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Abstract. In this work we present ongoing work on the development of
an exact algorithm which exploits heuristic solvers for the Unicost Set
Covering problem. We analyze and discuss various algorithmic properties
of an exact set covering algorithm, provide a new heuristic algorithm for
solving the dual problem to compute lower bounds, show how comput-
ing lower and upper bounds can influence branching decisions, provide
several propagation rules to deduce variable assignments or signal back-
tracking, several other lower bounding techniques, and finally propose
an algorithm based on those findings.

Keywords: set covering, unicost, optimization, set packing, tree search

1 Introduction

Set Covering is a well known NP-complete problem. Given a finite set X and
a family F of subsets of X, it asks whether there exists a subset s ⊆ X with
cardinality k such that every element from F contains at least one element from
s. Its NP-hard optimization variant asks for the minimum number of elements
to cover X. It is common to associate weights with every element of X and ask a
similar question, but taking the sum of weights of selected elements rather than
just the cardinality of X. In this work we consider the Unicost Set Covering
problem where all weights are equal, as the unicost case appears to be more
challenging to solve than its weighted version [10]. We note that there are other
equivalent definitions of set covering.

There are many applications of set covering, such as scheduling, construction
of optimal logical circuits, crew scheduling in railways [3], urban waste manage-
ment [1], etc. In [6] the author discusses its use within hypertree decomposition.
Set covering is also used in order to provide users the most representative solu-
tions for a multi-objective optimization problem [8]. Team Formation [7] has a
direct link to set covering. Additional applications can be found in [9].
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Benchmark instances for set covering are available at the OR library [2] and
are used in many works in the literature (e.g. [6] [5]). Both weighted and uni-
cost set covering instances can be found, and additional unicost instances can
be obtained by setting weights to one in the weighted versions. While general
purpose mixed integer programming tools like cplex can solve weighed instances
efficiently (in some cases within seconds, see [4]), the unicost ones are signifi-
cantly harder (see [10]). In contrast, the heuristic solver from [5] [6] can solve
these unicost instances very well (in some cases to optimality within seconds),
but cannot prove optimality. Even though unicost set covering can be formulated
very naturally as maxSAT, maxSAT solvers have difficulties to solve unicost set
covering, as shown in Section 4. We believe this is because the main problem
is minimizing the number of sets used rather than constraint satisfaction, and
CDCL and other maxSAT techniques do not offer much help in that regard for
set covering (both upper and lower bounds obtained are not satisfactory). All
this motivated us to investigate whether it would be possible to devise an exact
algorithm for unicost set covering which would exploit the advantages offered by
heuristic solvers, in an attempt to offer best of both worlds: ability to prove op-
timality, while being able to calculate the solution fast. The development of this
algorithm can also lead to better understanding of how to incorporate heuris-
tics in exact solvers, possibly allowing us to translate our techniques to other
problems. As weighted set covering can be solved efficiently with off-the-shelf
tools, we choose to focus on the unicost case. It is important to note that there
are no exact algorithms in the literature for the Unicost Set Covering problem
other than the use of general mixed integer programming tools, to the best of
our knowledge.

Exact algorithms exhaustively go through the search space. We consider such
an algorithm in the form of a tree search algorithm based on branch and bound.
In these algorithms, an unassigned variable is chosen (branching variable) and
is assigned a value. Then, estimates on the lower and upper bound of the solution
are computed and based on these estimates it is decided whether the algorithm
should backtrack or proceed with the current variable assignment. In addition,
propagation rules can be applied in order to deduce assignments of unassigned
variables. Variable assignments in our case correspond to deciding which sets
are in or out of the optimum solution (the subset s ⊆ X). This procedure is
repeated until all possible variable assignments have been considered and at
this point either the optimum has been found or it has been proven that no
feasible solution exists. There are several important parts of the algorithm: which
variable to branch on, what value to assign it, how to compute the lower and
upper bounds, and how to infer other variable assignments. We examine and
address each of these points in our work.

The main contributions of this work are the following:

– We identify a good property that branching strategies should adhere to in
general for set covering. This way we are able to limit the pool of potential
sets for branching as well as detect whether during the search the problem
can be split into two or more independent parts (decomposition detection),
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without referring to a specific branching heuristic. We also propose a concrete
branching strategy.

– We develop a new heuristic algorithm for solving the dual problem of unicost
set covering: unicost set packing. Solving the dual problem allows us to
compute a lower bound. Based on our experiments, our algorithm is able to
compute optimal solutions for unicost set packing faster than cplex.

– We show how variable branching influences lower and upper bounds given
certain branching decisions. We can exploit this information to ensure that
the bounds will be nonincreasing, nondecreasing, or strictly increasing, de-
pending on which conditions are met. This is useful because if we manage
to maintain a nonincreasing upper bound while having a strictly increasing
lower bound, it could resulting in much faster pruning of the search space.

– Several propagation rules and lower bounding techniques are proposed.
– We experimentally compare maxSAT, IP, and dedicated heuristic solvers for

unicost set covering. The results show that heuristics perform very well and
that unicost set covering instances are very difficult for maxSAT solvers.

The rest of the paper is organized as follows. In Section 2 we formally define
the Set Covering problem and introduce notions used in the paper. We then
proceed our main contributions in Section 3 where we describe our algorithms.
In Section 4 we show the effectiveness of our heuristic for the dual problem and
compare the performance of maxSAT, IP, and dedicated heuristic solvers for set
covering. Conclusions are given in Section 5.

2 Problem Description and Notions

The Set Covering problem is formally defined as follows:

minimize
∑
i∈X

wi ∗ si (1)

∑
i∈X

a(i,j) ∗ si ≥ 1 ∀j ∈ Y (2)

si ∈ {0, 1} ∀i ∈ X (3)

The binary constants a(i,j) define whether the i-th set can cover the j-th
element. A solution S is defined as a variable assignment for every set si. The
i-th set is in the solution if si = 1, out of the solution if si = 0, and undecided
if no value is assigned. A (partial) solution S is said to be infeasible if not all
constraints defined in Equation 2 are satisfied, otherwise it is feasible. Every
partial feasible solution can be completed by assigning si = 0 to all undecided
sets. We define α(i) = {j : a(i,e) = 1} as the set of elements that the i-th set can
cover. Two sets i and j are connected if α(i)∩α(j) 6= ∅. An element e is said to
be uncovered in the infeasible solution S if no set in S can cover it. Equation
4 is called the cost function. For the Unicost Set Covering problem which we
consider in this work, all weights are equal to one (wi = 1) and the cost function
of a solution S is simply the number of sets in the solution.
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3 Algorithms

In this section we describe the main contributions of the paper. We present our
heuristic algorithm for solving the dual problem in order to provide a lower
bound, a good general property of branching strategies for unicost set covering,
the impact of branching on future lower and upper bounds, as well as some
propagation rules and additional ways of calculating lower bounds.

3.1 Dual Problem - Lower Bound

We first define the dual problem, present unicost set packing as a dual for unicost
set covering, and then provide an algorithm to compute it.

Let f and g be two scalar functions. We say that max(g) is the dual problem
of min(f) iff max(g) ≤ min(f). Therefore, any feasible solution for g is a lower
bound for min(f). The dual problem for unicost set covering is unicost set
packing and is defined as follows:

maximize
∑
j∈Y

ej (4)

∑
j∈Y

a(i,j) ∗ ej ≤ 1 ∀i ∈ X (5)

ej ∈ {0, 1} ∀j ∈ Y (6)

In other words, given a unicost set covering problem, its corresponding uni-
cost set packing problem asks for the maximum number of elements that have
no common sets.

We developed a local search algorithm to solve unicost set packing inspired
by set covering algorithms from [6] and [5]. Analogous to set covering, a solution
for set packing E is defined as a variable assignment for every element ej . The
j-th element is in the solution if ej = 1, out of the solution if ej = 0, and
undecided if no value is assigned. Before describing the algorithm, we first define
the cost and infeasibility score of a solution.

Definition 1 (Cost and Infeasibility Score for Unicost Set Packing).
Let E be a solution for set packing. The cost of E is the number of ele-

ments in E (noted as |E|) and the infeasibility score is defined as score(E) =∑
i∈X(max((

∑
j∈Y a(i,j) ∗ ej)− 1, 0)).

Every feasible solution has an infeasibility cost equal to zero. The infeasibil-
ity cost grows with every constraint violation. Initially all elements are in the
current solution Ecur. In each iteration, an element is either removed or added.
If |Ecur| ≥ |Ebest|− 1, then an element is removed from Ecur. Otherwise, an ele-
ment is added. This is done to focus the search around solutions which cost one
less then the best solution found so far. Each element is assigned a cost equal
to the amount the infeasibility score will increase by its addition or removal.
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During element selection, the one with the minimum cost is selected. In case of
ties, elements which have not been used recently are preferred. To prevent get-
ting stuck in a local optimum, a tabu mechanism is used, meaning that element
that have been added or removed in the past m iterations are ignored during
the selection phase. Despite its simple nature, the algorithm is able to compute
optimal values very fast and performs well compared to cplex, a general purpose
mixed integer programming software, as discussed in Section 4.

3.2 Variable Branching

Variable branching is an important aspect of tree search algorithms. Here we
discuss a desirable general property and propose a concrete branching strategy.

We say a problem is decomposable if Y from Equation 2 can be partitioned
into Y1 and Y2 such that ∀i ∈ X(∃j1 ∈ Y1 a(i,j1) = 1 ⇔ ∀j2 ∈ Y2 a(i,j2) = 0).
In other words, the problem can be split into two independent problems which
do not share any sets or elements and the objective value of the problem is the
sum of the objective values of the two parts. During the search, sets are assigned
values s = 0 and it could be the case that the resulting subproblem becomes
decomposable. If this happens, a suboptimal solution for one part implies a
suboptimal solution for the whole problem. Therefore, it is important to detect
whether the problem is decomposable. To elaborate further, we introduce the
concept of a decision level. The decision level at a particular algorithm iteration
is the number of sets which have been assigned values through a decision or
backtracking, but not as a result of propagation.

Proposition 1 (Set Restriction and Decomposition Detection). When
an element gets covered or uncovered at decision level i, assign it a label i. In
the branching phase, consider only undecided sets which can cover elements with
the smallest label, regardless of whether the elements need to be covered or not.
If no set can be selected, the current subproblem is decomposable.

The above proposition is useful regardless of how branching decisions are
made, as it only limits which sets should be considered as potential candidates
for branching and detects whether a decomposition is possible. This is different
from forward checking because sets not considered in one iteration might be
considered in future ones when all labeled elements get covered.

We now briefly discuss a concrete branching strategy. We defined the most
constrained elements to be the elements which can be covered by the least
amount of sets. We propose selecting a set from one of the most constrained
elements which also covers the least amount of other elements. By selecting a
set in the most constrained element, we are likely to select a set which is in the
optimal solution, and by covering the least we limit future set selection through
Proposition 1.

3.3 Variable Branching Influence on Lower and Upper Bounds

In Section 3.1 we discussed how to compute a lower bound solution by using
the dual problem. For the upper bound, we use the state-of-the-art algorithm
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proposd in [5]. In this section we analyze the impact of branching decisions on
the bounds of the problem. Let S and E be the sets or elements which are in
the solutions for upper and lower bounds, respectively.

Proposition 2 (Nonincreasing Upper Bounds).

– By assigning s = 1 for s ∈ S or s = 0 for s 6∈ S, the new upper bound is at
most |S|.

Proposition 3 ((Non)Decreasing Lower Bound).

– By assigning s = 0 to any set, the new lower bound is at least |E|.
– By assigning s = 1 such that k elements in the solution E get covered, the

new lower bound is at least |E| − k + 1.

Proposition 4 (Strictly Increasing Lower Bound).

– By assigning s = 1 such that no element e ∈ E gets covered, the lower bound
is at least |E|+ 1.

These are important because they provide guarantees on the behavior of
the upper and lower bounds based on branching. If we are able to branch on
sets which guarantee nonincreasing upper bound and strictly increasing lower
bound, we can expect earlier prunings of the search, helping the algorithm to
detect areas of the search space which are of no use.

3.4 Propagation and Additional Lower Bounds

As variable assignments are made during the search, it might be the case that
certain sets become redundant. These sets should be removed from further con-
sideration. This is formalized in the following two propositions.

Proposition 5 (Propagation - Set Subsumption). In every optimal solu-
tion we have: α(si) ⊇ α(sj) ∧ i < j ⇒ sj = 0.

Proposition 6 (Propagation - Set Redundancy). If a set s does not cover
any uncovered element (α(s) = ∅), or its removal from the solution does not
uncover any elements, it cannot be part of the optimal solution (s = 0).

Let coverage(s) be the number of uncovered elements which would get cov-
ered if s was inserted into the solution, cmax = max{coverage(s) : i 6∈ S}, m
be the number of uncovered elements, Scur be the current (partial) solution,
Sbest be the best solution found so far, and r = d m

cmax
e. We can then make the

following statements.

Proposition 7 (Optimistic Lower Bound, Value). A lower bound can be
calculated by: LBoptimistic = |Scur|+ r.

Proposition 8 (Optimistic Lower Bound, Backtrack). |Scur| cannot be
completed to a solution better than |Sbest| if r > (|Sbest| − |Scur| − 1).
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A better estimate than Proposition 7 and 8 can be done, although it is
not as simple to calculate. Let Cmax be the sorted array of set coverages in
descending order, p(i) =

∑
1≤k<i Cmax(k) be the i-th partial sum of Cmax, and

imin = min{i : p(i) ≥ m}.

Proposition 9 (Optimistic Lower Bound, Refined Value). A refined lower
bound can be calculated by: LBrefined = |S|+ imin.

Proposition 10 (Optimistic Lower Bound, Refined Backtrack). |Scur|
cannot be completed to a solution better than |Sbest| if imin > (|Sbest|−|Scur|−1).

3.5 Main Algorithm Outline

The previous subsections are now combined and summarized. Initially dl = 0,
Scur = ∅, Sbest = X, and every element is unlabeled. Our proposed algorithm is
as follows.

1. Compute upper and lower bounds based on [5] and Section 3.1.

2. Compute candidate sets Scand as the unassigned sets that can cover at least
one element with the lowest label.

(a) If Scand 6= ∅, select a set s ∈ Scand according to a heuristic and insert
it into the (partial) solution (assigning s = 1), taking into account the
influence of s based on Section 3.3.

(b) Else, check if the problem is decomposable into two or more parts.

i. If not, select a unassigned set s ∈ X according to a heuristic.
ii. Else, solve every decomposable part independently with this algo-

rithm and add their assignments to Scur, and go to Step 5.

3. Assign label dl to all unlabeled elements which s covers.

4. Apply propagation rules (Section 3.4).

5. If Scur satisfies Equation 2 and |Scur| < |Sbest|, then assign |Sbest| = |Scur|.
6. Determine if backtracking is needed by checking if any of the following holds:

(a) The upper bound is equal to one of the lower bounds from Section 3.1
and Section 3.4.

(b) Proposition 6.

(c) |Scur| ≥ |Sbest| − 1.

7. When backtracking, let sk be the last nonpropagated assignment:

(a) If sk = 1, assign sk = 0 and go to Step 4.

(b) Else, unassign sk and propagation assignments cause by it, remove the
labels from all uncovered elements which sk can cover, dl = dl − 1, and
go to Step 1.

8. dl = dl + 1 and go to Step 1.
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4 Experiments

We experimentally compared our heuristic algorithm for unicost set packing
(Section 3.1) with an IP approach, and compared IP, maxSAT, and an existing
heuristic approach [5] for unicost set covering. We considered 45 unicost set cov-
ering instances from the packages scp4x, scp5x, scp6x, and scpnrx, taken from
the OR library [2]. We used cplex for IP, several maxSAT solvers (ahmaxsat1.55,
optiriss, WPM3-2015-in, and open-wbo), the heuristic algorithm for unicost set
covering from [5], and our implementation for heuristic unicost set packing (Sec-
tion 3.1). The computational time was restricted to 10 minutes.

Due to space limitations we briefly comment on the results overall rather
than providing a table with detailed results. For unicost set packing, both our
heuristic and cplex manage to compute the optimal solutions. Our heuristic
does so within a second, while cplex takes around 40 seconds and an average
of 90 seconds to prove that it is optimal. In this case there is a clear tradeoff:
speed versus ability to prove optimality. However, the difference in speed is
significant. For unicost set covering, the heuristic algorithm from [5] is better
than cplex on 31 out of 45 instances and equal on the rest, averaging a solution
of 31.8 compared to 32.7. In the allocated time limit cplex did not manage to
prove optimality for any instance. It is important to note that cplex’s result
were always obtained with the heuristic approach faster and neither approach
made use of the complete computational time: the heuristic algorithm computes
its best solution on average in 45 seconds, while cplex does on average in 30
seconds. The maxSAT solvers struggled to provide results and were always worse
than the other two approaches. Overall, the effectiveness of heuristic approaches
motivated the development of our exact algorithm.

5 Conclusion

In this work we presented ongoing work on the development of an exact algorithm
which exploits heuristic solvers for the Unicost Set Covering problem. We showed
a good general branching property and a concrete branching strategy, a new
heuristic algorithm for computing the solution for the dual problem (unicost
set packing), showed how branching influences lower and upper bounds given
certain conditions, a number of propagation rules to deduce variable assignments
or signal backtracking, and other lower bounding techniques. We believe the
ideas presented are promising for solving the Unicost Set Covering problem.
Additionally, we compared maxSAT, IP, and heuristic solvers for set covering and
revealed a big discrepancy between maxSAT solvers and other approaches. Given
that there are many applications for unicost set covering, the development of this
algorithm is important, especially since there are no other exact algorithms in
the literature other than using general optimization tools.
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(FWF): P24814-N23, the Vienna PhD School of Informatics, and the National
Institute of Informatics in Tokyo, Japan.
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