Solving (Q)SAT Problems via Tree Decomposition
and Dynamic Programming

Stefan Woltran
TU Wien, Austria

June 14, 2018

Joint work with

Giinther Charwat, Johannes Fichte, Markus Hecher, Michael Morak, Markus Zisser

f£a19a

Introduction

Tree Decomposition and Treewidth

i~

By-product in the theory of graph minors
due to Robertson and Seymour (1984);
similar notions appeared even earlier
(Bertelé and Brioschi, 1972; Halin, 1976).

Introduction

Tree Decomposition and Treewidth
By-product in the theory of graph minors

g \’I due to Robertson and Seymour (1984);
| ;j similar notions appeared even earlier

(Bertelé and Brioschi, 1972; Halin, 1976).

Courcelle’s Theorem (1990)

Any property of finite structures which is definable
in MSO can be decided in time O(f(k) - n) where
nis the size of the structure and k is its treewidth.

Introduction

But ...

“...rather than synthesizing methods
indirectly from Courcelle’'s Theorem,
one could attempt to develop practical
direct methods.” (Niedermeier, 2006)

Introduction

“...rather than synthesizing methods
indirectly from Courcelle’s Theorem,
one could attempt to develop practical
direct methods.” (Niedermeier, 2006)

“Courcelle’s theorem [...] should be regarded primarily as
classification tool, whereas designing efficient dynamic
programming routines on tree decompositions requires
‘getting your hands dirty’ and constructing the algorithm
explicitly. ” (Cygan et al., 2015)

Introduction

Main Challenge

Can we turn the huge body of theoretical results on parameterized
algorithms into systems that perform competitive in practice?

Introduction

Main Challenge

Can we turn the huge body of theoretical results on parameterized
algorithms into systems that perform competitive in practice?

Requirements
1. domain exhibits suitable instances
2. design of smart algorithms and well-engineered systems

Introduction

Main Challenge

Can we turn the huge body of theoretical results on parameterized
algorithms into systems that perform competitive in practice?

Requirements
1. domain exhibits suitable instances
2. design of smart algorithms and well-engineered systems

(Most) Competive Arena: SAT problems
» QSAT — propositional logic with quantifiers
» #SAT — model counting
» WMC — weighted model counting
» PMC — projected model counting

Introduction

Main Challenge

Can we turn the huge body of theoretical results on parameterized
algorithms into systems that perform competitive in practice?

Requirements
1. domain exhibits suitable instances
2. design of smart algorithms and well-engineered systems

(Most) Competive Arena: SAT problems
» QSAT - propositional logic with quantifiers (PSPACE-complete)
» #SAT — model counting (#P-complete)
» WMC — weighted model counting (#P-complete)
» PMC — projected model counting (#-NP-complete)

Outline

I

Treewidth, Tree Decompositions and Dynamic Programming
Solving SAT via TD + DP

dynQBF: a QSAT solver based on BDDs

gpusat: a #SAT solver that runs on the GPU

Some new results for PMC

Conclusion and Outlook

45

Treewidth and Tree Decompositions

6/45

Treewidth

» Some graphs are more “tree-like” than others

» Treewidth measures “tree-likeness”:

» Trees have treewidth 1
» The higher the treewidth, the more complex the graph

» Often “easy on trees” implies “easy on tree-like graphs”

» Many problems are fixed-parameter tractable w.r.t. treewidth k, i.e.
can be decided in O(2% - n)
» That is, they become easy when putting a bound on the treewidth

Treewidth

v

Some graphs are more “tree-like” than others

Treewidth measures “tree-likeness”:

» Trees have treewidth 1
» The higher the treewidth, the more complex the graph

v

v

Often “easy on trees” implies “easy on tree-like graphs”

» Many problems are fixed-parameter tractable w.r.t. treewidth k, i.e.
can be decided in O(2% - n)
» That is, they become easy when putting a bound on the treewidth

v

It works for many hard problems
Real-world applications often have small treewidth

v

Treewidth (ctd.)

Example: Treewidth 3.

8/45

Treewidth (ctd.)

Example: Treewidth 3. Still.

I

/

Treewidth is defined in terms of tree decompositions.

8/45

Tree Decompositions
Tree Decomposition 7 of G

G: x T:|b,c

P

y [b, X, c] [b, c, yJ

:

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. each vertex must occur in some bag
2. for each edge, there is a bag containing both endpoints

3. tree is connected.: if v appears in bags of nodes f and t;, then v
is also in the bag of each node on the path between f; and t

45

Tree Decompositions
Tree Decomposition 7 of G

G: x T:|b,cC

| o N\

y [b, X, c] [b, e yj

:

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. each vertex must occur in some bag
2. for each edge, there is a bag containing both endpoints

3. tree is connected.: if v appears in bags of nodes f and t;, then v
is also in the bag of each node on the path between f; and t

Tree Decompositions
Tree Decomposition 7 of G

G: x T:|b,cC

o e

y [b, X, c] [b, c, yJ

:

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. each vertex must occur in some bag
2. for each edge, there is a bag containing both endpoints

3. tree is connected.: if v appears in bags of nodes f and t;, then v
is also in the bag of each node on the path between f; and t

/45

Tree Decompositions
Tree Decomposition 7 of G

G: x T:|b,c

o e

y [b, X, c] [b, c, yJ

b

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. each vertex must occur in some bag
2. for each edge, there is a bag containing both endpoints

3. tree is connected.: if v appears in bags of nodes f and t;, then v
is also in the bag of each node on the path between f; and t

/45

Tree Decompositions
Tree Decomposition 7 of G

G: x T:|b,cC

Y

y [b, X, c] [b, c, yJ

:

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. each vertex must occur in some bag
2. for each edge, there is a bag containing both endpoints

3. tree is connected.: if v appears in bags of nodes f and t;, then v
is also in the bag of each node on the path between f; and t

/45

Tree Decompositions
Tree Decomposition 7 of G

G: x T:|b,cC

| o e

y [b, X, c] [b, c, yJ

:

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. each vertex must occur in some bag
2. for each edge, there is a bag containing both endpoints

3. tree is connected.: if v appears in bags of nodes f and t;, then v
is also in the bag of each node on the path between f; and t

/45

Tree Decompositions
Tree Decomposition 7 of G

G: x T:|b,c

| o N\

y [b, X, c] [b, e yj

:

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. each vertex must occur in some bag
2. for each edge, there is a bag containing both endpoints

3. tree is connected.: if v appears in bags of nodes f and t;, then v
is also in the bag of each node on the path between f; and t

Tree Decompositions
Tree Decomposition 7 of G

G: x T:|b,c

P

y [b, X, c] [b, c, yJ

:

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. each vertex must occur in some bag
2. for each edge, there is a bag containing both endpoints

3. tree is connected: if v appears in bags of nodes f and t;, then v
is also in the bag of each node on the path between f; and t

/45

Tree Decompositions
Tree Decomposition 7 of G

G: x T:|b,c

y [b, X, c] [b, c, yJ

:

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. each vertex must occur in some bag
2. for each edge, there is a bag containing both endpoints

3. tree is connected: if v appears in bags of nodes f and t;, then v
is also in the bag of each node on the path between f; and t

/45

Tree Decompositions
Tree Decomposition 7 of G

G: x T:|b,c

P

y [b, X, c] [b, c, yJ

:

~——
width

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. each vertex must occur in some bag
2. for each edge, there is a bag containing both endpoints

3. tree is connected.: if v appears in bags of nodes f and t;, then v
is also in the bag of each node on the path between f; and t

45

Tree Decompositions

Definition
» width of a decomposition: size of largest bag minus 1
» treewidth of an instance: minimum width over all its TDs

Finding Tree Decompositions
» Constructing a tree decomposition of minimal width intractable
» but solvable in time 2°") . |V| [Bodlaender, 1996]

» |In Practice:

» generate a tree decomposition of reasonably low, but not
necessarily minimal width using heuristics (e.g. MinFill)

» htd: https://github.com/mabseher/htd

Given a tree decomposition of input instance Z of width w, one can
solve the problem via dynamic programming in time f(w) - O(|Z|€) for
some computable function f and constant c.

10/45

https://github.com/mabseher/htd

Tree Decompositions

Dynamic Programming - Overall Schema

b

11/45

Tree Decompositions

Dynamic Programming - Overall Schema

11/45

Tree Decompositions

Dynamic Programming - Overall Schema

1. Decompose graph
2. Solve subproblems

11/45

Tree Decompositions

Dynamic Programming - Overall Schema

1. Decompose graph
2. Solve subproblems

11/45

Tree Decompositions

Dynamic Programming - Overall Schema

1. Decompose graph
2. Solve subproblems

11/45

Tree Decompositions

Dynamic Programming - Overall Schema

1. Decompose graph
2. Solve subproblems

11/45

Tree Decompositions

Dynamic Programming - Overall Schema

1. Decompose graph
2. Solve subproblems

11/45

Tree Decompositions

Dynamic Programming - Overall Schema

1. Decompose graph
2. Solve subproblems

11/45

Tree Decompositions

Dynamic Programming - Overall Schema

1. Decompose graph
2. Solve subproblems

11/45

Tree Decompositions

Dynamic Programming - Overall Schema

1. Decompose graph
2. Solve subproblems
3. Output solutions

(b, x.¢) (b,c,)

11/45

Let’s Get Things Started: Solving SAT via TD and DP

12/45

DP algorithm for SAT [Samer & Szeider, 2010]

e =(—avbVvx)A(avb)A(cV—-x)A(bV-c)A(=bV-cV-y)

13/45

DP algorithm for SAT [Samer & Szeider, 2010]
e=(—avbVvx)A(avb)A(cV-x)AN(bV-c)A(—-bV-cV-y)
Mod(p) ={ {b},{a b}, {b,c} {ab,c},

{b,c,x},{a,b,c, x},
{b.y}.{a,b,y}}

13/45

DP algorithm for SAT [Samer & Szeider, 2010]

e=(—avbVvx)A(avb)A(cV-x)AN(bV-c)A(—-bV-cV-y)

13/45

DP algorithm for SAT [Samer & Szeider, 2010]

p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1. Decompose graph
2. Solve subproblems

13/45

DP algorithm for SAT [Samer & Szeider, 2010]

—\a\/b\/X (avb)A(cV—x)AN(bV-c)A(=bV-cV-y)

Decompose graph
2. Solve subproblems

13/45

DP algorithm for SAT [Samer & Szeider, 2010]

p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1. Decompose graph
2. Solve subproblems

13/45

DP algorithm for SAT [Samer & Szeider, 2010]

p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1. Decompose graph
2. Solve subproblems

13/45

DP algorithm for SAT [Samer & Szeider, 2010]

p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1. Decompose graph
2. Solve subproblems

13/45

DP algorithm for SAT [Samer & Szeider, 2010]

—\a\/b\/X (avb)A(cV—x)A(bV-c)A(=bV-cV-y)

: ; b c)
Decompose graph .
2. Solve subproblems

_L_L
_;o

O‘
O
O‘
0

)
— O O

13/45

DP algorithm for SAT [Samer & Szeider, 2010]

e=(—avbVvx)A(avb)A(cV-x)AN(bV-c)A(—-bV-cV-y)

X
b c|#
a C ey T 04
114
b b c¢|# b c|#
1T 0]2 0 0|2
1. Decompose graph 1 1|4 1 0]2
1 1)1
2. Solve subproblems b x g_ﬁ‘\ -
3. Counting solutions 10 12 ER
11 1]2 1
(:IZ_J
b x al#) 1
1 0 01 ;
1.0 1|1
11 01
11 1|1
(b, x, ¢) (b c y] IR
—

13/45

Put Things on Track: QSAT via TD and DP

14/45

QSAT

» Extension of propositional logic

Compactly encode computationally hard problems (e.g.,
verification, planning, synthesis, ...)

Satisfiability problem (QSAT) is PSPACE-complete

Various techniques: search (DPLL, CDCL), expansion, resolution,
CEGAR

Annual QBF Competition (47 systems submitted in 2017)

v

v

v

v

15/45

Dynamic Programming for QSAT

® =Vx,y da, b, c p, where
e =(—avbVvx)A(avb)A(cVv—-x)A(bV-c)A(=bV-cV-y)

16/45

Dynamic Programming for QSAT
& =Vx,y da,b,c ¢, where

o =(mavbVvx)A(avb)A(cV-x)A(bV-c)A(=bV-cV-y)
Recall,

MOd((p) = { {b}7 {av b}7 {b7 C}7 {aa b: C},
{b,c,x},{a,b,c, x},
{b.y}.{a b,y}}
Hence, ¢ invalid:

elx=1,y=1=(@vb)AcA(bV-Cc)A(-bV-c)=L1

16/45

Dynamic Programming for QSAT

& =Vx,y da,b,c ¢, where
o =(mavbVvx)A(avb)A(cV-x)A(bV-c)A(=bV-cV-y)

(b, %, ¢) (b,c,y)
16/45

Dynamic Programming for QSAT

& =Vx,y da,b,c ¢, where
e =(mavbVvx)A(avb)A(cV-x)A(bV-c)A(=bV-cV-y)

1. Decompose graph
2. Solve subproblems

(b, %, ¢) (b.c,y)
16/45

o JE QU QUGN
I =
4 a0 —=0oln

Dynamic Programming for QSAT

& =Vx,y da,b,c ¢, where
e =(mavbVvx)A(avb)A(cV-x)A(bV-c)A(=bV-cV-y)

1. Decompose graph

2. Solve subproblems —
T 0 0
1.0 1
b, ¢ 11 1
N b x a
b, C b, (o 1 0 0
: ; 1.0 1
[b, X, C] {b, c J/} 110
11 1
0 1

Dynamic Programming for QSAT

& =Vx,y da,b,c ¢, where
o =(mavbVvx)A(avb)A(cV-x)A(bV-c)A(=bV-cV-y)

X
a C y
(~x) (x)
b b c||lb c
1. Decompose graph 1 (1) 11

2. Solve subproblems

_L_L_LU
— O O| x
-~ olo

N

b, ¢ b, ¢
(b, x,) (b.c,y)
16/45

Dynamic Programming for QSAT

& =Vx,y da,b,c ¢, where
o =(mavbVvx)A(avb)A(cV-x)A(bV-c)A(=bV-cV-y)

1. Decompose graph
2. Solve subproblems

o

o
—~ 2 s 00T
- O0O000O0n
o = O = ok

(b.x. c) (b.c.y)
16/45

Dynamic Programming for QSAT

& =Vx,y da,b,c ¢, where
o =(mavbVvx)A(avb)A(cV-x)A(bV-c)A(=bV-cV-y)

X
a C y
7.\ .0)
(y))
b b c||lb c
1. Decompose graph ? 8 ? g
2. Solve subproblems 11)
b C y
0 0 0
b, ¢ 0 0 1
X 100
b, ¢ b, c 1 0 1
.) 110

16/45

Dynamic Programming for QSAT

& =Vx,y da,b,c ¢, where
e =(—avbVvx)A(avb)A(cV-x)A(bV—-c)A(=bV-cV-y)

2 (xy) (xy) () (xy))
b ¢ b c |[b c |[b c]
a C y 1 ? T 0 |[1 1

J

((=x) ()) () ())

b b cl|b c b cl|b c

1. Decompose graph 1 (1) 11 (1J 8 ? g
2. Solve subproblems g 11 J

16/45

Dynamic Programming for QSAT

& =Vx,y da,b,c ¢, where
e =(avbVvx)A(avb)A(cV-x)A(bV—-c)A(=bV-cV-y)

- (x5 y) (xy) (xy) ﬁ

b ¢ b ¢ b ¢ b c
w e L

(0) (N)

b b cl|b c b cl|b c

1. Decompose graph 1 ? 11 (1J 8 ? 8
2. Solve subproblems ; g 11 J

3. Evaluation of root
(5.2)
Y5
[b, X, c] [b, c, y}
., X, a

_L_L_LU
— O O| x
-~ olo

w2 a0 OolT
- OO0 OOOH
o = O = oKk

O = = g
— 2 2 OO Xx|H
~ a0 =0oln

16/45

Dynamic Programming for QSAT

® =Vx,y da, b, c p, where
e =(—avbVvx)A(avb)A(cVv—-x)A(bV-c)A(=bV-cV-y)

X
(-) (xy)
a C y ? ‘ b ‘
(xy) (%)) (69 (00)
b b ¢ |[b c|[b c[b c]
1. Decompose graph 1 (1J 1.0 1 1
2. Solve sybproblems 0 0) SEREOD
3. Evaluation of root b c|[b ¢ b c|[b ¢
T 0|[1 1 0 0/[00
@ 1 1) 1 0/[1 0
1 1

™ &=
b, ¢ b, ¢

16/45

Dynamic Programming for QSAT

® =Vx,y da, b, c p, where
e =(—avbVvx)A(avb)A(cVv—-x)A(bV-c)A(=bV-cV-y)

X 4 A
x-y) (xy) (Xy) (xY)
@ c c [¢]

a C ey 0 0 1

1

b (xy) (x)) (9 (o))
b ¢ b ¢ |[b ¢ |[b c]

1. Decompose graph 0 11 0 [T 1
2. Solve subproblems -) J
3. Evaluation of root N) W)
T 0|[1 1 0 0/[0 0
1 1) 1. 0[/1 0

11

16/45

Data Structure

Binary Decision Diagrams (BDDs)

» BDDs store Boolean functions as rooted DAG
» Reduced Ordered BDDs
» Usually space-efficient (given a good variable ordering)
» Canonical (equivalent formulae represented by same BDD)

17/45

Data Structure

Binary Decision Diagrams (BDDs)
» BDDs store Boolean functions as rooted DAG
» Reduced Ordered BDDs
» Usually space-efficient (given a good variable ordering)
» Canonical (equivalent formulae represented by same BDD)
Nested Set of Formulae (NSF)
» Innermost elements are BDDs and store parts of the QBF matrix
» Nestings of depth k account for quantifier blocks in the prefix

17/45

Data Structure

Binary Decision Diagrams (BDDs)

» BDDs store Boolean functions as rooted DAG
» Reduced Ordered BDDs

» Usually space-efficient (given a good variable ordering)
» Canonical (equivalent formulae represented by same BDD)

Nested Set of Formulae (NSF)

» Innermost elements are BDDs and store parts of the QBF matrix
» Nestings of depth k account for quantifier blocks in the prefix

Example
NSF: {{{T,L}},{{~aV b}, {L},{aAb}}} with k =3

17/45

Data Structure

Binary Decision Diagrams (BDDs)

» BDDs store Boolean functions as rooted DAG
» Reduced Ordered BDDs

» Usually space-efficient (given a good variable ordering)
» Canonical (equivalent formulae represented by same BDD)

Nested Set of Formulae (NSF)

» Innermost elements are BDDs and store parts of the QBF matrix
» Nestings of depth k account for quantifier blocks in the prefix

Example
NSF: {{{T,L}},{{~aV b}, {L},{aAb}}} with k =3

T

T L (—aV b) L anb

17/45

Run Time

Given QBF Q4 X ... QX and a tree decomposition for v of width w.

The algorithm determines the truth value of the QBF in time

oW1

oz -y,

where the height of the tower of exponents is k + 1:
» the size of each BDD is at most 2*+!
» k quantifier blocks

18/45

Run Time

Given QBF Q4 X ... QX and a tree decomposition for v of width w.

The algorithm determines the truth value of the QBF in time

oW1

oz -y,

where the height of the tower of exponents is k + 1:
» the size of each BDD is at most 2*+!
» k quantifier blocks

» QSAT is fixed-parameter tractable for bounded treewidth and the
number of quantifier alternations [Chen, 2004]

» QSAT is not fixed-parameter tractable w.r.t. parameter treewidth
only [Atserias and Oliva, 2014].

18/45

Towards Efficiency in Practice

Clause splitting
» Size of largest clause gives lower bound for width
» Splitting usually reduces the width (but increases the number of
variables)

Dependency Schemes
» A dependency scheme D is an overapproximation of full
independence. (independence: reordering of quantifiers does not
change satisfiability)
» If a variable is removed, we only need to split tables if a
dependent variable is not yet fully processed

Feature-based tree decomposition selection
» Choose tree decomposition based on certain criteria (besides
width)

» Promising: variable position, children of join nodes
19/45

Towards Efficiency in Practice

Intermediate unsatisfiability checks
» Reuse procedure for deciding the problem on NSFs obtained
during bottom-up traversal
» |If procedure returns L, the instance is unsatisfiable
» For T, the QBF might still be unsatisfiable due to clauses that
were not yet considered

Subset-based compression
» Check for subsets w.r.t. models represented by the BDDs and
subsets w.r.t. nested sets
» Similar to subsumption checking [Biere, 2004]

Balance NSF and BDD size
» Delay splitting of removed variables (store them in a cache)
» Increases size of BDDs (no longer bounded by width)
» Apply heuristics to obtain optimal NSF and BDD size

20/45

The dynQBF System

System Specifics
» C++, open source
» Tree decomposition: htd library
» BDD management: CUDD
» Standard dependencies (optional): DepQBF

Core Features
» Deciding QSAT

» Partial certificates (outermost quantifier block)

» Compact enumeration
» Counting

https://github.com/gcharwat/dynqbf

21/45

https://github.com/gcharwat/dynqbf

Experiments: Setup

QBF solvers that participated in the 2016 QBF Evaluation
» Top-ranked in the competition
» Publicly available
» Without (explicit) tool-chained preprocessing

22/45

Experiments: Setup

QBF solvers that participated in the 2016 QBF Evaluation
» Top-ranked in the competition
» Publicly available
» Without (explicit) tool-chained preprocessing

2016 QBF Evaluation instances (preprocessed with Blogger)
» 2-QBF track: 305 instances, 130 solved by Blogger
» PCNF track: 825 instances, 341 solved by Blogqger

22/45

Experiments: Setup

QBF solvers that participated in the 2016 QBF Evaluation
» Top-ranked in the competition
» Publicly available
» Without (explicit) tool-chained preprocessing
2016 QBF Evaluation instances (preprocessed with Blogger)
» 2-QBF track: 305 instances, 130 solved by Blogger
» PCNF track: 825 instances, 341 solved by Blogqger
Run limitations and measurements
» Ranked by number of solved instances
» Timeout: 10 minutes; Memout: 16 GB

» Given solving time (in seconds) includes penalty of 10 minutes for
non-solved instances

» Detailed analysis w.r.t. width of instances

22/45

Experiments: 2-QBF instances

System Solved Time SAT UNSAT Unique
Qesto 236 50K 160 76 0
RAReQS 232 51K 161 71 1
dynQBF 221 53K 172 49 43
DepQBF 221 56K 143 78 1
QSTS 220 58K 162 58 2
CAQE 204 65K 153 51 0
AReQS 202 66K 141 61 0
GhostQ (CEGAR) 151 95K 123 28 0

Table: Data set: QBFEval'16 — 2-QBF track, preprocessed with Blogger

Uniquely solved instances

dynQBF: fixpoint detection (43)

QSTS: query (1), sorting networks (1)

23/45

Experiments: 2-QBF instances

w < 80 (86 instances)

w > 80 (89 instances)

System Solved Time | System Solved Time
dynQBF 79 6K | RAReQS 69 17K
DepQBF 41 28K | QSTS 69 18K
Qesto 39 31K | Qesto 67 19K
RAReQS 33 34K | DepQBF 50 28K
CAQE 28 36K | AReQS 47 28K
AReQS 25 38K | CAQE 46 29K
QSTS 21 40K | dynQBF 12 47K
GhostQ (CEGAR) 9 47K | GhostQ (CEGAR) 12 49K

Table: Data set: QBFEval'16 — 2-QBF track, 175 non-trivial instances after

preprocessing

24/45

Experiments: PCNF instances

System Solved Time SAT UNSAT Unique
RAReQS 633 126K 301 332 14
Qesto 618 134K 298 320 1
DepQBF 596 144K 296 300 7
QSTS 592 149K 294 298 3
CAQE 589 155K 295 294 1
GhostQ (CEGAR) 571 161K 293 278 1
dynQBF 494 203K 239 255 21

Table: Data set: QBFEval'16 — PCNF track, preprocessed with Blogger

Uniquely solved instances

dynQBF: fixpoint detection (11), ...
RAReQS: dungeon/planning (3), emptyroom (3), ...

25/45

Experiments: PCNF instances

w < 80 (182 instances) w > 80 (302 instances)
System Solved Time | System Solved Time
RAReQS 137 28K | RAReQS 155 98K
dynQBF 134 32K | Qesto 148 100K
Qesto 129 34K | DepQBF 131 108K
DepQBF 124 36K | CAQE 129 114K
QSTS 123 37K | QSTS 128 112K
CAQE 119 40K | GhostQ (CEGAR) 112 120K
GhostQ (CEGAR) 118 41K | dynQBF 19 171K

Table: Data set: QBFEval'16 — PCNF track, 484 non-trivial instances after
preprocessing

26/45

QSAT solving — Summary

A novel expansion-based approach for QBF solving
» Motivated by fixed-parameter tractability results
» Explicitly takes QBF structure into account
» Various optimizations towards feasibility in practice

27/45

QSAT solving — Summary

A novel expansion-based approach for QBF solving
» Motivated by fixed-parameter tractability results
» Explicitly takes QBF structure into account
» Various optimizations towards feasibility in practice

QBF solver dynQBF
» Competitive on instances up to treewidth 80, and 2-QBF instances
» Many uniquely solved instances
» 2-QBF track: Ranked 8 (out of 29 participants) in QBFEval’'17
» PCNF track: Ranked 13 (out of 30 participants) in QBFEval’'17

27/45

Massive Parallelisation: #SAT on the GPU

28/45

#SAT

» Given propositional formula ¢, #SAT asks for the number of
models

{M C var(p) | M = ¢}|

» Applications in several domains, e.qg.:
» Bayesian reasoning [Sang et al., 05]
» Infrastructure reliability [Meel et al., 17]

» Traversal of entire search space required

» Systems relying on different approaches exist
Cachet, sharpSAT;

ApproxMC, sts;

countAntom;

c2d, d4;

v

v vy VvYy

29/45

Recall;: DP for #SAT

p=(-avbvx)A(@avb)A(cV-x)A(bV-C)A(=bV-cV-y)
y

X b c #)
0 0 01
C 00 1|1
a y 10 01
1.0 1|1
b 11 01
b c|# b c|#)
1. Decompose graph A s
2. Solve subproblems 1 1|4 1 0]2
3. Counting solutions b x ol#) LI
' T 00[2]|(b c y|[#)
1 01|20 0 01
11 1/2)(00 1]
b x al|#
0 014 1.0 1|1
11 01
10 1|1
[ba X, C] [b, C, YJ 1 1 0|1
11 11
0 1 1)1
L

30/45

DP on the GPU

How to parallelize DP?

31/45

DP on the GPU

How to parallelize DP?

1 Compute tables in parallel

» No massive parallelization due
to dependencies of child nodes

31/45

DP on the GPU

How to parallelize DP?

1 Compute tables in parallel
» No massive parallelization due
to dependencies of child nodes
2 Compute rows in parallel
» Since computation of specific
rows is independet of other
rows, this allows for massive
parallelization

= Used here!

31/45

The gpuSAT System

System Specifics
» C++11

» Tree decomposition: htd library
» OpenCL

» Vendor independent

» C99

» SIMT

Core Features
» Each potential row of a table runs in one thread of the GPU
» Tables need to be split for w > 27
» Precision can be toggled

https://github.com/Budddy/GPUSAT

32/45

https://github.com/Budddy/GPUSAT

Experiments

Timeout: 900s

Memory: 8GB

16 #SAT Solvers

3 WMC Solvers

5 random TDs per instance

v

v

v

v

v

33/45

Width Distribution of Instances

=
1000 - [| W:Cachet(DQMR)
. W:Cachet (Grid)
800 - BN W:Cachet (Plan)
B #:c2d (Mixed)
600 A Bl #:fre/meel (Basic)
B #:fre/meel (Proj.)
400 1 mm #:fre/meel (Weig.)
200 A
0_.
20 A w0 0D A0 2O O P\ P\
R R I S AR S, 0&* S N 7

» Instances: 1091 WMC and 1456 #SAT

34/45

Width Distribution of Instances

=

1000 4 B W:Cachet (DQMR)
. W:Cachet (Grid)

800 BN W:Cachet (Plan)
B #:c2d (Mixed)

600 Bl #:fre/meel (Basic)
B #:fre/meel (Proj.)

4001 m #:fre/meel (Weig.)

200\

0 .
2N N O A0 20 O P\ P\
o x o @1 1B 5P ST

» Instances: 1091 WMC and 1456 #SAT
» 54% < width 30; 70% < width 40
» Decomposition time below a second (max 2.5s)

34/45

Results #SAT (Width: 0-30)

-] o ': .
o + ° :
g x # o ¢
© * 2 + °
| * . a ° A': :
* . o
o ¥ § B’
9 g
(o] ; k3
| : 8
4 8
o
S -]
<
o
o —
N
o —
I I I I I I I I I I I I I I I I
0 50 150 250 350 450 550 650 750
~ vbest © countAntom Vv sts X dsharp ® cnf2eadt % sharpCDCL
o gpusat (p) ® miniC2D sharpSAT A sdd * approxmc
@ c2d A gpusat (i) X gpusat (i4) 4 dynQBF B clasp

* d4 -+ gpusat (p4) < Cachet * dynasp(i) + bdd_minisat_all 35/45

#SAT solving — Summary

Towards DP on the GPU
» Distribute computation of tables among different computation units
» All threads have same instructions but start from different data

» Each row forms a potential pixel with the corresponding sum as its
value

Prototype System gpuSAT
» Competitive up to width 30; solved instances up to width 45
» High Precision
» Easily extendible to WMC (also supported by gpuSAT)

36/45

Side Result: DP for PMC

37/45

PMC

» Given propositional formula ¢ and P C var(y), PMCp(p) asks for

the number of P-projected models

{MNOP|MC var(e), M= ¢}

» Extremal Cases

» P = () amounts to SAT
» P = var(y) amounts to #SAT

» However, the problem is in general harder than #SAT
(#-NP-complete vs. #P-complete)

38/45

Towards Dynamic Programming for PMC
Theorem

Unless ETH fails, there is no algorithm for PMC running in
time 22°™ . ||°.

39/45

Towards Dynamic Programming for PMC

Theorem

Unless ETH fails, there is no algorithm for PMC running in
time 22°™ . |p|C.

Proof.

» Unless ETH fails, 2-QSAT can not be solved [Lampis & Mitsou,
2017] in time 22°™ . ||°.

39/45

Towards Dynamic Programming for PMC

Theorem

Unless ETH fails, there is no algorithm for PMC running in
time 22°™ . |p|C.

Proof.

» Unless ETH fails, 2-QSAT can not be solved [Lampis & Mitsou,
2017] in time 22°™ . ||°.

» Solve VX.3Y.p by checking whether PMC(p) = 2/X1.

39/45

Dynamic Programming for PMC

Can we find a DP that (asymptotically) matches this lower bound.

40/45

Dynamic Programming for PMC

Can we find a DP that (asymptotically) matches this lower bound.
Yes ...

PMC in three Steps
1. Run algorithm for SAT

40/45

Dynamic Programming for PMC

Can we find a DP that (asymptotically) matches this lower bound.
Yes ...

PMC in three Steps
1. Run algorithm for SAT
2. Purge non-solutions

40/45

Dynamic Programming for PMC

Can we find a DP that (asymptotically) matches this lower bound.
Yes ...

PMC in three Steps
1. Run algorithm for SAT
2. Purge non-solutions
3. Add projection counters for sets of rows

40/45

Dynamic Programming for PMC

P = {va}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

MOd((P) :{ {b},{a,b},{b,c},{a,b,c},
{b,c,x},{a,b,c, x},
{b,y}.{a b,y}}

PModp(y) = {0, {x}, {y}}
PMCp(p) = [PModp(p)| =3

41/45

Dynamic Programming for PMC

P:{va}

(—ravbVvx)A(avb)A(cV—-x)A(bV—-c)A(—bV-cV-y)

90:

DP for SAT

1.

Cr([do—o++

CO~Hxoo+~r+

— — ~ [la

-0

-
>
S

ba

\ -
O
X)
b7

\

]
3
S

41/45

Dynamic Programming for PMC

P={xy}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)
X
1 1
b
1. DP for SAT

2. Purge non-solutions

41/45

Dynamic Programming for PMC

P={xy}
e =(—avbVvx)A(avb)A(cV-x)
1. DP for SAT
2. Purge non-solutions
3. Solve PMC via P
\ b x a|ipmc
b c b’ c 1 0 01 1
10 11
1 1 01
{bxc}[bcy} R
| S E—

A (bV=C) A

(-bV ~cV —y)

41/45

Dynamic Programming for PMC

P={xy}
e =(—avbVvx)A(avb)A(cV-x)
1. DP for SAT
2. Purge non-solutions
3. Solve PMC via P
\ b x a|ipmc
b c b’ c 1 0 01 1
10 11
1 1 01
{bxc}[bcy} R
| S E—

A (bV=C) A

(-bV ~cV —y)

41/45

Dynamic Programming for PMC

P={xy}
e =(—avbVvx)A(avb)A(cV-x)
1. DP for SAT
2. Purge non-solutions
3. Solve PMC via P
\ b x a|ipmc
b c b’ c 1 0 01 1
10 11
1 1 01
{bxc}[bcy} R
| S E—

A (bV=C) A

(-bV ~cV —y)

41/45

Dynamic Programming for PMC

P = {va}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1. DP for SAT
2. Purge non-solutions ? 6((c) ipmc)
1
3. Solve PMC via P 10 1)1 "
T 1 11
b)
\ b x a|ipmc
b, ¢ b, c 10017,
I . 10 1|1
T 1 01
(bxe) (boy) []719]1

41/45

Dynamic Programming for PMC

P = {va}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1. DP for SAT
2. Purge non-solutions ? 6((c) ipmc)
1
3. Solve PMC via P 10 1)1 "
T 1 11
b)
\ b x a|ipmc
b, ¢ b, c 10017,
I . 10 1|1
T 1 01
(bxe) (boy) []719]1

41/45

Dynamic Programming for PMC

P = {va}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1. DP for SAT
2. Purge non-solutions ? 6((C) ipmc
1
3. Solve PMC via P 10 1[1 '
T 1 11
b (\:‘:_/
\ b x a|ipmc
b7 c b’ c 1 0 01 1
. . 10 11
T 1 01
[b X cj [b, c, y} 11 109 1

41/45

Dynamic Programming for PMC

P = {va}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1. DP for SAT

_L_Lc-
- o|o
N =5
J 3
- |0

2. Purge non-solutions ? 6((C) ipme
1

3. Solve PMC via P 10 1)1
T 1 1[4

N
b, ¢ b, ¢

I T

b, x, c} [b, c, y}

&

41/45

Dynamic Programming for PMC

P = {va}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1. DP for SAT

_L_Lc-
- o|o
N =5
J 3
- o

2. Purge non-solutions ? 6((C) ipme
1

3. Solve PMC via P 10 1)1 "
T 1 1[4

N
b, ¢ b, ¢

I T

b, x, c} [b, c, y}

&

41/45

Dynamic Programming for PMC

P = {va}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(-bV-cV-y)

1. DP for SAT

2. Purge non-solutions ? g g i1pmc

3. Solve PMC via P 1101 "
T 0 11

SRRIEE

N

b, ¢ b, ¢

{bxc} [bcy]

41/45

Dynamic Programming for PMC

P = {va}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

b c | ipmc
T 02,
1. DP for SAT 1111
2. Purge non-solutions ? g g ipmc
1
3. Solve PMC via P 11 01!
1 0 11

SRRIEE

N

T I

b, x, c} [b, c, y}

&

41/45

Dynamic Programming for PMC

P = {va}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1T 0/ 1 0[2
1. DP for SAT L1 1]2 1J L1 1] 1 ‘J
2. Purge non-solutions
3. Solve PMC via P

N
b, ¢ b, ¢

T T

b, x, c} [b, c, y}

&

41/45

Dynamic Programming for PMC

P = {va}
p=(—avbVvx)A(avb)A(cV-x)N(bV-c)A(—-bV-cV-y)

1T 0/ 1 02
1. DP for SAT L1 1]2 ‘J L1 1] 1 ‘J
2. Purge non-solutions
3. Solve PMC via P

N
b, ¢ b, ¢

T T

b, x, c} [b, c, y}

&

41/45

PMC — Summary

Contribution
» Algorithm for PMC using treewidth with worst-case
runtime 22 - fio| - y(Je)

» Relies on inclusion/exclusion principle
» In the worst-case we require 2% counters for k rows in a table

» Unless ETH fails, there is no algorithm for PMC running in
time 22°™ . |pC.

42/45

Conclusion and Outlook

43/45

Conclusion and Outlook

Lessons learned:
» DP on TD efficient in practice (at least if width not too high)

» However, engineering efforts required

» smart data-structures help a lot (BDDs)
» (simple) DP allows for massive parallelisation
» shape of TD crucial

44/45

Conclusion and Outlook

Lessons learned:

» DP on TD efficient in practice (at least if width not too high)
» However, engineering efforts required
» smart data-structures help a lot (BDDs)

» (simple) DP allows for massive parallelisation
» shape of TD crucial
How to tame high treewidth / performance bottlenecks?
» width-reducing preprocessing
» abstraction / hybrid solving
» relaxed decompositions [Maniu, Senellart, Jog; 2017]
» other type of TD heuristics needed [Jégou, Kanso, Terrioux; 2016]
» lazy materialization of tables in DP

44/45

References

» Gunther Charwat, Stefan Woltran: Expansion-based QBF Solving on Tree
Decompositions. RCRA@AI*IA 2017: 16-26

» Johannes Fichte, Markus Hecher, Michael Morak and Stefan Woltran: Exploiting
Treewidth for Projected Model Counting and its Limits. SAT 2018. To appear.

» Johannes Fichte, Markus Hecher, Stefan Woltran, Markus Zisser: Weighted
Model Counting on the GPU by Exploiting Small Treewidth. Submitted Draft.

45/45

References

» Gunther Charwat, Stefan Woltran: Expansion-based QBF Solving on Tree
Decompositions. RCRA@AI*IA 2017: 16-26

» Johannes Fichte, Markus Hecher, Michael Morak and Stefan Woltran: Exploiting
Treewidth for Projected Model Counting and its Limits. SAT 2018. To appear.

» Johannes Fichte, Markus Hecher, Stefan Woltran, Markus Zisser: Weighted
Model Counting on the GPU by Exploiting Small Treewidth. Submitted Draft.

Thanks for your attention ;)

