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ABSTRACT

Unguant i fied Fresburger arithumetic is
proved to be noun—axiomatiziable by means

of a canonical (i.e. noetherian and
confluent term rewriting system, Ty
boolean connectives are not allowed iIn

the left-hand sides of the rewrite rules.

It is conjectured that the same (s true
if the number of boolean connectives in
the lLleft-hand sides of the rules s

uniformly dbounded by an arditrary natural
number-.

1. INTRODUCTION

Term rewriting systems (TRSs for
short), i.e sets of oriented equations,
constitute an interesting model of
correct nondeterministic computations
with various applications. Uniquely
terminating (or canonical) TRSs provide
an effective search space-free decision
mechanism for edquational theories based
on the normal form reduction [ 5, 2 ].
Different generalizations of TRSs such as
equational TRSs [ 3 ] and conditional
TRSs [ 4, 8 1 have been proposed. But do
these generalizations suffice?

To make this precise we propound the
following natural question about TRSs.
What is the "absolute” expregsive power
of canonical TRSs (usual, equational or
conditional)? More formally: does there
exist a "well-structured” canonical
system axiomatizing, say, the
unquantified Presburger arithmetic or the
discrete linear order? Arithmetic lies in

the very basis of almost all formal
systems of reasoning, so taking it as an
"absolute standard" is valid.

Well-structuredness may be thought of in
different ways: e.g. as finiteness of
TRS, boundedness of symbol occurences in
the left-hand sides of the rewrite rules,
easy feasibility of reductions, various
complexity constraints, and so forth.
Hence, the hierarchy of questions arises.
Studying it may yield precise results on
comparing the expressive power of
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different classes of TRSs.

We prove the first negative result of
that sort. A TRS is called context-free
iff boolean connectives are prohibited in
the left-hand sides of its rules. While
reducing with the context-free TRS it’s
unnecessary to take associative,
commutative and distributive properties
of logical connectives (which complicate
matters further) into account. So, such
TRSs mnay be thought of as "best
possible”. It turns out, however, that
the unguantified Presburger arithmetic
cannot be axiomatized by a canonical
context-free TRS, usual or conditional,
finite or infinite (in fact, this is true
for any unquantified theory which is
strong enough to argue about the validity

of the "less or equal” relation between
the numerals) . We rut forward the
conjecture that the similar negative

result remains true if the number of the
boolean connectives occurences permitted

in the 1left-hand sides of the rewrite
rules is bounded.

Hence, arithmetic cannot be easily
covered by TRSs (remind that the

quantifier-free Presburger arithmetic may
be decided by the integer simplex-method

or by the SUP-INF method [ 6 1). In [ 7 ]
we propose a method of building-in
arithuwetic decision procedures into
conditional context-free TRSs, which
combines reduction steps, decision
algorithm invocations and case
splittings.

The paper is organized as follows. In
Section 2 we briefly survey the basic
notions of the TRSs theory (for the
thorough treatment of TRSs see [ 2 ]1). In
Section 3 we make precise the notion of a

theory axiomatized by means of the
canonical reduction relation. This 1is
done abstractly, i.e. independently of
the way the reduction relation is

our result equally applies
equational or conditional
In Section 4 we
and

generated. So,
to the usual,
TRSs, finite or infinite.
formuliate and prove the main result,

Section 5 contains concluding remarks.



2. PRELIMINARIES

Let WCZ, V> denote the set of terms
built of wvariables from a set V and
function symbols of a many-sorted

signature Z.
a binary relation on

t —8—> s

A reduction relation —8—> is

wWCZ, V>, such that
implies FCt> _B_> FCs2> for

FCty,

any

R R .
term and t —=—> s implies

. R . . . .
ot —==> oD for any substitution ¢ of
terms for variables.

R+ R -

By ———>  , -=->" and -B—> : we denote
the transitive closure, the
reflexive-transitive closure and the

inverse of —@~> respectively. We say that
a term t 1is in the R-normal form iff
there doesn’t exist a term s such that

t *E*> s, A

term ¢ is called the

R-normal form of a term t iff t —8-‘) t*
and e is in the R-normal form.

Perhaps, the simplest method to

generate reduction relations is by means
of (unconditional) term rewriting
systems. A rewrite rule is an oriented
pair I ~--> r gsuch that !, r € WCZ, V>, 1
is different from a variable and every
variable occuring in r occurs also in 1.

A term rewriting system (TRS for short)
is a set of rewrite rules
R =< li *H;) r iel The reduction
relation —--> generated by a TRS R is

defined as follows. Let a term ¢t contain
an occurence of a subterm £ such that for
some rule ! ---> r € R and substitution ¢
the term oCld> coincides with s. Then

t —E—> t’ where t’ is obtained from t by
replacing the occurence of s with oCrd.
Similarly, reduction relations generated
by equational and conditional TRSs may be
defined, see the detailes in [ 3, 4, 8 ].

A reduction relation £ is called

1) noetherian, iff
infinite chains of

R & R_.
to -=> tl —==> ta >

there
the

are no

form

. R %
2) confluent, iff whenever t -==> t,

R . %
and t -=-> ts there exists a term s
satisfying {i —84>* s for v =1, 2;
3) canonical, iff it is both

noetherian and confluent.

An eguational theory (ET for short) is

an arbitrary set of identities
T =< L, =80 g every identity
being universally quantified. An ET T
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generates the binary relation =5 on
wWCz, ¥2> defined as follows: ¢ =5 S iff
the identity t = s is the valid
consequence of the theory T. A reduction
relation -=-> and an ET 7 are called
equivalent iff = coincldes with
R % R -1 *T
C ===>" u === > When an ET T
possesses an equivalent canonical

reduction relation N then the relation
=r is decidable by a simple normal form

k3
reduction: ¢ =r s iff R-normal forms ¢

and s of ¢t and s syntactically

equal.

are

3. CONTEXT-FREE REDUCTION RELATIONS

The aim of this section is to clarify
the notion of a theory axiomatizable by

means of the canonical reduction
relation, and to define the class of
context-free reduction relations
admissible as axiomatizations. We also
prove two simple structural lemmas

justifying the naturalness of the imposed
restrictions.

Definition 1. Let T be a theory (an
arbitrary set of formulas). A reduction

relation —B—> is called

a) T-complete, iff @ e 7T implies
R
® —=> true;

b) T-consistent, iff +the inverse
holds.

We say that a theory T is
axiomatizable iff there exists a
canonical reduction relation being
T-complete and 7-consistent. O

Example. Let an ET 7 possesses a
canonical TRS RT Then T is

axiomatizable via the reduction relation
generated by
Ry = Ry
Let’'s make two obvious observations
about Definition 1. Firstly, it doesn’t
restrict the class of axiomatizable
theories only to equational ones. Using a
many-sorted language we may introduce
logical connectives as functions on the
boolean sort and formulas - as terms of
the boolean sort. From now on we freely

v x=>x -—=> true >. D

use the words "an catomic jformula", "a
predicate symbol"™ insead of "a term of
the boolean sort with no boolean
subterms” and "a function symbol of the
boolean sort different from logical
connectives". Secondly, +the definition
permits the degenerate cases of
axiomatizations, since an arbitrary



logical theory T may be axiomatized via
the reduction relation generated by the

TRS RT = ¢ -——> true | ¢ € T >. But
what’s the benefit of such
axiomatizations?

Therefore, we must restrict the notion
of an admissible axiomatization. In this
section we introduce the class of

context-free reduction relations and in
Section 5 - the class of n-context
bounded (for n € w) reduction relations.

Before we give the precise definitions
let’s discuss one necessary condition of
the T-completeness. The minimal
requirement of any axiomatization is the
provability of propositional tautologies.
so we may consider that any reduction
relation in question includes a canonical
subrelation for the boolean algebra.
Without the loss of generality we may
think that this subrelation is generated

by the following canonical equational
rewrite system BA, see [ 1 J:

X vy =D X ¥y o+ x o+ oy,

X oAy ey aoMoY,

x 3y ——-> x %y + x + 1,

x =y -—-=> x + y + 1,

- x —-——> x + 1,

x + 0 ---> x,

x + x ===> 0,

x % 1 - x,

X ¥ > ~==> E

x % O —=> 0,

x » C v -+ = D R R Y] + x ¥ oz,
where ~, ~, 2. =, = are the usual
disjunction, conijunction, implication.
equivalence, negation. % and + are the

boolean ring multiplication and addition
(exclusive or) assumed to be associative
and commutative, and O and 1 are the ring
zero and one respectively.

Convention. We suppose further on that
any reduction relation is the union of
_‘_Q__> »B—>

log and nronlogical ni

logical
=y = - U —§—> We’'ll
log nl

assume also that the logical part —B—>l

parts:

og
satisfies two obvious requirements:

1) if o —’5—’>log # then the formula
a =3 is the propositional tautology;
2) if « e 2 then every atom

occuring in {7 occurs also in «, O
It’s easy to see that both conditions
BA |
are true for -—=->.
Definition 2. A relation
is called CCF

short) iff for its nonlogical part —5—>

reduction

N context-free for

nl
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the following two conditions hold:
and binary
- >

1) for any formulas o . oy
logical connective M e { v, A, B, =,
s R
if o Wy >t 3
then # has the form ﬂl [ ] ﬁa and
a, Bu® n por i =1, 2;
3 nt T
2) for every formula o of the form —3

. R .

if ST 4

then y is of the form =& and

R %
B-=, %508

One obvious necessary condition for
the context-freedom is. of course, the
absence of boolean connectives in the
left-hand sides of the rewrite rules
generating the relation. The next two

lemmas show that proofs with context-free
reduction relations are easy feasible and

the structure of the proofs is
tranparent.
Normal form lemma. Let —B—> be a

context-free reduction relation and every
atom occurence in a formula € is in the

R . .

R-normal form. Then & -=->" ¥ implies
s -B* 4. D

log

Proof. Suppose that

g -Bo* o B, . B.¥g | Then for

log nl
some atom e occuring in © we have

R R . -
fd ——‘>nl X because ---> is context-free.
By the second requirement for the logical

of —E—>

part *WA\log we may conclude that
p occurs also in the formula 2. and is
not reduced to the R-normal form. This

is., however, the contradiction. D
Remark. The Normal form lemma is not
true for non-CF reduction relations. Let
R . . .
_—_>nl is generated by the unique rewrite
rule p A g —-—-> true Then both p and
=] are in the R-pormal forms.
R 2 . .
L Ag ——> true, but it is wrong that
R_ % )
L A Q > log true <
Midformula lemma. Let -=-> be a
canonical context-free reduction
relation, and @ be a non-atomic formula

E.3
such that @ —8-> true, Then there exists
a middle formula ¥ (being a tautology)
* R ~+

such that & —B—>r g ———>

2 log true. O

Remarks. This lemma states that each
provable formula has the canonical form

proof: first by applying only the
non-logical rewrite rules. then by
applying only the logical ones., both



parts of the proof are divided by the
midformula. The example with

£ A -——> true shows that
Midformula lemma does not hold for
non-CF reduction relations.

the

Proof of the lemma. Suppose that ¥ is

R

a ———>nL—normal form of @&. By the
canonicity condition we have ¥ —8—>* true
and s0 by the Normal form lemma

R
P —=-> Log true. But v must contain
logical connectives, because —B—> is
context-free. So ¥ —‘3—>+ true. D

log
4. THE MAIN RESULT
Let =<, w> be a model of a

similarity type (signature) £ and the set
of natural numbers « as the carrier.
Suppose that

1) every element of M is denoted by
some constant term of z, i.e.

Vnew3dteWCz, & tm=n. where tm

denotes the valuation of the term t in W:

2) there exists a quantifier-free
formula #Cx, y> of = which numerically
expresses the predicate "less or equal”

between the integers, i.e. for
any n, m € w and t, s € WCE, &> such that
Lyt = "N, Ssz = m
- if n £ m is true then N k 8Ct, s>
- if n £ m is false then N bk = 3Ct, s>
v
Let 7Th (IO denote the quantifier-free
(universal) fragment of the elementary
theory of M, i.e. the set
v -
Th CRO =a5
=df P | NEY  ¥is unguantified > .
T H E (] R E M . Thvcm) is
non—axiomatiziable via a canonical

context—free reduction relation. 0O

The scenario of the proof. To simplify
the notation we use x £ y instead of ¥Cx,
¥ and 0, 1, 2, instead of the terms
denoting =zero. one, two. etc. The
boolean ring zero and one will be denoted
by the bold O and 1.

The prootf will be carried out in two

stages. Let’s suppose, on the contrary,
that there exists a canonical
context-free reduction relation —B—>
axiomatizing Th'C9D .

ln the first stage we prove the

existence of an atomic formula PCx, v
being in the R-normal form and containing
occurences of not less than two different
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variables x, y. Roughly speaking, this is
true due to the non-represetability of =
predicate by means of monadic predicates.

In the second stage we prove that for

R
each k € @ PCk, y> -S54 Since -=->
is Thv( IO -consistent, all formulas
PCO, v, PCL1, y2, PC(2, ¥J,... are true in

N. Hence, P(x, ¥ « Tth!ID {because the
carrier of N is w). Therefore., by the

v
assumption about the Th (D -completeness

R 3
ot B there must be PCx, vy ===> 1,
contradicting with the non-reducibility
of PCx, y.
Stage 1. We must prove that there

exists an atomic formula PCx, ¥J2 in the
R-normal form depending on at least two

variables. Assume., on the contrary, that
there is no such a formula. Then all
atomic formulas occuring in the R-normal
form of x=y depend on only one
variable, either x, or V. Let
< plch, N pan) > be the ordered
tuple of such atoms depending only on x,
and < pn+1(y)' P pn+m(y) > - of atoms
depending only on y. Let the functions
fp 2w > 0,1 »>n and
Syt @ - L 0,1 >™ associate with each
k € w the truth value distributions
< p:‘ue), - p;Ck) > and
X . E . 3

< h)

4 pn+1(k) s PSR 2 where ijk_‘)
denotes the R-normal form of pjcro, Note

»*
that any pj.(k) is either T or O since
p}.(k) is true or false in 9 by the
v

assumption about the ThA (O -completeness
of —'—Q—.‘. lt’s easy to see that for an

arbitrary distribution function fl there
exist the integers ki’ k, hz such that

kR, < kR ¢k, and f1Ck1) = j’lcka). since in

1 2
the infinite sequence
flcO), f1C1D, jlc‘a), some element of
the finite set { 0.1 }* must occur
repeatedly. Let’'s fix such numbers
kl , Rk, ka.
Suppose that ¥x, y3> is the R-normal

form of x < y. By the completeness and

. . R
the consistency assumptions on —--> there

must  be k= k N and
ky <k £,* 0. At the same time
ko< k R Wk, K. So by  the
2 R
confluency of —E—>. lI(kl. kY  —=-> 1



Wk, -B>™ 0. This

however, the contradiction. Obviously, by
the assumption, ¥Cx, ¥) consists of atoms
depending only on one variable, either x,
or ¥y. Therefore, the value of QCki.h) is

by the pair of
and faCkD. But by
of k

1 and ka we

and kD is.

uniquely determined
distributions j1Cki3

the choice have
jlckl) = f1Ck2). so the R-normal forms of
'l(hi, kD and ¥k, kO
Q.E.D. O

Stage 2. Let P(x, y> be an atom in the
R-normal form which depends on two or
more variables. We prove that for all

must coincide.

k € w

pcr, v B> g, ¢ 10
Consider the tormula

= (x =Kk A PCx, W) 3 PCk, ¥
which is valid in M (as the equality
substitution axiom). For the

v

Th (9D -comleteness of -5—> it’s necessary
*

that & —B-> 1 or

Cx = R % PCx, y> » CPCk,
R %
—==> 0.

Notice that

w o+ 1> B
c 2>

we cannot conclude directly

that (2) implies (1) because the boolean
ring contains zero divisors, e.g.
g * Cg + 1> = 0 whereas ¢ and g + 1 are

not identically equal to zero.
Let’s prove that the assumptions on

—B—> nevertheless give the possibility to
derive (1) from (2). Suppose, on the
contrary, that (2) and not-(1) are true.
Then by the contluency and the

context-freedom of the Midformula
lemma gives

N

Cx=r0™ % PCx,yd> % CPck,y3+1> -Bo*
log
»*
—-——=> O, <« 3D
log
E 3 »
where f<x = kJ and PCk, ¥ are the
R-normal forms of £x =k and PCk,
respectively., and the R-irreducibility of

PCx, y) is taken into account.
The first requirement for the logical
—4—>Log of together with (3)

imply that the left-hand side of (3) is
unsatisfiable. Remind that by the not-(1)

assumption PCk, yD* is not 1.

=

part

To obtain the desired contradiction

let’s construct an interpretation to
satisfy the left-hand side of (3). Notice
that Cx = o cannot be ©, otherwise
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(k = ™ must be O, contradicting the
completeness of -———>. Therefore there
exists an interpretation 3 satisfying the
»* . »
formula Ox = k¥ . Inasmuch as (x = Rk

consists of predicates depending only on
~, we may vary arbitrarily the valuations
of all other predicates in 3, depending,

say, on % or both on x and on V. it
Lo L
wouldn’'t violate the truth of <x = k> in
3. So we may suppose that 3 satisfies the
atom PCx, y>. It remains to show that a
may be transformed to satisfy
PCR, 2 + 1 in addition to
Cx = kO™ % PCx, y>. By  the  not-(1)
»®
assumption PRk, Vv is not 1. Iz
PCk, yD* is ©O. the proof is completed.
*
So. assume PCR, W is neither

Then there

exists falsifying FCk, yJ* assignment of
the logical values to the atoms depending
only on ¥ and on no other variables. So.
by the above argument we may reconstruct
3 (not affecting the truthfold of

»
k)T % PCx, y) in 3} such a way

that it will make PCx, vy false. This
concludes the construction of the
interpretation 3 satisfying the
unsatisfiable left-hand side of (3). This
contradiction completes the proof of the
second stage and of the whole
theorem. Q.E.D. D

identically true. nor false.

(x = in

5. CONCLUDING REMARKS

Let’s call a TRS R n-context
dependent Cn ¢ w> iff for every rule
it —=> r of R the number of logical
connectives occurences in its left-hand
side ¢ is less or equal to n. So,
context-free TRSs are O-context
dependent. Similar definitions may be
given for equational and conditional
TRSs. We state the following

Conjecture. Thvkﬂb cannot be
axiomatized via «a canonical n-context

dependent TRS for any n € w. DO

Unfortunately, the Normal form and the
Midformula lemmas or their analogues do
not work in the general case. So, some
fresh idea is necessary.

In conclusion we formulate one more
negative result. Let £_. be the signature

consisting of the unique binary predicate

symbol =< , and T;O be the quantifier-free
theory of the partial order of the
signature £_. .Following ([ 1 ], we say



that a rewrite rule ! ——> r is +the
N-rule iff ¢t 1is +the boolean product
(conjunction) of atoms. An arbitrary TRS
is called the N-TRS iff it consists of
the N-rules only. To reduce with a N-TRS
it’s necessary to keep the associativity
and the commutativity of % in mind., but
not the distributivity of » w.r.t. + .
So, N-TRSs are simpler than TRSs of the
general form. Note that an infinite N-TRS
may not be nrn-context dependent for no
n € w .,

THEOREM. T:O cannot be
axiomatized by a canonical N-TRS of the
signature £, . D

We do not know. however, whether this
result is stable w.r.t. the signature
extentions.
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