropriate variable must be set
to false: ∧

∀i∈[kmax−1..n)

(xi ∨ S(i−1),(kmax−1)) (35)

Note that as soon as kmax literals are set to true, the remaining unassigned literals will all be
forced by unit propagation to be set to false by 35.

This encoding requires exactly O(nk − k2) auxiliary variables and O(kn) clauses.

XIV

Cardinality Networks Cardinality Networks are described in [?]. The main idea is to create two
types of encodings: one that sorts a set of literals and one that merges two sorted arrays of literals.
For sorting and merging, new auxiliary variables are created which capture the results. To increase
clarity we give some examples.

For sorting, if an assignment for literals is (x1, x2, x3, x4) = (0, 0, 1, 0), an encoding is create
which forces the new auxiliary variables to be (a1, a2, a3, a4) = (1, 0, 0, 0). If the initial assignment
was (x1, x2, x3, x4) = (1, 0, 0, 1), then the auxiliary variables are set to (a1, a2, a3, a4) = (1, 1, 0, 0).

For merging, if two sets of sorted literals are assigned the following truth values: (x1, x2, x3) =
(1, 1, 0) and (y1, y2, y3) = (1, 0, 0), the output auxiliary variables will be forced to the assignments
(a1, a2, a3, a4, a5, a6) = (1, 1, 1, 0, 0, 0). One could also view sorted literals as a unary number and
their merge as an addition between two unary numbers.

The idea of Cardinality Networks is to sort the given set of literals and then force or forbid
certain outputs. For example, if wish to enforce atMost k, we first sort the literals and then forbid
the (k + 1)-th output, meaning that there cannot be more than (k + 1) literals set to true. For
atLeast k, the k-th output is forced to be true, meaning that at least k literals must be set to true.
This sorting is performed in a recursive fashion, in similar way to which mergesort sorts integers:
the set of literals are split into two equal sets, each set is sorted recursively, and then are merged
together.

There are a number of intricate details which we do not describe here, but rather direct the
interested reader to the original paper [?]. The number of auxiliary variables and clauses required
for this encoding is O(nlog2k).

5.3 Soft Cardinality Constraints

Soft cardinality constraints are similar to the previous ones, except that penalize violations of the
constraint rather than forbidding it.

Combinatorial Encoding We present the encoding for the soft cardinality constraint atLeast k[xi :
xi ∈ X], while atMost k[xi : xi ∈ X] is done in a similar fashion:

∧
j∈P

(Aj → atLeast j[xi : xi ∈ X]) ∧
∧
j∈P

(w(j)(Aj)) (36)

Where Ai are new auxiliary variables, P is a set of integers in the interval [1, k] and w(j) is a
weight function which depends on j, while the atLeast is encoded by a basic encoding. The second
equation is a series of soft unit clauses containing Aj and its weights are w(j). The auxiliary variables
serve as selector variables, which effectively allow or forbid certain assignments, depending on their
truth value.

For example, for the encoding of atLeast 2{x1, x2, x3}, we obtain the following clauses: (a1 ∨
x1 ∨ x2 ∨ x3), (a2 ∨ x1 ∨ x2 ∨ x3), (a2 ∨ x1 ∨ x2 ∨ x3), (a2 ∨ x1 ∨ x2 ∨ x3), (w a1), (w a2). The last
two clauses are soft clauses with weights w.

Similar to the case before, an alternative encoding is used to avoid blow ups (details given later
on in the experimental phases).

Bit Adders We use bit adder encoding described previously, but instead of forbidding certain
outputs, we penalize their assignments. Note that the weights may be assigned to each undesired
output completely independently, unlike in the combinatorial encoding.

XV

Sequential Encoding The original version of the Sequential encoding [?] was designed for standard
cardinality constraints, not soft ones. We build upon the main idea and extend the encoding for soft
cardinality constraints as well.

The main idea is similar as before: calculate the sum of all literals, representing all partial sums
as unary numbers. However, in the case of soft cardinality constraints, the values of the partial sums
can exceed kmax, rather than being capped at kmax. This leads to an increase in auxiliary variables
and clauses used from O(nk−k2) to O(n2). This also reflects in the equations for calculating partial
sums, which are the same ones used in the standard cardinality constraint except that we use n
instead of kmax.

The difference comes in the equations which encode atLeast kmin and atMost kmax (34 and
35). Instead, we penalize certain assignments for the last partial sum (which contains the complete
sum).

In our instances, we use two different cost functions: linear and quadratic. Each of them penalize
assignments to variables based on how distant they are from the interval [kmin, kmax]. For example,
for kmin = 2 and kmax = 4, if no literals are set to true, then the penalties for linear and quadratic
cost functions are 2 and 22, respectively. If 7 literals are set true, then the penalties are 3 and 32.
However, if the number of set literals are which in the interval [2, 4], then no penalty incurs. To
model these cost functions for the atLeast kmin case, we use the following encodings (a similar
encoding is used for atMost kmax): ∧

∀i∈[1..kmin)

(wi(S(n−1),(i−1))) (37)

Where w(i) is the associated cost function with the unit clause. For the linear cost function, it is
simply a constant w(i) = c, while for the quadratic case it is w(i) = (kmin − (i− 1))2 − (kmin − i)2.
In principle, any nonlinear cost function can be modeled by the following way:

(w0(S(n−1),0)) (38)

∧
∀i∈[1..kmin]

(wi(S(n−1),(i−1) ∨ S(n−1),i)) (39)

Cardinality Networks Cardinality Networks [?] can be used to model soft constraints and this has
been done in [?]. However, when doing so, since every output must be penalized1, they require more
auxiliary variables and degenerate into Sorting Networks [?] from which they offer improvements,
meaning the number of auxiliary variables and clauses goes up to O(nlog2n).

5.4 Special Cases

There are a number of special cases for the encodings which may occur.
A very important special case for atLeast k[xi : xi ∈ X] is when k = |X| (a similar case for

atMost k[xi : xi ∈ X] occurs when k = 0) and the weight function w(j) is of the form w(j) = c ∗ j,
where c is some constant. In this case, instead of using any of the previously described encodings,
we encode the following soft unit clauses: ∧

xi∈X
((c)(xi)) (40)

1 Note that a similar situation happened in the soft version of the Sequential encoding. In the hard version,
the partial sums could not exceed value k, while in the soft version they could, which led to an increase
in variables and clauses required.

XVI

A simple case is when kmin = 1, in which a single clause which consists of the disjunction of
literals in question is required.

Note that atLeast kmin is equivalent to atMost (n− kmin) of the negated literals. For example,
atLeast 2{x1, x2, x3} is equivalent to atMost 1{x1, x2, x3}. In our implementation for the combina-
torial encoding, we choose to do this conversion if k > n/2. This kind of conversion only makes sense
for hard cardinality constraints. To clarify this, note that for atLeast kmin and atMost kmax we
create encodings atLeasti and atMost kj where i ∈ [0, kmin] and j ∈ [kmax + 1, n]. Switching from
atLeast to atMost does not reduce the number of encodings required in the soft case as we need
to appropriately penalize all undesired assignments (we assign different penalties to assignments
depending on the number of literals assigned to true), while in the hard case we could simply forbid
undesired assignments without distinguishing any costs between undesired assignments.

For cases where we use intervals of allowed values (Sequential and Cardinality Networks) it is
frequently required that atLeast kmin and atMost kmax are encoded on the same literals, and we
can perform both the encoding using the same auxiliary variables as described previously. Note that
for the combinatorial encoding two independent encodings must be made as there is no sharing of
variables or clauses. The number of auxiliary variables and clauses depends on kmax, if n− kmin <
kmax we perform the cardinality encoding on the negated literals with kmin′new = n − kkmax and
kmax′new = n−kmin. Once again, this kind of conversion only applies for hard cardinality constraints
for similar reasons as before.

5.5 XHSTT constraints as maxSAT

In practice, some constraints are never used as soft constraints (e.g. a student cannot attend two
lessons at the same time). Because of this, we only give the encodings for soft constraint where it is
appropriate in order to avoid unnecessary technicalities.

We simplify the objective function by not tracking the infeasibility value, rather regarding it
was zero or nonzero. That is, we encode hard constraints of XHSTT as hard clauses and we do not
distinguish between two different infeasible solution in terms of quality. By doing so we simplify the
computation, possibly offering a faster algorithm.

As noted in 4.3, each constraint applies to a subset of events, resources, times, etc. These will
be denoted by the index spec, e.g. Espec, Tspec, Rspec. We now give the modeling of constraints
described in 4 as Partial Weighted maxSAT.

Assign Time Constraints We define decision variables Ye,t and other constraints rely on them
heavily. For each e ∈ E and t ∈ T , variable Ye,t indicates whether event e is taking place at time t.
Each event must take place for a number of times equal to its duration d:∧

∀e∈E

(exactly d[Ye,t : t ∈ T]) (41)

Avoid Clashes Constraint We introduce variables Ye,t,r which indicate whether event e at time
t is using resource r. If an event is using a resource at a time, that means that the event must also
be taking place at the same time: ∧

∀e∈E
t∈T
r∈R

(Ye,t,r ⇒ Ye,t) (42)

Let E(r) be the set of events which require resource r. The constraint is encoded as follows:∧
∀r∈Rspec

t∈T

(at Most 1[Ye,t,r : e ∈ E(r)]) (43)

XVII

Avoid Unavailable Times Constraints In order to keep track whether a resource r is busy at
time t, we introduce auxiliary variables Xt,r for each resource. They are defined as:∧

∀r∈R
t∈T

(Xt,r ⇔
∨

e∈E(r)

Ye,t,r) (44)

We now encode the previously described constraint by forbidding assignments at specified times:∧
∀r∈Rspec

(atMost 0[Xt,r : t ∈ Tspec]) (45)

If this constraint is used as a soft constraint, the soft cardinality constraint is used instead.

Split Events Constraints In the formal specification of XHSTT, any time can be defined as a
starting time as events can be split into multiple subevents. One could regard a starting point as a
time t where a lecture takes place, but has not took place at t− 1. However, while this is true, this
cannot be the only case when a time would be regarded as a starting time, since e.g. time t = 5 and
t = 6 might be interpreted as last time of Monday and first time of Tuesday and an event could be
scheduled on both of these times, but we may regard both times as starting times. It is also worthy
to note that we can also regard that as a double (block) lecture, even though it spans over two
days (this is case in the Brazilian instances). Having such a double lecture is not the desired double
lecture, but is still better than splitting the lecture into two lectures and assigning them in another
fashion. Therefore, any time can in general be regarded as a starting time. Other constraints give
more control over these kind of assignments.

For each event e, variable Se,t indicates whether event e has started taking place at time t. For
example, if event e had a duration of two and its corresponding Ye,t were assigned at times t and
t + 1, then Se,t = true, Se,(t+1) = false. Formalities that are tied to starting times with regard to
the specification are expressed as follows:

Event e starts at time t if e is taking place at time t and it is not taking place at time (t− 1):∧
∀e∈Espec

t∈T

(Ye,t ∧ Y e,(t−1) ⇒ Se,t) (46)

Note that the other side of the implication does not hold (see first paragraph on this section).
If a starting time for event e has been assigned at time t, then the corresponding event must also
take place at that time: ∧

∀e∈E
t∈T

(Se,t ⇒ Ye,t) (47)

This constraint specifies the minimum Amin and maximum Amax amount of starting times for
the specified events:∧

∀e∈Espec

(atLeast Amin[Se,t : t ∈ T] ∧ atMost Amax[Se,t : t ∈ T]) (48)

In addition, this constraint also imposes the minimum dmin and maximum dmax duration for
each subevent. For each specified event e ∈ Espec, and duration d, variable Ke,t,d indicates that
event e has a starting time at time t of duration d. Formally:

If time t has been set as a starting time, associate a duration with it2:

2 Remark: We could had encoded that exactly one of the right hand sides literals must be chosen, but this
is handled in the later parts of this encoding.

XVIII

∧
∀e∈Espec
∀t∈T

(Se,t ⇒
∨

dmin≤d≤dmax

Ke,t,d) (49)

When Ke,t,d is set, the event in question must take place during this specified time (where set
D is the set of integers from the interval [dmin, dmax]):∧

∀e∈Espec
∀t∈T
d∈D

Ke,t,d ⇒
∧

i∈[0,d−1]

Ye,(t+i) (50)

If a duration has been specified for time t, make sure that other appropriate Ke,t,d variables
must be false: ∧

∀e∈Espec
∀t∈T
d∈D

(Ke,t,d ⇒
∧

dmin≤g≤dmax

∧
i∈[0,d−1]∧(i6=0∨g 6=d)

Ke,t+i,g) (51)

If a subevent of duration d has been assigned and immediately after the event is still taking
place, then assign that time as a starting time:

Ke,t,d ∧ Ye,t+d ⇒ Se,t+d (52)

Prefer Times Constraints The constraint is encoded as:∧
∀e∈Espec

(atMost 0[? : t ∈ T \ Tspec]) (53)

where ? is either Ye,t or Ke,t,d, depending on whether the optional parameter d is given. Note
that this constraint is not the same in general when the optional parameter is not given and when
d = 1.

Distribute Split Events Constraint There must be at least Amin starting times with given
duration d: ∧

∀e∈Espec

(atLeast Amin[Ke,t,d : ∀t ∈ T]) (54)

There must be at most Amax starting times with given duration d:∧
∀e∈Espec

(atMost Amax[Ke,t,d : ∀t ∈ T]) (55)

Similar as with Se,t, for the last d − 1 times, Ke,t,d are set to false and can be removed from
the equations.

Spread Events Constraints First, we introduce auxiliary variables Zeg,t.
An event group eg is a set of events. Variable Zeg,t indicates that an event from event group eg

is being held at time t. Formally, ∧
eg∈EGspec

t∈T

(Zeg,t ⇔
∨
e∈eg

Se,t) (56)

XIX

This constraint specifies event groups to which it applies, as well as a number of time groups
(sets of times) and for each such time group the minimum and maximum number of starting times
an event must have within times of that time group. Note that an event group may consist of a
single event and that it is not the same to have two event groups with one event and one event
group with two events. Continuing with the constraint encoding, let TGspec denote this set of sets
of times:

There must be at least dmin
i starting times within the given time groups (min is a subscript, not

exponentiation): ∧
∀tgi∈TGspec
eg∈EGspec

(atLeast dmin
i [Zeg,t : t ∈ tgi]) (57)

There must be at most dmax
i starting times within the given time groups:∧
∀tgi∈TGspec
eg∈EGspec

(atMost dmax
i [Zeg,t : t ∈ tgi]) (58)

If this constraint is used as a soft constraint, the soft cardinality constraint is used instead.
We note that if two events from the same event group are being held at the same time, the above
encoding will not be properly capture the constraint. However, given the nature of the constraint,
all events within the same event group are likely to share a resource and Avoid Clashes Constraint
will make sure that they do not take place at the same time. This is the case with every instance in
XHSTT.

Limit Busy Times Constraints Once more we first encode auxiliary variables:
A resource is busy at a time group tg iff it is busy in at least one of the times of the tg. Let

TGspec denote this set of sets of times:∧
∀r∈R

∀tg∈TGspec

(Btg,r ⇔
∨
t∈T

Xt,r) (59)

The constraint is now encoded as:∧
∀tg∈TGspec

r∈Rspec

(Btg,r ⇒ atLeast bmin[Xt,r : t ∈ tg] ∧ atMost bmax[Xt,r : t ∈ tg]) (60)

If this constraint is used as a soft constraint, the soft cardinality constraint is used instead.

Cluster Busy Times Constraints Recall the auxiliary variables Btg,r defined in Section 5.5.
There must be at least bmin

tg busy time groups:∧
∀r∈Rspec

(atLeast bmin
tg [Btg,r : tg ∈ TGspec]) (61)

There must be at most bmax
tg busy time groups:∧
∀r∈Rspec

(atMost btgmax[Btg,r : t ∈ TGspec]) (62)

If this constraint is used as a soft constraint, the soft cardinality constraint is used instead.

XX

Limit Idle Times Constraints To encode the constraint, three different types of auxiliary vari-
ables are used.

Variables Gtg
t,r and Htg

t,r indicate that a resource is being used strictly before or strictly after the
t− th time in time group tg, where a time group tg is viewed as an ordered list. Formally:∧

∀tg∈TGspec
t∈tg

r∈Rspec

(Gtg
t,r ⇔

∨
i before t ∧ i∈tg

Xi,r) (63)

∧
∀tg∈TGspec

t∈tg
r∈Rspec

(Htg
t,r ⇔

∨
i after t ∧ i∈tg

Xi,r) (64)

The first and last time within a group can never have their appropriate Gtg
t,r and Htg

t,r be set to
true, respectively, and can be excluded from the above equation.

Variables Itgt,r indicates that a resource is idle at time t with respect to time group tg (an ordered
list of times) iff it is not busy at time t, but is busy at an early time and at a later time of the time
group tg. For example, if a teacher teaches classes Wednesdays at Wed2 and Wed5, he or she is idle
at Wed3 and Wed4, but is not idle at Wed1 and Wed6. Formally,∧

tg∈TGspec
t∈tg

r∈Rspec

(Itgt,r ⇔ Xt,r ∧Gtg
t,r ∧Htg

t,r) (65)

We now encode the constraint:
There must be at least idlemin idle times during a time group:∧

∀tg∈TGspec
r∈R

(atLeast idlemin[Itgt,r : t ∈ tg]) (66)

There must be at most idlemax idle times during a time group:∧
∀tg∈TGspec

r∈R

(atMost idlemax[Itgt,r : t ∈ tg]) (67)

If this constraint is used as a soft constraint, the soft cardinality constraint is used instead.

Order Events Constraints If the first event in a pair is taking place at time t, then the second
event cannot take place at time t nor at any previous times (E2

spec is the set of pairs of events given
in the constraint): ∧

∀(e1,e2)∈E2
spec

∀t∈Tspec

(Ye1,t ⇒
∧

i∈[0,t]

Y e2,i) (68)

If the first event in a pair is taking place at time t, then the second event cannot take place in
the next Bmin times: ∧

∀(e1,e2)∈E2
spec

∀t∈Tspec

(Ye1,t ⇒
∧

j∈[t+1,t+Bmin]

Y e2,j) (69)

If the first event in a pair is taking place at time t, then the second event must take place within
the next (Bmax + 1) times:

XXI

∧
∀(e1,e2)∈E2

spec
∀t∈Tspec

(Ye1,t ⇒
∧

k∈[t,t+Bmax+1]

Ye2,k) (70)

Link Events Constraints This constraint specifies a certain number of event groups and imposes
that all events within an event group must be held simultaneously. Let EGspec denote this set of
sets of events:

All events within an event group must be held at the same times:∧
∀eg∈EGspec

t∈T
ej,ek∈eg

(Yej ,t ⇔ Yek,t) (71)

If the constraint is declared a soft one, we may apply a similar technique that was presented
when soft cardinality constraint were shown: create an auxiliary variable which implies every clause
and insert a soft unit clause containing that auxiliary variable along with the appropriate weight.
However, with this encoding only the sum of deviations cost function can be encoded, which is the
only cost function used in the instances for this constraint.

Preassign Resource Constraints We define decision variables which indicate whether an event
is using a resource at a time. If an event is using a resource at some time, the event must take place
at that time: ∧

∀e∈Espec
t∈T

r∈Re
spec

(Ye,t ⇒ Ye,t,r) (72)

In the specification of the general XHSTT, this constraint is given when events are defined,
rather than a separate constraint.

Preassign Time Constraints Similar to Preassign Resource Constraints, certain events have a
fixed schedule. For example, an external professor is available only on Monday from 8:00-10:00.

This consist of adding a series of unit clauses of the appropriate Ye,t.

Assign Resource Constraints Each event requires a certain amount of resources in order to be
scheduled. These resources can be teachers, classes, rooms, etc. For example, in order for a math
lesson to take place a math teacher, a room, and a projector are needed. It might also be the case
that two teachers are needed, e.g. one lecturer and one as an assistant. This has been implemented
into the general HSTT specification as follows:

Each event has a number of roles. To each of these roles exactly one resource of a specific resource
type must be assigned. The role names within an event must be unique, but different events may
have the same roles requiring different types of resources. For example, an event might require
the following roles with the appropriate resource types given in parenthesis: ’Teacher’ (teacher),
’Assistant’ (teacher), ’Class’ (class), ’Seminar room’ (room). This constraint merely requires that
a resource of a given type must be assigned. For the given role, a variable Mrole

e,t,r is created, which
indicates whether event e at time t is using resource r to fulfill the given role. The constraint is
encoded as follows:

If an event is taking place, it’s specified role must be fulfilled:∧
e∈Espec

t∈T

(Ye,t → exactly 1[Mrole
e,t,r : r ∈ Rspec resource type]) (73)

XXII

If a resource has been chosen to fulfill an event’s role at some time, mark that resource as used
by the event at that time: ∧

e∈Espec
t∈T

r∈Rspec resource type

(Mrole
e,t,r → Ye,t,r) (74)

The previous two encodings hold individually for each Assign Resource Constraint. The next
encoding is done after all constraints of type Assign Resource Constraints and is in a sense a global
constraint:

Avoid Split Assignments Constraint This constraint applies to the specified role and to a
specified resource type. We create auxiliary variables V role

e,r which indicate whether an event e is
using a resource r to fulfill its role at some point in time:∧

e∈Espec
Rspec resource type

t∈T

(Mrole
e,t,r → V role

e,r) (75)

The constraint is now encoded as:∧
e∈Espec

(atMost 1[V role
e,r : r ∈ Rspec resource type]) (76)

If this constraint is used as a soft constraint, the soft cardinality constraint is used instead.

Prefer Resources Constraints Similar to before, this constraint applies for a specified role. The
encoding relies on auxiliary variables create in ARC:∧

∀e∈Espec
∀t∈T

(atLeast 1[Mrole
e,t,r : r ∈ R \Rspec]) (77)

Limit Workload Constraints We do not provide the general formulation, but rather focus on
an important special case which is used in the instances. For each resource assigned to a subevent
(solution resource sr), we calculate it’s workload as:

Workload(sr) = Dur(subevent) ∗Workload(subevent)/Dur(event) (78)

Where the workload of an subevent is by default equal to the duration of the event, but can
be specified differently in the definition of the event. If events all have their default values for their
workload (workload(e) = duration(e)) (which is the case in the instances), then the encoding can
be significantly simplified. The observation here is that the formula simplifies to the case where
every unit of time in which a resource is busy counts as one workload unit, if the resource does not
have a preassigned workload in which case it is preassigned to the event. However, for the purpose
of encoding, we may treat all resources as not having preassigned workloads, but subtract from the
given minimum and maximum workload by the constraint by an amount equal to the preassigned
workload minus one and do so for each event in which the resource has a preassigned workload. The
constraint is now simply encoded as:∧

r∈Rspec

(atLeast Workmin[Xt,r : t ∈ T] ∧ atLeast Workmax[Xt,r : t ∈ T]) (79)

XXIII

Special Cases In this section we look into important special cases which may simplify the encodings
significantly.

If an Assign Resource Constraint is given and all of the resources it references behave the same,
then instead of encoding Assign Resource and Avoid Clashes Constraints for those resources, we
may use the following encoding: ∧

t∈T
(atMost h[Ye,t : e ∈ Espec]) (80)

Where Espec are events that require the mentioned resources and h is number of resources of the
described kind. This case arises in EnglandStPaul and FinArtificialSchool instance and allows us to
encode these two instances, even though we do not model Assign Resource Constraints in general.

If there is only one role per resource type specified in the requirements of an event, then the
encoding of the auxiliary variables in Assign Resource Constraints may be avoided.

If the resources specified in Assign Resource Constraints are not subjected to Limit Idle Con-
straints and assigning more than one resource to an event may be feasible, then a simpler encoding
may be used for ARC, in which atLeast 1 is used instead of using exactly 1. This case happens
typically in instances which require the assignment of rooms. If two rooms are assigned to an event,
in the solution we would simply pick only one. However, this cannot be applied in general e.g to
teachers.

Another problem with ARC is that certain symmetries may arise, increasing the solution time.
For example, if we have two ARCs, each with their specified role. If these two roles both use the same
resource type and no further constraints are imposed on these resources, then we may swap their
assignments of resources and still get the same in(feasible) solution, which is undesirable. Therefore,
encoding a sorting is very useful and can be done efficiently since the unary representation is used.

In some cases, by knowing the semantics of each constraint, simpler encodings can be produced.
This is encountered in SpainInstance in which a large amount of Spread Events Constraints are
encoded which state that lessons can have at most one starting point in two consecutive days.
However, this is not trivial to specify in the general HSTT specification and will produce a large
number of clauses, which could be avoid if a special encoding for such a constraint is encoded.

Another interesting case is the encoding of Ke,t,d. These are created in order to comply with the
formal specification of XHSTT. In some cases, it suffices to encode Ke,t,d as (i is an integer):

Ke,t,d ↔ (
∧

i∈[0..d−1]

Ye,t+i) ∧ Y e,t+d (81)

This encoding is much more desirable when it is possible and we can use it e.g. in the ItalyIn-
stance1, where the general encoding took around 50 hours to compute the optimal solution, while
with the change shown above took around 10 hours. If the encoding is used, other constraints might
be affected, such as Split Events Constraint and need to be changed accordingly. However, in our
current implementation these cases need to be done by hand.

6 SMT approach

Two SMT approaches have previously been investigate in [?] and [?] (linear arithmetic and bitvec-
tors) and the authors reported that the approaches were not very competitive in their current state.
Here we investigate a different SMT approach.

With this approach, we start with a relaxed version of a XHSTT instance by omitting the soft
constraints. After a solution has been found for this simplified problem, the solution is examined with
respect to the original problem and soft constraint violations as detected. These violated constraints
are encoded as maxSAT and are inserted into the relaxed formula and the solution process is initiated

XXIV

again. This is done iteratively until a solution is found such that all constraints that have not been
added are satisfied. In this case, the solution found is optimal. The idea is that perhaps not all
constraints from the original XHSTT instance are needed to find the optimal solution, but only a
subset of them, and that it will be able to find the solution faster with less constraints.

All of the constraints are encoded as described in the previous section, except for the soft
cardinality constraints, essentially making all soft constraints atLeast 0 or atMost n (where n is
the number of literals in that constraint). When it is concluded that the original constraint is
violated, the degree of the cardinality constraint is changed by one step (e.g. atLeast i will become
atLeast (i+1) and atMost j will become atMost (j+1)). This change is performed by inserting the
appropriate clauses. Eventually, if the constraint keep getting violated from iteration to iteration,
the complete cardinality encoding will be inserted.

There are some exceptions. When the constraint atMost 0 is violated and the cost function linear
with respect to the number of violating literals, we insert unit clauses (w xi) for each violating literal,
where w is the constraint weight and xi is the violating literal.

The other exceptions are the Prefer Times Constraint and Limit Idle Times Constraint. These
constraint typically employ atMost 0 cardinality constraints and when a violation is detected, we
not only insert clauses as described above, but also insert clauses for each literal that lies within the
same day of the violation.

Note that when a solution of cost c is found for a relaxed version of a XHSTT instance, c is a
lower bound for the original XHSTT problem. An outline of the algorithm is given in Algorithm
1. With ub and lb we denote the upper and lower bound respectively, with maxSATcost the cost
of the solution with respect to the maxSAT problem currently analyzed, while XHSTTcost is the
cost with respect to all constraints of the problem.

Algorithm 1: SMT for XHSTT algorithm outline

begin
Irelax ←− encodeHardConstraints(Ioriginal)
ub =∞
lb = 0
bestAssignment = ∅
globally solved = false
while globally solved = false do

a = maxSATsolve(Irelax)
cla = encodeV iolationsNotEncoded(a)
if lb < maxSATcost(a) then

lb = cost(a)

if ub > XHSTTcost(a) then
ub = XHSTTcost(a)

if cla = ∅ ∨ lb = ub then
globally solved = true

else
Irelax = Irelax ∪ cla

6.1 Technical details

We developed a SMT algorithm which is based on an upper bounding maxSAT algorithm. In order
to explain our approach, we first explain the Linear algorithm for maxSAT.

XXV

With regard to the traditional decision problem, the problem of solving a SAT instance while
fixing certain variables is known as “solving under assumptions”. This can be done by having the
solver first “branch” on the fixed variables and then continue doing a regular SAT search. However,
this kind of technique cannot be directly used for maxSAT because the underlying formula is being
changed during the solution process. We elaborate on this further below.

We use the the Linear maxSAT algorithm (Algorithm 2) [?] which makes repeated calls to a
SAT solver and after each call adds constraints which ask for a better solution than the previous
one. The optimal solution is obtained when the SAT solver returns false. We opted for a linear
algorithm rather than a core guided approach because authors in [?] reported significantly better
results using a linear algorithm solver rather than core guided solvers.

Algorithm 2: Linear algorithm for maxSAT

begin
P ←− maxSAT formula
c =∞
bestAssignment = ∅
while isSatisfiable(P) do

bestAssignment = satisfiableAssignment(P)
c←− cost(P, bestAssignment)
P = P ∪ (

∑
i∈K softConstraint(i) < c)

The original maxSAT formula gets changed because bounds are added at each iteration, in
addition to learned clauses which are added to direct the search (see [?] for clause learning). It is
not straightforward to remove the added clauses at later stages of the algorithm, because clauses are
learned with respect to other clauses (including other learned clauses) and removing some clauses
may therefore invalidate previously learned clauses. To the best of our knowledge, no maxSAT solver
supports this kind of search. An alternative is to restart the solver after each call, losing possibly
valuable learned clauses and bounds. This motivated us to investigate a different approach: instead
of restarting between calls, we keep the modified formula intact. Thus, each call to the solver depends
on all previous calls due to the bounds and learned clauses. When querying the solver with a new set
of assumptions, it will attempt to report the best possible solution, but only if it is better than all of
the previously computed solutions. To this end, we modified the linear algorithm in the open-source
maxSAT solver Open-WBO [?]. A different approach related to ours is presented in [?] for lower
bounding maxSAT algorithms.

In our SMT approach, each time a new optimal solution with respect to the currently considered
soft constraints is found it is examined and new soft constraints are inserted, meaning that the sum of
the weights of soft constraints changes and the previously inserted clauses regarding the cardinality
constraints (third line in the while loop of 2) should be invalidated. In order to invalidate them,
we performed the following: when inserting the clauses, we add them as usually, but add a negative
literal b to each clause. During the current iteration, this literal is treated as an assumption which
assigns it false (b = true). When the cardinality constraints inserted need to be invalidated, this is
simply done by inserting a hard unit clause (b), which forces the assignment of b = false, making
all the clauses added as cardinality constraints for the previous iteration satisfiable (effectively
invalidating them).

We above is summarized in in Algorithm 3 and 4.

XXVI

Algorithm 3: SMT for XHSTT algorithm outline

begin
Irelax ←− encodeHardConstraints(Ioriginal)
ub =∞
lb = 0
bestAssignment = ∅
globally solved = false
while globally solved = false do

v ←− createNewV ar()
a = modifiedMaxSATsolve(Irelax, v)
cla = encodeV iolationsNotEncoded(a)
if lb < maxSATcost(a) then

lb = cost(a)

if ub > XHSTTcost(a) then
ub = XHSTTcost(a)

if cla = ∅ ∨ lb = ub then
globally solved = true

else
Irelax = Irelax ∪ cla

Irelax = Irelax ∪ (v)

Algorithm 4: Modified Linear algorithm for SMT, using v as an input variable

begin
v ←− input variable given as parameter
P ←− maxSAT formula
c =∞
bestAssignment = ∅
while isSatisfiableUnderAssumption(P, v) do

bestAssignment = satisfiableAssignmentUnderAssumption(P, v)
c←− cost(P, bestAssignment)
cla = encodeAsClauses(

∑
i∈K softConstraint(i) < c)

i = 0
while i < |cla| do

cla[i] = cla[i] ∨ v
i+ +

P = P ∪ cla

XXVII

7 Computational Results

We have set several goals in order to evaluate the maxSAT approach for XHSTT and they are as
follows:

– Compare the performance of different maxSAT solvers on XHSTT instances.
– Compare different cardinality constraint encodings for XHSTT.
– Compare maxSAT with Integer Programming for XHSTT.
– Compare maxSAT with our SMT approach (Section 6).
– See how well our maxSAT approach would do if it was used in the International Timetabling

Competition 2011.

7.1 Benchmark instances and Computing Environment

We evaluated our approach on XHSTT benchmark instances which can be found on the repository of
the International Timetabling Competition 2011 (ITC 2011) 3. We used the XHSTT-2014 benchmark
set, which contains instances that were careful selected by the ITC 2011 over the years and are
meant to be interesting test beds for researchers. Additionally, we included every instance used
in the competition (these two sets of instances overlap). This way we took into consideration all
relevant XHSTT instances, to the best of our knowledge.

In total we can model efficiently with maxSAT 27 out of 39 (70%) instances. We have a specific
modeling for resource assignments (Assign Resource Constraints and related constraints) for two
cases (FinArtificialSchool, EnglandStPaul, see Section 5.5), but for other instances with resource
assignments our current model is not practical. Unfortunately, in this case the number of produced
variables and clauses is very large, and until now we could not come up with a more efficient encoding
for these constraints. Thus, for the remaining 12 instances, we currently do not have an appropriate
model and could not have experimented with them.

In the instances, the number of times ranges from 25 to 125, number of resources from 8 to 99,
number of events from 21 to 809 with total event duration from 75 to 1912. These numbers vary
heavily from instance to instance. We do not provide detailed information, but direct the interested
reader to [?,?].

We have submitted XHSTT maxSAT instances to the maxSAT Competition 2014 and they
have been used since. Over the few years they have proven to be challenging instances for maxSAT
solvers. After the submission, some XHSTT instances have been slightly changed. The maxSAT en-
codings used in this paper can be found here: (www.dbai.tuwien.ac.at/user/demir/xHSTTtoSAT_
instances.tar.gz).

MaxSAT experiments were done on a benchmark server with a AMD Opteron Processor 6272
2.1GHz with two processors. Each processor has each eight physical cores and each core puts at
disposal two logical cores (per hyperthreading). The machine has a total of 224 GB of RAM (14 x
16GB). When experimenting we initiated the solving of 16 instances in parallel.

IP experiments were performed on a machine with an Intel Core i5-4210U Processor with 2.7 GHz
and 4 GB of RAM. The reason why experiments were performed on different machines is because
the solvers require different operating systems. When experimenting we solved a single instance at
a time. For both IP and maxSAT each solver was run with a single thread.

ITC 2011 issued a benchmark tool which is designed to test how fast a machine performs op-
erations relevant for timetabling. The tool estimates how long a XHSTT solver should run on the
machine at hand in order for it to be equivalent to 1000 seconds on ITC’s computer (the computa-
tional time limit for ITC’s second phase of the competition). The intent is to provide grounds for
determining some normalized time across different platforms. For our maxSAT benchmark server

3 http://www.utwente.nl/ctit/hstt/itc2011/welcome/

www.dbai.tuwien.ac.at/user/demir/xHSTTtoSAT_instances.tar.gz
www.dbai.tuwien.ac.at/user/demir/xHSTTtoSAT_instances.tar.gz

XXVIII

the suggested time was around 1250 seconds. Given that our maxSAT approach is an exact approach
we decided to allocated roughly ten times more time, for a total of four hours. For IP, the equivalent
time is around 2.2 hours.

7.2 Notation

In tables we shall note the cost function for instances as (x, y), where x is the infeasibility value
(sum of the cost functions of hard constraints) and y is the objective value (sum of the cost functions
of soft constraints). For example, (3, 35) denotes that the infeasibility value is 3 and the objective
value is 35. If the infeasible value is equal to zero, we say that the solution is feasible, otherwise it
is infeasible.

7.3 Solvers

We chose to experiment with maxSAT solvers WPM3 [?], Open-WBO [?], and Optiriss (a combina-
tion of the Riss framework [?] and Open-WBO [?]). The first two solvers were selected because they
were the best solvers for timetabling instances in the Industrial Weighted Partial maxSAT category
in the maxSAT Competition 2016, and since Open-WBO was used in Optiriss we decided to include
it as well.

Both Optiriss and Open-WBO allows its users to configure the solvers by selecting among several
maxSAT algorithms and parameters. We used the default configuration for Open-WBO and the two
configurations of Optiriss (Optiriss-def and Optiriss-inc) that were used in the maxSAT Competition
2016. In addition to this, we used the same configuration but have set the solvers to use the Linear
maxSAT algorithm [?] (see Algorithm 2) because this algorithm already previously showed good
performance for XHSTT in [?] (this can be done by adding the parameter -algorithm=1 to either
solver). Therefore, if we consider different configuration of solvers as stand alone solvers themselves,
we experimented with a total of seven solvers.

7.4 Evaluation of different maxSAT solvers

We compare the performance of different maxSAT solvers on XHSTT instances. In order to do so,
we used a similar ranking system as the ITC 2011. We run all solvers on each instance for four
hours and record the solution. For each instance we compute the rank for each solver. The rank is
a number between one and seven and it represents how well the solver did relative to other solvers.
For a given instance, the best solver has rank one, the second best has rank two, etc. Solvers can
share the same rank in case of ties. In Table 1 and Table 2 we show the results and the ranking of
solvers for this comparison.

Based on these results, we conclude that the default configuration of Open-WBO has the best
average rank. However, the average rank of 2.16 indicates that there is no clear winner as the results
are not uniform across instances. While overall Open-WBO performs the best on average, we can
see that for a number of instances it gets outperformed by other solvers. Therefore, we decided to
select k solvers with complement each other instead of determining a single winner. In order words,
we wish to select k solvers such that if we run them in parallel and take the best result, we obtain
good results across all instances. Formally, we would like select k solvers in order to minimize the

combined rank
∑

i∈I min(rank(s,i):s∈S)

|I| , where I is the set of instances, S is the set of selected solvers,

and rank(i, s) is the rank of solver s on instance i.
In order to determine which solver to chose and how many (the parameter k) we modeled

the described problem as a maxSAT optimization problem and used Open-WBO to compute the
optimum solution for every k. We show the optimum combined rank for every choice of k as a pair (k,
rank): (1, 2.2), (2, 1.4), (3, 1.2), (4, 1.1), (5, 1), (6, 1), (7, 1). Based on these results, we chose k = 4

XXIX

in order to keep the combined rank close to one. One solution for k = 4 is Open-WBO (def), Open-
WBO (lin), Optiriss (inc), and Optiriss (default-linear). These four solvers are the best maxSAT
solvers for XHSTT according to our criteria. Each of them have their own strengths and weaknesses
and they will be used for further experimentation. We note that there are other combinations of
four solvers which achieve the same combined rank, but we have arbitrarily chosen this combination
among these ones.

7.5 Evaluation of (Soft) Cardinality constraint encodings

We experiment with different (soft) cardinality constraint encodings and their impact on the solu-
tion. During our initial experiments we noticed that changing Assign Time Constraints encoding
independently from other constraints had significant impact during the search (using a ”bad” en-
coding for ATC leads to noticeably worse solutions) and because of this we chose to give it special
treatment in the encoding selection phase. We believe this is because the encoding of this constraint
is very important due to the fact that it is a very fundamental one for timetabling and has (arguably)
the most impact on other constraints. Therefore, selecting the best encoding for it is crucial.

We denote the encoding configuration used for an instance as a pair X-Y: X is used for Assign
Time Constraints, and Y for other constraints. In the case of the combinatorial encoding, the bit
adder encoding is used instead only in situations when it would produce too many clauses and
variables (n ≥ 50∨ (n ≥ 42∧k ≥ 5), where n is the number of literals and k is the cardinality of the
constraint). The selected encodings are used to encode both hard and soft cardinality constraints.
We selected four different encoding configurations (abbreviations: CN - Cardinality Networks, C
- Combinatorial, and S - Sequential): S-C, CN-C, S-S, and CN-CN. The last two can simply be
abbreviated with simply S and CN, respectively. The first configuration was initially submitted to
the maxSAT Competition 2014 and was used in Section 7.4.

We run the best solvers (determined in Section 7.4) with the same time limit of four hours
on each instance with each encoding configuration. We consider each pair of solver and encoding
configuration as a single solver and rank them for each instance as in Section 7.4. We present the
results and rankings in Table 3 and 4.

As in Section 7.4 we wish to select the k pairs of solvers and encoding configurations which
complement each other the most. We show the optimum combined rank for every choice of k as a
pair (k, rank): (1, 4.23), (2, 2.52), (3, 1.92), (4, 1.6), (5, 1.3), (6, 1.2), (7, 1.12), (8, 1.04), (n ≥ 9,
1). Based on these results, we chose k = 4 as before. One solution for k = 4 is Open-WBO (lin) and
(def) with (CN, CN, -), Open-WBO (def) with (CN, C, A), and Optiriss (incremental) with (SS, SS,
-). These pairs are the best combinations of maxSAT solvers and cardinality constraint encodings
for XHSTT according to our criteria.

7.6 Evaluation of a maxSAT approach versus an Integer Programming approach

We compare our maxSAT approach with an existing Integer Programming approach [?]. For com-
parison purposes we used the best k pairs of solvers and encoding configurations determined in
Section 7.5. These comparisons are performed as in previous section. The results and rankings are
given in Table 5 and 6. We included the comparison with the combined maxSAT solutions as well.

Based on the results, we conclude that maxSAT is competitive with IP. In particular, when
comparing the maxSAT configurations individually with IP, two of them (Optiriss(inc)-S and Open-
WBO-CN) achieve a better average ranking than IP. When we consider the combined rank, maxSAT
outperforms IP in all but five cases. However, we would like to remind the reader that this only the
case on the instances we were able to model with maxSAT (see Section 7.1).

An interesting point for maxSAT which we would like to emphasize is that maxSAT solvers are
constantly being developed, are in some cases open source (e.g. Open-WBO), and are not so heavily
engineered as the commercial IP solver Gurobi in [?], but still manage to provide competitive results.

XXX

7.7 Evaluation of a pure maxSAT approach versus a SMT approach

We have implemented the SMT approach described in Section 6 by modifying the maxSAT solver
openWBO. The implementation was done for a subset of instances. In this section, we give a compar-
ison of results of this SMT approach with a pure maxSAT approach using the same maxSAT solver.
We compared with Open-WBO(lin)-S-C as it was the closest maxSAT formulation to our SMT
approach described in Section 6. We have run the solvers for four hours and the results obtained
are given in Tables 7 and 8. Overall the pure maxSAT approach shows better results, although the
average ranks do not differ by a large amount.

From the experiments the SMT approach is significantly outperformed by the pure maxSAT
approach. We believe this is because most constraints are important and influence the final solution,
in addition to XHSTT problems being challenging to solve optimally.

7.8 Evaluation of maxSAT approach on ITC 2011

In this section we compare with the results obtained during the second phase of the International
Timetabling Competition 2011. During this round the time limit was set to 1000 seconds. We run
our approach with a normalized amount of time (see Section 7.1 and show the results in Tables 9
and 10.

Our approach provides competitive results with the heuristics solvers used in the competition.
Any individual maxSAT configuration would rank second. If we would consider the combined rank
of maxSAT solver, then a clear first place would be achieved. However, in the comparison we have
only included instances which we were able to model with maxSAT (see Section 7.1), leaving out
five instances.

8 Conclusion

In this paper, we have shown that the general High School Timetabling Problem [?] (XHSTT) can
indeed be modeled as a weighted partial maxSAT problem, despite the generality of the specification.
We presented a complete and detailed mathematical description of the XHSTT problem and its
maxSAT modeling in the general sense as required by the specification, but also presented several
alternative encodings for special cases. Different solvers and (soft) cardinality constraints were used
and evaluated in order to find the most suitable combination for benchmark XHSTT instances.
Additionally, a SMT approach has been developed. Our results show that our approach is competitive
with Integer Programming, as well as with the heuristic solvers used in ITC 2011. The generated
maxSAT instances encode practical and large timetabling problems and have been submitted to the
maxSAT Competition 2014. They have been used since then and have been challenging and useful
benchmarks for maxSAT solvers.

For future work, there are a number of issues we would like to investigate. Developing portfolio
approaches for both cardinality constraint encoding and solver selection could be an interesting
research direction, as well as devising more advanced SMT algorithms. Furthermore, it is worth to
study if encodings can be still optimized to better suit particular instances.

9 Acknowledgements

The work was supported by the Vienna PhD School of Informatics and the Austrian Science Fund
(FWF): P24814-N23. We would also like to thank anonymous reviewers for their helpful comments.

XXXI

in
st

a
n
ce

/
so

lv
er

W
B

O
(l

in
)

W
B

O
(d

ef
)

W
P

M
3

O
p
ti

ri
ss

(i
n
c)

O
p
ti

ri
ss

(d
ef

)
O

p
ti

ri
ss

(d
ef

-l
in

ea
r)

O
p
ti

ri
ss

(i
n
c-

li
n
ea

r)
It

a
ly

1
1
2

1
2

1
2

1
2

1
2

4
6

4
6

It
a
ly

4
7
8
0
9

7
7
7

1
2
7
0

7
7
9

7
7
9

9
8
9
9

9
8
9
9

K
o
so

va
2
9
9
4
6

1
1
0
3

1
1
1
7

2
3
3
7
4

2
3
3
7
4

2
5
5
3
0

2
5
5
3
0

S
A

w
o
o
d
la

n
d
s

2
5
1

7
9
0

4
0
3
0

-
-

-
-

S
A

L
ew

it
t

3
4
9

0
0

3
9

3
9

4
4
6

4
4
6

B
ra

zi
l1

4
1

7
9

7
0

7
5

7
5

4
1

4
1

B
ra

zi
l2

2
9

3
0

2
8

3
3

3
3

2
7

2
7

B
ra

zi
l3

3
9

1
0
2

1
1
0

1
0
5

1
0
5

4
0

4
0

B
ra

zi
l4

1
5
7

1
5
5

1
5
4

1
6
1

1
6
1

1
7
1

1
7
1

B
ra

zi
l5

1
6
0

1
2
5

1
3
7

1
2
1

1
2
1

1
5
2

1
5
2

B
ra

zi
l6

2
4
8

1
9
2

1
9
4

1
9
6

1
9
6

2
4
5

2
4
5

B
ra

zi
l7

4
7
0

2
6
9

2
5
4

2
6
0

2
6
0

5
3
1

5
3
1

F
in

A
rt

ifi
ci

a
l

9
9
6

4
0
0
6

2
6
7

2
6
7

1
4

1
4

F
in

C
o
ll
eg

e
1
0
5
6

2
0
7

4
0
7

1
8
6

1
8
6

1
5
6
4

1
5
6
4

F
in

E
le

m
en

ta
ry

S
ch

o
o
l

3
3

3
3

3
3

3
F

in
H

ig
h
S
ch

o
o
l

1
8
3

1
2
3

1
3
1

1
2
8

1
2
8

2
6
8

2
6
8

F
in

S
ec

o
n
d
a
ry

S
ch

o
o
l

3
3
6

6
2
2

7
8
1

6
3
3

6
3
3

4
1
1

4
1
1

F
in

S
ec

o
n
d
a
ry

S
ch

o
o
l2

2
4
6
4

1
7
9

4
1
5

1
8
1

1
8
1

2
7
4
2

2
7
4
2

G
re

ec
eA

ig
io

2
0
3
3

2
3
0
3

2
3
2
0

1
4
1
9

1
4
1
9

3
3
0
0

3
3
0
0

G
re

ec
eH

ig
h
S
ch

o
o
l1

0
0

0
0

0
0

0
G

re
ec

eP
a
tr

a
s

8
8
8

0
1
0
7
3

2
3
0

2
3
0

1
2
4
1

1
2
4
1

G
re

ec
eP

re
v
ez

a
9
7
4

1
0
5
1

1
0
4
0

1
8
7

1
8
7

1
1
8
4

1
1
8
4

G
re

ec
eU

n
i3

8
9

2
5
1

1
8
5

3
0
8

3
0
8

1
0
8

1
0
8

G
re

ec
eU

n
i4

1
4
3

3
4
4

3
4
4

3
2
7

3
2
7

1
3
9

1
3
9

G
re

ec
eU

n
i5

0
0

0
0

0
0

0

T
a
b
le

1
.

C
o
m

p
a
ri

so
n

o
f

m
a
x
S
A

T
so

lv
er

s.

XXXII

in
sta

n
ce/

so
lv

er
W

B
O

(lin
)

W
B

O
(d

ef)
W

P
M

3
O

p
tiriss

(in
c)

O
p
tiriss

(d
ef)

O
p
tiriss

(d
ef-lin

ea
r)

O
p
tiriss

(in
c-lin

ea
r)

Ita
ly

1
1

1
1

1
1

2
2

Ita
ly

4
4

1
3

2
2

5
5

K
o
sova

5
1

2
3

3
4

4
S
A

w
o
o
d
la

n
d
s

1
2

3
4

4
4

4
S
A

L
ew

itt
3

1
1

2
2

4
4

B
ra

zil1
1

4
2

3
3

1
1

B
ra

zil2
3

4
2

5
5

1
1

B
ra

zil3
1

3
5

4
4

2
2

B
ra

zil4
3

2
1

4
4

5
5

B
ra

zil5
5

2
3

1
1

4
4

B
ra

zil6
5

1
2

3
3

4
4

B
ra

zil7
4

3
1

2
2

5
5

F
in

A
rtifi

cia
l

1
3

5
4

4
2

2
F

in
C

o
lleg

e
4

2
3

1
1

5
5

F
in

E
lem

en
ta

ry
S
ch

o
o
l

1
1

1
1

1
1

1
F

in
H

ig
h
S
ch

o
o
l

4
1

3
2

2
5

5
F

in
S
eco

n
d
a
ry

S
ch

o
o
l

1
3

5
4

4
2

2
F

in
S
eco

n
d
a
ry

S
ch

o
o
l2

4
1

3
2

2
5

5
G

reeceA
ig

io
2

3
4

1
1

5
5

G
reeceH

ig
h
S
ch

o
o
l1

1
1

1
1

1
1

1
G

reeceP
a
tra

s
3

1
4

2
2

5
5

G
reeceP

rev
eza

2
4

3
1

1
5

5
G

reeceU
n
i3

1
4

3
5

5
2

2
G

reeceU
n
i4

2
4

4
3

3
1

1
G

reeceU
n
i5

1
1

1
1

1
1

1
av

era
g
e

2
.5

2
2
.1

6
2
.6

4
2
.4

8
2
.4

8
3
.2

4
3
.2

4

T
a
b
le

2
.

R
a
n
k
in

g
o
f

m
a
x
S
A

T
so

lv
ers.

XXXIII

in
st

a
n
ce

/
so

lv
er

-e
n
co

d
in

g
α

-S
α

-C
N

-C
α

-C
N
α

-S
-C

β
-S

β
-C

N
-C

β
-C

N
β

-S
-C

θ
-S

θ
-C

N
-C

θ
-C

N
θ
-S

-C
γ

-S
γ

-C
N

-C
γ

-C
N
γ

-S
-C

It
a
ly

1
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2
9

1
2

4
6

It
a
ly

4
1
1
0
2
8

7
3
8
5

1
4
2
6
4

7
8
0
9

5
3
5

8
6
1

5
2
7

7
7
7

5
7
9

7
0
2

5
3
8

7
7
9

1
2
4
8
5

8
2
4
7

1
2
8
7
9

9
8
9
9

K
o
so

va
2
6
3
2
1

2
9
3
3
0

2
9
9
7
3

2
9
9
4
6

1
1
0
9

1
1
1
9

1
0
9
1

1
1
0
3

1
1
0
1

1
1
5
5

1
0
5
6

2
3
3
7
4

2
7
1
9
1

3
2
4
3
2

3
2
1
3
3

2
5
5
3
0

S
A

w
o
o
d
la

n
d
s

8
1
6

2
4
8

2
6
5

2
5
1

-
0

8
2
3

7
9
0

-
-

-
-

-
-

-
-

S
A

L
ew

it
t

4
6
5

2
1
3

3
3
6

3
4
9

6
1

0
6
6

0
4
4

0
5
5

3
9

1
6
9
6

2
7
7

3
3
4

4
4
6

B
ra

zi
l1

4
1

4
1

4
1

4
1

5
9

7
9

6
9

7
9

5
6

8
6

5
2

7
5

4
1

4
1

4
1

4
1

B
ra

zi
l2

3
8

4
9

4
3

2
9

1
6

8
4

7
5

3
0

1
3

3
4

2
7

3
3

3
4

5
0

5
2

2
7

B
ra

zi
l3

2
8

4
0

4
9

3
9

7
5

1
1
7

6
6

1
0
2

6
8

1
1
9

7
0

1
0
5

5
0

6
3

6
3

4
0

B
ra

zi
l4

1
6
0

1
8
2

1
9
5

1
5
7

1
4
0

1
6
8

1
3
8

1
5
5

2
2
8

1
5
2

1
4
3

1
6
1

1
8
1

1
9
0

2
1
1

1
7
1

B
ra

zi
l5

1
6
6

1
7
6

1
7
5

1
6
0

1
1
6

1
5
0

1
2
2

1
2
5

1
2
4

1
3
6

1
2
6

1
2
1

1
8
3

1
7
5

1
8
8

1
5
2

B
ra

zi
l6

2
7
6

2
6
2

2
7
9

2
4
8

1
6
2

1
8
4

1
6
0

1
9
2

1
3
8

2
1
1

1
6
5

1
9
6

2
5
2

2
8
9

2
9
5

2
4
5

B
ra

zi
l7

5
4
6

6
0
5

5
8
1

4
7
0

2
5
4

2
5
8

2
2
6

2
6
9

2
2
9

2
6
2

2
3
1

2
6
0

5
2
4

5
9
1

6
1
4

5
3
1

F
in

A
rt

ifi
ci

a
l

1
0

1
6

8
9

8
1
4
8

1
5

9
6

8
2
6
3

1
9

2
6
7

8
1
4

1
7

1
4

F
in

C
o
ll
eg

e
6
4
4

4
7
9

5
5
6

1
0
5
6

2
3
3

2
2
2

1
7
3

2
0
7

2
0
4

1
7
2

1
8
2

1
8
6

5
9
3

5
8
7

5
9
1

1
5
6
4

F
in

E
le

m
en

ta
ry

S
ch

o
o
l

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

F
in

H
ig

h
S
ch

o
o
l

1
3
0

1
4
9

1
3
2

1
8
3

3
5

4
0

3
0

1
2
3

3
1

3
9

2
6

1
2
8

1
7
9

1
6
2

1
4
9

2
6
8

F
in

S
ec

o
n
d
a
ry

S
ch

o
o
l

3
0
7

2
9
0

2
5
6

3
3
6

6
4
8

6
5
7

5
9
3

6
2
2

6
2
2

6
2
3

6
2
3

6
3
3

3
2
2

2
8
9

2
8
1

4
1
1

F
in

S
ec

o
n
d
a
ry

S
ch

o
o
l2

9
7
1

8
1
9

9
6
5

2
4
6
4

1
9
5

5
3

1
8
1

1
7
9

1
6
8

1
6
5

1
8
0

1
8
1

1
2
1
2

1
1
5
3

1
4
0
8

2
7
4
2

G
re

ec
eA

ig
io

2
2
1
1

2
2
8
1

2
2
0
7

2
0
3
3

2
0
3
6

2
3
1
8

7
6
7

2
3
0
3

-
6
9
4

-
1
4
1
9

-
3
1
6
4

-
3
3
0
0

G
re

ec
eH

ig
h
S
ch

o
o
l1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

G
re

ec
eP

a
tr

a
s

8
7
9

8
8
5

9
4
9

8
8
8

0
0

1
2
5

0
1
7
6
3

1
9
9

-
2
3
0

2
2
5
8

1
3
0
7

-
1
2
4
1

G
re

ec
eP

re
v
ez

a
7
4
4

9
3
2

1
0
8
2

9
7
4

1
7
1

1
0
8
4

1
5
8

1
0
5
1

2
3
9
2

1
4
3

2
3
2
0

1
8
7

2
4
9
4

1
2
2
7

-
1
1
8
4

G
re

ec
eU

n
i3

8
4

1
0
9

9
7

8
9

1
8
1

2
2
0

2
3
1

2
5
1

1
9
3

3
2
6

1
9
4

3
0
8

8
9

1
1
6

1
0
0

1
0
8

G
re

ec
eU

n
i4

1
4
6

1
4
2

1
4
1

1
4
3

1
9
8

3
3
4

2
1
8

3
4
4

2
1
5

2
9
5

2
1
7

3
2
7

1
4
9

1
3
8

1
3
2

1
3
9

G
re

ec
eU

n
i5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

T
a
b
le

3
.

C
o
m

p
a
ri

so
n

o
f

se
le

ct
ed

so
lv

er
s

w
it

h
d
iff

er
en

t
ca

rd
in

a
li
ty

co
n
st

ra
in

ts
.

A
b
b
re

v
ia

ti
o
n
s:
α

=
O

p
en

-W
B

O
(l

in
),
β

=
O

p
en

-W
B

O
(d

ef
),
θ

=
O

p
ti

ri
ss

(i
n
c)

,
γ

=
O

p
ti

ri
ss

(i
n
c-

li
n
)

XXXIV

in
sta

n
ce/

so
lv

er-en
co

d
in

g
α

-S
α

-C
N

-C
α

-C
N
α

-S
-C

β
-S

β
-C

N
-C

β
-C

N
β

-S
-C

θ
-S

θ
-C

N
-C

θ
-C

N
θ
-S

-C
γ

-S
γ

-C
N

-C
γ

-C
N
γ

-S
-C

Ita
ly

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2
1

3
Ita

ly
4

1
3

9
1
6

1
0

2
8

1
6

4
5

3
7

1
4

1
1

1
5

1
2

K
o
sova

1
0

1
2

1
4

1
3

5
6

2
4

3
7

1
8

1
1

1
6

1
5

9
S
A

w
o
o
d
la

n
d
s

6
2

4
3

8
1

7
5

8
8

8
8

8
8

8
8

S
A

L
ew

itt
1
3

7
1
0

1
1

5
1

6
1

3
1

4
2

1
4

8
9

1
2

B
ra

zil1
1

1
1

1
4

7
5

7
3

8
2

6
1

1
1

1
B

ra
zil2

8
1
0

9
4

2
1
4

1
3

5
1

7
3

6
7

1
1

1
2

3
B

ra
zil3

1
3

4
2

1
0

1
3

7
1
1

8
1
4

9
1
2

5
6

6
3

B
ra

zil4
7

1
2

1
4

6
2

9
1

5
1
6

4
3

8
1
1

1
3

1
5

1
0

B
ra

zil5
1
1

1
3

1
2

1
0

1
8

3
5

4
7

6
2

1
4

1
2

1
5

9
B

ra
zil6

1
3

1
2

1
4

1
0

3
5

2
6

1
8

4
7

1
1

1
5

1
6

9
B

ra
zil7

1
2

1
5

1
3

9
4

5
1

8
2

7
3

6
1
0

1
4

1
6

1
1

F
in

A
rtifi

cia
l

3
6

1
2

1
1
0

5
9

1
1
1

8
1
2

1
4

7
4

F
in

C
o
lleg

e
1
4

9
1
0

1
5

8
7

2
6

5
1

3
4

1
3

1
1

1
2

1
6

F
in

E
lem

en
ta

ry
S
ch

o
o
l

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

F
in

H
ig

h
S
ch

o
o
l

9
1
1

1
0

1
4

4
6

2
7

3
5

1
8

1
3

1
2

1
1

1
5

F
in

S
eco

n
d
a
ry

S
ch

o
o
l

5
4

1
7

1
3

1
4

9
1
0

1
0

1
1

1
1

1
2

6
3

2
8

F
in

S
eco

n
d
a
ry

S
ch

o
o
l2

1
0

8
9

1
4

7
1

6
4

3
2

5
6

1
2

1
1

1
3

1
5

G
reeceA

ig
io

7
8

6
4

5
1
0

2
9

1
3

1
1
3

3
1
3

1
1

1
3

1
2

G
reeceH

ig
h
S
ch

o
o
l1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

G
reeceP

a
tra

s
5

6
8

7
1

1
2

1
1
1

3
1
3

4
1
2

1
0

1
3

9
G

reeceP
rev

eza
5

6
9

7
3

1
0

2
8

1
4

1
1
3

4
1
5

1
2

1
6

1
1

G
reeceU

n
i3

1
6

3
2

8
1
1

1
2

1
3

9
1
5

1
0

1
4

2
7

4
5

G
reeceU

n
i4

7
5

4
6

9
1
5

1
2

1
6

1
0

1
3

1
1

1
4

8
2

1
3

G
reeceU

n
i5

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

av
era

g
e

6
.6

0
6
.7

6
7
.0

4
6
.4

4
4
.3

6
6
.6

4
4
.2

3
6
.0

0
5
.4

4
5
.7

2
5
.5

2
6
.2

8
8
.2

0
8
.1

2
8
.9

6
7
.6

4

T
a
b
le

4
.

R
a
n
k
in

g
o
f
selected

so
lv

ers
w

ith
d
iff

eren
t

ca
rd

in
a
lity

co
n
stra

in
ts.

A
b
b
rev

ia
tio

n
s:
α

=
O

p
en

-W
B

O
(lin

),
β

=
O

p
en

-W
B

O
(d

ef),
θ

=
O

p
tiriss(in

c),
γ

=
O

p
tiriss(in

c-lin
)

XXXV

instance/solver WBO(lin)-CN WBO(def)-CN-C WBO-CN Optiriss(inc)-S best-maxSAT IP
Italy1 12 12 12 12 12 15
Italy4 14264 861 527 579 527 8686

Kosova 29973 1119 1091 1101 1091 (2746, 154438)
SALewitt 336 0 66 44 0 0

SAwoodlands 265 0 823 - 0 (390, 343)
Brazil1 41 79 69 56 41 41
Brazil2 43 84 75 13 13 19
Brazil3 49 117 66 68 49 27
Brazil4 195 168 138 228 138 225
Brazil5 175 150 122 124 122 131
Brazil6 279 184 160 138 138 240
Brazil7 581 258 226 229 226 304

FinArtificial 8 148 15 8 8 (25, 71)
FinCollege 556 222 173 204 173 (201, 1394)

FinElementarySchool 3 3 3 3 3 3
FinHighSchool 132 40 30 31 30 155

FinSecondarySchool 256 657 593 622 256 157
FinSecondarySchool2 965 53 181 168 53 2360

GreeceAigio 2207 2318 767 - 767 800
GreeceHighSchool1 0 0 0 0 0 0

GreecePatras 949 0 125 1763 0 0
GreecePreveza 1082 1084 158 2392 158 17

GreeceUni3 97 220 231 193 97 24
GreeceUni4 141 334 218 215 141 25
GreeceUni5 0 0 0 0 0 2

Table 5. Comparison of maxSAT solvers with Integer Programming.

XXXVI

instance/solver WBO(lin)-CN WBO(def)-CN-C WBO-CN Optiriss(inc)-S best-maxSAT IP
Italy1 1 1 1 1 1 2
Italy4 5 3 1 2 1 4

Kosova 4 3 1 2 1 5
SALewitt 4 1 3 2 1 1

SAwoodlands 2 1 3 4 1 5
Brazil1 1 4 3 2 1 1
Brazil2 3 5 4 1 1 2
Brazil3 2 5 3 4 2 1
Brazil4 3 2 1 5 1 4
Brazil5 5 4 1 2 1 3
Brazil6 5 3 2 1 1 4
Brazil7 5 3 1 2 1 4

FinArtificial 1 3 2 1 1 4
FinCollege 4 3 1 2 1 5

FinElementarySchool 1 1 1 1 1 1
FinHighSchool 4 3 1 2 1 5

FinSecondarySchool 2 5 3 4 2 1
FinSecondarySchool2 4 1 3 2 1 5

GreeceAigio 3 4 1 5 1 2
GreeceHighSchool1 1 1 1 1 1 1

GreecePatras 3 1 2 4 1 1
GreecePreveza 3 4 2 5 2 1

GreeceUni3 2 4 5 3 2 1
GreeceUni4 2 5 4 3 2 1
GreeceUni5 1 1 1 1 1 2

average 2.84 2.84 2.04 2.48 1.20 2.64

Table 6. Ranking of maxSAT solvers and Integer Programming.

instance/solver SMTmaxSAT WBO(lin)-S-C
Italy1 223 12
Brazil1 69 41
Brazil2 97 29
Brazil3 60 39
Brazil4 146 157
Brazil5 193 160
Brazil6 206 248
Brazil7 511 470

FinCollege 254 1056
FinHighSchool 136 183

FinSecondarySchool 742 336
FinSecondarySchool2 321 2464

Table 7. Comparison of maxSAT and the developed SMT approach (Section 6)

XXXVII

instance/solver SMTmaxSAT WBO(lin)-S-C
Italy1 2 1
Brazil1 2 1
Brazil2 2 1
Brazil3 2 1
Brazil4 1 2
Brazil5 2 1
Brazil6 1 2
Brazil7 2 1

FinCollege 1 2
FinHighSchool 1 2

FinSecondarySchool 2 1
FinSecondarySchool2 1 2

average 1.58 1.41

Table 8. Ranking of maxSAT and the developed SMT approach (Section 6)

XXXVIII

in
sta

n
ce/

so
lv

er
W

B
O

(lin
)-C

N
W

B
O

(d
ef)-C

N
-C

W
B

O
-C

N
O

p
tiriss(in

c)-S
b

est-m
a
x
S
A

T
G

O
A

L
H

y
S
S
T

L
ectio

H
F

T
Ita

ly
4

1
2
4
6

2
1
5
4
9

2
2
6
9
8

5
5
8

5
5
8

4
5
4

6
9
2
6

6
5
1

2
6
3
6
3
7
9

B
ra

zil2
9
6

7
5

7
8

8
8

7
5

(1
,

6
2
)

(1
,

7
7
)

3
8

(6
,

1
9
0
)

B
ra

zil3
1
1
4

8
1

4
6

8
6

4
6

1
2
4

1
1
8

1
5
2

(3
0
,

2
8
3
)

B
ra

zil4
1
6
7

2
3
5

-
2
6
1

2
3
5

(1
7
,

9
8
)

(4
,

2
3
1
)

(2
,

1
9
9
)

(6
7
,

2
3
7
)

B
ra

zil6
1
8
9

4
2
7

1
6
3

1
7
0

1
6
3

(4
,

2
2
7
)

(3
,

2
6
9
)

2
3
0

(2
3
,

3
9
0
)

F
in

E
lem

en
ta

ry
S
ch

o
o
l

3
3

3
3

3
4

(1
,

4
)

3
(3

0
,

7
3
)

F
in

S
eco

n
d
a
ry

S
ch

o
o
l2

4
4
1

1
8
2
5

4
0
6

6
2
9

4
0
6

1
2
3

3
4

(3
1
,

1
6
2
8
)

G
reeceA

ig
io

4
2
8
9

3
1
9
7

-
1
9
6
0

1
9
6
0

1
3

(2
,

4
7
0
)

1
0
6
2

(5
0
,

3
1
6
5
)

G
reeceU

n
i3

2
2
0

1
1
2

1
9
3

2
3
1

1
1
2

6
1
1

(3
0
,

2
)

(1
5
,

1
9
0
)

G
reeceU

n
i4

3
3
4

1
5
5

2
1
5

2
1
8

1
5
5

7
2
1

(3
6
,

9
5
)

(2
3
7
,

2
8
1
)

G
reeceU

n
i5

0
2
2

0
0

0
0

4
(4

,
1
9
)

(1
1
,

1
5
8
)

T
a
b
le

9
.

C
o
m

p
a
riso

n
o
f

m
a
x
S
A

T
so

lv
ers

in
th

e
IT

C
2
0
1
1

seco
n
d

ro
u
n
d
.

XXXIX

in
st

a
n
ce

/
so

lv
er

W
B

O
(l

in
)-

C
N

W
B

O
(d

ef
)-

C
N

-C
W

B
O

-C
N

O
p
ti

ri
ss

(i
n
c)

-S
b

es
t-

m
a
x
S
A

T
G

O
A

L
H

y
S
S
T

L
ec

ti
o

H
F

T
It

a
ly

4
4

6
7

2
2

1
5

3
8

B
ra

zi
l2

5
2

3
4

2
6

7
1

8
B

ra
zi

l3
4

2
1

3
1

6
5

7
8

B
ra

zi
l4

1
2

8
3

2
6

5
4

7
B

ra
zi

l6
3

5
1

2
1

7
6

4
8

F
in

E
le

m
en

ta
ry

S
ch

o
o
l

1
1

1
1

1
2

3
1

4
F

in
S
ec

o
n
d
a
ry

S
ch

o
o
l2

5
7

4
6

4
1

2
3

8
G

re
ec

eA
ig

io
5

4
7

3
3

1
6

2
8

G
re

ec
eU

n
i3

5
3

4
6

3
1

2
8

7
G

re
ec

eU
n
i4

6
3

4
5

3
1

2
7

8
G

re
ec

eU
n
i5

1
3

1
1

1
1

2
5

4
av

er
a
g
e

3
.6

3
3
.4

5
3
.7

2
3
.2

7
2
.0

9
3
.0

0
4
.0

9
4
.0

9
7
.0

9

T
a
b
le

1
0
.

R
a
n
k
in

g
o
f

m
a
x
S
A

T
so

lv
er

s
in

th
e

IT
C

2
0
1
1

se
co

n
d

ro
u
n
d
.

	Modeling High School Timetabling as Partial Weighted maxSAT

