
Theoretical Computer Science 275 (2002) 463–479
www.elsevier.com/locate/tcs

∀∃5-equational theory of context uni&cation is
undecidable�

Sergei Vorobyov ∗

Computing Science Department, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden

Received 15 February 2000; revised 15 March 2001; accepted 15 March 2001
Communicated by U. Montanari

Abstract

Context uni!cation is a particular case of second-order uni!cation in which all second-order
variables are unary and only linear functions are sought for as solutions. Its decidability is
an intriguing open problem, with only a very weak known NP-lower bound. We present the
simplest (currently known) undecidable quanti&ed fragment of the theory of context uni!ca-
tion by showing that the set of ∀∃5-quanti&ed context equations (i.e., sentences of the form
∀W ∃U; V; S; G; H s = t) is undecidable and, in fact, is co-recursively enumerable hard (i.e., ev-
ery set with recursively enumerable complement is many-one reducible to it). c© 2002 Elsevier
Science B.V. All rights reserved.

Keywords: Context uni&cation problem; Second-order uni&cation; Word uni&cation; Equational
theory; Quanti&ed fragments; Undecidability; Operator algorithms

1. Introduction

The Context Uni!cation Problem (CUP for short) is:
• A generalization of the celebrated Markov–L?ob’s problem of solvability of equations

in a free semigroup proved decidable by Makanin [1]; CUP coincides with this

� This paper is a ‘signi!cantly’ revised version of a preliminary report, which appeared under the
title‘∀∃∗-Equational Theory of Context Uni&cation is
0

1-Hard’ in the Proceedings of the 23rd International
Symposium on Mathematical Foundations of Computer Science (MFCS’98, Brno, Czech Republic, August
1998), Lecture Notes in Computer Science, vol. 1450, 1998, pp. 597–606 (Vorobyov, 1998). The preliminary
version contained a weaker result on undecidability of the ∀∃8-equational theory, obtained by a diGerent
method. A sketch of the proof presented here was reported at the Constraints in Computational Logic
Workshop (CCL’98), Jerusalem, September 1998. Work partially done at the Max-Planck-Institut f?ur
Informatik, Saarbr?ucken, Germany.

∗ Tel.: +46-18-471-10-55; fax: +46-18-51-1925 WWW: http://www.csd.uu.se/˜ vorobyov.
E-mail address: vorobyov@csd.uu.se (S. Vorobyov).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00190 -6

464 S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479

problem for monadic signatures, consisting of function symbols of arity at most
one.

• A specialization of the Second-Order Uni!cation Problem (SOUP for short), known
to be undecidable due to Goldfarb [2] and improved by Farmer [3]. CUP is almost
SOUP, but with only unary function variables allowed and solutions required to be
linear, i.e., of the form �x:t(x), where t(x) contains exactly one occurrence of x.

Context uni&cation is useful in diGerent areas of Computer Science: term rewriting
and constraint solving (satis&ability of one-step rewrite constraints), theorem proving,
equational uni&cation (decidability of distributive uni&cation), computational linguistics
(semantic underspeci&cation of natural languages); (see [4–7]).

CUP is formally stated as follows:
Given a pair of terms t; t′ built as usual from symbols of a signature �; !rst-
order variables Nw; and unary function variables NF; does there exist an assignment
� of terms to Nw and linear second-order functions to NF such that t �= t′ �?

Thus, CUP is a decidability problem for the existentially quanti&ed equations (∃∗-
equational theory) of the form

∃ NF ∃ Nw t = t′; (1)

where the quanti&ed context variables NF range over linear functions.
Currently the decidability of CUP is an intriguing open problem [4–6]. Most re-

searchers conjecture and hope that CUP is decidable. All the above papers provide
some approximations: either prove decidability of particular cases, or settle undecidabil-
ity of some generalizations, or provide technical results towards decidability of CUP.
It is worth noting that only a very weak NP-hardness is currently known as a lower
bound for the problem, with a very simple proof by reduction from 1-IN-3-SAT [6].

Presumably, CUP is very hard to settle, both in decidable and undecidable sense.
This is because CUP lies between a technically diPcult decidable case of equations
in free semigroups (Markov-L?ob’s problem proved decidable by Makanin [1], and the
undecidable case of SOUP settled by Goldfarb [2] and reinforced by Farmer [3]).
Goldfarb–Farmer’s results are also technically quite diPcult.

Goldfarb [2] demonstrated that SOUP is undecidable for second-order languages
containing at least one function constant of arity ¿ 2 and &nitely many unary and
ternary function variables. Later Farmer [3] improved it by showing that SOUP remains
undecidable in presence of unary function variables only (but, unlike CUP, substitutions
looked for are not required to be linear; in fact, they are not linear in Farmer’s
proof). It follows from the result of Makanin [1] that SOUP is decidable when all
variable and constant function symbols are unary. Farmer [8] improved this by showing
that decidability is preserved if n-ary function variables are allowed in addition to
constant function symbols of arity at most one. Recently, further re&nements of the
SOUP undecidability, with restrictions on the numbers of functional variables and their
occurrences, were obtained by Levy and Veanes [9].

Thus, CUP represents the only unknown remaining diPcult intermediate case be-
tween decidable word equations and undecidable SOUP (unary function variables, n-ary

S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479 465

function constants, linear solutions). This explains why the progress on CUP has been
quite slow. Indeed, decidability of CUP would considerably improve Makanin’s result,
whereas undecidability would considerably improve Goldfarb–Farmer’s undecidability
of SOUP.

In this paper we show that adding just one outermost universal quanti&er to context
equations (1) leads to the
0

1 -hard (w.r.t. many-one reducibility) class of formulas,
where
0

1 is the class of all co-recursively enumerable sets.
For comparison, the following undecidability results were previously known about

quanti&ed fragments of context uni&cation, and theories of free semigroups as a par-
ticular case. Quine [10] showed that the full &rst-order theory of free semigroups is
undecidable (this corresponds to the CUP in unary signatures). Durnev [11] improved
it to the undecidability of ∃∀∃3-positive (without negation, but with ∧ and ∨) theory
of free semigroups. Marchenkov [12] improved it to the undecidability of ∀∃4-positive
theory of free semigroups. Finally, Durnev [13] improved it even further to undecidabil-
ity of ∀∃3-positive theory of free semigroups. Niehren et al. [5] showed undecidability
of the ∃∗∀∗∃∗-theory (when all connectives ∨, ∧, ¬ are allowed) of context uni&ca-
tion. For comparison, we prove a stronger undecidability of the sentences of the form
∀W ∃U; V; S; G; H s= t, i.e., our undecidability result holds for the positive theory with
a simpler quanti&er pre&x and not using any boolean connectives.

As to relation to the undecidability results of the positive ∃∀∃3-, ∀∃4-, and ∀∃3-
theories of free semigroups, it should be noticed that all known methods to transform
a positive formula of the theory of free semigroups into just one equation require a
considerable number of auxiliary existentially quanti!ed variables (see, e.g., [14, 15]),
depending on the number of disjunctions involved. Thus the undecidability results of
Marchenkov [12], Durnev [15] for ∀∃4- and ∀∃3-positive theories of free semigroups
yield only undecidability of the ∀∃n-equational theories of free semigroups with a very
large number n of existentially quanti&ed variables, see Durnev [15].

In this paper we show that the situation with context equations is quite diGerent,
and just two extra existentially quanti&ed context variables suPce to eliminate all
disjunctions. This, together with a direct reduction from the halting problem for operator
algorithms to the ∀∃3-positive fragment, gives the undecidability of the ∀∃5-equational
theory of context uni&cation, with a reasonably simple quanti&er pre&x.

The main result of this paper may now be stated as follows.

Main Theorem. For every !nite signature consisting of ¿ 1 binary, ¿ 2 unary, and
¿ 1 nullary function symbols one can construct a context equation E(p;W;U; V; S; G;
H) with parameter p and context variables W; U; V; S; G; H such that the set of
true sentences of the form

∀W ∃U; V; S; G; H E(p;W;U; V; S; G; H) (2)

is
0
1 -hard (i.e., every co-r.e. set is many-one reducible to it), as p ranges over !nite

terms constructed from unary functions and constants (i.e., !nite words).

466 S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479

It follows, in particular, that the ∀∃5-equational theory (without ∧; ∨; ¬) of context
uni&cation is undecidable. This improves over the author’s previous result on undecid-
ability of the ∀∃8-equational theory of context uni&cation [16, 17], as well as over the
undecidability of the ∃∗∀∗∃∗-fragment due to Niehren et al. [5].

Remark. The restrictions on the signature in the statement of the Main Theorem are
essential in the following sense. If all function symbols are at most unary, then we
are in the case of free semigroups discussed above, and the best known result is
due to Durnev [15] for ∀∃n-quanti&ed equations with very large n. If, instead of a
binary, one only has a k¿2-ary symbol h, the existential quanti&er pre&x becomes
more complicated. This is because one needs k variables to say ‘X contains h’ by
∃U1; : : : ; Uk h(U1; : : : ; Uk); see Section 3. The requirement about presence of constants
is technical: to speak about the validity of ∀∃5-sentences we need a model (class of
models). To simplify matters we use the standard Herbrand universe of closed (ground)
terms, and the presence of a constant is necessary for nonemptiness of this universe
(we could have used the class of all freely generated models instead).

Warning: We would like to stress that in this paper we do not intend to improve the
undecidability results of Marchenkov [12] and Durnev [13] for ∀∃4- and ∀∃3-positive
theories of free semigroups as to minimizing the number of existential quanti&ers.
However, we do get an improvement (in a diGerent framework of context uni&cation,
of course) as to simplicity of the existential pre&x in the undecidable ∀∃∗-equational
theory of context uni&cation. As we mentioned above, all known methods of eliminat-
ing disjunctions from positive formulas in free semigroups use a considerable number
of auxiliary existentially quanti&ed variables, proportional to the number of disjunctions
to be eliminated [15]. We show that in context uni&cation just two extra variables are
enough. We do not claim that the quanti&er pre&x we obtain is minimal. We rather
tried to keep proofs intuitive and transparent.
One more note on relation to word equations: As soon as CUP is closely related
to Markov–L?ob’s problem on solvability of word equations, several further remarks
on its complexity=decidability are in order. The only known nontrivial lower bound
for word equations is NP. All known decision procedures for word equations (e.g.
[18, 19]) are modi&cations and improvements of Makanin [1], one of the most com-
plicated and subtle algorithms in Computer Science, with the key idea (bounding the
exponent of periodicity) remaining always the same. Complexity analysis of Makanin’s
algorithm has known a series of improvements over the time: Makanin himself did not
give any complexity bounds, JaGar [18] gave a 4-DEXPTIME upper bound, KoTscielski
and Pacholski [20] improved it to 3-NEXPTIME. Recently GutiTerrez [21] obtained the
EXPSPACE upper bound, and as the last achievement. Plandowski [22] improved it
to the PSPACE upper bound (using an algorithm diGerent from Makanin’s). Recently
Schmidt-SchauU and Schulz [6] tried to generalize Makanin’s algorithm to context uni-
&cation. They succeeded to implement the easier part of Makanin’s program: to show
that whenever a context equation has a solution, it has a solution of bounded exponent

S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479 467

of periodicity, computable from the size of equation. The second, more complicated,
step would consist in developing generalized context equations and their transforma-
tions, similar to Makanin’s, and demonstrating that the number of boundary equations
imposes a lower bound on the exponent of periodicity. If successful, both ideas to-
gether will prove decidability of the CUP (again along Makanin’s ideas). Currently it
is unclear whether this program is achievable.

Paper outline. After Section 2 with preliminaries, in Section 3 we prove undecidabil-
ity of the positive ∀∃3-theory of context uni&cation. Section 4 contains a technical
development preparing disjunction elimination in Section 5.

2. Preliminaries

Context uni!cation: Let � be a &xed &nite signature with each symbol assigned a &xed
non-negative arity, containing at least one constant symbol ”. Let X be an in&nite set
of &rst-order variables and F= {F;G; : : :} be an in&nite set of function variables of
arity one, also called context variables.

De�nition 2.1 (Terms). The set T(�; X) of terms of signature � with variables from
X is de&ned as usual: variables from X are terms and for f∈� of arity n ¿ 0 an
expression f(t1; : : : ; tn) is a term whenever the ti’s are terms.

We assume all the standard de&nitions and conventions concerning �-notation, like
�-reduction, normalization, substitutions, etc. Substitutions will be denoted by Greek
letters �; � .

De�nition 2.2 (Contexts). A context is an expression of the form �x:t(x); where
t(x)∈T(�; {x}) contains exactly one occurrence of the variable x. A context with
�-normal form �x:x is called empty.

Remark. Note that the ‘exactly one’ requirement, absent from the de&nition of SOUP,
is a characteristic feature of CUP, distinguishing it from SOUP.

De�nition 2.3 (Context terms). Context terms are de&ned inductively: if �∈� ∪ F

is n-ary and t1; : : : ; tn are context terms, then �(t1; : : : ; tn) is also a context term.

Notational conventions: To simplify notation, let us agree, in writing terms, contexts,
and context terms with unary function symbols and unary function variables, to omit
parentheses and the constant ” (sometimes).

Thus, for example, 01; S0; 0S abbreviate, respectively, 0(1(”)); S(0(”)), 0(S(”)). As
usual, 0p and Sp for a natural p mean 0 : : : 0︸ ︷︷ ︸

p times

and S : : : S︸ ︷︷ ︸
p times

respectively. Such abbreviations

will be always transparent, improve readability, and the strict bracket structure can be

468 S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479

always unambiguously restored. Context variables will always be denoted by capital
Latin letters. We reserve f to denote a binary function symbol.

De�nition 2.4 (CUP; context equations). An instance of CUP, also called a context
equation (CE for short), is an expression 1

?= 2, where 1; 2 are context terms. A

solution to a CE 1
?= 2 is a substitution � of &rst-order terms for &rst-order variables

and contexts for context variables such that 1 �≡� 2 � (equality of substitutional
instances modulo the usual �-reduction).

Remark. The requirement of replacing functional variables with contexts, as opposed
to arbitrary second-order �-terms, distinguishes CUP from SOUP. When this require-
ment is dropped, the problem becomes undecidable [3].

3. Undecidability of the positive ∀∃3-theory of context uni�cation

In this section we prove that the positive ∀∃3-theory of context uni&cation is un-
decidable in signatures �1 = {”; 0(); 1()} and �2 = {”; 0(); 1(); f(;)}, where ” is
nullary (denotes the empty word), 0(), 1() are unary (denote letters 0 and 1), and
f(;) is binary. Our proof easily generalizes to other &nite signatures containing �1,
but the number n of existentially quanti&ed variables in the pre&x ∀∃n increases when
dealing with function symbols of arity ¿ 2.

The proof in this section follows the ideas and reductions from Marchenkov [12],
Durnev [15]. However, our proof deals with a diGerent framework of function symbols
of arity ¿ 2. Additionally, we use a simpler formula format, which will allow us to
get rid of disjunctions more easily, by using just two auxiliary existentially quanti&ed
variables, and to prove undecidability of the equational ∀∃5-theory of context uni&ca-
tion, i.e., of formulas of the form ∀∃5s= t in Section 5 (as contrasted with ∀∃n for
very large n undecidability for free semigroups; see Introduction).

Theorem 3.1. The positive ∀∃3-theory of context uni!cation is undecidable in signa-
tures �1 = {”; 0(); 1()}; �2 = {”; 0(); 1(); f(;)}; as well as in any !nite signature
extending �1 with function symbols of arity 62.
More generally; let � be a !nite extension of �1 with function symbols of ar-

ity at most k. Then the positive ∀∃max(3; k+1)-theory of context uni!cation in � is
undecidable.

Proof. For simplicity, we work with a &nite signature � extending �2 with &nitely
many unary symbols a2; : : : ; an. It will be clear (and we will add necessary com-
ments) how the proof extends to other signatures mentioned in the statement of the
theorem. Proving the claim for the extension of �1 with a binary function symbol is
necessary for establishing the Main Theorem by eliminating disjunctions in Section 5.

S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479 469

Instead of the traditional scheme of proving undecidability by reduction from the
halting problem for Turing machines, we will use a more convenient (for our purposes)
reduction from the undecidable problem of (non-) applicability of operator algorithms
de&ned shortly.

As in Marchenkov [12], Durnev [15], let A be an operator algorithm (!xed in the
sequel) with a nonrecursive, even r.e.-complete or �0

1-complete, domain dom(A). The
existence of such algorithms is proved, e.g., in Mal’cev [23], and is brieWy sketched
below. Recall that an operator algorithm consists of m commands numbered consecu-
tively from 1 to m, with the unique Stop command numbered m. The other commands
have one of the following three forms:
• [×2] — multiply a given number by 2 and proceed to the next command,
• [×3] — multiply a given number by 3 and proceed to the next command,
• [: 6; j] — if a given number is a multiple of 6, then divide it by 6 and proceed

to the command numbered j (16j6m); otherwise do not change the number and
proceed to the next command.
The algorithm A is applicable to a given input natural number x0 ¿ 0 iG there exists

a sequence, called a correct run

(x0; i0); (x1; i1); (x2; i2); : : : ; (xt ; it) (3)

such that i0 = 1; it =m (the number of Stop), and for all 16s6t an application of the
command number is−1 to xs−1 gives xs and next command number is. Additionally,
is
=m for 16s¡t. Informally, A is applicable to x0 if there exists a correct terminating
run of A starting from x0.

To make the paper self-contained, we sketch a representation of an arbitrary two-
register machine (a well-known universal computational formalism; see Minsky [24])
by means of an operator algorithm. Recall that a two-register machine has two registers
(left and right) and the commands Stop, AL, AR (adding one to the contents of the
left or right register, respectively), SL j; SR j (subtract one from the contents of the
left=right register, if it is positive, and go to the command number j; otherwise proceed
to the next command).

We represent the contents 〈p; q〉 of the two registers as the number 2p·3q. The
commands representing the AL and AR commands are, respectively [×2] and [×3].
Representing the conditional register subtraction commands by commands of an oper-
ator algorithm is only slightly more complicated. A command SL j is represented by
a sequence of four operator commands

[×3]; [: 6; j′]; [×2]; [: 6; k];

where j′ is the number of operator command starting the representation of the two-
register machine command numbered j (as we use more operator commands in mod-
eling, the systematic renumbering is necessary), and k is the number of command
following the sequence. It is easy to see that the sequence above transforms 2p·3q

&rst to 2p·3q+1, then to 2p−1·3q (if p¿0) and proceeds to j′; if, on the other hand,
p= 0 then 2p·3q+1 is transformed to 2p+1·3q+1 and then to 2p·3q with control passing

470 S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479

to the next command numbered k following the sequence. As a result, we can ade-
quately model the behavior of the conditional subtracting command and an arbitrary
two-register machine. Therefore, all standard recursion-theoretic results (like existence
of algorithms with complete r.e.-domains needed for our purposes) follow for opera-
tor algorithms. The choice of operator algorithms (in favor of two-register machines)
for our proof is motivated by the fact that a state of an operator algorithm (just one
number) is easier to represent and analyze (for divisibility) as a word (a term built of
unary function symbols) than a state of a two-register machine (two numbers).

Let us represent a sequence (3) representing a correct run of the operator algorithm
A (&xed with a complete r.e.-domain) by the following term 1

1 0x0+11i0+)0m0x1+11i1+)1m0x2+11i2+)2m : : : 0xt+11m+)tm; (4)

where)i = 0 if 6 divides xi and)i = 1 otherwise (for i = 0; : : : ; t). Thus (with the
exception of the &rst 1) the term (4) represents the sequence of states of A as alternating
groups of zeros (representing the counter contents) and ones (representing the command
counter). The role of)i’s consists in encoding whether the corresponding number is
divisible by 6. If it is then the command counter i is encoded as 1i, otherwise i is
encoded as 1m+i. This idea due to Durnev allows for writing easier formulas with fewer
quanti&ers to express incorrectness of every ground term representing a potential run
of A; see below.

For a natural k, denote by r ≡ rk [W] the term with one context variable W : 2

1. r ≡ 1 0 k+110W (”), if k is divisible by 6,
2. r ≡ 1 0 k+111+m0W (”), if k is not divisible by 6.
Informally, rk [W] top-level matches with any run (correct or incorrect) starting with
the input number k.

Analogously to [15], let us construct a positive 3 ∀∃3-sentence of the theory of
context uni&cation

∀W∃U; V; S +(rk [W]; U; V; S); (5)

which asserts that the algorithm A is inapplicable to k. The latter means that there are
no ground terms representing a correct run of A starting with k, or, equivalently, every
ground term represents an incorrect run, violating some correctness conditions.

Consequently, our reduction proceeds from the complement of the r.e.-complete set
dom(A), thus proving
0

1 -hardness of the positive ∀∃3-theory of CU, and later in
Section 5 of the equational ∀∃3-theory of CU, according to the following scheme:

0
1 ≡ �0

1 6m dom(A) 6m positive ∀∃3-theory of CU

1 Similar to the word from Durnev [15], but starting with 1; this allows us to write more simple, intuitive,
and short formulas.

2 We could have used a &rst-order variable w and write w instead of W (”).
3 I.e., built of conjunctions, disjunctions, and equalities.

S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479 471

(Here: (1) dom(A) is r.e.-complete, or �0
1-complete, by assumption, (2) consequently,

dom(A) is co-r.e.-complete, or
0
1 -complete, (3) 6m is the usual many-one reducibility;

see Rogers [25], for details.)
Clearly, it is enough to construct the formula ∃ S; U; V +(r[W]; U; V; S) asserting that

r ≡ rk [W] does not have form (4) for every possible ground substitution for W . Let
+ be the disjunction of the following formulas enumerated in 1–8 below.

1. r contains an occurrence of a unary function symbol ai (for some 36i6n)

n∨
i=2

r = UaiV:

(This is unneeded in the case of signatures �1; �2 containing just two unary
symbols 0 and 1.)

2. r contains an occurrence of f (unneeded in the case of �1):

r = U (f(V (”); S(”))):

(Clearly, we would need more variables, hence a longer existential quanti&er
pre&x, for f of higher arity. For example, if it were ternary, we would need to
write r =U (f(V (”); S(”); Q(”))).)

3. r does not end with 01m, nor with 01m+m:∨
16i¡m

r = U01i ∨ ∨
16i¡m

r = U01i+m ∨ r = U12m+1:

4. r contains 12m+1 (note that it subsumes the last disjunct in the preceding formula,
which therefore may be omitted)

r = U12m+1V:

5. r contains 1m or 12m not in the end:

r = U01m0V ∨ r = U012m0V:

Note: that if r satis!es none of the preceding formulas, then it has form

r ≡ 1 0x0+11j00x1+11j1 : : : 0xt+11jt

for some natural x0; x1; : : : ; xt , j0; j1; : : : ; jt such that x0 = k, 16jl62m (06l6t),
jt is either m or 2m; jl is diGerent from m and 2m for l¡t, j0 is either 1 (if 6
divides k = x0) or 1 + m (if 6 does not divide k = x0).

6. Recall that if 6 divides xl, then 16jl6m; otherwise, m + 16jl62m. This con-
dition is violated by the following formula: 4

0S = S0 ∧
(
r = U10S61m+m ∨ ∨

16p65 r = U100pS61m ∨

4 Clearly, any solution for the auxiliary conjunct 0S = S0 here is of the form �x:0k (x). It is precisely the
role of this conjunct to guarantee that S is substituted by a sequence of zeros.

472 S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479

∨
16i¡m

r = U10S61i+m0V ∨ ∨
16p65; 16i¡m

r = U100pS61i0V

)
:

7. For every i, which is a number of the command [×d], where d= 2; 3, write a
formula saying that r contains an incorrect application of this command: either
the result is incorrect, or the number of the next command is incorrect. Such a
formula is written in the form 0S = S0∧ (.1 ∨.2), where .1 says that the result
is incorrect, and .2 says the result is correct, but the next command number is
computed incorrectly.
The formula .1 is as follows:∨

p=0;1;16q¡d r = U01i+pm0Sd0q1V ∨ ∨
p=0;1 r = U00S1i+pm0Sd1V ∨∨

p=0;1
r = U1S01i+pm0Sd0V

(the &rst
∨

says that the result is not divisible by d; the second that the result is
too small; third that the result is too large).
The formula .2 is as follows:

∨
p=0;1;q=0;1;16j6m;j �=i+1

(
r = U10S1i+pm0Sd1j+qm0V ∨
r = U10S1i+pm0Sd1j+qm

)
:

8. For every i, which is a number of the command [: 6; j], write a formula saying
that r contains an incorrect application of this command: either the result is
incorrect, or the number of the next command is incorrect.
This formula has form 0S = S0∧ (.1 ∨.2 ∨.3 ∨.4), where:
(a) .1 says that although the number is divisible by 6, the division result is

computed incorrectly, too large or too small, respectively

r = U10S61i00SV ∨ r = U00S61i0S1V ;

(b) .2 says that although the number is not divisible by 6 5 (and therefore should
not be changed), it increases or decreases, respectively

r = U1S1i+m0SV ∨ r = U0S1i+mS1V ;

(c) .3 says that the next command number is incorrect (should be j when applied
to a multiple of 6)∨
q �=j;p=0;1

(r = U01iS1q+pm ∨ r = U01iS1q+pm0V);

(d) .4 says that the next command number is incorrect (should be i + 1 when
applied to a number not divisible by 6)

5 Recall that non-divisibility is encoded into the command number representation 1i+m, and S is composed
of zeros.

S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479 473

∨
q �=i+1

(r = U01i+mS1q+m ∨ r = U01i+mS1q+m0V):

This &nishes the construction of the sentence (5). The claim of Theorem 3.1 now
follows from the assumption that the operator algorithm A has a complete r.e.-domain.
Since the sentences (5) assert non-applicability of A to input natural numbers, the set
of all true such sentences forms a co-r.e.-hard set.

4. Equalizing left-hand sides

The proof of Theorem 3.1 shows undecidability of the set of positive ∀∃3-sentences
of the theory of context uni&cation of the form

∀W∃U; V; S

(
N ′∨
i=0

r = ti ∨
[
0(S(0)) = S(0(0)) ∧

(
N∨

i=N ′+1
r = ti

)])
;

where r≡ r[W]≡ 10k+110W (0) or r≡ r[W]≡ 10k+111+m0W (0) (depending on whether
6 divides k; see (4)), and the terms ti are explicitly enumerated in the proof of Theo-
rem 3.1.

Our aim in this section consists in transforming the last formula into an equivalent
form (6) below, with disjunctive matrix and every equation containing the same term
on the left-hand side. This will allow us to eliminate disjunctions in the next section
more easily.

Rewrite the last formula in equivalent form conjoining the vacuously true 0(S(0)) =
0(S(0)) to the &rst N ′ + 1 disjuncts:

∀W∃U; V; S

[
N ′∨
i=0

(r = ti ∧ 0(S(0)) = 0(S(0)))∨

N∨
i=N ′+1

(r = ti ∧ 0(S(0)) = S(0(0)))
]
:

Rewrite further the last formula in equivalent form, by using the simple fact that
s1 = u1 ∧ s2 = u2 iG f(s1; s2) =f(u1; u2), as follows: 6

∀W∃U; V; S

[
N ′∨
i=0

f(r; 0(S(0))) = f(ti; 0(S(0))) ∨

N∨
i=N ′+1

f(r; 0(S(0))) = f(ti; S(0(0)))
]
:

6 Although we use a binary function symbol f here, it is inessential. In fact, there is a well known trick
to do the same without binary symbols, since s = s′ ∧ t = t′ is equivalent to satsbt = s′at′s′bt′, where a, b
are diGerent function symbols of arity 1. However, the construction in the following section seems crucially
dependent on the use of a function symbol of arity ¿ 2.

474 S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479

Now, all left-hand sides in the equalities in disjunctions of the last formula are the
same, as desired. We can rewrite it as

∀W∃U; V; S
(

N∨
i=0

f(r; 0(S(0))) = t′i

)
; (6)

where t′i are constructed (as shown in the preceding formula) from ti explicitly enu-
merated in the proof of Theorem 3.1. It is important to note here (for the further
development) that:
1. every t′i contains at least one occurrence of S,
2. the number of disjuncts N + 1 in (6) is suAciently large; we will rely on the fact

that N ¿ 1.
These facts immediately follow from our construction and the proof of Theorem 3.1

(by inspection). They will simplify our aim of getting rid of disjunctions in the next
section.

5. Eliminating disjunctions with two extra context variables

In this section we show that just two extra existentially quanti&ed context variables
suPce to eliminate all disjunctions from the formula (6), independently of their (&nite)
number, provided we have a binary function symbol. This contrasts with the case of free
semigroups, where the number of existentially quanti&ed variables grows proportionally
(logarithmically at best) with the number of disjunctions needed to be eliminated; see
Durnev [15]. In fact, B?uchi and Senger [14] describe a method using about 40 auxiliary
existentially quanti&ed variables to eliminate a single disjunction. Durnev [15] improves
this number to 4.

Our disjunction elimination method is described by the following lemma. Let []
denote the empty list 0 and [x0; x1; : : : ; xN] =f(x0; [x1; : : : ; xN]), where f is binary (our
method easily generalizes for a symbol of any arity ¿2). Suppose for convenience that
a is an extra unary function symbol. In fact, we may use an appropriate context, like
�x:0(f(1(x); 1(0))), constructed of 0, 0, 1, and f instead of �x:a(x). Recall that our
operator algorithm A is &xed, and we make reference to the corresponding &xed terms
ti and t′i describing its incorrect runs and enumerated in the proofs of the previous
sections.

Lemma 5.1. Let � be the substitution {t′i =xi}Ni=0; where t′i ’s are the terms in formula
(6). 7 Consider the system of two context equations:

7 All starting with f. Recall that t′i ’s are non-ground.

S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479 475

G(a(H (a))) = [a((�x0:[x0; : : : ; xN])a);
: : :

a((�xi:[x0; : : : ; xN])a);
: : :

a((�xN :[x0; : : : ; xN])a)]�;

(7)

H (f(r; 0S)) = [x0; : : : ; xN]� ≡ [t′0; : : : ; t
′
N]: (8)

For every ground term r of signature �2 the following claims are equivalent:
1: the system (7); (8) has a solution;
2: r is an incorrect run of the operator algorithm A.

Intuitive explanation. The term on the right of (7) is:

[a [a; t′1; : : : t′i ; : : : t′N];
a [t′0; a; : : : ; t′i ; : : : ; t′N];

: : :
a [t′0; t

′
1; : : : ; a; : : : ; t′N];

: : :
a [t′0; t

′
1; : : : ; t′i ; : : : ; a]]

(9)

with a (being a shorthand for a(0)) on the diagonal.
We use a special ‘grid’ structure of (9) to model disjunction (recall that all t′i start

with f).

Proof. The direction 1. ⇐ 2. is straightforward. Assume a ground term r is an incorrect
run of the operator algorithm A for the reason it satis&es the ith disjunct in (6), for
06i6N . Let the substitution � ≡{Gi=G; Hi=H}, be de&ned by

Gi = �u: [a((�x0:[x0; : : : ; xN])a);
: : :

a((�xi−1:[x0; : : : ; xN])a);
u;

a((�xi+1:[x0; : : : ; xN])a);
: : :

a((�xN :[x0; : : : ; xN])a)]�;

(10)

Hi = (�yi:[x0; : : : ; xi−1; yi; xi+1; : : : ; xN])�;

where u, yi are fresh variables.
Clearly, applying this substitution � to (7) yields the identity. Moreover, by substi-

tuting Hi for H in (8) we obtain

[t′0; : : : ; t
′
i−1; f(r; 0S); t′i+1; : : : ; t

′
N] = [t′0; : : : ; t

′
i−1; t

′
i ; t

′
i+1; : : : ; t

′
N];

which has a solution by our assumption that r is an incorrect run of the opera-
tor algorithm A, satisfying the ith disjunct of (6). Thus the system (7), (8) has a
solution.

476 S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479

For the opposite direction 1. ⇒ 2. in Lemma 5.1 we prove the following (contra-
positive)

Lemma 5.2. Let r be a correct run of the operator algorithm A. Then the system
(7); (8) has no solutions for context variables G;H;U; V; S.

Proof. The system (7), (8) cannot have solutions of the form (10), because the oppo-
site would mean that r is an incorrect run (see the previous proof).

Let us consider other ‘possible’ solutions � to (7), (8), i.e., substitutions satisfying
simultaneously

G(a(H (a)))� = [a [a; t′1; : : : t′i ; : : : t′N];
a [t′0; a; : : : ; t′i ; : : : ; t′N];

: : :
a [t′0; t

′
1; : : : ; a; : : : ; t′N];

: : :
a [t′0; t

′
1; : : : ; t′i ; : : : ; a]] �;

H (f(r; 0S))� = [t′0; t
′
1; : : : ; t′i ; : : : ; t′N] �:

(11)

Such ‘possible’ solutions 8 � split into the following two remaining cases (besides
the already considered case (10) corresponding to incorrect runs), depending on how
the boldface and italic occurrences a and a on the left-hand side of the &rst equation
match with right-hand side occurrences. Note that in the case (10) the boldface a on
the left matches one of the a’s on the right, say in line i, and the italic a on the left
matches the shown italic occurrence of a in the same line i.
Case 1: The boldface occurrence a from the left-hand side G(a(H (a))) of the &rst

equation in (11) matches with one of the boldface occurrences a on the right-hand side
(let it be the ith occurrence of boldface a on the right). At the same time, the italicized
occurrence a from G(a(H (a))) does not match the corresponding a on the right shown
in the same ith line, matching instead within jth term, where j
= i (otherwise we have
a solution of the form (10) meaning that r is an incorrect run; see the previous proof).

Therefore, by analyzing the &rst equation of (11), a ‘possible’ solution for H is
either

�z:[: : : a︸︷︷︸
i

; : : : ; t′j�[z=a(0)]; : : :] or �z:[: : : ; t′j�[z=a(0)]; : : : ; a︸︷︷︸
i

; : : :]

with i
= j, and [z=a(0)] (ambiguously) meaning the replacement of exactly one occur-
rence of a(0) with z.

It is easily seen that none of such solutions can satisfy the second equation of (11),
because t′i� (on the right of this equation) cannot be equal for any � to a≡ a(0) in
the ith position on the left, since all the terms t′i start with function symbol f; see (6)
and the formula preceding (6).

8 We show below that such solutions are in fact impossible.

S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479 477

Case 2. The whole subterm a(H (a)) on the left-hand side of the &rst equation in
(11) matches with some proper 9 subterm of t′k� on the right, for some 06k6N . In
other words, neither a, nor a in a(H (a)) on the left matches a visible a or a on the
right of the &rst equation of (11).

By assumption that r is a correct run, the term f(r; 0S) cannot match any of t′j�
in the second equation of (11), because the opposite would mean that the run r is
incorrect containing some forbidden pattern enumerated in the proof of Theorem 3.1.
Therefore, in order to satisfy the second equation in (11), H should be substituted by
any ‘possible’ solution � with

�x:[q0; : : : ; ql(x); : : : ; qN]

for some 06l6N , qi ≡ t′i� , for i∈{1; : : : ; l − 1; l + 1; : : : ; N}, and ql(x)
≡ x. Let pi

denote the number of occurrences of a in qi.
Since the whole subterm a(H (a)) on the left of the &rst equation in (11) matches

with some proper subterm of t′k� on the right (the case we analyze), the term t′k�
should contain a[q0; : : : ; ql(a); : : : ; qN] as a proper subterm. Let us show that this con-
dition cannot yield a solution.
1. Suppose, k
= l. Then t′k� properly contains qk , and therefore the second equation

in (11) cannot be satis&ed, because it requires qk = t′k� .
2. If k = l, then t′k� properly contains aHa≡ a[q0; : : : ; qk(a); : : : ; qN]. Thus t′k� con-

tains at least
∑N

i=0 pi +2 occurrences of a. On the other hand, to satisfy the second
equation of (11) we should have

qk(f(r; 0S�)) = t′k�: (12)

Note that qk(f(r; 0S�)) contains at most pk + s occurrences of a, where s is the
number of occurrences of a in S� , (compared with

∑N
i=0 pi + 2 on the right),

because r is a correct run containing no a’s at all. Hence, the equality (12) cannot
hold, because its left-hand side should contain fewer occurrences of a than the
right-hand side. Indeed (1) if s= 0, clearly pk¡

∑N
i=0 pi + 2; (2) if s¿0, then

also pk + s¡
∑N

i=0 pi + 2, because every pi ¿ s (since each t′i contains at least
one occurrence of S by construction; see (6) and the formula preceding (6)), and
N ¿ 1 (see the concluding remarks in the end of Section 4).

Therefore, the system of context equations (7), (8) (equivalent, by using a binary
function symbol f, to just one equation) has no solutions. This &nishes the proof of
Lemmas 5.1, 5.2, and concludes the proof of the main claim of this paper.

6. Conclusions

In this paper we showed undecidability of the ∀∃5-equational theory of context uni-
&cation. Decidability of the genuine CUP, i.e., existential equational theory of context

9 Recall that all t′i start with f.

478 S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479

uni&cation, remains a fascinating open problem. The long-standing unresolved status
and hardness of the latter problem may be explained by the fact that it lies between
technically diPcult: (1) decidable case of word equations (Makanin) and (2) undecid-
able case of second-order uni&cation with unary variables (Goldfarb–Farmer).

Our result provides for the simplest currently known quanti&er pre&x for which
context uni&cation is undecidable. Compared with free semigroups, our undecidability
result holds for the same ∀∃3-pre&x when positive theories are concerned, but we get
a considerable improvement of ∀∃5-for equational theories, due to the novel method
of eliminating arbitrary many disjunctions by using just two extra existential context
variables (in presence of a function symbol of arity ¿ 2).

As problems for further research let us mention the following ones:
1. Improving (if possible) a weak NP-lower bound for the CUP inherited from word

equations. This may justify the intuitive inherent computational diPculty of the
problem, and, lack of the undecidability result may provide evidence for (provable)
intractability of the problem.

2. Simplifying (if possible) the number of existential quanti&ers in the ∀∃5-pre&x, or
else proving decidability for simpler pre&xes.

3. Venturing to generalize Makanin’s techniques of generalized equations and their
transformations with bounding exponent of periodicity for context equations (as
described in the end of the Introduction), or, if proved unsuccessful, inventing a
radically new approach.

4. Trying to prove the undecidability of the context uni&cation problem.
5. Attempting to carry out the disjunction elimination method from Section 5 with-

out a binary symbol, with a constant number of auxiliary existentially quanti!ed
variables. This will improve the best undecidability result for free semigroups due
to Durnev [15].

A substantial further eGort seems necessary to achieve any of the above goals.

Acknowledgements

The author thank Harald Ganzinger, Manfred Schmidt-SchauU, Margus Veanes, and
the anonymous referees for discussions, comments, and helpful suggestions for the
improvement of the paper.

References

[1] G.S. Makanin, The problem of solvability of equations in a free semigroup, Math USSR Sbornik 32(2)
(1977) 127–198.

[2] W.D. Goldfarb, The undecidability of the second-order uni&cation problem, Theoret. Comput. Sci. 13
(1981) 225–230.

[3] W. Farmer, Simple second-order languages for which uni&cation is undecidable, Theoret. Comput. Sci.
87 (1991) 25–41.

[4] M. Schmidt-SchauU. Uni&cation of strati&ed second-order terms. Interner Bericht 12=94, University of
Frankfurt am Main, 1994.

S. Vorobyov / Theoretical Computer Science 275 (2002) 463–479 479

[5] J. Niehren, M. Pinkal, P. Ruhrberg, On equality up-to constraints over &nite trees, context uni&cation,
and one-step rewriting., in: W. McCune (Ed.), CADE-14, Lecture Notes in Computer Science, Vol.
1249, Springer, Berlin, 1997, pp. 34–48.

[6] M. Schmidt-SchauU, K.U. Schulz, On the exponent of periodicity of minimal solutions of context
equations, in: T. Nipkow (Ed.), Rewriting Techniques and Applications’98, Lecture Notes in Computer
Sciences, Vol. 1379, Springer, Berlin, 1998, pp. 61–75.

[7] M. Schmidt-SchauU, A decision algorithm for distributive uni&cation, Theoret. Comput. Sci. 208 (1998)
111–148.

[8] W. Farmer, A uni&cation algorithm for second-order monadic terms, Annu. Pure Appl. Logic 39 (1988)
131–174.

[9] J. Levy, M. Veanes, On the undecidability of second-order uni&cation, Inform. Comput. 159 (2000)
125–150.

[10] W.V. Quine, Concatenation as a basis for arithmetic, J. Symbolic Logic 11 (4) (1946) 105–114.
[11] V.G. Durnev, Positive theory of a free semigroup, Soviet Math. Doklady 211 (4) (1973) 772–774.
[12] S.S. Marchenkov, Undecidability of the positive ∀∃-theory of a free semigroup, Siberian Math. J. 23

(1) (1982) 196–198.
[13] V. Durnev, Studying algorithmic problems for free semi-groups and groups, Logical; Foundations of

Computer Science (LFCS’97), Lecture Notes in Computer Science, Vol. 1243, Springer, Berlin, 1997,
pp. 88–101.

[14] J.R. B?uchi, S. Senger, Coding in the existential theory of concatenation, Arch. Math. Logic 26 (1986)
101–106.

[15] V.G. Durnev, Undecidability of the positive ∀∃3-theory of a free semigroup. Siberian Math. J. 36 (5)
(1995) 1067–1080 (in Russian, also exists in English translation).

[16] S. Vorobyov, ∀∃∗
-equational theory of context uni&cation is
0

1-hard. Research Report MPI-I-98-2-008,
Max-Planck Institut f?ur Informatik, 1998a.

[17] S. Vorobyov, ∀∃∗
-equational theory of context uni&cation is
0

1-hard. in: L. Brim, J. Gruska, J. ZlatuZska
(Eds.), Proc. 23rd Internat. Symp. on Mathematical Foundations of Computer Science (MFCS’98),
Lecture Notes on Computer Science, Vol. 1450, Brno, Czech Republic, Springer, Berlin, August 24
–28, 1998b, pp. 597–606.

[18] J. JaGar, Minimal and complete word uni&cation, J. ACM 37 (1) (1990) 47–85.
[19] K.U. Schulz, Word uni&cation and transformation of generalized equations, J. Automat. Reasoning 11

(1993) 149–184.
[20] A. KoTscielski, L. Pacholski, Complexity of Makanin’s algorithm, J. ACM 43 (4) (1996) 670–684.
[21] C. GutiTerrez, Satis&ability of word equations with constants is in exponential space. Proc. 39th Annu.

IEEE Symp. on Foundations of Computer Science’98, 1998, pp. 112–119.
[22] W. Plandowski, Satis&ability of word equations with constants is in PSPACE. 40th Annu. IEEE Symp.

on Foundations of Computer Science’99, 1991.
[23] A.I. Mal’cev, Algorithms and Recursive Functions., Wolters-NoordhoG, Groningen, Holland, 1970.
[24] M. Minsky, Recursive unsolvability of Post’s problem of ‘tag’ and other topics in the theory of Turing

machines, Annu. Math. 74 (3) (1961) 437–455.
[25] H. Rogers, Theory of Recursive Functions and EGective Computability, McGraw-Hill, New York, 1967.

