Advanced Database Systems

Introduction

WS07/08

Prerequisite of ADS

- You took the course "Datenmodellierung" and "Datenbank Systeme" (both are offered in DBAI for the students at the first and second year's study), or
- You can prove that you have enough background knowledge which covers the above two courses
- Programming language, such as C and basic knowledge on Linux
- Sufficient knowledge on English for reading and writing research papers

Course Goal

- Get an in-depth knowledge on the implementation of relational database systems
- Learning the current state-of-art research topics in database systems
- Practicing skills in conducting your own research work:
 - Reading papers efficiently
 - Writing reviews and surveys
 - Implementation and writing up reports
 - Presentation

Course roadmap

- Relational Database system internals
 - Storage, indexing, query execution and optimization
 - 2 small projects: hacking the real DB system
 - Storage (buffer management)
 - Query execution
- Advanced topics
 - Spatial DB, Similarity search, Data warehousing and data mining, etc.
 - Regularly reading research papers and writing reviews
- Final project
 - There will be a list of topics from which you choose one
 - Write a survey paper, presentation
 - There will be no exam!

Course load

- Homework projects (25%) (Nov., Dec.)
- Reading assignments (35%) (Nov., Dec., Jan.)
- Final project (40%) (Dec., Jan.)
 - Report (25%) (bonus)
 - Presentation (15%)
 - With implementation and analysis of existing algorithms
 - With your own idea of improvement, suggestion (bonus)
 - Implementation of your new idea (double bonus)

History of Relational Database Systems

- In the early days, database applications were built directly on top of file systems
- Drawbacks
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 - Need to write a new program to carry out each new task
 - Data isolation — multiple files and formats
 - Integrity problems
History of Relational Database Systems

- CODASYL: a COBOL extension for manipulating collection of records
- Application programmer needed to know the physical data organization (indexing, etc.)
 - For instance, to join two tables, application programmer had to compose code with nested loops
 - Application programmer carried out the task of query optimization
 - If data changed, the query code had to be changed too

The relational revolution (1970's)

- A simple data model (relation)
- Declarative query language (SQL)
- Application users specify what answers a query should return, not how
- DBMS picks the best execution strategy based on availability of indexes, data/workload characteristics, etc.

 Provides physical data independence

Physical data independence

- Applications should not need worry about how data is physically structured and stored
- Applications should work with a logical data model and declarative query language
- Leave the implementation details and optimization to DBMS
- The single most important reason behind the success of DBMS today

 And a Turing Award for E. F. Codd

Structure of a DBMS

- A typical DBMS has a layered architecture.
- The figure does not show the concurrency control and recovery components.
- This is one of several possible architectures; each system has its own variations.
- All the layers except for "optimization and execution" have to consider concurrent control and recovery.

Advanced database technologies

- Revolution on data models:
 - Object-based data models (Object-oriented and Object-relational)
 - Semi-structured data model (XML)
- Solutions:
 - native systems, build everything from scratch
 - extend relational model with object-oriented and XML features

Advanced database technologies

- The traditional accessing method is inefficient
 - Spatial database
 - How to store geographical objects efficiently?
 - Indexing methods as B-tree and hashing are inefficient for many conventional geo-queries like Nearest-Neighbor queries
 - High-dimensional data, time series
Advanced database technologies

- New queries, more efficient queries
 - Similarity queries
 SELECT *
 FROM Movies
 WHERE star SIMILAR TO 'Schwarrzenger' AND year BETWEEN [1980,1999];

- Similarity queries
 - SELECT avg(amount)
 FROM indivdonations TABLESAMPLE SYSTEM(10)
 WHERE committee_id='C00386987';

Advanced database technologies

- Discover rules and trends over a huge amount of data
 - Data Warehousing
 - Data mining

Advanced database technologies

- Redesign of the query implementation issues due to the improvement of hardware technology
 - Physical storage of data: is it still efficient with actual CPU and main memory? -- new storage models
 - How to do the optimization if no statistic information of relations is available? -- adaptive query processing

Advanced database technologies

- And with Internet application
 - Data integration
 - Stream systems
 - Publish/subscribe systems
 - Sensor databases
 - RFID databases
 - The list goes on

Course Information

- Textbook
 - Recommended reference:
 - Database Management Systems, by Raghu Ramakrishnan, Johannes Gehrke
 - Readings in Database Systems (a.k.a. the "Red Book"), edited by Stonebraker and Hellerstein
 - Major database conferences:
 - Sigmod, VLDB, ICDE
 - DBLP bibliography
 - ACM Digital library
 - Website
 (http://www.dbai.tuwien.ac.at/staff/wei/teaching/ads0708/)
Assignments

- Reading assignments posted on the website.
- Prepare for your homework projects:
 - Download PostgreSQL (source code)
 - Try to install it on your computer
 - Recall some programming concepts, if you have not written code for some time
- Prepare yourself with reading about the data storage management, buffer management and indexing, so that the basic parts can be skipped quickly
- Here is another interesting article about the history of System R, the first Relational Database System (http://www.mcjones.org/System_R/SQL_Reunion_95/)