
663

A Discrete Subexponential Algorithm for Parity

Games⋆

Henrik Björklund, Sven Sandberg, and Sergei Vorobyov

Computing Science Department, Uppsala University, Sweden

Abstract. We suggest a new randomized algorithm for solving parity
games with worst case time complexity roughly

min

(

O

(

n
3 ·

(n

k
+ 1

)k
)

, 2O(
√

n log n)

)

,

where n is the number of vertices and k the number of colors of the
game. This is comparable with the previously known algorithms when
the number of colors is small. However, the subexponential bound is an
advantage when the number of colors is large, k = Ω(n1/2+ε).

1 Introduction

Parity games are infinite games played on finite directed bipartite leafless graphs,
with vertices colored by integers. Two players alternate moving a pebble along
edges. The goal of Player 0 is to ensure that the biggest color visited by the pebble
infinitely often is even, whereas Player 1 tries to make it odd. The complexity
of determining a winner in parity games, equivalent to the Rabin chain tree
automata non-emptiness, as well as to the µ-calculus1 model checking [5,3], is
a fundamental open problem in complexity theory [11]. The problem belongs to
NP∩coNP, but its PTIME-membership status remains widely open. All known
algorithms for the problem are exponential, with an exception of [12] when the
number of colors is large and games are binary.

In this paper we present a new discrete, randomized, subexponential algo-
rithm for parity games. It combines ideas from iterative strategy improvement
based on randomized techniques of Kalai [9] for Linear Programming and of
Ludwig [10] for simple stochastic games, with discrete strategy evaluation sim-
ilar to that of Vöge and Jurdziński [15]. Generally, algorithms for parity games
are exponential in the number of colors k, which may be as big as the number
n of vertices. For most, exponentially hard input instances are known [4,3,2,14,
8]. Our algorithm is subexponential in n. Earlier we suggested a subexponen-
tial algorithm [12], similar to [10], but based on graph optimization rather than
linear programming subroutines. Both algorithms [10,12] become exponential

⋆ Supported by Swedish Research Council Grants “Infinite Games: Algorithms and
Complexity”, “Interior-Point Methods for Infinite Games”.

1 One of the most expressive temporal logics of programs [3].

H. Alt and M. Habib (Eds.): STACS 2003, LNCS 2607, pp. 663–674, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

664 H. Björklund, S. Sandberg, and S. Vorobyov

for graphs with unbounded vertex outdegree. The present paper eliminates this
drawback. There is a well-known reduction from parity to mean payoff games,
but the best known algorithms for the latter [7,16,13] are known to be exponen-
tial (pseudopolynomial). Reducing parity to simple stochastic games [16] leads
to manipulating high-precision arithmetic and to algorithms invariably subexpo-
nential in the number of vertices, which is worse than an exponential dependence
on colors when colors are few.

A recent iterative strategy improvement algorithm [15] uses a discrete strat-
egy evaluation involving game graph characteristics like colors, sets of vertices,
and path lengths. Despite a reportedly good practical behavior, the only known
worst-case bound for this algorithm is exponential in the number of vertices,
independently of the number of colors.

Our new algorithm avoids any reductions and directly applies to parity games
of arbitrary outdegree. We use a discrete strategy evaluation measure similar to,
but more economical than the one used in [15]. Combined with Kalai’s and
Ludwig’s randomization schemes this provides for a worst case bound that is
simultaneously subexponential in the number of vertices and exponential in the
number of colors. This is an advantage when the colors are few.

Outline. After preliminaries on parity games, we start by presenting a sim-
pler, Ludwig-style randomized algorithm in combination with an abstract dis-
crete measure on strategies. This simplifies motivation, exposition, and defini-
tions for the specific tight discrete measure we build upon. We then proceed to
a more involved Kalai-style randomized algorithm allowing for arbitrary vertex
outdegrees. All proofs can be found in [1].

2 Parity Games

Definition 1 (Parity Games). A parity game is an infinite game played on a
finite directed bipartite leafless graph G[n, k] = (V0, V1, E, c), where n = |V0∪V1|,
E ⊆ (V0 × V1) ∪ (V1 × V0), k ∈ N, and c : V0 ∪ V1 → {1, . . . , k} is a coloring
function. The sizes of V0 and V1 are denoted by n0 and n1, respectively. Starting
from a vertex, Player 0 and 1 alternate moves constructing an infinite sequence
of vertices; Player i moves from a vertex in Vi by selecting one of its successors.
Player 0 wins if the highest color encountered infinitely often in this sequence is
even, while Player 1 wins otherwise.2 ⊓⊔

Parity games are known to be determined : from each vertex exactly one
player has a winning positional strategy, selecting a unique successor to every
vertex [5]. All our results straightforwardly generalize to the non-bipartite case.

A binary parity game is a game where the vertex outdegree is at most two.

2 We systematically use n for the number of vertices and k for the number of colors;
consequently we usually skip [n, k] in G[n, k].

A Discrete Subexponential Algorithm for Parity Games 665

3 Ludwig-Style Algorithm with a Well-Behaved Measure

Every positional strategy of Player 0 in a binary parity game can be associated
with a corner of the n0-dimensional boolean hypercube. If there is an appropriate
way of assigning values to strategies, then we can apply an algorithm similar to
[10] to find the best strategy as follows.

1. Start with some strategy σ0 of Player 0.
2. Randomly choose a facet F of the hypercube, containing σ0.
3. Recursively find the best strategy σ′ on F .
4. Let σ′′ be the neighbor of σ′ on the opposite facet F . If σ′ is better than σ′′,

then return σ′. Else recursively find the optimum on F , starting from σ′′.

To guarantee correctness and subexponentiality, the assignment cannot be com-
pletely unstructured. Also, evaluating strategies is costly, so a full evaluation
should only be performed for strategies that are really better than the current
one. In subsequent sections, we present a function Evaluate that given a strat-
egy σ returns an assignment νσ of values to vertices of the game that meets the
following criteria (where ≺ is a comparison operator on the values).

Stability. Let σ(v) be the successor of vertex v selected by strategy σ and let
σ(v) be the other successor of v. If νσ(σ(v)) 	 νσ(σ(v)) for all vertices v of
Player 0, then σ is optimal (maximizes the winning set of Player 0).

Uniqueness of optimal values. All optimal strategies have the same valua-
tion. (This is essential for a subexponential bound.)

Profitability. Suppose that νσ(σ(u)) 	 νσ(σ(u)) for every vertex u ∈ V0 \ v
and νσ(σ(v)) ≺ νσ(σ(v)) (attractiveness). Let σ′ be the strategy obtained
by changing σ only at v (single switch), and let νσ′ be its valuation. Then
νσ(v) ≺ νσ′(v) and νσ(u)
 νσ′(u) for all other vertices u (profitability).

The Ludwig-style algorithm with Evaluate applies to solving binary parity
games. The evaluation function has the benefit that in step 4 of the algorithm,
σ′′ does not have to be evaluated, unless the recursive call is needed.

Ludwig [10] shows that his algorithm for simple stochastic games has a
2O(

√
n0) upper bound on the expected number of improvement steps. With only

minor modifications, the same proof shows that the Ludwig-style algorithm to-
gether with our Evaluate function has the same bound for parity games.

The value space of Evaluate allows at most O(n3 ·(n/k+1)k) improvement
steps. Since the algorithm makes only improving switches, the upper bound on
the number of switches of the combined approach is

min

(

O

(

n3 ·
(n

k
+ 1

)k
)

, 2O(
√

n0)

)

.

Any parity game reduces to a binary one. This allows for a subexponential
algorithm for games with subquadratic total outdegree. For arbitrary games the
reduction gives a quadratic explosion in the number of vertices and the Ludwig-
style algorithm becomes exponential. In Section 10 we achieve a subexponential
bound by employing a more involved randomization scheme from [9].

666 H. Björklund, S. Sandberg, and S. Vorobyov

4 Strategies and Values

For technical reasons, each vertex is assigned a unique value, called a tint.

Definition 2 (Tints). A bijection t : V → {1, . . . , n} such that c(u) ≤ c(v) ⇒
t(u) ≤ t(v) assigns tints to vertices. The color of a tint s ∈ {1, . . . , n} equals
c(t−1(s)). ⊓⊔

Note that tints of vertices of the same color form a consecutive segment of
natural numbers. Subsequently we identify vertices with their tints, and slightly
abuse notation by writing c(t) for the color of the vertex with tint t.

Definition 3 (Winning and Losing Colors and Tints). Color i is winning
for Player 0 (Player 1 resp.) if it is even (odd resp.). Tint t is winning for
Player 0 (Player 1 resp.) if its color c(t) is. A color or tint is losing for a player
if it is winning for his adversary. ⊓⊔

Note that tints of different colors are ordered as these colors. Within the same
winning (resp. losing) color the bigger (resp. smaller) tint is better for Player 0.

In this section we define the ‘value’ of a strategy – the target to be iteratively
improved. An elementary improvement step is as follows: given a strategy σ of
Player 0, its value is a vector of values of all vertices of the game, assuming that
the adversary Player 1 applies an ‘optimal’ response counterstrategy τ against
σ. The value of each vertex is computed with respect to the pair of strategies
(σ, τ), where the optimality of τ is essential for guiding Player 0 in improving
σ. We delay the issue of constructing optimal counterstrategies until Section 9,
assuming for now that Player 1 always responds with an optimal counterstrategy.

Definition 4. A positional strategy for Player 0 is a function σ : V0 → V1,
such that if σ(v) = v′, then (v, v′) ∈ E. Saying that Player 0 fixes his positional
strategy means that he deterministically chooses the successor σ(v) each time the
play comes to v, independently of the history of the play. Positional strategies
for Player 1 are defined symmetrically. ⊓⊔

Assumption. From now on we restrict our attention to positional strategies
only. The iterative improvement proceeds by improving positional strategies for
Player 0, and this is justified by Profitability, Stability, and Uniqueness Theo-
rems 20, 22, and 23 below. The fact that Player 1 may also restrict himself to
positional strategies is demonstrated in Section 9.

Definition 5 (Single Switch). A single switch in a positional strategy σ of
Player 0 is a change of successor assignment of σ in exactly one vertex. ⊓⊔

When the players fix their positional strategies, the trace of any play is a
simple path leading to a simple loop. Roughly speaking, the value of a vertex
with respect to a pair of positional strategies consists of a loop value (major
tint) and a path value (a record of the numbers of more significant colors on the
path to the major, plus the length of this path), as defined below.

Notation 6 Denote by V i the set of vertices of color i and by V >t the set of
vertices with tints numerically bigger than t. ⊓⊔

A Discrete Subexponential Algorithm for Parity Games 667

Definition 7 (Traces, Values). Suppose the players fix positional strategies
σ and τ , respectively. Then from every vertex u0 the trace of the play takes a
simple δ-shape form: an initial simple path (of length q ≥ 0, possibly empty)
ending in a loop:

u0, u1, . . . uq, . . . , ur, . . . us = uq, (1)

where all vertices ui are distinct, except uq = us. The vertex ur with the maximal
tint t on the loop uq, . . . , ur, . . . , us = uq in (1) is called principal or major.

Values for Non-principal Vertices. If the vertex u0 is non-principal, then
its value νσ,τ (u0) with respect to the pair of strategies (σ, τ) has the form (L, P, p)
and consists of:

Loop Value (Tint) L equal to the principal tint t;
Path Color Hit Record Relative to t defined as a vector

P = (mk, mk−1, . . . , ml, 0, . . . , 0
︸ ︷︷ ︸

l − 1 times

),

where l = c(t) is the color of the principal tint t, and

mi =
∣
∣{u0, u1, . . . ur−1} ∩ V i ∩ V >t

∣
∣

is the number of vertices of color i ≥ l on the path to from u0 to the major
ur (except that for the color l of the major we account only for the vertices
with tint bigger than t.)

Path Length p = r.

Values for Principal Vertices. If the vertex u0 is principal (case q = r = 0
in (1)) then its value νσ,τ (u0) with respect to the pair of strategies (σ, τ) is defined
as (t, 0̄, s), where 0̄ is a k-dimensional vector of zeros.

Path Value is a pair (P, p), where (t, P, p) is a vertex value. ⊓⊔
The reason of the complexity of this definition is to meet the criteria enu-

merated in Section 3 and simultaneously obtain the ‘tightest possible’ bound on
the number of iterative improvements. It is clear that such a bound imposed by
the value measure from Definition 7 is O(n3 · (n/k + 1)k).

5 Value Comparison and Attractive Switches

Definition 8 (Preference Orders). The preference order on colors (as seen
by Player 0) is as follows: c ≺ c′ iff (−1)c · c < (−1)c′ · c′.

The preference order on tints (as seen by Player 0) is as follows:

t ≺ t′ iff (−1)c(t) · t < (−1)c(t′) · t′. ⊓⊔

We thus have . . . ≺ 5 ≺ 3 ≺ 1 ≺ 0 ≺ 2 ≺ 4 ≺ . . . on colors.

668 H. Björklund, S. Sandberg, and S. Vorobyov

Definition 9 (‘Lexicographic’ Ordering). Given two vectors (indexed in de-
scending order from the maximal color k to some l ≥ 1)

P = (mk, mk−1, . . . , ml+1, ml),

P ′ = (m′
k, m′

k−1, . . . , m
′
l+1, m

′
l),

define P ≺ P ′ if the vector

(
(−1)k · mk, (−1)k−1 · mk−1, . . . , (−1)l+1 · ml+1, (−1)l · ml

)

is lexicographically smaller (assuming the usual ordering of integers) than the
vector

(
(−1)k · m′

k, (−1)k−1 · m′
k−1, . . . , (−1)l+1 · m′

l+1, (−1)l · m′
l

)
. ⊓⊔

Definition 10 (Path Attractiveness). For two vertex values (t, P1, p1) and
(t, P2, p2), where t is a tint, l = c(t) is its color, and

P1 = (mk, mk−1, . . . , ml+1, ml, . . . , m1),

P2 = (m′
k, m′

k−1, . . . , m
′
l+1, m

′
l, . . . , m

′
1),

say that the path value (P2, p2) is more attractive3 modulo t than the path value
(P1, p1), symbolically (P1, p1) ≺t (P2, p2), if:

1. either (mk, mk−1, . . . , ml+1, ml) ≺ (m′
k, m′

k−1, . . . , m
′
l+1, m

′
l),

2. or (mk, mk−1, . . . , ml+1, ml) = (m′
k, m′

k−1, . . . , m
′
l+1, m

′
l) and

(−1)l · p1 > (−1)l · p2. (2)

Remark 11. Note that (2) means that shorter (resp. longer) paths are better for
Player 0 when the loop tint t is winning (resp. losing) for him. ⊓⊔

Definition 12 (Value Comparison). For two vertex values define
(t1, P1, p1) ≺ (t2, P2, p2) if

1. either t1 ≺ t2,
2. or t1 = t2 = t, and (P1, p1) ≺t (P2, p2). ⊓⊔

Definition 13 (Vertex Values). The value νσ(v) of a vertex v with respect
to a strategy σ of Player 0 is the minimum of the values νσ,τ (v), taken over all
strategies τ of Player 1. ⊓⊔

In Section 9 we show that the ‘minimum’ in this definition can be achieved
in all vertices simultaneously by a positional strategy τ of Player 1.

Definition 14. The value of a strategy σ of Player 0 is a vector of values of
all vertices with respect to the pair of strategies (σ, τ), where τ is an optimal
response counterstrategy of Player 1 against σ; see Section 9. ⊓⊔

3 In the sequel, when saying “attractive”, “better”, “worse”, etc., we consistently take
the viewpoint of Player 0.

A Discrete Subexponential Algorithm for Parity Games 669

Definition 15. A strategy σ′ improves σ, symbolically σ ≺ σ′, if νσ(v)
 νσ′(v)
for all vertices v and there is at least one vertex u with νσ(u) ≺ νσ′(u). ⊓⊔
Proposition 16. The relations ≺ on colors, tints, values, and strategies, and
≺t on path values (for each t) are transitive. ⊓⊔

Our algorithms proceed by single attractive switches only.

Definition 17 (Attractive Switch). Let (t1, P1, p1) and (t2, P2, p2) be the val-
ues with respect to σ of vertices v1 and v2, respectively. Consider a single switch
in strategy σ of Player 0, consisting in changing the successor of v with respect
to σ from v1 to v2. The switch is attractive if (t1, P1, p1) ≺ (t2, P2, p2). ⊓⊔
Remark 18. Note that deciding whether a switch is attractive (when comparing
values of its successors) we do not directly account for the color/tint of the
current vertex. However, this color/tint may be eventually included in the values
of successors possibly dependent on the current vertex.

6 Profitability of Attractive Switches

Our algorithms proceed by making single attractive switches. Attractiveness is
established locally, by comparing values of a vertex successors with respect to a
current strategy; see Definition 17.

Definition 19. Say that a single switch from σ to σ′ is profitable if σ ≺ σ′. ⊓⊔
Profitability of attractive switches is crucial for the efficiency, correctness, and

termination of our algorithms, as explained in Sections 3 and 10. Profitability
is a consequence of the the preceding complicated definitions of values, value
comparison, and strategy evaluation.

Theorem 20 (Profitability). Every attractive switch is profitable:

1. it increases the value of the vertex where it is made, and
2. all other vertices either preserve or increase their values,

i.e., the switch operator is monotone. ⊓⊔

7 Stability Implies Optimality

The Main Theorem 22 of this section guarantees that iterative improvement
can terminate once a strategy with no attractive switches is found. In more
general terms it states that every local optimum is global. This is one of the
main motivations for the complex strategy evaluation definitions.

Definition 21. Say that a strategy σ is stable if it does not have attractive
switches with respect to τ(σ), an optimal counterstrategy of Player 1. ⊓⊔

In Section 9 we show that all optimal counterstrategies provide for the same
values. Thus stability of σ in the previous definition may be checked after com-
puting any optimal counterstrategy τ(σ).

Theorem 22 (Stability). Any stable strategy of Player 0 is optimal: vertices
with loop values of even colors form the winning set of Player 0. ⊓⊔

670 H. Björklund, S. Sandberg, and S. Vorobyov

8 Uniqueness of Optimal Values

Theorem 22 does not guarantee that different stable (hence optimal) strategies
provide for the same (or even comparable) vectors of values for the game ver-
tices. The uniqueness of optimal values is however crucial for the subexponential
complexity analysis of Sections 3 and 10, and is provided by the following

Theorem 23 (Uniqueness). Any two stable strategies of Player 0 give the
same values for all vertices of the game. ⊓⊔

9 Computing Optimal Counterstrategies

Let Gσ be the game graph induced by a positional strategy σ of Player 0 (delete
all edges of Player 0 not used by σ). Partition vertices of Gσ into classes Lt

containing the vertices from which Player 1 can ensure the loop tint t, but cannot
guarantee any worse loop tint. This can be done by using finite reachability in Gσ

as follows. For each tint t in ≺-ascending order, check whether t can be reached
from itself without passing any tint t′ > t. If so, Player 1 can form a loop with t
as major. Since the tints are considered in ≺-ascending order, t will be the best
loop value Player 1 can achieve for all vertices from which t is reachable. Remove
them from the graph, place them in class Lt, and proceed with the next tint.

For each class Lt, use dynamic programming to calculate the values of 1-
optimal paths of different lengths from each vertex to t. For each vertex, the
algorithm first computes the optimal color hit record (abbreviated chr in the
algorithm) over all paths of length 0 to the loop major (∞ for each vertex except
t). Then it calculates the color hit record of optimal paths of length one, length
two, and so forth. It uses the values from previous steps in each step except the
initial one.4

Algorithm 1: Computing path values within a class Lt.
PathValues(Lt)
(1) t.chr[0] ← (0, . . . , 0)
(2) foreach vertex v ∈ Lt except t

(3) v.chr[0] ← ∞
(4) for i ← 1 to |Lt| − 1
(5) foreach vertex v ∈ Lt except t

(6) v.chr[i] ← min≺t
{AddColor(t, v′.chr[i−1], t(v)) : v′ ∈

Lt is a successor of v)}
(7) foreach vertex v ∈ Lt except t

(8) v.pathvalue ← min≺t
{(v.chr[i], i) : 0 ≤ i < |Lt|}

(9) t.pathvalue ← min≺t
{v.pathvalue : v ∈ Lt is a successor of t}

(10) t.pathvalue.pathlength ← t.pathvalue.pathlength + 1

4 The algorithm assumes the game is bipartite; in particular, t in line (9) cannot be a
successor of itself. It can be straightforwardly generalized for the non-bipartite case.

A Discrete Subexponential Algorithm for Parity Games 671

The function AddColor takes a tint, a color hit record, and a second tint.
If the second tint is bigger than the first one, then AddColor increases the
position in the vector representing the color of the second tint. The function
always returns ∞ when the second argument has value ∞.

The algorithm also handles non-binary games.

Lemma 24 (Algorithm Correctness). The algorithm correctly computes val-
ues of optimal paths. Moreover:

1. optimal paths are simple;
2. the values computed are consistent with an actual positional strategy that

guarantees loop value t. ⊓⊔

Lemma 25 (Algorithm Complexity). The algorithm for computing an op-
timal counterstrategy runs in time O(|V | · |E| · k), where |V | is the number of
vertices of the graph, |E| is the number of edges, and k is the number of colors.

10 Kalai-Style Randomization for Games with

Unbounded Outdegree

As discussed in Section 3, any non-binary parity game reduces to a binary one,
and the Ludwig-style algorithm applies. However, the resulting complexity gets
worse and may become exponential (rather than subexponential) due to a pos-
sibly quadratic blow-up in the number of vertices. In this section we describe a
different approach relying on the randomization scheme of Kalai [9,6] used for
Linear Programming. This results in a subexponential randomized algorithm di-
rectly applicable to parity games of arbitrary outdegree, without any preliminary
translations. When compared with reducing to the binary case combined with
the Ludwig-style algorithm of Section 3, the algorithm of this section provides
for a better complexity when the total number of edges is roughly Ω(n log n).

Games, Subgames, and Facets. Let G(d, m) be the class of parity games with
vertices of Player 0 partitioned into two sets U1 of outdegree one and U2 of an
arbitrary outdegree δ(v) ≥ 1, with |U2| = d and m ≥ ∑

v∈U2
δ(v). Informally, d

is the dimension (number of variables to determine), and m is a bound on the
number of edges (constraints) to choose from. The numbers of vertices and edges
of Player 1 are unrestricted.

Given a game G ∈ G(d, m), a vertex v ∈ U2 of Player 0, and an edge e leaving
v, consider the (sub)game F obtained by fixing e and deleting all other edges
leaving v. Obviously, F ∈ G(d−1, m−δ(v)) and also, by definition, F ∈ G(d, m),
which is convenient when we need to consider a strategy in the subgame F as a
strategy in the full game G in the sequel. Call the game F a facet of G.

If σ is a positional strategy and e is an edge leaving a vertex v of Player 0, then
we define σ[e] as the strategy coinciding with σ in all vertices, except possibly
v, where the choice is e. If σ is a strategy in G ∈ G(d, m), then a facet F is
σ-improving if some witness strategy σ′ in the game F (considered as a member
of G(d, m)) satisfies σ ≺ σ′.

672 H. Björklund, S. Sandberg, and S. Vorobyov

The Algorithm takes a game G ∈ G(d, m) and an initial strategy σ0 as inputs,
and proceeds in three steps.

1. Collect a set M containing r pairs (F, σ) of σ0-improving facets F of G and
corresponding witness strategies σ ≻ σ0.
(The parameter r specified later depends on d and m. Different choices of
r give different algorithms. The subroutine to find σ0-improving facets is
described below. This subroutine may find an optimal strategy in G, in
which case the algorithm returns it immediately.)

2. Select one pair (F, σ1) ∈ M uniformly at random. Find an optimal strategy σ
in F by applying the algorithm recursively, taking σ1 as the initial strategy.5

3. If σ is an optimal strategy also in G, then return σ. Otherwise, let σ′ be a
strategy differing from σ by an attractive switch. Restart from step 1 using
the new strategy σ′ and the same game G ∈ G(d, m).

The algorithm terminates because each solved subproblem starts from a
strictly better strategy. It is correct because it can only terminate by return-
ing an optimal strategy.

How to Find Many Improving Facets. In step 1 the algorithm above needs to
find either r different σ0-improving facets or an optimal strategy in G. To this
end we construct a sequence (G0, G1, . . . , Gr−d) of games, with Gi ∈ G(d, d + i).
All the d + i facets of Gi are σ0-improving; we simultaneously determine the
corresponding witness strategies σj optimal in Gj . The subroutine returns r
facets of G, each one obtained by fixing one of the r edges in Gr−d ∈ G(d, r). All
these are σ0-improving by construction.

Let e be the target edge of an attractive switch from σ0. (If no attractive
switch exists, then σ0 is optimal in G and we are done.) Set G0 to the game
where all choices are fixed as in σ0[e], and all other edges of Player 0 in G are
deleted. Let σ0 be the unique, hence optimal, strategy σ0[e] in G0. Fixing any
of the d edges of σ0 in G defines a σ0-improving facet of G with σ0 as a witness.

To construct Gi+1 from Gi, let e be the target edge of an attractive switch
from σi in G. (Note that σi is optimal in Gi but not necessarily in the full game
G. If it is, we terminate.) Let Gi+1 be the game Gi with e added, and compute
σi+1 as an optimal strategy in Gi+1, by a recursive application of the algorithm
above. Note that fixing any of the i+1 added target edges defines a σ0-improving
facet of G. Therefore, upon termination we have r such facets.

Complexity Analysis. The following recurrence bounds the expected number of
calls to the algorithm solving a game in G(d, m) in the worst case:

T (d, m) ≤
r∑

i=d

T (d, i) + T (d − 1, m − 2) +
1

r

r∑

i=1

T (d, m − i) + 1

5 Rather than computing all of M , we may select a random number x ∈ {1, . . . , r}
before step 1 and compute only x improving facets. This is crucial in order for the
computed sequence of strategies to be strictly improving, and saves some work.

A Discrete Subexponential Algorithm for Parity Games 673

The first term represents the work of finding r different σ0-improving facets
in step 1. The second term comes from the recursive call in step 2. 6 The last term
accounts for step 3 and can be understood as an average over the r equiprobable
choices made in step 2, as follows. All facets of G are partially ordered by the val-
ues of their optimal strategies (although this order is unknown to the algorithm).
Optimal values in facets are unique by Theorem 23, and the algorithm visits only
improving strategies. It follows that all facets possessing optimal strategies that
are worse, equal, or incomparable to the strategy σ of step 2 will never be visited
in the rest of the algorithm. In the worst case, the algorithm selects the r worst
possible facets in step 1. Thus, in the worst case, in step 3 it solves a game in
G(d, m − i) for i = 1, . . . , r, with probability 1/r. This justifies the last term.

Kalai uses r = max(d, m/2) in step 1 to get the best solution of the recur-

rence. The result is subexponential, mO(
√

d/ log d). By symmetry, we can choose
to optimize a strategy of the player possessing fewer vertices.

Let ni denote the number of vertices of player i. Since m is bounded above
by the maximal number of edges, (n0 + n1)

2, and d ≤ min(n0, n1), we get

min

{

2
O

(

(log n1)·
√

n0/ log n0

)

, 2
O

(

(log n0)·
√

n1/ log n1

)
}

as the bound on the number of calls to the algorithm. Combining it with the
bound on the maximal number of improving steps allowed by our measure yields

min

{

2
O

(

(log n1)·
√

n0/ log n0

)

, 2
O

(

(log n0)·
√

n1/ log n1

)

, O

(

n3 ·
(n

k
+ 1

)k
)}

.

If n0 = O(poly(n1)) and n1 = O(poly(n0)) then this reduces to

min

{

2O(
√

n0 log n0), 2O(
√

n1 log n1), O

(

n3 ·
(n

k
+ 1

)k
)}

.

These are the bounds on the number of recursive calls to the algorithm.
Within each recursive call, the auxiliary work is dominated by time to compute
a strategy value, multiplying the running time by O(n · |E| · k).

Acknowledgements. We thank anonymous referees for valuable remarks and
suggestions.

References

1. H. Björklund, S. Sandberg, and S. Vorobyov. A discrete subexponential algorithm
for parity games. Technical Report 2002-026, Department of Information Technol-
ogy, Uppsala University, September 2002.
http://www.it.uu.se/research/reports/.

6 Actually, if δ is the outdegree in the vertex where we fix an edge, then the second
term is T (d − 1, m − δ). We consider the worst case of δ = 2.

674 H. Björklund, S. Sandberg, and S. Vorobyov

2. A. Browne, E. M. Clarke, S. Jha, D. E Long, and W Marrero. An improved
algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci., 178:237–
255, 1997. Preliminary version in CAV’94, LNCS’818.

3. E. A. Emerson. Model checking and the Mu-calculus. In N. Immerman and Ph. G.
Kolaitis, editors, DIMACS Series in Discrete Mathematics, volume 31, pages 185–
214, 1997.

4. E. A. Emerson, C. Jutla, and A. P. Sistla. On model-checking for fragments of
µ-calculus. In Computer Aided Verification, Proc. 5th Int. Conference, volume 697,
pages 385–396. Lect. Notes Comput. Sci., 1993.

5. E. A. Emerson and C. S. Jutla. Tree automata, µ-calculus and determinacy. In
Annual IEEE Symp. on Foundations of Computer Science, pages 368–377, 1991.

6. Goldwasser. A survey of linear programming in randomized subexponential time.
SIGACTN: SIGACT News (ACM Special Interest Group on Automata and Com-
putability Theory), 26:96–104, 1995.

7. V. A. Gurvich, A. V. Karzanov, and L. G. Khachiyan. Cyclic games and an
algorithm to find minimax cycle means in directed graphs. U.S.S.R. Computational
Mathematics and Mathematical Physics, 28(5):85–91, 1988.

8. M. Jurdzinski. Small progress measures for solving parity games. In 17th STACS,
volume 1770 of Lect. Notes Comput. Sci., pages 290–301. Springer-Verlag, 2000.

9. G. Kalai. A subexponential randomized simplex algorithm. In 24th ACM STOC,
pages 475–482, 1992.

10. W. Ludwig. A subexponential randomized algorithm for the simple stochastic
game problem. Information and Computation, 117:151–155, 1995.

11. C. Papadimitriou. Algorithms, games, and the internet. In ACM Annual Sympo-
sium on Theory of Computing, pages 749–753. ACM, July 2001.

12. V. Petersson and S. Vorobyov. A randomized subexponential algorithm for parity
games. Nordic Journal of Computing, 8:324–345, 2001.

13. N. Pisaruk. Mean cost cyclical games. Mathematics of Operations Research,
24(4):817–828, 1999.

14. H Seidl. Fast and simple nested fixpoints. Information Processing Letters,
59(3):303–308, 1996.

15. J. Vöge and M. Jurdzinski. A discrete strategy improvement algorithm for solving
parity games. In CAV’00: Computer-Aided Verification, volume 1855 of Lect. Notes
Comput. Sci., pages 202–215. Springer-Verlag, 2000.

16. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158:343–359, 1996.

