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Abstract

We prove that any decision procedure for a modest
fragment of L. Henkin’s theory of pure propositional
types [7, 12, 15, 11] requires time exceeding a tower
of 2’s of height exponential in the length of input.
Until now the highest known lower bounds for natural
decidable theories were at most linearly high towers
of 2’s and since mid-seventies it was an open problem
whether natural decidable theories requiring more than
that exist [12, 2]. We give the affirmative answer. As
an application of this today’s strongest lower bound we
tmprove known and settle new lower bounds for several
problems in the simply typed lambda calculus.

1. Introduction

In his survey paper [12] A. Meyer mentioned
(p. 479), as a curious empirical observation, that all
known natural decidable non-elementary problems re-
quire at most (upper bound)

2 ’ }n
F(l,n) = exp(n) =2

Turing machine steps on inputs of length n to decide?.

Until now the highest known lower bounds for nat-
ural decidable theories were at most exp, (cn) with
“only” linearly high towers of 2’s. Since mid-seventies
it was an open problem whether natural decidable the-
ories requiring more than exp,, (cn) exist [12, 2].

In this paper we give the affirmative answer by pre-
senting a natural decidable theory (due to L. Henkin
[7] and mentioned by A. Meyer [12]) and proving that

*By using hierarchy theorems it is easy to construct “unnat-
ural” decidable theories of arbitrary complexity.

!The m-story exponential function F(n,m) is defined by:
F(n,0) = n and F(n,m + 1) = 2F(=m)_ The tower of n twos
function is defined by exp,,(n) = F(1,n).
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every decision procedure for that theory should neces-
sarily make more than

2"'2} height 2¢n
F(1,2°™) = exp,(2°™) = 2

steps on infinitely many inputs of length n, where the
height of the tower of 2’s is exponential in the length of
input, 2°" for some ¢ > 0 (i.e., is not linearly bounded).

K. Compton and C. Henson [2] developed a power-
ful and easy-to-use technique for proving lower bounds
for the decision complexity of logical theories, based
on encoding of large binary relations. By using their
technique they obtained new concise proofs for vir-
tually all known before lower bounds for logical the-
ories in a uniform way. As an open Problem 10.13
(p. 75) Compton and Henson asked whether there exist
“natural” decidable theories with lower bounds of the
form NTIME (exp.,(f(n))), where f(n) is not linearly
bounded, i.e., f(n) < en does not hold for any con-
stant ¢. Of course, by using time hierarchy theorems it
is easy to construct non-natural decidable theories of
arbitrary complexity.

In this paper, by using Compton-Henson’s tech-
niques, we show that the rudimentary set theory 2
over the universe U;e,D;, where Dy = {0,1} and
Dir1 = powerset(D;), a modest fragment of L. Henk-
in’s theory of propositional types [7], mentioned by
A. Meyer in [12] (Theorem pp. 478479, no. 7) and
used by R. Statman [15] to prove that the typed lambda
calculus is not elementary recursive, in fact requires
(lower bound) time exp.,(2°") to decide, thus giving
the affirmative answer to Compton-Henson’s problem.

The earlier known lower bound for Q was “only”
F(n,e - log(n)) due to M. Fischer and A. Meyer [12]
(Theorem pp. 478-479, no. 7; the proof, however, was
apparently never published).



1.1. Applications

We give several applications of this today’s strongest
lower bound exp . (2°") to improve known or settle new
lower bounds for other natural problems related to the
simply typed lambda calculus A by reduction.

First, we demonstrate that deciding 3- and A7-
equality in the simply typed lambda calculus A, known
to be not elementary recursive (R. Statman [15]), in
fact requires time

2
2 cn
F(1,cn) = expy(en) = 2 } ,

as opposed to a far less impressive

2 } clog(log(n))
F(n, clog(log(n))) = 2

implicit in [15, 11]. Our improved lower bound
exp., (cn) matches (with a different constant) with the
known exp., (dn) upper bound for 3(n)-equality in the
simply typed lambda calculus A due to W. Tait [18, 6].
Moreover, the known exp_,(cn) lower bound for any
normalization algorithm in A (H. Schwichtenberg [14])
immediately follows from our exp. (cn) lower bound
for 3(n)-equality. This lower bound did not follow from
Statman’s result [15].
Second, we settle the new

2"‘2 }cn/ log(n)
F(1,cn/log(n)) = exp,,(cn/ log(n)) = 2 ;

lower bound for a long-standing, today still open,
higher-order matching problem in the simply typed
lambda calculus due to G. Huet [9]. The problem con-
sists in deciding, given a term ¢ of type 61 — ... —
o, — 7 and a term u of type 7 (both in normal forms),
whether there exist terms s; of types o; (1 <1 < n)
such that ts; ...s, =gy u. This gives an example asked
for by Compton and Henson in Problem 10.11 from
[2], p. 75: Give nontrivial lower bounds for mathe-
matically interesting theories whose decidability is still
open. There were no nontrivial known lower bounds for
higher-order matching, except N P-hardness (D. Wol-
fram (21}, p. 78). The best lower bound one could
get for the higher-order matching problem would be
only F(n, clog(log(n/log(n)))) without our new strong
lower bound for 2.

Third, we reinforce the lower bound in Statman’s
analog of Rice’s Theorem 6 ([17], p. 25) for the simply
typed lambda calculus. This theorem asserts that any
nontrivial set of closed terms of the same type closed
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under Bn-equality is not elementary recursive. We im-
prove it by replacing “not elementary recursive” with
“requiring time exceeding exp.,(cn). Again, “only”
F(n,clog(log(n))) followed from previous results.

1.2. Practical Relevance of the Obtained
Lower Bounds

It is by now commonly accepted that lower and up-
per complexity bounds are important in development
and analysis of efficient algorithms, especially when
large problem instances are involved. This becomes
more and more crucial nowadays in connection with
large-scale theorem proving, program verification, con-
straint logic and functional programming projects.

One may ask whether there exist any reasons in im-
proving lower bounds for theories once they are already
known to be not elementary recursive. The answer is
clearly yes, because non-elementary does not necessar-
ily mean bad.

Consider a non-elementary problem, which happens
to have a F(n,log®(n)) lower bound (where by log®(n)
we denote the k-fold application of log, and not its
k-th power). Such a problem may have a fascinat-
ingly efficient and practical decision algorithm, since
up to inputs of size? exp,(5) = 265536 the function
F(n,log®(n)) is majorated by n.

Thus, the mere fact of being non-elementary is
not at all informative, since any problem requiring
time F(n,log¥(n)) is non-elementary. As we saw,
even for small & = 6 this is practically immaterial.
In this respect the previously known lower bound
F(n,clog(log(n))) for Bn-equality in the simply typed
lambda calculus was not very convincing: if ¢ = 1/16
then F(n,clog(log(n))) < 2™ for n < exp,(5) =
265536 The new exp.,(cn) lower bound for A is much
more convincing: for ¢ = 1/16, exp.,(cn) > 26553 for
n > 80. The same applies to the new lower bound
exp,, (cn/log(n)) for the higher-order matching prob-
lem, which is only a little bit worse (i.e., better) than
exp..(cn).

The last common objection necessary to dispel is as
follows. One might argue that despite a strong lower
bounds like exp, (2°™) or exp,(cn), the sizes of inputs
n on which any decision algorithm for a problem starts
to exhibit its desperately bad behavior are very large
and never occur in practice. However, M. Fischer and
M. Rabin [5] observed that the lengths of inputs n,
at which an algorithm AL starts to demonstrate its

2big enough, from the practical viewpoint: one light-year is
approximately 260 cm; the radius of the known universe is ap-
proximately 11 x 10° light years, or approximately 1023 ~; 293
cm; one can hardly encounter formulas of this length in practice.



worst-case behavior is comparable with the size of the
algorithm, O(|AL|). Thus our lower bounds enter quite
early in the game and cannot be neglected.

Outline of the Paper. After a background mate-
rial on Compton-Henson’s lower bounds techniques we
settle the exp,.(2°") lower bound for 2, and then pro-
ceed to lambda calculus, higher-order matching, and
Statman-Rice’s theorem.

2. Type Theory (2

Type theory Q is a very rudimentary fragment of
L. Henkin’s theory of propositional types [7].

Definition 1 (Theory , [15]) . The language of
type theory Q is a language of set theory where ev-
ery variable has a natural number type (written as a
binary superscript) and there are two constants 0, 1 of
type 0. The atomic formulas of 1 are stratified, i.e.,
have form 0 € z', or 1 € 2%, or " € y™t1. All other
formulas are built as always, by using -, A, and V.
The interpretation of Q is as follows: 0 denotes 0, 1
denotes 1, and 2™ ranges over D,,, where Dy = {0, 1}
and Dy41 = powerset(Dy). =]

Convention 2 . For the complexity considerations
below let us fix any reasonable encoding of formulas
of 1 as binary strings. Let us agree that a variable
of Q is represented by its type and its identification
number within a type, both written in binary. a

Remark 3 . A more wasteful way would be to write
types and identification numbers of variables in unary
notation. The papers [12, 15, 11] do not explicitly fix
any choice of binary or unary notation for types in
their complexity claims about . Most probably [12]
subsumes binary notation (see page 478). For the mo-
ment we stick to the binary notation, and return back
to this question later on in Section 8. O

Definition 4 (Iterated Exponentials) . Define
the function exp, : w — w recursively as exp,(0) =1
and exp., (k + 1) = 26%Pw (k)

Define the m-story exponential function F(n,m) by:
F(n,0) = n and F(n,m + 1) = 2F("™)_ Notice that
exp.(n) = F(1,n). ]

Definition 5 ((Non-)Elementary Problems) . A
problem is called elementary recursive iff it belongs to
the complexity class NTIME(F(n,m)) for some (fized)
m € w, and non-elementary otherwise. O
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Decidability. The validity problem for §2 is decid-
able, because every quantifier runs over a finite domain,
but is not elementary recursive. Even stronger:

Theorem 6 (Fischer, Meyer [12], pp. 478-479)
Any Turing machine deciding Q requires a number of
steps exceeding

F(15], ¢ - log(|S1)) (1)

for some constant € > 0 and infinitely many sentences
S of Q. m]

In this paper we considerably improve this lower
bound to

Theorem 7 (Improved Lower Bound for 1) .
Any Turing machine deciding Q requires a number of
steps exceeding

2
2" } height 2°™

€XPyo (2°7) = 2 (2)

for some constant ¢ > 0 and infinitely many sentences
of Q of length n. 0O

Remark 8 . This gives the first example of a
natural decidable theory that requires time ezceeding
€XPy, (f(n)), where f(n) is not linearly bounded. |

Remark 9 . We do not know, however, whether the
lower bound from Theorem 6 applies to Statman’s or
to Henkin’s formulation of 2. The paper by Fischer
and Meyer with the proof of Theorem 6 was appar-
ently never published. In any case, Theorem 7 gives
a much stronger lower bound than Theorem 6, for a
weak formulation of 2 given in Definition 1. m]

3. Lower Bounds Techniques

We now briefly describe the lower bounds techniques
we apply to prove our main Theorem 7.

In 1936 L. Kalmar proved that the first-order the-
ory of a binary relation is undecidable, which greatly
simplified undecidability proofs, as compared to those
based on straightforward encodings of Turing ma-
chines, see, e.g., M. Rabin [13].

B. Trakhtenbrot [19] and later R. Vaught [20] proved
even stronger

Theorem 10 . Let L be the first-order language with
the unique binary relation symbol. The set of valid sen-
tences of £ and the set of sentences of L refutable by
some finite model are recursively inseparable. O



Two sets are recursively inseparable iff there are
no recursive sets containing one and disjoint with the
other. Notice that recursive inseparability is stronger
than simple undecidability: both of recursively insep-
arable sets are undecidable. Usually Theorem 10 is
applied in conjunction with the method of interpreta-
tions, extensively discussed in [13, 4].

Recently, K. Compton and C. Henson [2] refined the
above inseparability idea for proving hereditary lower
complexity bounds for logical theories. Compton-
Henson’s method is based on interpretations, in a given
theory, of all finite binary relations up to a certain size,
by means of short formulas. The larger are binary re-
lations interpretable in a theory, the higher is the lower
bound for its decision complexity. Compton-Henson’s
method gives a considerable simplification over the pio-
neer lower bounds methods due to Meyer, Stockmeyer,
Fischer, and Rabin, based on direct encodings of Tur-
ing machine computations.

More precisely, Compton and Henson proved the fol-
lowing theorem. In fact, they proved much stronger
and more subtle theorems, but the variant below (we
derive by simplification from their Theorem 6.2, p. 38)
is enough for our purposes. We give the necessary def-
inition of the special reducibility used right after the
statement of the theorem. The size of a binary rela-
tion is the number of elements in its domain.

Theorem 11 (Compton-Henson) . Let T be a the-
ory, M be its model, and t(n) be a time resource bound
such that for some 0 < d < 1 one has

lim t(dn)/t(n) =0.

n—oo

Suppose there exists a sequence of formulas of T

6n(z,p), Talz,y,p) forn €w, (3)

reset log-lin-computable from n written in unary nota-
tion such that for every binary relation R of size t(n)
there exists an element m € M such that the model

({o | M dul@m)}; {(@9) | M n(e,y.m)) )

carrier

binary relation

(consisting of elements z satisfying 0, (x, m) with the
binary relation on them defined by yn(z,y,m)) is iso-
morphic to R.

Then for some constant ¢ > 0 the theory T requires
nondeterministic time exceeding t(cn) to decide, or,
equivalently, T ¢ NTIME (t(cn)). O

Compton and Henson define (pp. 10-11) and use
a special kind of reducibility, which they call the reset
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log-lin reducibility. A machine performing such a re-
duction is a log-space, linear time bounded Turing ma-
chine with input tape, output tape, and auxiliary work
tapes (log-space bounded). It operates as the usual
Turing machine, but has the capability to reset the in-
put tape head to the initial input cell on £ moves during
a computation, where k is fized for all inputs (This dif-
fers from the standard log-lin reducibility, computable
in logarithmic space and linearly bounded.)

We apply Compton-Henson’s Theorem 11 for the
time resource bound t(n) = exp,,(2") and the theory
 in the next sections. This will prove our main Theo-
rem 7. Obviously, all iterated exponentials satisfy the
precondition of Theorem 11.

4. Extending 2 by Explicit Definitions

We extend the language of Q by adding explicitly
definable predicates for the usual set-theoretic notions.
These are needed to speak succinctly about binary rela-
tions within ©, as required by Compton-Henson’s The-
orem 11.

4.1. Subset.

For every n € w\{0} explicitly define the binary
predicate Subset(z™, y™) meaning =™ C y" as follows:

Subset(z",y"™) =4
=4 V2" (" e = v e yn). “4)
4.2. Singleton.

For every n € w explicitly define the binary predi-
cate Singleton(z™,y" ') meaning y"*! = {z"} as fol-
lows:

Singleton(z™,y"*!) =4 z" € y"TIA

A2 (g™ € 2™ =yt C ). (5)
4.3. Unordered Pair.

For every n € w explicitly define the ternary predi-
cate U-Pair(z",y"™, 2""1) meaning 2"*! = {z",y"} as
follows:

U-Pair(z"™,y", 2" 1) =4

z" € 2T Ay" € 27PN



/\an-H (l.n c wn—i—l /\yn € wn+1 =

= Zn+1 ' wn—{-l).

(6)

Notice that a pair of two equal elements is a one-
element set.

4.4. Ordered Pair

Usually, in set theory an ordered pair of z;, z2 is
defined as {z1, {z1,z2}}. However, this is impossible
in €, where the components of a set should be of the
same type. Alternatively, in Q0 an ordered pair of the
elements z7, z§ of the same type can be defined as
{{=?},{=t,z%}}. Obviously, it is an element of type
n + 2. We define formally

Pair(z™,y™, 2"2) =4

Junlyntt [ Singleton(z™,u™1) A
U-Pair(z™,y", v" ) A

U-Pair(u™*t o™, z"+2)} )

(7)

An ordered pair of two equal elements is a one-
element set, but it does not prevent us from decoding
components of a pair correctly, see below.

4.5. Components of an Ordered Pair

For every n € w and an ordered pair 2"*? define its
first and second components as follows:

Fst(z", 2"?)
Snd(y", z2"*?)

=4 " Pair(z™,y",2"2), (8)
=g 3z" Pair(z™,y", 2"?). (9)

5. Defining a Binary Relation

Say that an element of type n+3 represents a binary
relation if its every element (of type n+2) is an ordered
pair of some elements of type n.

The following two predicates in (10) and (11) explicitly
define the properties:

53

o “z™ is an element in the domain of a binary rela-

tion represented by r™t3”

o “two elements ™ and y" are related by the binary
relation represented by r°+3”,
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as required by Compton-Henson’s Theorem 11:

§(an,rH3) =g 32t [zn+2 € r 3 A

(Fst(z™, 27+2) v Snd(a™, zn+2))] , (10)

Y@, y", et =g
Jznt2 [z"+2 € rnt3 A Pair(x",y",z”+2)]. (11)

6. Proof of the Main Claim

We are ready to prove our main claim that for some
¢ > 0 the decision problem for the theory (! requires
time exp,, (2°™), by applying Compton-Henson’s The-
orem 11.

Notice that the formulas &(z",7""3) and
y(z"™ y™,r"*3) in (10) and (11) can be explicitly
expressed in terms of the basic € predicate in a fized
way, uniform in n (by simply eliminating all defined
predicates introduced in Section 4). These definitions
use only a fized number of variable occurrences of
types n, n+ 1, n 4+ 2, and n + 3. As n changes, only
variable types (superscripts) change in these explicit
definitions of formulas §(z™, r"*3) and (2™, y", r"+3).
Since we agreed to write types of variables in binary,
this gives only an O(logn) growth of the explicit
definitions of §(z",r"*3) and ~v(z",y",r"*3) as n
grows. At the same time the sizes of representable
binary relations grow as exp,,(n -+ 1). This implies,
by Compton-Henson’s theorem, the lower bound (2)
of our Theorem 7.

More accurately, consider the explicit definitions for
the formulas

on
Tn

n42 n+2
5,24,

Edf

nt2 n42 n42
2 2 ,7,2 +3).

=¢ (= 'Y

These definitions grow linearly as n grows, and are
easily reset log-lin computable from n given in unary
notation as follows.

Let n in unary be written on the input tape of the
Turing machine. The machine starts writing the ex-
plicit definition of 4,, (resp. 7,), and each time it needs
to write a type of a variable, it writes 1 on the output
tape, then resets its input tape, reads it and writes 0
to the output tape for every 1 read from input. After-
wards, it writes either 00, or 01, or 10, or 11, depending
on whether it needs to write a type of a variable equal
to2nt2 2n+2 41 274219 or 2724 3. In this manner



it writes exactly 272 27241 27242 or 27243 in
binary, as needed. By construction, this machine is a
reset log-lin bounded Turing machine, since the explicit
definition of d,, (resp. 7,) uses only a fixed number k
of variable occurrences. So the machine resets k times
independently of an input n.

To conclude the proof we notice that, as the param-
eter 72" 7°+3 changes, the formulas 4, and Y, TEpresent
arbitrary binary relations of size up to exp,, (2”2 +1).
Recall that a variable of type k runs over the domain
Dy, of size exp,, (k + 1). So, as the parameter r2" " +3
changes, the models generated by é,, and -, run over all
possible binary relations of size up to exp,, (2"+2 + 1).
It follows, by Compton-Henson’s Theorem 11, that
the theory  does not belong to the complexity class
NTIME (exp,(2°™)) for some constant ¢ > 0, or, equiv-
alently, any decision procedure for 2 requires nondeter-
ministic time exp, (2°") for some constant ¢ > 0 and
infinitely many inputs of size n.

This finishes the proof of the main claim of Theo-
rem 7 and gives the first natural example of a decid-
able theory requiring time exceeding exp .. (f(n)), with
f(n) = 2°™ being not linearly bounded.

7. Upper Bound for 2

The upper complexity bound for 2 matches its lower
bound (of course, with a larger constant):

Proposition 12 . The theory  can be decided
within time exp,,(2¢") for some constant d > 0.

Proof. The maximal type of a variable in a sentence
@ of 2 of length n is k = O(2"). Thus, only the do-
mains D; with ¢ < k of cardinality < exp(k+ 1) =
exp,, (0(2™)) should be taken into consideration when
deciding ®. An arbitrary element of a domain D;
(¢ < k) can be written in space exp,,(O(2")). The
number of quantifiers in @ is m = O(n). To decide &
it suffices to cycle through all the m-tuples of elements
of these domains. The space exp..(0(2")), hence time
29%P (0(2")) = exp_ (O(2")) is enough for that pur-
pose. a

8. Lower Bound for .,y

When the variable types in the sentences of {) are
written in unary, in contrast to a more economic binary
notation we adopted (cf., Definition 1, Convention 2,
Remark 9), the straightforward modification of the ar-
gument from the previous Section yields the following
lower bound (still stronger than in Theorem 6; recall

that we do not know whether Theorem 6 is formulated
for  or Qunary, cf., Definition 1, Convention 2, Re-
mark 9):

Theorem 13 . Any Turing machine deciding Qunary
requires a number of steps exceeding

eXPoo (€ - 151)

for some constant € > 0 and infinitely many sentences
S of Qunary-

Proof. As n grows, the sizes of binary rela-
tions described by linearly growing §(z™,r™+3) and
y(z™,y*,r"*3) in (10) and (11) grow “only” as
€XPy,(n), and not as exp,,(2") as in the case of f.
It is easy to see that &(z™,r"*3) and y(z™,y",r"*3) in
the unary case are still reset log-lin computable from
n written in unary. Indeed, each time a machine needs
to write a type of a variable, it resets its input tape
(with n written in unary) copies it and adds, respec-
tively, nothing, 1, 11, or 111, depending on whether it
needs to write a type n, n+1, n+2, or n+3. Since the
definitions of §(z™,r"*3) and vy(z",y",r3) use only
a fixed number k of variable occurrences, the machine
resets the fixed number & of times, independently of an
input n. O

9. Upper Bound for (1,,,,,

Similarly to Proposition 12 we get

Proposition 14 . The theory Qunary can be decided
within time exp_,(dn) for some constant d > 0. a

10. Simple Presumably Intractable Frag-
ments of €}

Already the simplest fragments of Q are presumably
intractable. Recall that it is still unknown whether the
inclusions P C NP C PSPACE are proper or not.

Proposition 15 . The class of existentially quantified
prenex sentences of ) with quantifier prefixes contain-
ing just one existentially quantified variable of type 1
and all other existentially quantified variables of type
0 is NP-complete.

Proof. Given a propositional formula F in 3-CNF
with variables z1,...,%,, consider the following sen-
tence G of

axlawg’,...,zg@ eX'A0¢ X! /\F’),
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where F' is obtained from F by replacing all occur-
rences of z; with :c? € X'. The intuition here is that
X1 is forced to be a singleton containing the value 1
(true), and the truth of a propositional variable z; is
modeled by a membership z¥ € X! in the truth set
X1, The sentence G is constructible from F in linear
time and is true in Q if and only if F is satisfiable.
The membership in NP is straightforward: just guess
a vector of 0/1-values for zy, ..., z, and check whether
they satisfy F". m]

Proposition 16 . The class of quantified prenex sen-
tences of (3 with quantifier prefix containing just one
existentially quantified variable of type 1 and all other
quantified variables of type 0 is PSPACE-complete.

Proof. Given a prenex quantified boolean formula
® = Q121 ... Qnzn F with matrix in 3-CNF and Q; €
{3,V}, consider the following sentence ¥ of

HXle(l)...an%(l e X A0¢ X! /\F'),

where F' is obtained from F by replacing all occur-
rences of z; with 2 € X'. The sentence ¥ is con-
structible from @ in linear time and is true in § if and
only if @ is true. The membership in PSPACE is also
straightforward, because linear space suffices to cycle
through all n-tuples of 0/1-values for =, ..., z,, which
is enough to check the validity of . m]

11. Arbitrarily Hard Variants of Q2

Until now we were agreed to write down types of
variables in formulas of © in the usual binary notation.

Now let f be an arbitrary function from {0,1}* tow,
0 € {0,1}* denote the natural number 0, and s denote
the usual successor function on w. By using O, s, and
f we can denote any natural number in many different
ways, in general. If, for example, we do not use f at
all, we get the usual unary notation. If we do not use s,
and f is defined by f(0) = f(}) =0, f(0a) = f(e), and
f(la) = 2ol + f(a), where || is the length of a, then
we get the usual binary notation for natural numbers.

Now, if f is interpreted as a very rapidly growing
function, for example, as Az.A(z, z, z) for Ackermann’s
function A, then we get a very compact notation for
very large natural numbers. We can use this compact
notation to write down types of variables in formulas
of §2, instead of the binary notation we accepted in
Section 2. Denote the resulting theory 2. By applying
the same lower bounds techniques as in Sections 3 —
6, we get the following arbitrarily hard variants of {2
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Theorem 17 (Lower Bound for Q) . Any Turing
machine deciding Q1 requires a number of steps exceed-
ng

expe, (f(cn))

for some constant ¢ > 0 and infinitely many sentences
S of Qf of length n.

Proof. Use exactly the same argument to represent a
binary relation of size up to exp,, (f(n+2)+1) (instead
of exp., (212 + 1)), as in Section 6, but use variable
types written succinctly with f and s. O

One may argue, however, that with Theorem 17 we
leave the world of “natural” decidable theories.

12. Simply Typed A-Calculus: Improved
Lower Bound Hits the Upper

Only a very superfluous knowledge of the simply
typed lambda-calculus A is needed to understand this
and the following sections. We use standard definitions
and notation from {8, 1, 15, 17] and make a standard
convention to omit types in writing lambda terms, as-
suming that they can be unambiguously restored. This
does not influence complexity, see Remark 22 below.

In Section 12.1 we show that the best known be-
fore lower bound for - and fn-equality in the simply
typed lambda calculus, implicit in {15, 11], is not very
impressive, although it implies that the problem is not
elementary recursive:

Theorem 18 (Statman, Mairson) . Any Turing
machine deciding 3- or fn-equality in the simply typed
lambda calculus requires a number of steps exceeding

on
2" } clog(log(n))
F(n, clog(log(n))) = 2

for some constant ¢ > 0 and infinitely many inputs of
length n. O

Note, however, that this is stronger than just say-
ing that 8- or fn-equality in the simply typed lambda
calculus are not elementary recursive [15].

In Section 12.2, by using our Theorem 7 we consid-
erably improve Theorem 18 to the following

Theorem 19 (Improved Lower Bound for A)
Any Turing machine deciding 3- or Bn-equality in the
simply typed lambda calculus requires a number of steps
exceeding

2
2" }cn
€XPe (cn) = 2



for some constant ¢ > 0 and infinitely many inputs of
length n. m|

Remark 20 . This finally closes the deep gap be-
tween the known exp., (dn) upper bound for deciding
B(n)-equality in A (due to W. W. Tait, cf., [6], Theo-
rem 4.4.2) and the weak lower bound from Theorem 18
above. Now both lower and upper bounds match ex-
actly (with different constants). a

The following easy technical proposition is very use-
ful in establishing lower bounds in terms of time re-
quirements by reduction between problems, and will
be used several times in the sequel. Notice that L ¢
NTIME((t(n)) is equivalent to saying that any decision
procedure for L requires nondeterministic time exceed-
ing #(n) for infinitely many inputs of length n.

Proposition 21 . Let a problem L; reduce to a prob-
lem L, by means of a transformation f computable
in time p(n) such that for some monotone function
g : w = w one has |f(z)] < g(|z]) for all z in the
language of the problem L. Let ¢(n) be a time bound.
Then:

o if Ly € NTIME(t(n)) then
Ly € NTIME(t(g(n)) + p(n));

e vice versa, if Ly ¢ NTIME(t(g(n)) + p(n)) then
Ls ¢ NTIME((¢(n)).

Proof. To decide whether z of size n is in L; compute
in time p(n) the value f(n) of size at most g(|n|) and
test if it belongs to Ls. So, the decision problem for
L, is in NTIME (t(g(n)) + p(n)), provided that Lz €
NTIME (t(n)). |

12.1. Statman-Mairson’s Lower Bound

R. Statman [15] and later H. Mairson [11] gave ez-
ponential reductions * from the sentences of {2 into the
simply typed lambda terms with the properties:

QEA & A*=30,
Q#—‘—‘\A < A*=ﬁ1,

where 0 and 1 are the usual Church numerals for zero
and one.

It follows immediately that the problem of deciding
whether two simply typed lambda terms are 3(n)-equal
is not elementary recursive [15, 11]. Note that the same
would follow from the existence of any reduction of

the sentences of 1 into the simply typed lambda terms
computable in elementary space.

As we explained in the Introduction, once a theory
is proved non-elementary, it is important to know, if
possible, how large is k in the k-fold logarithm deter-
mining the speed of the exponentiation stack growth
in its lower bound F(n, clog®(n)).

How large is this & for the - and fGn-equality in the
simply typed lambda calculus? Neither Statman [15],
nor Mairson [11] answers this question explicitly. Stat-
man does not discuss it at all. Mairson makes some
comments (pp. 389-391) concluding that the reduc-
tion from Q to A is linear. However, it is exponen-
tial assuming that the variable types are written in
binary (cf., Convention 2; recall that [12, 15, 11] never
specify whether types are written in unary or in bi-
nary). This is because Mairson represents the quan-
tification Vz* by means of a k-iterated application of
the powerset combinator (p. 389-391). This is espe-
cially clear from Statman’s reduction ([15], p. 75-76),

.which represents the quantification Vz* by using ax,
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where a; is the Church numeral 2 = \f%%20.f(fz)
and ap41 = ([0 = Olas)as.

Thus, the reduction from Q! with the lower bound
from Fischer-Meyer’s Theorem 6 by using the well-
known techniques from Proposition 21 yields only a
very poor lower bound

F(n, clog(log(n)))

of Theorem 18 for deciding 3- and fn-equalities in the
simply typed lambda calculus. This is the maximum
that one can extract from Statman’s and Mairson’s
proofs that rely on Fischer-Meyer’s lower bound from
Theorem 6.

Remark 22 . The only source of exponential explo-
sion in Statman’s translation * is the representation of
the quantification Vz* with type k written in binary
by means of a;’s. This gives an exponential increase,
because the type k represented in binary is rewritten
in unary as a k-fold application of 2’s.

The retyping any1 = ([0 = 0Olan)a: does not give
any additional increase of length, even if the bounded
variables are typed explicitly, despite the fact that the
types in ai are of length O(2%). Indeed, the length of
aj, with explicit types is < k - O(2F), i.e., < O(2F), the
same as the length of a; with implicit typing. a

12.2. Improved exp,(cr) Lower Bound for
the Simply Typed Lambda Calculus

Our improved exp,, (¢n) lower bound for lambda cal-
culus from Theorem 19 follows from our Main Theo-
rem 7 and Proposition 21 by application of Statman’s



[15] (p. 75-76) translation * of  into A, or Mair-
son’s one [11] (pp. 389-391). Both reductions are
exponential, see the previous section. This gives a
less impressive exp,,{cn) lower bound, as compared to
€XPoo (2°™) lower bound for 2. However, even this is
much stronger than Statman-Mairson’s lower bound
from Theorem 18. Note that we cannot do better
because of the exp.,(dn) upper bound on the B(n)-
equality due to W. Tait ({6], Theorem 4.4.2).

Remark 23 . It is easy to see that the same lower
bound exp,,(dn), as in Theorem 19, holds for the the-
ory of =g, of fn-equality. In fact, A* =g, 0 im-
plies A* =3 0 (and similarly for 1), because otherwise
A* =3 1 (recall that Q is complete); hence A* =g, 1
(since =g, extends =g), and we get a contradiction
with the Church-Rosser property known to hold for
Br-equality in A. O

Remark 24 . We could equally use the lower bound
€XP, (€ - n) for Qunary from Theorem 13. In this case
the reduction * from Qynary to A would be linear, and
we would get the same lower bound exp,, (dn) for A,
as in Theorem 19. O

13. A Variant of the Simply Typed
Lambda Calculus with exp(2°)
Lower Bound

Thus both lower and upper bounds for the stan-
dard simply typed lambda calculus A are exp_, (cn) and
€XPo, (dn) respectively for some constants d > ¢ > 0.
As we explained in Section 12.1, the main reason why
the lower bound for A is less impressive than the
€XDy, (2°") lower bound for  is the ezponential trans-
lation * of € into A.

In fact, Statman represents ([15], p. 75-76), the
quantification Vz* by using aj, where a; is the usual
Church numeral 2 = A f07%2°%. f(fz) and any1 = ([0 —
Olan)a;. Consequently, Yz* with the type k repre-
sented in binary is translated into the exponentially

1 icati s 2...2.
ong sequence of applications of 2’s 2

k times

We can extend the standard simply typed lambda
calculus A by the possibility to write iterators concisely,
e.g., as Ity(a), where k is written in binary, and a
has appropriate type. Add also the extra reductions:
Ity (a) reduces to a, and It,41(a) reduces to ([0 —
0](Itn(a)))a. With these modifications the reduction
* from  to the extended A becomes linear, and we
get a variant (conservative extension) of A with the
€XP,, (2°") lower bound on equality and normalization.
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14. Schwichtenberg’s Lower Bound for
Normalization

In [14] H. Schwichtenberg gave a very short and
simple proof that any normalization algorithm for sim-
ply typed lambda calculus requires non-elementary re-
cursive time. Although this result does not imply
Statman’s on non-elementary recursiveness of 3(7)-
equality in simply typed A-calculus [15] (there may ex-
ist tricky algorithms deciding 8(n)-equality without re-
ducing terms to normal forms), it gives a better lower
bound for normalization. In fact, Statman’s proof im-
plies that any normal form algorithm should be not el-
ementary recursive, but as we explained in Section 12,
only with a quite weak F(n, clog(log(n))) lower bound.

Schwichtenberg showed in {14] that any normaliza-
tion of the term

where 2 = AfAz.f(f(z)), which normalizes to F(1,n)
(written as a Church numeral), takes more than
F(n, cn) reduction steps, thus yielding a stronger lower
bound on any normalization algorithm®. The same
lower bound easily follows from our improved F(1,en)
lower bound for B(n)-equality in simply typed M-
calculus, cf., Section 12. In fact, if one could normalize
faster than in time F(1,cn), it would be possible to
decide B(n)-equality faster than in F'(1,cn), in contra-
diction with our Theorem 19.

15. The exp,,(cn/log(n)) Lower Bound for
Higher-Order Matching

G. Huet [9] posed the following, today still open,
decidability problem for the simply typed lambda cal-
culus, called the higher-order matching problem:

Given a term t of type 67 — ... = 0y = T and a
term u of type T (both in normal forms), do there erist
terms s; of types o; (for 1 < i < n) such that

ts1...8, =gpu ?

This problem is referred to as the range question by
R. Statman [17].

Huet’s conjecture is that the problem is decidable,
but the proof is probably hard. G. Dowek showed [3]

31t is easy to see that the length of the normal form of r,
is of length O(F(1,n)), so just spelling it out requires time
O(F(1,n)); Schwichtenberg’s proof is stronger: it also shows that
T requires that many reduction steps to normalize.



that the third-order matching? is decidable. Statman
reduced [17] the higher-order matching to the so-called
definability problem: given an element of a finitely gen-
erated type hierarchy, does there exist a closed simply
typed A-term denoting this element? The positive an-
swer was long known as Plotkin-Statman’s conjecture.
Recently Ralph Loader settled it in the negative [10],
thus leaving the higher-order problem open.

We can contribute to the settlement of the higher-
order matching problem the following strong lower
bound:

Theorem 25 (Lower Bound for Higher-Order
Matching). Any algorithm for the higher-order
matching in the simply typed lambda calculus should
necessarily make a number of steps exceeding

2
2 } en/log(n)
xp, (e log(n) = 2

for some constant ¢ > O and infinitely many inputs of
size n. O

Remark 26 . It follows immediately that the prob-
lem is not elementary recursive, see also Remark 27
below. One can ask him/herself whether there is any
difference, from the practical viewpoint, between an
undecidable problem and a problem requiring as much
as expy, (cn/ log(n)) time to decide. 0

We prove Theorem 25 by reduction from € and ap-
plying Theorem 7 as follows. Consider a sentence A of
2 and its Statman’s translation A*, as described in the
previous section.

Starting with the initial equation A* = 0 we step-
wise “eliminate” redices in A* by introducing new vari-
ables and adding new equations to the initial one (recall
that the terms in the higher-order matching should be
normalized) as follows:

e replace a [-redex (AzM)N in A* with
(f(AzM))N, where f is a fresh variable of
appropriate type;

e replace an n-redex AzMz (z not free in M) in
A* with Az f(Mzx), where f is a fresh variable of
appropriate type;

4when the orders of types o; in the statement of the problem
are at most three; ord(a) = 1 for a basic type and ord(c — 7) =
max{l + ord(c),ord(7)}; the type of Church numerals (0 —
0) — (0 — 0) is of order 3; in Dowek’s formulation, where terms
are not required to be normalized, the higher-order matching is
non-elementary for all orders.

e in both cases add an equation fC = C, where C is
a new constant of appropriate type, to the initial
equation.

The result of this transformation is a system of si-
multaneous equations with new functional variables
and new constants, with all terms being in normal
forms. It is not difficult to prove that the resulting sys-
tem has a solution iff A* =g, 0. However, the transfor-
mation increases the input as nlog(n), since one has to
expect a linear number of redices and consequently lin-
early many new variables and constants, each one needs
log(n) bits to be represented. The system of equa-
tions is then reduced to just one equation by tupling:
/\?:1 M, = N; & /\ffMl oMy = /\ffN1 ... Ng.
Note that the resulting equation does not contain vari-
ables on the right, so we translated the initial matching
problem to the matching problem. Finally, an equation
with constants may be reduced to an equation without
constants, in the pure simply typed lambda calculus, by
application of Statman’s trick [16] (p. 330-331). The
last two transformations are linearly bounded. They
do not introduce new variables into right-hand sides
of equations, nor do they change the fSn-normality of
terms. So, the result is a matching problem with nor-
malized terms.

Since the total transformation from £ to the
pure higher-order matching gives growth of order
O(nlog(n)), by Proposition 21, we get for the higher-
order matching problem the nondeterministic time
lower bound of Theorem 25.

Thus, even if the higher-order problem is decidable,
any corresponding decision procedure should be des-
perately hard.

Remark 27 . As we explained in Section 12.1, the
best lower bound for the higher-order matching prob-
lem one could have extracted from Statman’s proof [15]
based on Fischer-Meyer’s lower bound from Theorem 6,
would have been much weaker, namely, “only”

F(n,clog(log(n/ log(n)))).

Although even this weak lower bound implies that the
higher-order matching problem is not elementary re-
cursive, it is not as convincing as our strong lower
bound from Theorem 25. a

16. Improved Lower Bound for Stat-
man’s Analog of Rice’s Theorem

As one further application of the strong lower bound
for Q2 from Theorem 7, we improve the lower bound in
Statman’s analog of Rice’s theorem.

303



R. Statman proved ([17], p. 25, Theorem 6) that in
the simply typed lambda calculus any nontrivial sub-
set of closed terms closed under Bn-conversions is not
elementary recursive. This corresponds, modulo the
replacement of “not recursive” by “not elementary re-
cursive”, to Rice’s theorem in recursion theory. Recall
that the theorem asserts that any nontrivial subset of
partial recursive functions is not recursive. In the con-
text of untyped lambda calculus the analog of Rice’s
theorem is due to D. Scott: any nontrivial set of un-
typed lambda terms closed under equality is not recur-
sive.

We can improve the lower bound in Statman’s the-
orem as follows (we state it in a stronger separability
form):

Theorem 28 . Let S, Sy be two nonempty disjoint
sets of closed simply typed lambda terms of the same
type. Any set S closed under Bn-conversion and sepa-
rating S1 and S5 (i.e., Sy C S and S2NS = @) requires
time exceeding

2
2 }cn
F(1,cn) = expy,(cn) = 2 ,

for some constant ¢ > 0 and infinitely many inputs of
length n to be recognized.

In particular, any nonempty set S of closed terms of
type o, different from the set of all terms of type o, and
closed under Bn-conversion requires that much time to
be recognized.

Proof. By a slight modification of Statman’s
proof. If a set S closed under Bn-conversion and
separating nonempty sets S;, Sa of terms of type
o exists, then there exist two terms M € S and
N ¢ S. Let M, N have long B7n-normal forms
Azy...xp.xi(My ... Mp) and Azy . ..zp.zi(Ny ... Ny)
respectively, where z;(M; ... Mp) and z;(Ny...Ny)
are of the base type 0. Consider the term L of
type ((0 = 0) = (0 = 0)) = o defined by L =4
AyAzy . zpy (A (N N (a(My ... M),
where y is of type (0 — 0) = (0 — 0). Note that
L0 =g, M and L1 =g, N. Now let * be the transla-
tion of sentences of ) into simply typed lambda terms
used in Section 12.1. We thus have for an arbitrary
sentence A of

QA LA €S

It remains to apply Proposition 21. The last claim of
the theorem is a particular case of the first one. O

As we explain above in Section 12.1, the best lower
bound in Theorem 28 one could have obtained without
our Theorem 7 would be “only” F(n,clog(log(n))).
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17. Conclusions

We settled the strongest currently known lower
bound of the form
2
2" } height 2°°
exXPoo (2°") = 2
for a natural decidable theory of pure propositional
types, a rudimentary fragment of L. Henkin’s theory
of propositional types [7]. Until now it was an open
problem as to whether natural decidable theories re-
quiring more than

2
2 } height cn
€XPy,(cn) = 2

for any constant ¢ > 0 exist [12, 2].
We used this unprecedentedly high lower bound to
considerably improve the known

2 2n} height clog(log(n))
F(n, clog(log(n))) = 2

lower bound for the 3(n)-equality in the simply typed
lambda calculus [15] to a much more impressive

2 2} height cn
€XPoo(cn) = 2

matching the known exp,,(dn) upper bound due to
W. Tait [6].

We also used our new strong lower lower bound to
settle the new

- } height cn/ log(n)
exp, (cn/log(n)) = 2

lower bound for a long-standing, today still open,
higher-order matching problem for the simply-typed
lambda calculus due to G. Huet [9, 21].

It is now “natural” to ask whether there exist natu-
ral decidable theories that require time exceeding

expo, (f(n)),
where f(n) is not exponentially bounded, i.e.,
f(n) <e-2m

does not hold for any constant ¢ > 0.
For example, do there exist natural theories requir-
ing time :



€XP,, (expo,(cn))

to decide?

Whether these theories can be used to improve
known lower bounds for decidable theories (as we did
it for A), or to settle new lower bounds for theories
which are not known to be decidable (as we did it for
the higher-order matching)? Only the positive answer
to this question can serve a criterion as to whether a
theory is natural or not.

A. Mairson’s Proof

The sketch of the proof in [11] Section 4 that the
theory ) is not elementary recursive appears to be not
completely correct for two reasons.

First, the promised “simulation of an arbitrary Tur-
ing machine for non-elementary time” (pp. 388 and
391) does not work, e.g., for a machine running in non-
elementary time exp, (exp.,(n))). The correct way
would be to show that for every fixed m € w any Turing
machine running in time F(n, m) can be represented by
a formula of Q of length O(n) or O(poly(n)). Then the
standard diagonal argument using hierarchy theorems
shows that © cannot belong to NTIME(F(n,m)) for
any m € w, i.e., is non-elementary.

Second, the reference, concerning the representation
of a Turing machine, as being “straightforward, more
or less on the level of the detailed coding in Cook’s
theorem” (p. 392) is not completely correct. In prov-
ing Cook’s theorem one uses polynomially many vari-
ables to represent cells of a polynomially long tape.
Analogous usage of O(F(n,m)) variables to represent
an F(n,m) run cannot lead to any useful conclusion.
All considerations about the lengths of formulas aris-
ing from the encoding are absent from [11]. This does
not allow even to settle a weak lower bound of Fischer-
Meyer’s Theorem 6.

The proof from [11] can be fixed, but it turns out to
be unnecessary in view of our stronger Theorem 7.
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