
Information and Computation 190 (2004) 196–219

www.elsevier.com/locate/ic

The most nonelementary theory

Sergei Vorobyov*

Information Technology Department, Box 337, Uppsala University, 751 05 Uppsala, Sweden

Received 27 November 2002; revised 14 November 2003

Abstract

We give a direct proof by generic reduction that testing validity of formulas in a decidable rudimentary
theory� of finite typed sets (Henkin, Fundamenta Mathematicæ 52 (1963) 323–344) requires space and time
exceeding infinitely often

exp∞(exp(cn)) = 2
2··

·2
}
height 2cn

for some constant c > 0, (1)

where n denotes the length of input. This gives the highest currently known lower bound for a decidable logical
theory and affirmatively settles Problem 10.13 from (Compton and Henson, Ann. Pure Appl. Logic 48 (1990)
1–79):

“Is there a “natural” decidable theory with a lower bound of the form exp∞(f(n)), where f is not linearly
bounded?”

The highest previously known lower (and upper) bounds for “natural” decidable theories, like WS1S, S2S,
are of the form exp∞(dn), with just linearly growing stacks of twos. Originally, the lower bound (1) for � was
settled in (12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), 1997, 294–305) using the
powerful uniform lower bounds method due to Compton and Henson, and probably would never be discov-
ered otherwise. Although very concise, the original proof has certain gaps, because the method was pushed
out of the limits it was originally designed and intended for, and some hidden assumptions were violated. This
results in slightly weaker bounds—the stack of twos in (1) grows subexponentially, but superpolynomially,
namely, as 2c

√
n for formulas with fixed quantifier prefix, or as 2cn/ log(n) for formulas with varying prefix.

The independent direct proof presented in this paper closes the gaps and settles the originally claimed lower
bound (1) for the minimally typed, succinct version of �.
© 2004 Elsevier Inc. All rights reserved.

∗Fax: +46-18-55-02-25.
E-mail address: Sergei.Vorobyov@csd.uu.se.
URL: http://user.it.uu.se/∼vorobyov/.

0890-5401/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2004.02.002

mail to: Sergei.Vorobyov@csd.uu.se

S. Vorobyov / Information and Computation 190 (2004) 196–219 197

AMS classification: MSC 68Q25 Analysis of algorithms and problem complexity; 03D15 Complexity of computation

Keywords: Lower complexity bound; Nonelementary theory; Generic reduction; Reduction via length order; Inductive
definition

1. Introduction

Some nonelementary theories1 are more nonelementary than others. Indeed, a theory with lower
and upper time bounds of the form2

2
2··

·2n
}
log(log(log(log(log(log n)))))

is, of course, nonelementary, but this is immaterial, because for all inputs one can ever encounter
or even imagine in practice the function above is linear.
Other theories, like the well-known weak monadic second-order theory of one successor WS1S3

or two successors S2S have lower and upper bounds of the form exp∞(dn), with linearly growing
stacks of twos4; see [1,2,13,15] for surveys of known results.
The theory we consider in this paper is far more nonelementary. Type theory� is a rudimentary

fragment of the theory of propositional types due to Henkin [3]. This is the higher-order theory of
the stratified cumulative hierarchy over {0, 1} in the language L = {∈} [8,11]; see Definition 1.
In this paper we directly prove by generic reduction the following.

Main theorem. Any Turing machine deciding � requires space (hence time) exceeding

exp∞(exp(d · |S|)) = 2
2··

·2
}
height exp(d ·|S|)=2d ·|S|

(2)

for some constant d > 0 and infinitely many sentences S of �.

Theorems 8, 10 below refine the Main Theorem for two different versions of � and for fixed
quantifier prefixes. The lower bound (2) remains the same (with a different constant), no matter
which reasonable computational model is used.5

1A theory (problem) is called elementary in the sense of Kalmar if it can be decided within time bounded above by
a k-story (for k fixed) exponential function expk (n), where n is the length of input. The functions expm(n) are defined
by exp0(n) = n and expm+1(n) = 2expm(n). The usual exponential function exp(n) = 2n coincides with exp1(n), and the
iterated exponential exp∞(n) = expn(1).

2According to common practice, log(n) is a shorthand for max{1, �log2(n)}.
3The first one proved nonelementary by A. Meyer [10] in May 1972.
4A. Meyer [10] proved a weaker lower bound, with a logarithmically growing stack.
5All “reasonable” computational formalisms can bemodeled by a Turingmachine with only a polynomial slow-down.

198 S. Vorobyov / Information and Computation 190 (2004) 196–219

One can wonder what is so interesting about the theory � and why it could be considered
“natural.” The author of this paper is not the first one who addressed the complexity of �. For
example, A. Meyer [9, Theorem pp. 478–479, No. 7] claimed the

2
2··

·2n
}
ε·log(n) height

lower bound. Statman [11] claimed that � is nonelementary (without any explicit lower bounds)
and used this fact to prove that �-equality in the simply typed lambda calculus is not elementary
recursive. Later Mairson [8] sketched the proof that � is nonelementary, also without any explicit
lower bounds. Note that Mairson’s proof does not imply the lower bound (2). The high complexity
of � came unnoticed until in [17] we settled, by using the method of Compton and Henson [1], the
lower bound (2), and used it together with Statman’s reduction to prove the tight exp∞(cn) lower
bound for �-equality in the simply typed lambda calculus. This lower bound now preciselymatches
(with a different constant) the known upper bound of the form exp∞(dn) due to Tait.
As another important application, [17] shows that a long-standing, currently still open6 higher-

order matching problem in the simply typed lambda calculus due to Huet has a lower bound of the
form exp∞(cn/ log(n)). This provides an example asked for in [1, Problem 10.11]:

“Give nontrivial lower bounds for mathematically interesting problems whose decidability is still open.”

Vorobyov and Voronkov [18] used the lower bound (2) to show that determining whether a given
nonrecursive logic program over sets succeeds has the same exponentially growing stack of twos
exp∞(exp(dn)) as a lower bound.
Kuper and Vardi [6] and also Hull [5] considered similar formalisms of logical queries over sets

with the powerset constructor. They proved tight lower and upper bounds of the form exp∞(cn),
with linearly growing stacks of twos. The main reason of higher complexity of� is that its language
is exponentially more succinct: it uses binary notation for types interpreted it terms of iterated pow-
ersets, whereas Kuper and Vardi [6] use unary notation for iterated powersets. For example, in their
formalism saying that “x is an element of powerset (. . . (powerset︸ ︷︷ ︸

k times

({0, 1}) . . .)” requires O(k) bits. The

same thing in � is expressed by xk−1 ∈ yk ∧ ∀zk−1(zk−1 ∈ yk) and needs just O(log k) bits. It turns
out that this exponential succinctness translates into the exponential speed-up in the growth of
stacks of twos. Another reason is that in proving the lower bound for � we (almost) do not need
inductive definitions, whereas they are used in [6] to define large sets. Sections 13, 17.4, and 19 discuss
why inductive definitions in typed theories lead to weaker lower bounds.
Originally, the lower bound (2) in the Main Theorem was settled by using the powerful uniform

lower bounds method of [1] in October 1996, and would probably never be discovered otherwise.
Recall that it came unnoticed in [1,11,9,8]. Since the first report [17] on the lower bound (2), we
felt necessary to provide an independent alternative proof in order to increase confidence in the
validity of the claim, as well as of all applications we mentioned before, and dispel all suspicions

6Added in proof. Since this paper was submitted, R. Loader published the undecidability proof of the higher-order
�-matching [Logic Journal of the IGPL, 11:1 (2003), pp. 51–68]. As of February 2004, the undecidability of ��-matching
remains open. Our lower bound holds for both �- and ��-matching problems.

S. Vorobyov / Information and Computation 190 (2004) 196–219 199

as to applicability of the method in the area it was not developed and intended for. This paper
gives such an alternative proof by direct generic reduction, and also unveils a hidden assumption
of Compton–Henson’s method violated in [17].
Roughly, this “hidden” assumption is as follows. In first-order theories one can write formulas

with linearlymany quantifiers, but using only a fixed number of different variables, by reusing vari-
able names. This allows for keeping the length of formulas linear in defining large ordered sets—the
crucial property in proving strong lower bounds. This is not necessarily true for higher-order the-
ories with variables keeping their type annotations. Indeed, while one can reuse variable names,
the number of variable occurrences remains linear. If, additionally, variable types linearly depend
on input, then one gets a quadratic blow-up in the length of formulas. This observation, applied
uniformly to themethod of [1], suggests that the lower bound for� proved in [17] should be lowered
to a more modest exp∞(exp(

√
cn)) (note: still a superpolynomial stack of twos). However, as an

additional advantage, the proof presented in this paper shows that � is capable of defining large
ordered sets without inductive definitions that require linear number of variable occurrences lead-
ing to a quadratic explosion. This repairs a “slightly” incorrect application of Compton–Henson’s
method in [17], and saves the original claim.
Another advantage of the direct proof presented here is that it yields, as a by-product, an interest-

ing result about a fixed quantifier prefix complexity. Usually one has to allow an arbitrary quantifier
alternation depth in formulas to settle lower bounds. In � this can be done with a fixed quantifier
prefix, with slightly weaker lower bounds; see Theorem 8. This came unnoticed in [17]. Results of
this form cannot be obtained by using the uniform method of [1], and, to our knowledge � is the
first example of a “natural” theory with this property.

Paper outline. After preliminaries, Section 3 presents the proof plan, and the sections that follow
implement it. Section 16 makes an intermediate pause by presenting lower bounds for a fixed
quantifier prefix, and the succeeding sections push up the lower bounds to the strongest possible.
Some lower bound basics are moved to Appendix A.1.

2. Preliminaries

We assume the basic knowledge and notation concerning words, languages, complexity, reduc-
tions, asymptotics, etc. As usual, P(X) and card(X) denote the set of all subsets of a set X and
its cardinality, respectively, ω denotes the set of natural numbers. The function exp∞ : ω→ ω

is recursively defined by exp∞(0) = 1 and exp∞(k + 1) = 2exp∞(k). The m-story exponential func-
tions expm(n) are defined by exp0(n) = n and expm+1(n) = 2expm(n). Note that exp∞(n) = expn(1).
Throughout the paper we use exp∞(f(n)) as a shorthand for exp∞(�f(n)�).

Type theory � is a very rudimentary fragment of the theory of propositional types due to Henkin
[3], as defined by Statman [11] and Mairson [8].

Definition 1 (Theory �). The language of type theory � is a language of set theory, where every
variable has a natural number type, written as a binary superscript, and there are two constants 0,
1 of type 0. The atomic formulas of� are stratified, i.e., have form 0∈ x1, or 1∈ x1, or xn ∈ yn+1. All

200 S. Vorobyov / Information and Computation 190 (2004) 196–219

other formulas are built by using ¬, ∧, and ∀. The interpretation of � is as follows: 0 denotes 0, 1
denotes 1, and xn ranges over Dn, where D0 = {0, 1} and Dn+1 = P(Dn).

Note that card(Di) = exp∞(i + 1). Decidability of � is immediate, because each quantifier runs
over a finite domain. See Section 19 for the upper complexity bound.

Encoding. To argue about decision complexity, we fix an arbitrary reasonable encoding of formulas
of � as binary strings and agree that a variable of � is represented by its type and its identification
number within a type, both written in binary.

Verbose vs. succinct version of �. Annotating all variable occurrences in formulas of � with their
types is redundant. For example, xk ∈ zk+1 ∧ yk ∈ zk+1 can be unambiguously abbreviated to x ∈
zk+1 ∧ y ∈ z, because all missing type annotations in the last formula may be easily and uniquely
reconstructed. Therefore, we distinguish between two versions of the theory �:
• Fully typed, or verbose, in which full type annotations are supplied for all variable occurrences.
• Minimally (partially) typed, or succinct, in which formulas are supplied with only a minimal
type information allowing for an unambiguous reconstruction of the full type information about
variables.
This distinction becomes important as soon as succinct reducibilities are concerned. Consider

a conjunction
∧p
i=0 x

k
i ∈ Zk+1, where both p and the notational length of type k are O(n). Then

the length of the conjunction above is O(n2). The same conjunction written in succinct form
x0 ∈ Zk+1 ∧∧p

i=1 xi ∈ Z has length O(n log n). As a consequence, succinct � has “slightly” (in fact,
nonelementarily) higher lower bounds, as discussed below.
To avoid clutter, in writing formulas below we frequently and informally omit typing some

variable occurrences, which may be easily and uniquely reconstructed.

Model of computation. We use the ordinary language recognizing deterministic Turing machineM
with a semi-infinite (to the right) tape used both for input, work, and output. We assume without
loss of generality that the tape alphabet � ofM consists of two symbols, � = {0, 1}. We also apply
all standard assumptions: thatM always starts in its unique initial state observing the leftmost tape
cell, that the input is always written on the left end of the tape, thatM accepts by entering its unique
accepting state qa observing the leftmost cell after erasing all the tape space used in computation,
etc.; see, e.g. [2,13]. The lower bounds we obtain routinely translate to other realistic models of
computation, with only different constants. By DSPACE(S(n)) we denote the class of problems
solvable by deterministic Turing machines in space S(n).

Reducibilities. In order to settle the strongest lower bounds we need to use the tightest possible
reductions. Assuming the reader has basic knowledge of lower bound techniques, here we only de-
fine reducibility via length order and state an important corresponding technical lemma used several
times throughout the paper. To keep the paper self-contained, some details and proofs are moved
to Appendix A.1.

Definition 2 (Reducibility “via length order”). Say that a problem A is polynomial time reducible to a
problem B via length order g(n) if there exists a deterministic polynomial time computable function
f and a constant c > 0 such that for all x in the language of A one has:

S. Vorobyov / Information and Computation 190 (2004) 196–219 201

x ∈ A⇔ f(x) ∈ B, (3)

|f(x)| � c · g(|x|) (except, maybe, finitely many x). (4)

Polynomial time reducibility via length order n is called polynomial time linearly bounded
reducibility. �

Lemma 3. Suppose, every problem in DSPACE(exp∞(exp(n)− 2)) is polynomial time reducible via
length order g(n) to a problem T.

(1) If g(n) = n then T �∈ DSPACE(exp∞(exp(dn))).
(2) If g(n) = n log(n) then T �∈ DSPACE(exp∞(exp(dn/ log(n)))).
(3) If g(n) = n2 then T �∈ DSPACE(exp∞(exp(d

√
n))).

(In each case d > 0 is some constant.) �

Recall that T �∈ DSPACE(f(n)) implies that every decision procedure for T requires space (hence,
time) exceeding f(n) on infinitely many inputs (lower bound for deciding T).

3. Proof plan

According to Lemma 3, our aim in the remainder of the paper is to show that every problem
in DSPACE(exp∞(exp(n))− 2) is reducible to �, i.e., there exist a reduction f and a constant c
satisfying (3) and (4) for the appropriate length order g(n) depending on the version of �.
Let A be an arbitrary problem in DSPACE(exp∞(exp(n))− 2), and let M be a corresponding

(exp∞(exp(n))− 2)-space bounded TM deciding A. We will give a reduction f by constructing, for
each x of length n in the language of A, the sentence "M ,x true in � iff M accepts x.

Remark 4. In constructing this reduction it is important that all parameters of A, represented by a
TM M , are fixed before we start constructing f (these include the number of tape symbols, states,
commands, etc.) and only influence the value of the constant c. This is crucial for the order of re-
duction. Otherwise, if the description ofM were considered as a part of input, the number of triples
of tape symbols may be cubic in the length of input; see Section 15. �

We start constructing the sentence "M ,x in Section 5, after extending the language of � by
allowing explicit definitions.
We try to present enough technical details of the encoding. Although considered standard and

well known to the small universe of people who did lower bound proofs, the reduction con-
tains several subtle and nonstandard places, and applies in the typed context (which sometimes
substantially differs from the untyped case [1,2]). We believe that keeping sufficient details is help-
ful to the reader, and yields a verifiable, easily reconstructible proof, understandable by a non-
specialist. In any case, the proof presented below allowed the author to close several gaps in
the preliminary report [17], which relied upon [1]. As a by-product, it also implies a new result
on the superpolynomial-stack-of-twos lower bound for a fixed quantifier prefix class of �; see
Theorem 8.

202 S. Vorobyov / Information and Computation 190 (2004) 196–219

4. Using explicit definitions

Let us extend the language of � by allowing explicit definitions. This results in simpler and
more intuitive formulas, but does not really increase the expressive power and complexity of
the theory, because all explicit definitions can be eventually eliminated from any formula
giving only a linear blow-up. This will not harm the linear boundedness of reductions we
construct.

Set-theoretic notions. We need the usual set-theoretic explicit definitions like xm ⊆ ym ≡df ∀
zm−1 (zm−1 ∈ xm ⇒ zm−1 ∈ ym) for every m ∈ ω, and similarly for strict subset �, and set
(in)equality.

Terms. The language of� does not have terms, except variables. Terms, like {x}, {x, y}, {{x}, {x, y}},
are useful representations for singletons, pairs, ordered pairs, whichwewill frequently need. Instead,
we can define predicates for “to be a singleton, pair, ordered pair” by:

{xn} = yn+1 ≡df xn ∈ yn+1 ∧ ∀zn+1(xn ∈ zn+1 ⇒ yn+1 ⊆ zn+1),
{xn, yn} = zn+1 ≡df xn ∈ zn+1 ∧ yn ∈ zn+1 ∧ ∀wn+1(xn ∈ wn+1 ∧ yn ∈ wn+1 ⇒ zn+1 ⊆ wn+1),
〈xn, yn〉 = zn+2 ≡df ∃un+1vn+1

[
{xn} = un+1 ∧ {xn, yn} = vn+1 ∧ {un+1, vn+1} = zn+2

]
. (5)

For notational simplicity we will continue to use the term notation like {xn} = yn+1 instead of a less
natural predicate notation Is-Singleton(yn+1, xn). Note how variables are typed in the
explicit definitions above. Recall that by definition of � one cannot form a pair of elements
of two different types. The explicit definitions above are not fully expanded (according to the
usual mathematical practice), which can be done resulting only in a linear increase in the length
of formulas.

Eliminating terms from formulas. We need tomake the last explanation concerning the use of terms
in formulas. Consider, for example, the formula (we omit types for simplicity), 〈a, b〉 ∈ {c, d}, which
translates into

∀x, y(x = 〈a, b〉 ∧ y = {c, d} ⇒ x ∈ y),
and twoatoms in the premise should also be replacedby their explicit definitions. Such a transforma-
tion consists in introducing new variables corresponding to subterms, and putting their definitions
of in the premise. Such a transformation can always be done routinely, giving only a linear increase
in the length of formulas, provided the depth of terms is bounded in advance. Unbounded depth may
result in quadratic blow-up, due to annotating linearly many variable occurrences (corresponding
to linearly many subterms) with linearly long types.
Therefore, we can freely use all the above explicit definitions and terms in the constructions

below, without running a risk to get more than a linear blow-up in the size of formulas.

S. Vorobyov / Information and Computation 190 (2004) 196–219 203

5. Formula for an accepting computation

Given an arbitrary but fixed (exp∞(exp(n))− 2)-space bounded TM M (cf., Remark 4) with
tape alphabet � = {0, 1}, set of states Q (� ∩ Q = ∅), and an input x ∈ �+ of length n > 0, we will
construct the sentence

"M ,x ≡df ∃Rt+5
{
∀V
[
A⇒ I(R) ∧ C(R) ∧ F(R)∧ ∀R′

(
I(R′) ∧ C(R′)⇒ R ⊆ R′

)] }
, (6)

in the language of �, where:
(1) the variable Rt+5 stands for a “run” of M , where t, called the principal type (to be defined in

Section 10), linearly depends on the input length n; the existentially quantified occurrence Rt+5
in (6) is the only variable occurrence needed to be annotated by a type—all other variables of
(6) can be uniquely and unambiguously typed;

(2) A is an auxiliary formula discussed in Section 12, and ∀V quantifies over auxiliary variables;
(3) I(R) says that R contains an initial instantaneous description (ID) of M on input x, defined in

Sections 13 and 17;
(4) C(R) says that R is closed with respect to transitions of the TMM , defined in Section 15;
(5) the ∀R′-quantified subformula in (6) expresses that R is a minimal set containing the initial ID

and closed with respect to M s transitions;
(6) F(R) says that R contains an accepting ID of M , defined in Section 14;
(7) intuitively, the whole formula (6) says that there exists a path from the initial to the final con-

figuration by using transitions of M , or, equivalently, that M accepts x.

6. Acceptance

By definition, an (exp∞(exp(n))− 2)-space bounded TM M accepts an input x iff there exists a
sequence of IDs, starting with an initial ID, with each succeeding ID obtained from the preceding
one by applying one of the transition rules of M , and ending with an accepting ID. Since M is
an (exp∞(exp(n))− 2)-space bounded, we make a unifying assumption that all its IDs have equal
length exp∞(exp(n))+ 1 and are of the form

$d1 · · · dexp∞(exp(n))−1$, (7)

where: (1) $ �∈ � ∪ Q are tape end markers, over whichM never tries to come across, (2) exactly one
of dis is a head state symbol (meaning that M is in the designated state observing the i + 1st tape
cell), and (3) the remaining exp∞(exp(n))− 2 symbols are symbols of theM ’s tape alphabet and/or
blanks; we assume that the tape unused by M is padded by blanks, and the blank symbol is not in
� ∪ Q.
Thus the total (maximal) tape space described by (7) is exp∞(exp(n))− 2.

7. Representing a run

We will represent a run R of a TM M as a set of pairs of IDs of M satisfying two properties:

204 S. Vorobyov / Information and Computation 190 (2004) 196–219

(1) for all 〈x, y〉 ∈ R the ID y is obtained from the ID x in one step ofM ; (Elements of R are correct
ID transitions of M .)

(2) if 〈x, y〉 ∈ R and y is not final, then for some z one has 〈y , z〉 ∈ R. (R is closed with respect toM
transitions.)

Note that (6) stipulates that R is a minimal set satisfying these properties.

8. Representing an ID

An ID of an (exp∞(exp(n))− 2)-space bounded TM M will be represented as a set of pairs
ID ⊆ L× L, where:
(1) L is an auxiliary linearly ordered set of cardinality exp∞(exp(n))+ 1 defined in Section 9, needed

to index the symbols of an ID in (7),
(2) {x | ∃y〈x, y〉 ∈ ID } = L—to represent (7)weneeda total functionwith thedomainof cardinality

exp∞(exp(n))+ 1,
(3) card({y | ∃x〈x, y〉 ∈ ID }) = card(Q ∪�)+ 2—we need to represent states from Q, tape sym-

bols �, a blank, and the end marker $ by elements of L.
Thus, an ID (7) is represented an L-indexed sequence of tape symbols (including a head state)

represented as elements of L, padded by blanks to the length exp∞(exp(n))− 2, and embraced by $.
Recall that in � we can only construct sets of elements of the same type; see Section 4. That is

why we use subsets of the Cartesian square of L to represent IDs. Note that an ID has type t + 2, if
L is of type t; see (5). Similarly, an ordered pair of IDs has type t + 4. Consequently, a set R of such
pairs has type t + 5. This explains typing in (6).

9. Large linearly ordered set

Define the predicates “to be linearly ordered” by

LO (X t)≡df ∀x, y(x ∈ X ∧ y ∈ X ⇒ (x ⊆ y ∨ y ⊆ x)),

with type t defined in Section 10, and also “to be a maximal chain” by

MC (Lt)≡df LO (L) ∧ ∀L′
(
LO (L′)⇒ L′ ⊆ L

)
. (8)

Everywhere below Lt denotes a maximal chain, satisfying MC(Lt) defined by (8). We need the
following simple and useful.

Lemma 5. Any maximal chain St ∈ Dt = P(Dt−1) contains exactly card(Dt−1)+ 1 = exp∞(t)+ 1
elements.

Proof. We may always suppose that the first and the last elements of any maximal chain St ∈ Dt

are ∅ and Dt−1. Otherwise, S can be extended by adding these elements and is non-maximal. Write
the chain S as a sequence X0 ⊂ · · · ⊂ Xi ⊂ Xi+1 ⊂ · · · ⊂ Xm. We claim m = card(Dt−1). Otherwise,
one should have card(Xi+1\Xi) > 1 for some i. Let u ∈ Xi+1\Xi . Then the chain may be extended by
adding Xi ∪ {u}, i.e., Xi ⊂ Xi ∪ {u} ⊂ Xi+1, and we get a contradiction. Clearly, S cannot have more

S. Vorobyov / Information and Computation 190 (2004) 196–219 205

than card(Dt−1)+ 1 elements, because any pair Xi ⊂ Xi+1 of adjacent elements in S should have
cardinalities differing at least by one. �

It is important to note that we succeeded to define a large linear order of size exp∞(t)+ 1 without
any inductive definitions, by a fixed formula of size O(t), with only type t varying. This is one of the
reasons � is so hard to decide.
Define the “successor in Lt” and the “three adjacent elements” predicates by:

succ(x, y ,Lt) ≡df x ∈ L ∧ y ∈ L ∧ x �= y ∧ ∀z(x ⊆ z ⊆ y ⇒ (z ⊆ x ∨ y ⊆ z)),
adj3(x, y , u,Lt) ≡df succ(x, y ,L) ∧ succ(y , u,L).

(9)

10. The principal type

The existentially quantified variable R of (6) has type t + 5, where t is the type (called principal
in (6)) of the variable Lt denoting a maximal chain defined in Section 9. Section 8 explained why
Lt should have cardinality exp∞(exp(n))+ 1, and from Lemma 5 we know that Lt has cardinality
exp∞(t)+ 1. Thus, the principal type t should be chosen as t = 1 0 . . . 0︸ ︷︷ ︸

n times

, which specifies Lt as a

variable of type 2n (recall that type annotations of variables in � are written in binary). This type
annotation t for Lt defines uniquely the types of all other variables involved in "M ,x, which will
differ from t only by constants, with t + 5 being the largest. This property will be provided by the
construction of "M ,x . Therefore, all variable type annotations in "M ,x will be linearly bounded in
the length of input. Conversely, the largest type t + 5 of the existentially quantified variable R of (6)
uniquely defines the principal type t of Lt , as well as (smaller) types of all other variable occurrences
in "M ,x .

11. Tape, state, and auxiliary symbols

We need to use certain elements of the maximal chain Lt to represent tape, state, and auxiliary
symbols, as explained in Section 8. It suffices to choose enough different fresh variables v1, . . . , vm
of type t − 1: one variable Qi per state symbol qi ∈ Q, plus four variables BLANK, END, ZERO,
ONE, for the blank, end marker, tape symbols 0, 1 ∈ �, and to add∧m

i=1 vi ∈ Lt ∧
∧

1�i �=j�m vi �= vj
to the auxiliary formula (10) we construct. We may assume without loss of generality that L is large
enough to possess at least m elements; m is a constant, fixed when a TM for a problem is chosen;
see Remark 4. The last formula above is almost a fixed formula depending only on a constant
number of state and tape symbols in the description of M . However, each variable occurrence is
assigned a type of length linearly dependent on the input length. Thus the above formula is of linear
length.
This phenomenon repeats several times in the sequel and deserves a special.

Definition 6.Call a formula of� quasi-fixed if, after erasing all types of variables, it becomes a fixed
formula, independent of input. �

206 S. Vorobyov / Information and Computation 190 (2004) 196–219

Note that (8) defining Lt is quasi-fixed.Wewill construct, whenever possible, quasi-fixed formulas
with variables annotated by types linearly depending on input; see Section 10. Thus, the sizes of
such formulas will be linear in the length of input. If a formula of� is not quasi-fixed (e.g., contains
a linear number of variable occurrences of non-fixed types), its size may grow non-linearly (e.g.,
quadratically) in the length of input. Therefore, since we need linear bounded reductions, we pay
special care in constructing quasi-fixed formulas.

12. Auxiliary formula

Weselect fresh different variablesXfst,Xlst,X0,X1, and, as described above, fresh different variables
ZERO, ONE (for the tape alphabet), BLANK (for the blank), END (for the end marker $), and Qi
for all states qi ∈ Q. All these variables are of type t − 1. The set V of all these variables is a finite set.
Its size is a fixed constant determined by the problem. The auxiliary formula A in (6) is defined as

A ≡df MC (Lt) ∧min(Xfst ,L) ∧max(Xlst ,L) ∧ adj3(Xfst ,X0,X1,L) ∧∧
V ∈V

V ∈ L ∧
∧

for different V ,V ′∈V

V �= V ′, (10)

where min(x,L) is explicitly defined by x ∈ L ∧ ∀z(z ∈ L⇒ x ⊆ z), and similarly for max. The for-
mula (10) simply says that Xfst , Xlst are the first and the last elements in the chain L, X0 is a successor
to Xfst , X1 is a successor to X0, and all variables Vi ∈ V are interpreted as different elements of L.

13. Initial ID, subformula I (R)

Suppose that the TM M starts in the initial state q0 observing the first symbols of the input
sequence s1 . . . sn ∈ {0, 1}+. As a first approximation to represent the initial ID $q0s1 . . . snb . . . b$
of M , let us select fresh different variables X2, . . . ,Xn, in addition to selected earlier, and write the
following formula (with Si equal ZERO when si is 0 and Si equal ONE when si is 1):

IC(Ct+2)≡df 〈Xfst ,END〉 ∈ C ∧ 〈X0,Q0〉 ∈ C ∧ 〈Xlst ,END〉 ∈ C

∧
n−1∧
i=1

succ(Xi,Xi+1,L) ∧
n∧
i=1

〈Xi, Si〉 ∈ C

∧∀u(Xn � u�Xlst ⇒〈u,BLANK〉 ∈ C)
∧∀u, v,w(〈u, v〉 ∈ C ∧ 〈u,w〉 ∈ C ⇒ v = w). (11)

The last two universal subformulas in (11) say that the input is padded with blanks and that C is a
“function”, i.e., every tape symbol is uniquely defined.
Now we can write the subformula I(R) of (6) as follows:

I(Rt+5) ≡df ∃X t+2, Y t+2
(
IC(X) ∧ 〈X , Y 〉 ∈ R

)
. (12)

S. Vorobyov / Information and Computation 190 (2004) 196–219 207

Note that by (5) the type of 〈X , Y 〉 in (12) is t + 4; hence the type of R is t + 5, since types in atomic
formulas of � should differ by one: xk ∈ yk+1.
The only drawback of the formula (11) (consequently, of (12)) is that it is superlinear in the length

of input n. The reason is that we introduced O(n) variables X1, . . . ,Xn to index the sequence of input
bits. Even if we are using the economic binary notation for variable indexes, it gives length increase
of order n log(n). Even worse, since in the verbose fully typed version of � we must annotate all
variable occurrences with their types, and the type t − 1 in (11) is of length linear in the size of
input (even written in binary), the formula (11) with all variables types written explicitly is of length
O(n2).
Thus the best lower bound for the verbose fully typed � we can get with the initial formula

(11)–(12) is (using (A.5) in Corollary A.1)

exp∞(exp(
√
cn)).

Still, this is a superpolynomially growing stack of twos.
For the succinctminimally typed�we can get with the initial formula (11) a stronger lower bound

of the form (using (A.4) of Corollary A.1)

exp∞(exp(cn/ log(n))).
In Section 17 we describe a more economic way to represent an input. Nevertheless, the solution
with the initial formula (11) we suggested here is very simple and intuitive. Also, most importantly,
it gives the lower bounds for sentences of � of fixed quantifier prefix complexity; see Section 16.

14. Final ID, subformula F(R)

Analogously, the accepting ID $qab . . . b$ is specified by:

FC(Ct+2) ≡df 〈Xfst ,END〉 ∈ C ∧ 〈Xlst ,END〉 ∈ C ∧ 〈X0,Qa〉 ∈ C
∧∀u(X1 ⊆ u�Xlst ⇒〈u,BLANK〉 ∈ C)
∧∀u, v,w(〈u, v〉 ∈ C ∧ 〈u,w〉 ∈ C ⇒ v = w).

Now we can write the subformula F(R) of (6):

F(Rt+5) ≡df ∃X t+2, Y
(
FC(X) ∧ 〈Y ,X 〉 ∈ R

)
. (13)

Note that both formulas FC , F are quasi-fixed.

15. Correct transitions, subformula C(R)

The following lemma due to Stockmeyer [13, Lemma 2.14, p. 38], is a basic tool for arithmetization
of Turing machines. It allows one to check, for a given TM M and two IDs d1 and d2, whether d2
results from d1 by one step ofM (symbolically d2∈ NextM(d1)) only by making local checks. Such a

local check consists in comparing the (j − 1)th, jth, and j + 1th symbols of d1and d2, for all j. One

has d2∈ NextM(d1) if and only if all such local checks succeed.

208 S. Vorobyov / Information and Computation 190 (2004) 196–219

Lemma 7 (L. Stockmeyer). Let M be any TM with tape alphabet � and set of states Q. Suppose
$ �∈ � ∪ Q is the tape end marker, b �∈ � ∪ Q is a blank, and � = � ∪ Q ∪ {$, b}. There exists a
function NM : �3 → P(�3) satisfying the following property:

for any two IDs d1, d2 of M such that

$d1$ = d1,0 d1,1 . . . d1,j−1 d1,j d1,j+1 . . . d1,k d1,k+1
$d2$ = d2,0 d2,1 . . . d2,j−1 d2,j d2,j+1 . . . d2,k d2,k+1

one has d2∈ NextM(d1) iff d2,j−1d2,jd2,j+1 ∈ NM(d1,j−1d1,jd1,j+1) for all j ∈ {1, . . . , k}. �

Note that the graph of any function NM in Lemma 7 is constant since it depends only on card(�),
fixed when we choose a TM M , before we start constructing (6). This graph may be defined by the
following boolean formula

2M(x, y , z, x′, y ′, z′) ≡df
∧

s1s2s3∈�3

(
x = s1 ∧ y = s2 ∧ z = s3

⇒
∨

s′1s′2s′3∈NM (s1s2s3)
(x′ = s′1 ∧ y ′ = s′2 ∧ z′ = s′3)

)
.

The size of this formula (with types erased) is constant once the description ofM is fixed. However,
the fixed number of variable occurrences in2M are annotated with types linearly depending on the
length of input. Hence, 2M is quasi-fixed, and its size is linear in the size of input.
We are now ready to write the formula C(R) of (6):

C(R)≡df ∀X , Y
(
〈X , Y 〉 ∈ Rt+5 ⇒
∀x, y , z, a, b, c, a′, b′, c′

[
adj3(x, y , z,L)

∧〈x, a〉 ∈ X ∧ 〈y , b〉 ∈ X ∧ 〈z, c〉 ∈ X
∧〈x, a′〉 ∈ Y ∧ 〈y , b′〉 ∈ Y ∧ 〈z, c′〉 ∈ Y (14)

⇒ 2M(a, b, c, a′, b′, c′)
]

∧
[
¬∃x(〈x,Qa〉 ∈ Y ⇒ ∃Z〈Y ,Z〉 ∈ R

])
.

(Recall that Qa is a variable of type t − 1 corresponding to the accepting state qa ∈ Q.)
This finishes the definition of the sentence (6) expressing the fact that a given exp∞(exp(n))− 2-

space bounded TM M accepts an input x of length n.

16. Lower bounds for � with fixed quantifier prefix

The subformulas A, C , F of "M ,x, defined by (6), (10), (13), (14), are quasi-fixed, hence, linearly
bounded in the length of input n. The initial subformula I of"M ,x defined by (12), (11) is of size O(n2)
for the verbose fully typed�, of size O(n log(n)) for the succinct partially typed�, and the number

S. Vorobyov / Information and Computation 190 (2004) 196–219 209

of quantifiers in I does not depend on n. Therefore, we may precisely state the first lower bounds for
� we just obtained:

Theorem 8 (Fixed quantifier prefix lower bounds).There exists a finite fixed quantifier prefixQP such
that any decision algorithm for � requires space exceeding, respectively:
(For fully typed �)

exp∞(exp(c
√|"|)), (15)

for some constant c > 0 and infinitely many prenex sentences " of verbose � with quantifier prefix
QP ;

(For partially typed �)

exp∞(exp(c|"|/ log(|"|))), (16)

for some constant c > 0 and infinitely many prenex sentences" of succinct� with quantifier prefix
QP. �

Note that already (15), (16) provide a superpolynomial rate of stack of 2’s growth in the lower bounds
for both versions of �.
In the remainder of the paper we describe a more economic method for representing an input.

The solution with formula (11) (the only one non-quasi-fixed) we suggested here is very simple and
intuitive. Also, most importantly, it gives the lower bounds for sentences of � of fixed quantifier
prefix complexity. This is not the case for an alternative solution we suggest below. However, we
will push (15) up to exp∞(exp(c|"|/ log(|"|))) and (16) to exp∞(exp(cn)).

17. More succinct initial formula

The non-quasi-fixed initial formula (11)–(12) was constructed by using O(n) variables, n is the
length of input. This non-economic representation led to non-optimal lower bounds of Theorem 8.
In this section we describe a more clever way to represent an input by using only logarithmically
many variables. We split the job into two subtasks. First, in Section 17.1, we describe a method
to represent an input by a formula linear in the length of input. Second, in Sections 17.2–17.4, we
describe how to “copy” the input represented that way onto the initial ID of a TM.

17.1. Input formula

Let an input s1 . . . sn ∈ {0, 1}+ of length n be given, padded by blanks to the length 2m with m =
�log(n), if necessary. We will show how to construct the formula INPUTm(dm, dm−1, . . . , d2, d1, x),
with variables di of type 0 and x of type 1, of size O(n) with the property:

when dm, dm−1, . . . , d2, d1 are assigned binary values 0, 1, the formula
INPUTm(dm, dm−1, . . . , d2, d1, x) is true iff x = sk , where k = 1+ the number represented in binary by dmdm−1
. . . d2d1.

(x is of type 1 because type 0 has just two values, insufficient to represent the third value “blank”
in the padded input.)

210 S. Vorobyov / Information and Computation 190 (2004) 196–219

To write INPUTm we use auxiliary formulas inputi,j defined inductively:

input0,j (x) ≡df x = sj+1(for 0 � j < 2m),

inputi+1,j (di+1, di, . . . , d1, x) ≡df
(di+1 = 0 ⇒ inputi,j(di, . . . , d1, x))∧
(di+1 = 1 ⇒ inputi,2i+j(di, . . . , d1, x)).

Intuitively, inputi,j describes the segment of the input of length 2
i starting from position j + 1.

It remains to define

INPUTm(dm, dm−1, . . . , d2, d1, x)≡df inputm,0(dm, dm−1, . . . , d2, d1, x).

In this formula the variable di appears 2m−i+1 times. Even if we write the indexes of dis in unary, the
total space occupied by these indexes in INPUTm will be equal

m∑
k=1

k · 2m−k+1 = 4 · 2m − 2m− 4 < 4 · 2m = O(n),

which may be easily shown by induction or using Maple. The formula INPUTm additionally con-
tains the linear number of occurrences of x (indexed with index 0, which occupies constant space
written in unary), d , 0, 1, parentheses and logical signs, each one of constant size. Note also that
all variables in INPUTm have fixed types independent of input length. Therefore, the total size of
INPUTm is O(n), as needed, both in succinct and fully typed versions of �. Clearly, the formula
INPUTm can be constructed in polynomial time.
The complications above are caused by the fact that writing straightforwardly

INPUTm(dm, dm−1, . . . , d2, d1, x) ≡∧
bi ∈ {0, 1}

dm = bm ∧ . . . ∧ d1 = b1 ⇒ x = sbm...b1 ,

would result in a formula of superlinear size, since each variable appears n times and there are
O(log(n)) different variables. Thus the formula grows at least as O(n log(log(n))), faster than we
can afford.

17.2. Counting long distances in a chain

To write the initial formula (11), (12) we need to “copy” an arbitrary input string s1 . . . sn, repre-
sented by the formula INPUTm on the initial tape, saying that the 3rd, . . . , (n+ 2)nd symbols of the
initial ID of the TMM equalZERO orONE, corresponding to si = 0 or si = 1. The straightforward
method of Section 13 results in a superlinear size formula. In order to address n successors in a chain
L more economically, we will define the formulas

SUCCm(X1, dm, . . . , d1︸ ︷︷ ︸
m

; Y , em, . . . , e1︸ ︷︷ ︸
m

)

for m = �log(n), such that di’s, ei’s take binary bits 0, 1 as values and

S. Vorobyov / Information and Computation 190 (2004) 196–219 211

when the sequences dm . . . d1 and em . . . e1 are considered as binary representations for the natural
numbers n1, n2, respectively, then Y is the (n2 − n1)th successor of X1 in the chain Lt (with respect to the
succ(U , V ,L) relation (9)), provided n2 � n1.

This gives a succinct way to count distances up to 2m − 1 between elements in the chain Lt and
thus to address remote successors (up to 2m − 1st) of X1 without the O(n2) blow-up. With formulas
INPUTm and SUCCm we can succinctly define that the initial tape C contains a subset of L× L,
where 2m (withm = �log(n)) successive elements in Lt starting with X1 index input values s1, . . . , s2m
as follows:

D(X1)≡df ∀dm, . . . , d1, v, Y , V
(
INPUTm(dm, . . . , d1, v) ∧ SUCCm(X1, 0, . . . , 0︸ ︷︷ ︸

m

; Y , dm, . . . , d1)

⇒
[
(v = {0} ∧ V = ZERO) ∨ (v = {1} ∧ V = ONE) ∨ (v = {0, 1} ∧ V = BLANK)

⇒ 〈Y , V 〉 ∈ C
])

,

where Y , V are of type t − 1, v of type 1, and all other variables of type 0. The variable v represents
three possibilities in the input: {1} for 1, {0} for 0, and {0, 1} for the blank (padding inputs to length
2�log(n)).
Therefore, the subformula IC of the initial formula (12) may be defined more economically than

(11) as follows:

IC(Ct+2)≡df 〈Xfst ,END〉 ∈ C ∧ 〈X0,Q0〉 ∈ C ∧ 〈Xlst ,END〉 ∈ C ∧ D(X1) ∧
∀YZ(SUCCm(X1, 0, . . . , 0; Y , 1, . . . , 1) ∧ Y�Z�Xlst (17)

⇒ 〈Z ,BLANK〉 ∈ C) ∧ ∀u, v,w(〈u, v〉 ∈ C ∧ 〈u,w〉 ∈ C ⇒ v = w).

Before we start defining SUCC, let us explicitly define the auxiliary relations < and � on elements
of type 0 as follows:

x0 < y0 ≡df x ∈ {0} ∧ y ∈ {1},
x0 � y0 ≡df ¬y < x.

The formula SUCCm is defined by induction on i = 0, . . . ,m, similarly to the inductive definition
of INPUTm. As the base case let

SUCC0(X
t−1, d1; Y t−1, e1)≡df (d1 � e1) ∧ (d1 = e1⇒X = Y) ∧ (d1 < e1⇒succ(X , Y ,Lt)). (18)

For i � 0 define, inductively:

SUCCi+1(X t−1, di+1, di, . . . , d1; Y t−1, ei+1, ei, . . . , e1) ≡df (di+1 � ei+1)
∧(di+1 = ei+1 ⇒ SUCCi(X , di, . . . , d1; Y , ei, . . . , e1))
∧
(
di+1 < ei+1 ⇒ ∃Zt−11 ,Z2

[
succ(Z1,Z2,Lt) ∧ SUCCi(X , di, . . . , d1; Z1, 1, . . . , 1︸ ︷︷ ︸

i

)

∧SUCCi(Z2, 0, . . . , 0︸ ︷︷ ︸
i

; Y , ei, . . . , e1)
])
. (19)

212 S. Vorobyov / Information and Computation 190 (2004) 196–219

Clearly (by induction), SUCCm defined by (18), (19) allows us to count distances up to 2m be-
tween elements of the chain Lt . The drawback of the definition (19) is that SUCCm(X

t−1, dm, . . . , d1;
Y t−1, em, . . . , e1), fully expanded by using (18) and (19) to a formula without occurrences of SUCC,
will contain O(2m) = O(n) occurrences of variables X , Y . This is easy to see: if SUCCi(X , . . .) con-
tains k occurrences ofX after full expansion, thenSUCCi+1(X , . . .)will contain 2k such occurrences.
Thus, we do not gain anything with definition (19), as compared with the straightforward method
with n new variables described in Section 13.However, we can do better, as shown in the next section.

17.3. Abbreviation trick

The right-hand-side of (19) defines SUCCi+1 by using 2 occurrences of SUCCi . This may be
written in an equivalent more economic way with just one occurrence of SUCCi, by applying a
well-known abbreviation trick due to Fischer–Meyer–Rabin–Stockmeyer. To keep the paper self-
contained, Appendix A.2, sketches a proof (similar to [2, Ch. 7, Lemma 3], [1, Sec. 3, Theorem 3.1]) of
the simple case, sufficient for our purposes, when all multiple subformula occurrences are positive
(as SUCCi in (19)). As an advantage we do not need the equivalence connective⇔.

Lemma 9. Given a quantifier-free formula" containing m positive occurrences P(t̄i) (for i = 1, . . . ,m)
of the same predicate P with different parameters t̄i, and no negative occurrences of P , one can con-
struct in polynomial time an equivalent formula � of size O(|"|), containing just one positive and no
negative occurrences of P.More precisely, the formula � is:

∃x1y1 . . . xmym
(
"′ ∧ ∀uvz̄

[∨m
i=1(u = xi ∧ v = yi ∧ z̄ = t̄i)⇒ (u = v⇒ P(z̄))

])
, (20)

where x1, y1, . . . , xm, ym, u, v, z̄ = z1, . . . , zarity (P) are fresh variables, and

"′ ≡ "
[
xi = yi/P(t̄i)

]m
i=1.

17.4. Complexity of SUCC

Applying Lemma 9, and putting all quantifiers in front of the formula, we can rewrite the defi-
nition (19) of SUCCi+1 equivalently by using just one occurrence of SUCCi as follows:

SUCCi+1(X t−1, di+1, di, . . . , d1; Y t−1, ei+1, ei, . . . , e1) ≡df ∃Z1,Z2, x1, y1, x2, y2, x3, y3
∀u, v,Z , z1, . . . , zi,Z ′, z′1, . . . , z′i

{
(di+1 � ei+1)∧(di+1 = ei+1⇒x1 = y1)

∧(di+1 < ei+1⇒x2 = y2∧x3 = y3∧succ(Z1,Z2,Lt))
(21)

∧
[
(u = x1 ∧ v = y1 ∧ Z = X ∧ Z ′ = Y ∧∧i

j=1(zj = dj ∧ z′j = ej))

∨(u = x2 ∧ v = y2 ∧ Z = X ∧ Z ′ = Z1 ∧∧i
j=1(zj = dj ∧ z′j = 1))

∨(u = x3 ∧ v = y3 ∧ Z = Z2 ∧ Z ′ = Y ∧∧i
j=1(zj = 0 ∧ z′j = ej))

S. Vorobyov / Information and Computation 190 (2004) 196–219 213

⇒
(
v = u⇒ SUCCi(Z , zi, . . . , z1; Z ′, z′i , . . . , z′1)

)]}
.

Therefore, each iteration expanding SUCCi+1 via SUCCi using (21) introduces:
(1) four variables, Z1, Z2, Z , Z ′, of type t − 1,
(2) eight variables, x1, y1, x2, y2, x3, y3, u, v, of type 0,
(3) 2i variables, z1, . . . , zi, z′1, . . . , z

′
i , of type 0.

Consequently, m iterations reducing SUCCm to a formula without occurrences of SUCC will
introduce:
(1) O(m) new quantified variables of type t − 1,
(2) m occurrences of the variable L of type t,
(3) O(m2) variables of type 0.

By definition (21) of SUCC, the full expansion of SUCCm, into a formula without occurrences
of SUCC, will contain:
(1) O(m) occurrences of variables of type t − 1,
(2) O(m2) occurrences of variables of type 0, boolean connectives and parentheses.
Since m = �log(n), if we ignore the types of variables, the length of SUCCm, after full expansion,
will be O(m2 log(m2)) = O(log2(n) · log(log2(n))), since we need log(k) bits for indexes to represent
k different variables. This is O(n), and thus leads to a linearly bounded initial formula (17) in the
case of succinct, partially typed �. However, for the fully typed �, each of the O(m) = O(log(n))
occurrences of variables of types t − 1, t should be annotated with types of length O(n). Therefore,
the formulas SUCCm and (17) are of superlinear length O(n log(n)) in the case of verbose fully
typed�. The more numerous O(m2) variables of type 0 do not contribute to this superlinear length
increase, because their full type annotations take only O(m2) = O(log2(n)) bits.
Note that this superlinear explosion does not occur in the first-order theories, which do not

require variable type annotations.
TheO(n log(n)) superlinear explosion takes place only for the verbose version of�, which requires

all variable occurrences to be annotated with types. For the succinct version of �, which requires
only aminimal information about variable types allowing for an unambiguous full type annotation,
the order of growth for the formulaSUCCm is O(m

2 log(m2)) = O(log2(n) · log(log2(n))), i.e., is sub-
linear, and the reduction taking an input of length n into the formula SUCCm, with m = �log(n),
is linearly bounded.

18. Stronger lower bounds: Main theorem

The initial formula I(R) of (6) defined by (11), (12) was the only non-quasi-fixed and non-linearly
bounded formula in the construction preceding Section 16. In Section 17 we constructed a more
succinct initial formula I(R) of size O(n log(n)) in the case of fully typed �, and size O(n) in the
case of partially typed �. Therefore, Lemma A.1 and Corollary A.1 apply, and we obtain our main
result.

Theorem 10 (Lower bounds for �). Every decision algorithm for � requires space (hence time)
exceeding:

214 S. Vorobyov / Information and Computation 190 (2004) 196–219

(1) exp∞(exp(c · |"|/ log(|"|))) for someconstant c > 0and infinitelymany sentences"of verbose�;
(2) exp∞(exp(c · |"|)) for some constant c > 0 and infinitely many sentences " of succinct �. �

19. Concluding remarks

On inductive definitions. We succeeded to construct the generic reduction without using inductive
definitions to define large linearly ordered sets in �. Such definitions are usually necessary in lower
bounds proofs. Inductive definitions are only used in Section 17 to write a more succinct initial
formula representing an input. This is a big advantage, because otherwise:
(1) The best lower bound we could obtain for fully typed�would be only exp∞(exp(

√
cn)) instead

of exp∞(exp(cn/ log(n))). Indeed, expanding inductive definitions and using the well-known
abbreviation trick due to Fischer–Meyer–Rabin–Stockmeyer (so as to avoid exponential blow-
ups), one gets formulas with linearly many variable occurrences. Since in fully typed � variable
occurrences are annotated with types, which may linearly depend on the length of input, using
inductive definitions would necessarily lead to non-linear (quadratic) reductions, and thus to
weaker lower bounds.

(2) We would fail to have the fixed quantifier prefix complexity results of Theorem 8. The formula
"M ,x in (6) we construct before Section 16 to provide a reduction from A ∈ DSPACE(exp∞
(exp(n))) to � has a fixed number of quantifiers and quantifier alternations, independent of A,
which yields a fixed quantifier prefix lower bound complexity. This quite unusual result should
be contrasted to the results of [6], which needs more and more quantifier alternations to get
increase in complexity.

On finite axiomatizability. The theory�was defined semantically and is not finitely axiomatizable.
Solomon Feferman asked (LICS’97) whether this non-finite axiomatizability is really essential.
Although the proof presented here does not give a direct answer, returning to the original proof
presented in [17] based on the uniform lower bound method due to Compton and Henson [1], we
may now respond by:

Any finitely axiomatizable subtheory of � (in the same language) has the same space lower bound
exp∞(exp(dn)) for some constant d > 0.

This is because [1] spends extra effort on proving stronger inseparability results, which imply lower
bounds not only for theories, but for all their subtheories.

Upper bound for �. Since we have not used the full power of inductive definitions in settling the
lower bounds for �, it might seem challenging to push these bounds even higher. However, this
is impossible. In fact, the maximal size of a variable type in a formula of � of length n is O(n).
Therefore, all quantified variables in a sentence of � run over finite domains D

2O(n)
of size at most

exp∞(exp(O(n))). Obviously, this space is enough for a decision procedure.

Any “more nonelementary” theories? The following challenging problem in [1, Problem 10.12] is
open/closed (modulo what is considered “natural”):

Is there a “natural” decidable theory, which is not primitive recursive?

S. Vorobyov / Information and Computation 190 (2004) 196–219 215

In [17] we constructed several (pathological) variants of� of arbitrary complexity. After all, expres-
siveness of � is based on ability to write types of variables in binary. Therefore, it suffices to use
any other, more expressive, non-primitive recursive notation for types, instead of binary.
Other candidates may be looked among logical counterparts of the higher-order polymorphic

lambda calculi in the same way as� corresponds to the simply typed lambda calculus. Of course, it
is questionable whether these theories may be considered “natural,” and whether they may be kept
decidable. Urquhart [16] settles nonprimitive-recursive lower bounds for relevance logics.

Higher lower bound for fully typed�. It remains openwhether the lower bound for the fully typed�
can be improved from exp∞(exp(cn/ log(n))) to exp∞(exp(cn)). Recall that the only sizeO(n log(n))
and non-linearly bounded formula we used was SUCC in Section 17.4 for “copying” a sequence of
input bits onto the initial ID. Is there any mean to do it by an O(n) fully typed formula?

Acknowledgments

The author is grateful to David Basin, Solomon Feferman, Harald Ganzinger, Paweł Urzyczyn,
Moshe Vardi, and anonymous referees for insightful comments, discussions, and remarks.

Appendix A. Lower bound details

A.1. Generic reductions and reductions via length order

This section provides a succinct exposition of essential lower bound tools used in the body of
the paper, including the generic reduction and the order of reduction. If every problem in a class C
is reducible to a problem T , then T is approximately as complex as any problem in C, modulo the
order of reduction. This is summarized by Lemma A.1 and Corollary A.1.

Space hierarchy theorem. We found itmost convenient toworkwith space complexity classes.How-
ever, all the arguments belowmay be appropriately modified and carried out for (non)deterministic
time complexity classes. In fact, there is only a slight difference in claiming that a problem requires
space or (non)deterministic time exceeding exp∞(exp(dn)) for some d > 0 infinitely often. Note that
the space claim is the strongest.
A function S(n) > log2(n) is called space constructible if there exists an S(n)-space bounded TM

M such that for each n there exists an input of length n onwhichM actually uses S(n) tape cells. If for
all n,M uses exactly S(n) cells on any input of length n, then S(n) is said fully space constructible. Any
space constructible S(n) is fully space constructible, [4, p. 297]. It is a routine exercise to show that
functions like exp∞(exp(n))− k (with k ∈ ω) and exp∞(exp(n/2)) are (fully) space constructible.
Throughout the paper we assume fully space constructible functions.
As usual, DSPACE(S(n)) denotes the class of languages recognized by the S(n)-space bounded

deterministic Turing machines. To settle the space lower bounds, we rely on the following well-
known separation result; see, e.g., [4, Theorem 12.8, p. 297]:

216 S. Vorobyov / Information and Computation 190 (2004) 196–219

Theorem A.1. Let functions S1(n) and S2(n) be such that limn→∞ S1(n)/S2(n) = 0, and S1(n), S2(n) are
each at least log2(n). Then there is a language in

DSPACE(S2(n)) \ DSPACE(S1(n)).

We use both linearly bounded and nonlinearly bounded deterministic time polynomial reduci-
bilities in conjunction with Theorem A.1 to settle the space lower bounds by generic reduction; cf.
[2,7,12–15]:
The following lemma explains the method of proving lower bounds by generic reduction. If a

class of problems is reducible to a problem, then the problem is as difficult as an “average” problem
is the class, modulo the order of reducibility.

Lemma A.2. (Lower bounds by generic reduction). Let:
(1) g and h be functions such that for every constant c1 > 0 there exists a constant c2 > 0 such that

for all n ∈ ω (except, maybe, finitely many) one has
h(c1 · g(n)) � c2 · n, (A.1)

(2) S(n) � exp(n) be fully space constructible, such that for every constants c, d > 0 the function
S(dh(cg(n))) is monotone and grows faster than any polynomial,

(3) T be a problem such that every problem A ∈ DSPACE(S(n)− 2) is reducible to T via length order
g(n).

Then for some d > 0 one has

T �∈ DSPACE(S(dh(n))). (A.2)

Equivalently, T requires deterministic space exceeding S(h(dn)) infinitely often.

Proof. By Theorem A.1, there is a problem

A ∈ DSPACE(S(n)− 2) \ DSPACE(S(n/2)).

Since A is reducible to T via length order g(n), for every constant d > 0 we have the following chain:

T ∈ DSPACE(S(dh(n)))⇒ A ∈ DSPACE(S(dh(cg(n)))+ p(n))
⇒ A ∈ DSPACE(S(dh(c1g(n))))

⇒ A ∈ DSPACE(S(dc2n)),

where p(n) is a polynomial (time necessary to compute a reduction from A to T), c is a constant
from (4), and c1 is a constant slightly larger than c; by assumption, S(dh(cg(n))) grows faster than
p(n), and we use the assumption (A.1).
The contrapositive of the above implication chain is

A �∈ DSPACE(S(dc2n))⇒ T �∈ DSPACE(S(dh(n))).

Since A �∈ DSPACE(S(n/2)), it suffices to select d = 1/2c2 to obtain (A.2). �

S. Vorobyov / Information and Computation 190 (2004) 196–219 217

Remark A.3. The “length order condition” (4) is really important. Deterministic polynomial time
computability of reduction is unnecessarily strong, and we use it only following the common prac-
tice. In fact, any reduction computable in space o(S(dh(cg(n)))) would be appropriate.

Corollary A.4. Lemma A.1 applies for the function S(n) = exp∞(exp(n)) and the following reducibili-
ties.

Order n (linear) reducibility: g(n) = n; in this case h(n) = n and

T �∈ DSPACE(exp∞(exp(dn))). (A.3)

Order n log(n) reducibility: g(n) = n log(n); in this case h(n) = n/ log(n) and

T �∈ DSPACE(exp∞(exp(dn/ log(n)))). (A.4)

Order n2 reducibility: g(n) = n2; in this case h(n) = √
n and

T �∈ DSPACE(exp∞(exp(d
√
n))). (A.5)

Thus, “more tight” reducibilities yield stronger lower bounds. This last corollary is used several
times in the main part of the paper.

A.2. Abbreviation trick: Proof of lemma 9

Take fresh variables x1, y1, . . . , xm, ym and consider the formula

"′ ≡ "
[
xi = yi/P(t̄i)

]m
i=1,

obtained from " by replacing the ith occurrence of P(t̄i) with equality xi = yi . Note that m =
O(n/ log(n)), where n is the length of ". Thus introducing 2m new variables does not lead to
more than a linear length increase, because each variable may be represented using O(log(n)) bits.
Let us show that " is equivalent to

2 ≡ ∃x1y1 . . . xmym
(
"′ ∧

m∧
i=1
(xi = yi ⇒ P(t̄i))

)
.

We must prove that for every interpretation : of the free variables of " (or, equivalently, of 2),
:(") is true iff :(2) is true.
Let :(") be true. We may choose equal values for xi, yi if P(t̄i) is true, and different values for xi,

yi otherwise. Then :(2) is true.
Suppose :(2) is true for some interpretation : of its free variables. Then for this interpretation

and some values of x1, y1, . . . , xm, ym the following subformulas of 2:

"′ ≡ "
[
xi = yi/P(t̄i)

]m
i=1,

 ≡
m∧
i=1
(xi = yi ⇒ P(t̄i)). (A.6)

218 S. Vorobyov / Information and Computation 190 (2004) 196–219

are true. Since" is positive in P(t̄i), by construction,"′ is positive in xi = yi . Therefore,"′ is mono-
tone in xi = yi . This and the truth of (A.6) imply that "′

[
P(t̄i)/xi = yi

]m
i=1 is true. But this formula

coincides with ".
The formula 2 still contains m occurrences of P . Take fresh variables u, v, and z̄ (vector of

length equal to the arity of P). The subformula of 2 containing m occurrences of P is
equivalent to

< ≡ ∀uvz̄
(
m∨
i=1
(u = xi ∧ v = yi ∧ z̄ = t̄i)⇒ (u = v⇒ P(z̄))

)
,

which contains just one occurrence of P . The proof of the equivalence of and < is routine.
Finally, let � be 2 with the occurrence of replaced by <. Clearly, � is equivalent to " and

contains just one positive occurrences of P and no negative occurrences of P , as needed. It is clear
that � may be constructed from " in polynomial time and the size of � is linearly bounded by the
size of ". �

References

[1] K.J. Compton, C.W. Henson, A uniform method for proving lower bounds on the computational complexity of
logical theories, Ann. Pure Appl. Logic 48 (1990) 1–79.

[2] J. Ferrante, C.W.Rackoff, The computational complexity of logical theories,in: Lect. NotesMath., vol. 718, Springer-
Verlag, Berlin, 1979.

[3] L. Henkin, A theory of propositional types, Fundamenta Mathematicæ 52 (1963) 323–344.
[4] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading,

MA, 1979.
[5] R. Hull, J. Su, On the expressive power of database queries with intermediate types, J. Comput. Syst. Sci. 43 (1991)

219–267.
[6] G. Kuper, M. Vardi, On the complexity of queries in the logical data model, Theor. Comput. Sci. 116 (1993) 33–

57.
[7] H.R. Lewis, Complexity results for classes of quantificational formulas, J. Comput. Syst. Sci. 21 (1980) 317–

353.
[8] H. Mairson, A simple proof of a theorem of Statman, Theor. Comput. Sci. 103 (1992) 387–394.
[9] A.R. Meyer, The inherent computational complexity of theories of ordered sets, in: International Congress of Math-

ematicians, Vancouver, 1974, pp. 477–482.
[10] A.R. Meyer, Weak monadic second-order theory of successor is not elementary-recursive, in: R. Parikh (Ed.), Logic

Colloquium: Symposium on Logic Held at Boston, 1972–1973, Vol. 453 of Lect. Notes Math., Springer-Verlag, 1975,
pp. 132–154.

[11] R. Statman, The typed =-calculus is not elementary recursive, Theor. Comput. Sci. 9 (1979) 73–81.
[12] L.J. Stockmeyer, A.R. Meyer, Word problems requiring exponential time: preliminary report, in: 5th Symposium on

Theory of Computing, 1973, pp. 1–9.
[13] L.J. Stockmeyer, The complexity of decision problems in automata theory and logic, PhD thesis, MIT Lab for

Computer Science, 1974 (Also /MIT/LCS Tech Rep 133).
[14] L.J. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1977) 1–22.
[15] L.J. Stockmeyer, Classifying the computational complexity of problems, J. Symb. Logic 52 (1) (1987) 1–43.
[16] A. Urquhart, The complexity of decision procedures in relevance logic, in: J.M. Dunn, A. Gupta (Eds.), Truth or

Consequences: Essays in Honor of Nuel Belnap, Kluwer, 1990, pp. 61–76.

S. Vorobyov / Information and Computation 190 (2004) 196–219 219

[17] S. Vorobyov, The “hardest” natural decidable theory, in: G. Winskel (Ed.), 12th Annual IEEE Symp. on Logic in
Computer Science (LICS’97), 1997, pp. 294–305.

[18] S.Vorobyov,A.Voronkov,Complexityofnonrecursive logicprogramswith complexvalues, in: J. Paredaens,L.Colby
(Eds.), Seventeenth ACMSIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’98),
1998, pp. 244–253.

