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Abstract

This thesis is devoted to the design and analysis of combinatorial algorithms
for solving one-player versions of several prominent in�nite duration games
pertinent to automated veri�cation of computerized systems.

We present the �rst two strongly polynomial algorithms for solving one-
player discounted payo� games, running in time O(mn2) and O(mn2 log m),
where the latter algorithm allows edges to have di�erent discounting factors.
As applications, we are able to improve the best previously known strongly
subexponential algorithms for solving two-player discounted payo� games
and the ergodic partitioning problem for mean payo� games.

Keywords: discounted payo� game, strongly polynomial algorithm, combi-
natorial linear programming, mean payo� game, ergodic partition.
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Preface

The purpose of this thesis is to document and summarize the research that I
have conducted� in close collaboration with my advisor, Dr. Sergei Vorobyov
� during the past six months at the Department of Information Technology
of Uppsala University.

The thesis consists of a brief survey followed by two technical research
papers. The survey aims at providing an accessible motivation and introduc-
tion to the research �eld and our contributions � leaving formal de�nitions,
precise statements, and proofs to the technical papers. It also contains a
short summary in Swedish.

In closing, I express my sincere gratitude to Sergei, who initiated me into
computer science research and fostered my academic ambitions. Not only
has his support been invaluable for my present work, but it has also given
me inspiration and hope for the future.

Uppsala, August 2006 Daniel Andersson
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1 Motivation

As we become more and more dependent upon computerized systems, the
need to ensure their correctness increases dramatically. For a system whose
failure or malfunction could cause major damage, it is desirable to have a for-
mal proof of correctness, obtained by exhaustively examining every possible
behavior of the system to verify that it has all the required properties. Be-
cause of the growing size and complexity of hardware and software systems,
it is generally infeasible for the designers or programmers to perform such
veri�cation manually, and a wide range of automated veri�cation techniques
have been developed.

One appealing approach to the process of veri�cation is to model it as
a two-player game between a system and its environment. The system is
then correct if it possesses a winning strategy against any malicious behavior
of the environment. Taking this approach allows us to draw upon the rich
mathematical theory of games � an established �eld of research, extensively
developed during the 20th century by prominent mathematicians such as
John von Neumann (1903�1957), Lloyd Shapley (1923�), and John Nash
(1928�) and now an indispensable tool in economic theory as well as various
other disciplines, such as biology, philosophy, sociology, and political science.
Game theory has also found numerous other applications in computer science,
ranging from the characterization of complexity classes to the design and
modeling of computer networks.

Unfortunately, much of the classical game theory is non-constructive, as-
serting the existence of various objects without providing any e�cient meth-
ods for actually constructing them. For many applications, including veri�ca-
tion, any practical usability of a game-theoretic approach requires the devel-
opment of e�cient algorithms for computational problems posed by games,
such as determining the winner of a game or even �nding optimal strategies
for the players � usually called solving the game. Determining the com-
plexity of such problems is considered to be one of the great challenges for
theoretical computer science in the 21st century [14].

This thesis focuses on that challenging problem for the family of games
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including parity games [8], mean payo� games [6], discounted payo� games

[18], and simple stochastic games (with arbitrary probability distributions)
[16, 5]. All of them are two-player non-cooperative games played by moving
a pebble around a �nite graph for a possibly in�nite duration. Their rele-
vance for veri�cation stems from the fact that they are closely connected to
the µ-calculus � a modal �xpoint logic capable of expressing many interest-
ing properties of systems, with an expressive power subsuming that of most
other popular logics used for veri�cation, including LTL, CTL, and CTL∗ [7].
Solving a game from any of the aforementioned classes corresponds to deter-
mining whether a system has a property expressible in the µ-calculus � a
problem known as µ-calculus model-checking. The games are also interesting
from a complexity-theoretic point of view, since they give rise to problems
that are among the few natural ones known to belong to the complexity
class NP ∩ coNP but not known to be in P. Another, very well studied,
problem with this property is integer factorization and, until recently, so was
primality testing [15, 1].

At present, solving these games appears to be hard � the best known up-
per bound is randomized subexponential time [4]. The aim of this thesis is to
investigate their complexity in the special case where a single player controls
the game. Although these one-player games are simpler than their two-player
counterparts, they still retain much of the original structure, and therefore,
investigating them may provide valuable insights into the two-player games.
Furthermore, solving a one-player game is equivalent to �nding an optimal
counterstrategy against a �xed positional strategy of the opponent, which
is an underlying operation in the best known algorithms for the two-player
games. Thus, more e�cient algorithms for the one-player games automati-
cally lead to improvements of their two-player counterparts.

One of the most important open problems in mathematical optimization
is to determine the combinatorial complexity of linear programming � the
optimization of a linear function subject to a system of linear constraints.
The ellipsoid algorithm of Khachiyan [13] and the interior-point algorithm
of Karmarkar [11] both have a running time polynomial in the total size
of the input, but the number of arithmetic operations depends not only on
the dimensions of the system of constraints, but also on the magnitude of
the coe�cients. The quest for a strongly polynomial algorithm, where the
number of arithmetic operations is polynomial in the number of variables
and constraints but independent of the coe�cients, has continued for the
last quarter of a century.

Particular cases of this fundamental problem appear when solving the
one-player games. Whereas strongly polynomial algorithms for one-player
parity and mean payo� games have been known for a long time [12], the
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only known way to e�ciently solve one-player discounted payo� or simple
stochastic games has been to formulate them as linear programs and then
apply general, non-strongly polynomial, linear programming algorithms. The
aim of this thesis is to develop the �rst strongly polynomial algorithms for
these games, by exploiting the special structure of the linear programs gen-
erated by them � something which has been successful for several other
prominent problems, such as min-cost maximum �ow [17].
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2 Contributions of this Thesis

The primary contributions of this thesis are two new algorithms for solving
one-player discounted payo� games [2, 3]. They are, to our knowledge, the
�rst strongly polynomial algorithms for this problem, and they provide for
improvements to the best known strongly subexponential algorithms for solv-
ing two-player discounted payo� games and the ergodic partition problem for
mean payo� games [9, 18].

The �rst algorithm that we describe [2], is an adaptation of a previously
existing algorithm for the special case of linear feasibility (�nding a solution
to a given set of linear constraints or determining that none exits) where
each constraint contains at most two variables [10]. For the linear programs
generated by one-player discounted payo� games, �nding a feasible solution
is trivial � the di�culty lies in �nding the optimal solution. The fact that
we can still use the same approach, depends on the special structure of our
programs. One crucial property is that the constraints are monotonic, i.e.,
they have the form xi ≤ αxj + β with α > 0. Our modi�cations do not
a�ect the asymptotic running time: O(mn2 log m), where n is the number of
vertices/variables and m is the number of edges/constraints. The resulting
algorithm is general, in the sense that it works equally well for a natural
generalization of the standard discounted payo� games, in which edges have
individual, possibly di�erent, discounting factors instead of a common global
one.

Our second algorithm [3], uses a novel approach. Starting from an initial
feasible point, the algorithm proceeds by descending along the boundary of
the feasible region, until the optimum is reached, and the descent is guided by
a rule stating that the number of constraints satis�ed as equality should be
non-decreasing. Considering the trees formed by the edges corresponding to
such constraints, and studying their evolution during the descent, we are able
to prove tight asymptotic bounds on the number of elementary operations
performed by the algorithm. Its total running time is O(mn2). This is a
slight improvement over the previously described algorithm, but the bound
only applies to the standard discounted payo� games.
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We have also been investigating one-player simple stochastic games, and
we have devised several methods for solving them. These methods were the
inspiration for our descent algorithm for the discounted payo� games, and
we used an implementation of this algorithm to �nd an explicit counterex-
ample to a promising conjecture for the more general methods [3]. Proving
strongly polynomial bounds for any of our methods remains a challenging
open problem for future research.
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3 Dissemination of Results

In addition to the technical research papers [2, 3] found in the appendix, the
results contained in this thesis have also been presented as follows.

• Poster presentation �Improved algorithms for discounted payo� games�
at the BRICS Summer School on Game Theory in Computer Science

in Aarhus, Denmark, June 2006.

• Oral presentation �Are one-player games always simple?� at the Isaac
Newton Institute workshop Games and Veri�cation � the 2006 Annual
Meeting of the EU Research Training Network Games and Automata

for Synthesis and Validation � in Cambridge, UK, July 2006.

• Oral presentation �An improved algorithm for discounted payo� games�
at the 18 th European Summer School in Logic, Language and Informa-

tion in Málaga, Spain, August 2006.
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4 Future Research

Since our strongly polynomial bounds for solving one-player discounted payo�
games are the �rst ones known, it is not unlikely that they can be further
improved. For instance, our adapted feasibility algorithm does not fully
exploit the special structure of the linear programs generated by the games.

An interesting observation regarding such programs is that there currently
appears to be a big gap in complexity between �nding feasible solutions and
�nding optimal solutions. Investigating whether this gap is inherent, by
designing more e�cient algorithms or establishing natural lower bounds, is
a challenging problem for future research.

However, the most intriguing question for further research is whether our
results can be extended to one-player simple stochastic games. We have
developed several candidate algorithms, and although they are likely to be
e�cient in practice, bounds on their worst case behavior are elusive. Drawing
inspiration from advanced optimization techniques, such as interior point
methods, we continue our e�orts to solve this important open problem.
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5 Summary in Swedish

Allteftersom vi blir mer och mer beroende av datoriserade system, ökar vårt
behov av att kunna försäkra oss om att de fungerar som avsett. I de fall där ett
systemfel skulle kunna orsaka stor skada är det önskvärt att göra en uttöm-
mande undersökning av alla möjliga beteenden för att veri�era att systemet
besitter alla nödvändiga egenskaper. På grund av den växande storleken och
komplexiteten hos hårdvaru- och mjukvarusystem är det i allmänhet omöjligt
för konstruktörerna att genomföra sådan veri�ering manuellt, och en mängd
olika metoder för automatisk veri�ering har därför utvecklats.

Ett sätt att se veri�eringen av ett system är att betrakta situationen som
ett spel mellan systemet och dess omgivning. Systemet är i så fall korrekt
om det besitter en vinnande strategi mot den illasinnade omgivningen. Att
anamma detta synsätt låter oss dra nytta av den rika matematiska spelteorin
� ett etablerat forskningsområde, utvecklat under 1900-talet av många fram-
stående matematiker och idag ett ofta använt verktyg inom såväl ekonomi
som biologi, sociologi och statsvetenskap. Spelteori har också funnit många
andra tillämpningar inom datavetenskapen, från beskrivning av komplexitet-
sklasser till utformning och modellering av datornätverk.

Tyvärr så är en stor del av den klassiska spelteorin icke-konstruktiv, i
betydelsen att den bevisar existensen av olika objekt utan att tillhandahålla
någon e�ektiv metod för att faktiskt konstruera dem. För många tillämp-
ningar, inklusive veri�ering, är en förutsättning för att ett spelteoretiskt syn-
sätt ska vara praktiskt användbart utvecklingen av e�ektiva algoritmer för
spelteoretiska problem, såsom att beräkna optimala strategier för spelarna
� vanligtvis kallat att lösa spelet. Att utveckla och analysera sådana algo-
ritmer anses vara en av de stora utmaningarna för teoretisk datavetenskap i
det nya århundradet [14].

Denna avhandling fokuserar på detta problem för den familj av spel som
innehåller paritetsspel [8], medelavkastningsspel [6], diskonterade spel [18] och
enkla stokastiska spel (med godtyckliga sannolikhetsfördelningar) [16, 5]. I
samtliga så spelar två spelare mot varandra genom att växelvis �ytta en
markör runt en graf. Att de är relevanta för veri�ering beror på att de är nära
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sammankopplade med så kallad µ-kalkyl � en logik som kan användas för att
uttrycka många intressanta egenskaper hos system, med en uttrycksförmåga
som överstiger den hos de �esta andra logiker som används vid veri�ering.
Att lösa ett spel från någon av de tidigare nämnda klasserna motsvarar att
avgöra huruvida ett system uppfyller ett krav uttryckt i µ-kalkyl.

Än så länge vet ingen hur, eller om, dessa spel kan lösas e�ektivt, även
om betydande framsteg har gjorts på senare tid [4]. Syftet med denna avhan-
dling är att undersöka svårigheten att lösa spelen i det specialfall där en
ensam spelare styr spelet. Även om dessa ensam-spel är enklare än sina full-
taliga motsvarigheter, så bibehåller de mycket av den ursprungliga struk-
turen, och därför kan studiet av dem bidra till förståelsen för hur de fungerar
med två spelare. Dessutom är problemet att lösa ett ensam-spel ekvivalent
med att bestämma en optimal motstrategi mot en på förhand känd strategi
hos moståndaren, en ofta använd operation i de bästa algoritmerna för två
spelare. Förbättrade algoritmer för en spelare resulterar således i förbättrade
algoritmer för två spelare.

I denna avhandling presenterar vi två nya algoritmer för diskonterade
ensam-spel [2, 3]. De är de första kända algoritmerna för detta problem som
är starkt polynomiella � antalet aritmetiska operationer de utför begrän-
sas av ett polynom i antalet hörn och kanter i spelets graf. Hittills har det
enda kända sättet att e�ektivt lösa spelen varit att använda allmänna, svagt
polynomiella metoder för så kallad linjär programmering � optimering av
en linjär funktion under linjära bivillkor. Detta gäller fortfarande för en-
kla stokastiska ensam-spel, som kan betraktas som en generalisering av de
diskonterade. Att undersöka huruvida våra resultat kan utökas till denna
större klass av spel är en utmanande uppgift för fortsatt forskning.
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An Improved Algorithm for

Discounted Payoff Games

Daniel Andersson

Uppsala University

daniel@math.uu.se

Abstract. We show that an optimal counterstrategy against a fixed positional strategy in a generalized
discounted payoff game, where edges have individual discounts, can be computed in O(mn2 log m) strongly
polynomial time, where n and m are the number of vertices and edges in the game graph. This results in the
best known strongly subexponential time bound for solving two-player generalized discounted payoff games.

1 Introduction

Parity games, mean payoff games, and discounted payoff games constitute a chain of in-
creasingly complex infinite two-player perfect information non-cooperative games played on
finite graphs. They are closely related to µ-calculus model checking, popular in computer-
aided program verification, and their associated decision problems all share the rare prop-
erty of being interesting problems in the complexity class NP ∩ coNP with widely con-
jectured, but yet unproved, P-membership.

In this paper we investigate the problem of finding an optimal counterstrategy against a
fixed positional strategy in a generalized discounted payoff game (DPG), where edges have
individual discounting factors. We present a strongly polynomial algorithm which, when
used as a component in the randomized combinatorial optimization schemes of (Björk-
lund and Vorobyov 2005), gives the best strongly subexponential algorithm for two-player
DPGs currently known. The improvement from the previously best known one is roughly
√

T (n, m) compared with T (n, m).
The problem of solving DPGs is related to the following well-known combinatorial

optimization problems.

Stopping simple stochastic games (Condon 1992). This is a more general class of two-
player games allowing random choice vertices with probability distributions on their
outgoing edges. Their associated decision problem also belongs to NP ∩ coNP, and
even the existence of a strongly polynomial algorithm for the one-player version is
an open problem.

Proceedings of the Eleventh ESSLLI Student Session
Janneke Huitink & Sophia Katrenko (editors)
Copyright c© 2006, the author(s)
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Generalized network flow problems (Cohen and Megiddo 1991). It turns out that
the linear programs generated by one-player DPGs are dual to those generated by a
particular case of the generalized transshipment problem.

The linear complementarity problem (Murty and Yu 1988; Cottle, Pang, and Stone
1992). Given a square matrix M and a vector q, find some vector z ≥ 0 such that
Mz + q ≥ 0 and zT (Mz + q) = 0. If M is a Z- and P -matrix, this can be done by
solving a linear program whose feasible region contains a unique minimal element,
and there is a strongly polynomial algorithm due to Chandrasekaran; see (Cottle
et al. 1992). When the problem is generalized to allow several constraints for each
variable (Cottle and Dantzig 1970), the minimal element property is preserved, but
the existence of a strongly polynomial algorithm is an open problem.

2 Preliminaries

A generalized discounted payoff game (DPG) is a 5-tuple (VMax, VMin, E, w, λ), where:

• VMax and VMin are disjoint sets of vertices belonging to the players Max and Min,
respectively; V = {v1, . . . , vn} denotes VMax ∪ VMin;

• E = {e1, . . . , em} is a set of directed edges between vertices in V , such that each
vertex has at least one outgoing edge; we allow multiple edges between the same
ordered pair of vertices and denote the set of edges from u to v by E(u, v); we
denote the set of outgoing edges from v by E(v); we define Ep =

⋃

v∈Vp
E(v) for

p ∈ {Max,Min};

• w : E → Q is a weight function;

• λ : E → {x ∈ Q : 0 < x < 1} is a discount function.

The game is played as follows. First, a token is placed at some initial vertex. Then,
the following step is repeated ad infinitum: the owner of the vertex where the token is
currently placed chooses an outgoing edge from this vertex and then moves the token to
the head of the chosen edge.

This results in an infinite play π = ei0ei1 . . ., and the objective of Max and Min is to
maximize and minimize, respectively, its value µ(π), defined by

µ(π) = w(ei0) + λ(ei0)
(

w(ei1) + λ(ei1)(· · · )
)

=
∞
∑

j=0

(

w(eij)
∏

0≤k<j

λ(eik)

)

. (1.1)

A pure positional strategy σ for player p ∈ {Max,Min} is a selection of exactly one
outgoing edge from each vertex owned by p, i.e., an element of the set

∏

v∈Vp
E(v) which

we denote by Pp. A play where p only uses edges in σ is said to be consistent with σ.
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It follows from (Shapley 1953; Zwick and Paterson 1996) that there exist ν : V → Q and
pure positional optimal strategies for Max and Min ensuring µ(π) ≥ ν(v) and µ(π) ≤ ν(v),
respectively, for any play π starting from v that is consistent with the respective strategy.
Henceforth, all strategies will be assumed to be pure positional, unless otherwise stated.

To solve a DPG is to compute the values ν(v) for all v ∈ V . From these values an
optimal strategy for any player p ∈ {Max,Min} can be constructed by, for each vertex
u ∈ Vp, selecting an edge e ∈ E(u) such that ν(u) = w(e) + λ(e)ν(v), where v is the head
of e. Conversely, given an optimal strategy for each player, we can easily compute ν(v) for
any v ∈ V by noting that ν(v) = µ(π), where π is the unique play starting from v that is
consistent with the given strategies.

A one-player DPG is a DPG with V = VMax or V = VMin. Given a strategy for
one of the players, a corresponding optimal counterstrategy is an optimal strategy for the
opponent in the one-player game obtained by removing all edges not used by the given
strategy and assigning all vertices to the opponent. Below, we will present an algorithm
for the problem of finding an optimal counterstrategy, and then show how it can be used
as a component in an algorithm for solving general (two-player) DPGs.

In any DPG, the roles of Max and Min can be interchanged by, before and after
the game is solved, changing the sign of each edge weight and computed vertex value,
respectively. Thus, it suffices to consider the problem of finding an optimal counterstrategy
for Min against a given strategy for Max, i.e., solving a one-player DPG with V = VMin,
as will be done below.

3 Solving One-Player DPGs

3.1 Linear Programming Formulation

We consider the problem of solving a one-player DPG with V = VMin, i.e., for each vertex
v ∈ V finding the minimum weight ν(v) of any infinite “discounted path” from v. The
vector 〈ν(v1), . . . , ν(vn)〉 must be a feasible solution to the following system of inequalities:

xi ≤ w(e) + λ(e)xj for all vi, vj ∈ V and e ∈ E(vi, vj). (1.2)

This system has many special properties. We can easily find some feasible solution in
O(m) time, by noting that 〈ξ, . . . , ξ〉 is feasible iff ξ ≤ w(e)

1−λ(e)
for all e ∈ E. Furthermore,

since ai ≤ w(e) + λ(e)aj and bi ≤ w(e) + λ(e)bj implies

max{ai, bi} ≤ max{w(e) + λ(e)aj , w(e) + λ(e)bj} = w(e) + λ(e) max{aj, bj}, (1.3)

and similarly for the minima, the set of feasible solutions equipped with the binary opera-
tions of componentwise maximum and minimum forms a lattice. In particular, there can
be at most one maximal solution x∗ such that x∗ ≥ a (i.e., x∗

i ≥ ai for i = 1, . . . , n) for any
feasible solution a. To see that 〈ν(v1), . . . , ν(vn)〉 is in fact the unique maximal solution,
consider a play ek0

ek1
, . . . from vi ∈ V consistent with an optimal strategy for Min and

note that the corresponding chain of inequalities implies xi ≤ ν(vi).
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Thus, the problem can be stated as the following linear program:

maximize
n
∑

i=1

xi

subject to xi ≤ w(e) + λ(e)xj for all vi, vj ∈ V and e ∈ E(vi, vj).

(1.4)

3.2 General Feasibility Algorithms

Megiddo (1983) gave an O(mn3 log m) strongly polynomial algorithm for finding a feasible
solution to any linear program with n variables, m inequalities, and at most two variables
per inequality. Since the algorithm also computes the feasible range for each variable, it
can be used to solve our optimization problem (1.4). We could also use the deterministic
O(mn2(log m+log2 n)) algorithm or the expected O(n3 log n+mn log3 m log n+mn log5 n)
randomized algorithm of Cohen and Megiddo (1991).

Hochbaum and Naor (1994) suggested a simpler and faster deterministic O(mn2 log m)
algorithm for finding a feasible solution. However, their algorithm does not compute the
feasible ranges explicitly. We will show how to modify it so that it can be used to solve
our optimization problem (1.4).

The approach of (Hochbaum and Naor 1994) is to use the Fourier-Motzkin elimination
method (Schrijver 1986). To eliminate a variable xi, all inequalities containing xi are
replaced with inequalities L ≤ U for each pair L ≤ xi and xi ≤ U in the original system.
Feasibility is preserved, and the method can be applied recursively to compute a feasible
solution, or determine that no one exists. However, the number of inequalities created
during a straightforward application of such repeated elimination may be exponential.

The algorithm in (Hochbaum and Naor 1994) limits the growth of the number of in-
equalities during the repeated Fourier-Motzkin elimination by simplifying the system before
each elimination. Using a decision procedure by Aspvall and Shiloach (1980), the algorithm
attempts to locate a small interval containing a feasible value for the variable to be elim-
inated. When the variable is restricted to this interval, all but O(n) of the inequalities
containing it can be identified as redundant, provided that the interval is sufficiently small.

In order to find such an interval in strongly polynomial time, the search is confined to
certain “interesting” values. For any two distinct variables xi and xj , the feasible region
of the subsystem of inequalities not containing variables other than xi and xj lies between
an upper and lower envelope, which are piecewise linear functions in the xixj-plane; we
denote the set of breakpoints of these functions by B(xi, xj). The interesting values will
be projections of such breakpoints.

The original algorithm is focused on finding any feasible solution. Feasibility is trivial
for our system (1.2), and the algorithm must be modified. We now state the modified
version, which solves our optimization problem (1.4), and refer the reader to (Hochbaum
and Naor 1994) for a detailed description of the original algorithm.
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3.3 Modified Algorithm

First, for each variable xi, we compute values li and ui such that li ≤ x∗
i = ν(vi) ≤ ui. As

li we may take the i-th component of some feasible solution, which, as noted above, can
be computed in O(m) time. As ui we may use the value µ(π) of any play π starting from
vi. We add to the original system (1.2) the inequalities li ≤ xi and xi ≤ ui for i = 1, . . . , n.

Then we perform the steps 1–5 below for i = 1, . . . , n − 1 and maintain the following
invariant:

before the i-th iteration, 〈x∗
i , . . . , x

∗
n〉 is a feasible solution to the current system.

1. Let B = 〈b1, . . . , bk〉 be the sorted sequence of xi-coordinates of the breakpoints
⋃

i<j≤n B(xi, xj) of the current system.

To maintain the invariant, we must make sure that x∗
i remains a feasible value for xi after

step 3.

2. Using the procedure of Aspvall and Shiloach (1980) (which, given any value ξ, decides
whether x∗

i < ξ in O(mn) time), perform a binary search in B to find bl and bl+1

such that bl ≤ x∗
i ≤ bl+1 (if there is no bl+1 such that x∗

i < bl+1, then x∗
i = bk).

3. Add the inequalities bl ≤ xi and xi ≤ bl+1 to the current system.

4. For j = i, . . . , n, discard all inequalities that are redundant with respect to all other
inequalities that do not contain variables other than xi and xj .

For any xj , there will now be at most two inequalities containing both xi and xj .

5. Apply the Fourier-Motzkin elimination method to xi.

Since Fourier-Motzkin elimination preserves feasible ranges for the remaining variables, the
invariant is preserved.

After n− 1 iterations of steps 1–5, what remains is xn and two inequalities α ≤ xn and
xn ≤ β, where α and β are constants. By the invariant, we have β = x∗

n, and thus we assign
β to xn. Backtracking, i.e., restoring previously discarded inequalities containing xn−1 and
xn, we assign to xn−1 the maximum feasible value with respect to these inequalities and
the value assigned to xn. By the invariant and the lattice structure of the feasible region,
continuing in this fashion for xn−2, . . . , x1 gives us the optimal solution.

Our modifications do not significantly affect the worst case analysis in (Hochbaum and
Naor 1994), and thus the running time is O(mn2 log m).

3.4 Equal Discounts

In (Andersson and Vorobyov 2006), a different approach to the problem is presented. For
the particular case when all edges have the same discount, the resulting algorithm has a
running time of O(mn2), which is a slightly better bound than the above.
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4 Solving Two-Player DPGs

We now consider the problem of solving a two-player DPG. Björklund and Vorobyov (2005)
give a general scheme for optimizing a wide class of functions, which contains strategy
evaluation functions for many infinite games — the so-called recursively local-global (RLG)
functions. We present the scheme applied to the case of DPGs, and refer the reader to
(Björklund and Vorobyov 2005) for a detailed description of the more general approach.

Let PMax be the set of all (pure positional) strategies for Max in (VMax, VMin, E, w, λ).
A face P ′

Max
of PMax is the set of strategies for Max in a game (VMax, VMin, E

′, w, λ) with
E ′ ⊆ E. Furthermore, if E ′ is obtained from E by removing all but one of the outgoing
edges from some vertex v ∈ VMax, then P ′

Max
is called a facet of PMax. Any two strategies

that differ only for a single vertex are called neighbors.
Suppose that eval : PMax → Q computes the optimal value of the linear program (1.4)

resulting from fixing Max’s strategy. To maximize eval on a face P ′
Max

⊆ PMax, starting
from some σ ∈ P ′

Max
, we use the following randomized iterated improvement algorithm

from (Björklund and Vorobyov 2005).

1. If |P ′
Max

| = 1, then return σ.

2. Otherwise, select uniformly at random a facet F of P ′
Max

such that σ 6∈ F .

3. Recursively find the maximum element σ∗ of P ′
Max

\ F starting from σ.

4. Let σ′ be the unique neighbor of σ∗ on F .

5. If eval(σ′) ≤ eval(σ∗), then return σ∗.

6. Otherwise, recursively find and return the maximum element of F starting from σ′.

The correctness follows from the results on simple stochastic games in (Björklund and
Vorobyov 2005), which also apply to DPGs. From the analyses done in (Kalai 1992;
Matoušek et al. 1996) (described in (Björklund and Vorobyov 2005)), it follows that the
expected number of calls to the subroutine for eval is f(|VMax|, |EMax|), where

f(n, m) = e2
√

n ln(m/
√

n)+O(
√

n+ln m). (1.5)

Using the strongly polynomial algorithm presented in the previous section to compute
eval, and recalling that the roles of Max and Min can be interchanged by simple transfor-
mations, we thus get a strongly subexponential algorithm with an expected total running
time of

min{f(|VMax|, |EMax|), f(|VMin|, |EMin|)} · mn2 log m. (1.6)

This is an improvement compared to previously available algorithms for eval, which
either resorted to non-strongly polynomial LP-solvers, or to once again applying subex-
ponential iterated improvement algorithms similar to the one above, resulting in a total
expected running time of, roughly, f(|VMax|, |EMax|) · f(|VMin|, |EMin|).
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5 Conclusions

We have described a new, and currently the best available, strongly polynomial algorithm
for solving one-player generalized discounted payoff games, and shown how it can be incor-
porated into an algorithm for the two-player version, reducing the running time to roughly
√

T (n, m) from T (n, m).
It is likely that these results can be further improved, by exploiting more of the special

properties of the linear programs arising from DPGs. The natural next step is to investi-
gate more general classes of one-player games, such as one-player simple stochastic games
with arbitrary probability distributions, for which the existence of a strongly polynomial
algorithm is still an open problem.
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1 Introduction

One of the most important open problems in mathematical optimization is the
existence of a strongly polynomial algorithm for linear programming. In the
(weakly) polynomial ellipsoid algorithm due to Khachiyan and the interior-
point algorithms of Karmarkar, the number of operations depends not only
on the number of variables n and constraints m, but also on the magnitude of
the coefficients. The quest for a strongly polynomial algorithm, with a running
time polynomial in n, m, while independent of the coefficients, has continued
for the last quarter of a century.

Particular cases of this fundamental problem appear in solving infinite games.
For instance, the only currently known way to efficiently solve the one-player
version of Shapley’s stochastic games [10] (or Markov decision processes) is
by solving a linear program (with no known strongly polynomial algorithms).
However, this program min(

∑

xi|S) has many special properties. The con-
straints of S are monotonic discounted, i.e., have form xi ≥

∑

i6=j ajxj + β,
with 0 ≤ aj and

∑

aj < 1. The feasible region contains a unique minimal
element, which is also the solution to the program and the game.

A few particular classes of linear programs allowing for strongly polynomial
algorithms are known. For example, [4,7] (see also references therein) give
strongly polynomial algorithms for finding feasible solutions of arbitrary, not
necessarily monotonic, linear programs with two variables per inequality.

In this paper we suggest new strongly polynomial algorithms for solving to
optimality 4 a particular case of the above monotonic linear programs, con-
sisting of MD2-constraints (monotonic discounted 2-variable constraints). An
MD2-constraint has the form xi ≥ λxj + β for some β, λ ∈ R with 0 < λ < 1
(a single variable constraint xi ≥ β can be expressed as xi ≥ λxi + β(1− λ)).
An MD2-linear program consists in minimizing the sum of all variables

∑

xi

subject to a system of MD2-constraints in which every variable appears in the
left-hand side of at least one constraint. 5

We describe two different algorithms for two kinds of MD2-linear programs.
First, in Section 3 we address the case when the discounting factors λ are equal
for all constraints. The underlying idea of the algorithm seems to be new,
although very natural and admitting an elegant runtime analysis. Starting
with a feasible solution, which is easy to find for MD2-constraints (linear time
in the number of constraints), we consider trees defined by constraints tightly
satisfied by the current feasible solution, i.e., xi = λxj + β (taking at most

4 Note that feasibility for our systems of constraints can easily be found in O(m)
time; see below.
5 This is needed to guarantee finiteness of the optimum.
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one constraint per left-hand side variable). A variable not occurring on the
left in any tight constraints is called a root. Pulling down the root of such
a tree, by synchronously decreasing the values of all nodes, while trying to
preserve all tree equalities, leads to either the disappearance of the root, or a
defection of a subtree to another tree, or an internal switch, when a subtree
reconnects in an alternative way within the same tree. Using a greedy strategy
results in an O(mn2) algorithm, and the equality of discounting factors is
essential for the analysis, allowing to tightly bound the number of internal
switches to the square of the initial number of tree nodes. This case covers
the standard one-player discounted payoff games. When used, as a subroutine,
with the randomized techniques for two player games [2], it results in the best
currently known subexponential algorithm for discounted payoff games. It also
yields a new, more efficient, strongly subexponential algorithm for the ergodic
partition problem for mean payoff games; see [3] and Section 5.

Second, in Section 4 we consider the case of different discounting factors. In
this case it is possible to modify the algorithm of [7] for feasibility of two-
variable systems of linear constraint for solving MD2-linear programs to op-
timality. The resulting bound for finding the optimum is O(mn2 log m), the
same as for the feasibility algorithm [7].

Relation to the Linear Complementarity Problem (LCP). An in-
stance (A, b) of the LCP is given by a square matrix A ∈ R

n×n and a vector
b ∈ R

n, and consists in finding a vector x ≥ 0 such that Ax + b ≥ 0 and
xT (Ax + b) = 0; see [8,5]. Recall that a square real matrix is called: 1) a
Z-matrix if all of its off-diagonal elements are nonpositive; 2) a P-matrix if
all of its principal minors are positive (in particular, all diagonal elements are
positive); 3) a K-matrix if it is simultaneously a Z- and a P-matrix. For a
P-matrix A the LCP instance (A, b) has a unique solution for every b. Chan-
drasekaran’s algorithm solves instances of the Z-matrix (hence, K-matrix) LCP
problem in strongly polynomial time [5]. When A is a K-matrix, the unique
solution found by the algorithm coincides with the least element of the fea-
sible set S = {x ≥ 0, Ax + b ≥ 0}, or, equivalently, with the unique optimal
solution of the linear program min(pT x|S) for any positive vector p. Thus
Chandrasekaran’s algorithm solves the above linear programs with square K-
matrices in strongly polynomial time. Such linear programs are necessarily
monotonic, i.e., each inequality has the form xi ≥ pT x, with p ≥ 0, and have
at most two constraints with each variable on the left (with xi ≥ 0 being the
second). A more general problem of strongly polynomial solvability of such
systems when more than two constraints per variable on the left-hand side is
open. This problem is equivalent to the so-called K-matrix Generalized LCP.
Our paper solves a particular case of this more general problem, when con-
straints are monotonic, discounted, and contain at most one variable on the
right of each constraint (i.e., at most two variables per constraint).
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2 Preliminaries

Throughout the paper we use the standard linear algebraic notation and con-
ventions, e.g., assume that vectors are column vectors denoted by letters x, y,
z, a, b, etc. Corresponding indexed letters, like xi, denote vector coordinates,
juxtaposition means vector scalar product, and xT denotes the transposition
of vector x. We always let n denote the dimension of the underlying real vector
space R

n and m the number of linear constraints in the system under con-
sideration. We tacitly assume that m ≥ n. Depending on the context, 1 can
denote the all-ones vector 〈1, . . . , 1〉 ∈ R

n.

Definition 2.1 (Monotonic Discounted Constraints) A vector a ∈ R
n

is called monotonic discounted (MD-vector) if it has a unique component equal
to 1, all of its other components are nonpositive, and sum up to a number
strictly greater than −1. A monotonic discounted constraint (MD-constraint)
has the form aT x ≥ β for an MD-vector a ∈ R

n and β ∈ R.

An MD2-vector is an MD-vector with at most one negative component, and an
MD2-constraint has the form aT x ≥ β for an MD2-vector a ∈ R

n and β ∈ R.

The i-th group Si of a system S of MD- or MD2-constraints consists of all
constraints aT x ≥ β of S in which the vector a has the i-th component equal
to 1. A system S is full if Si 6= ∅ for each i ∈ {1, . . . , n}. 2

The feasible region for an MD-system is always non-empty and we can easily
find a feasible solution.

Proposition 2.2 A feasible solution for a given MD-system can be computed
in O(mn) time. For an MD2-system, O(m) time suffices.

Proof. The n-dimensional vector 1ξ = 〈ξ, . . . , ξ〉 is feasible for an MD-system
iff for each constraint aT x ≥ β we have aT (1ξ) ≥ β or, equivalently, ξ ≥
β/(1Ta). Thus, taking ξ to be the maximum of β/(1Ta) over all constraints,
makes 1ξ a feasible solution satisfying at least one constraint as equality. 2

For two vectors x ≤ y means componentwise xi ≤ yi for each i ∈ {1, . . . , n},
and ≥ is used correspondingly. A vector x is a least element of the set X if
x ≤ y for every y ∈ X. The main problem we concentrate upon in this paper
is the following.

MD2-Least Element Problem (MD2-LEP).

Given: a full system S of MD2-constraints.
Find: the least element of the convex polyhedron defined by S. 2
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This least element always exists and is uniquely defined, which follows from
Proposition 2.3, summarizing well-known elementary properties of MD-systems.

For a full system of MD-constraints S call S ′ a representative subsystem of S
if S ′ contains exactly one constraint from each group of S. A representative
equality subsystem is a representative subsystem in which all inequalities ≥
are replaced with equalities =. By discountedness, each such subsystem has a
nondegenerate matrix, hence possesses a unique solution.

Proposition 2.3 Let S be a full system of MD-constraints.

(1) If x and y are feasible for S then z, defined by zi = min(xi, yi) for i ∈
{1, . . . , n}, is also feasible for S.

(2) If S contains one constraint per group then the unique solution x∗ of its
unique representative equality subsystem is the least element of S and
x∗ = arg min(1T x|S).

(3) z = arg min(1T x|S) is finite.
(4) z = arg min(1T x|S) satisfies at least one constraint in each group as

equality.
(5) z = arg min(1T x|S) coincides with the unique solution to one of the rep-

resentative equality subsystems of S.

Proof.

(1) Choose any constraint aT u ≥ β from S. Suppose w.l.o.g. that a1 = 1
and z1 = x1. Note that aT x = aT 〈z1, z2 + δ2, . . . , zn + δn〉 ≥ β, where
zi + δi = xi and δi ≥ 0 for i ∈ {2, . . . , n}, implies aT z ≥ β, because
the components ai for i ∈ {2, . . . , n} are nonpositive. Indeed, aT x =
aT 〈z1, z2 + δ2, . . . , zn + δn〉 = aT z +

∑n
i=2 aiδi ≥ β implies aT z ≥ β, since

the sum is nonpositive.
(2) Let x be a feasible solution of S ≡ Ax ≥ b and let x∗ be the unique

solution of Ax = b. Then A(x−x∗) ≥ 0 and x−x∗ ≥ 0 (or x ≥ x∗) easily
follows. Indeed, assuming x 6≥ x∗, select the smallest negative xi−x∗

i and
get a contradiction with the discountedness of A.

(3) Choose any representative equality subsystem S ′ of S, and let x∗ be its
unique finite solution. Since S ′ is a subsystem of S it follows that z is
feasible for S ′, so by 2 we have x∗ ≤ z.

(4) Otherwise, z would not be a minimum (if all inequalities in Si were strict,
then zi could be decreased).

(5) Follows from the above. 2

Corollary 2.4 For a full system S of MD-constraints there is a unique least
element in the convex polyhedron defined by S, which coincides with the unique
optimal solution to the linear program min(pT x|S), where p is any positive
vector. 2
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We now sketch two simple methods of computing least elements of full MD-
systems, both based on Proposition 2.3. The first one is straightforward. It
suffices to find a representative equality subsystem with the unique solution
(found by Gaussian elimination) being a feasible solution to the whole system.
This can be done by a straightforward exhaustive search in time O((n3 + m) ·
Πn

i=1ni), where ni is the number of inequalities for the i-th variable (the size
of the i-th group).

A less straightforward method is to fix a representative equality subsystem S ′

and find its unique solution x′. If x′ satisfies all other constraints of the system,
it is the required least element. Otherwise, take any violated constraint and
use it instead of the constraint in S ′ from the same group. The new unique
solution x′′ of the resulting representative equality subsystem is in the feasible
region of S ′ (considered as inequalities ≥), of which x′ is the least element.
Therefore, x′ < x′′, which guarantees monotonicity and termination. However,
the worst case bound remains the same. Below we will suggest more efficient
methods for MD2-linear programs.

2.1 Two Types of MD-Systems

Due to the asymmetry of the discounting factors (negative components of a),
we need to distinguish between two types of MD-systems: the ≥-type, defined
previously, and the ≤-type, which differs from the above by reversing the
direction of all inequalities.

The full ≥-type MD-systems are appropriate for the problem of finding the
least element of the feasible region, which coincides with the problem of finding
the unique minimum of the function 1T x on the feasible region. Symmetrically,
the full ≤-type MD-systems are appropriate for the problem of finding the
greatest element of the feasible region, which coincides with the problem of
finding the unique maximum of the function 1T x on the feasible region.

These problems are however easily reducible to each other, since Ax ≤ b iff
A(−x) ≥ −b. Thus it is sufficient to give algorithms for solving the ≥-type
problem, as we will do in the remainder of this paper.

We also have the following simple, but useful, connection.

Proposition 2.5 If x is feasible for a full ≥-type MD-system and y is feasible
for the reversed system, then y ≤ x.

Proof. Choose any representative equality subsystem, and let z∗ be its unique
solution. Then, by Proposition 2.3 and symmetry, we have y ≤ z∗ ≤ x. 2
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3 Equal Discounting Factors

We first consider the case of MD2-LEP when the constraints have equal
discounts, i.e., there is a single discounting factor λ ∈ (0, 1), and all con-
straints are of the form xi ≥ λxj + βij (if i = j then this is equivalent to
xi ≥ βii/(1 − λ)). For this case, we may assume that there is at most one
constraint per ordered pair of variables. In the following, x denotes a feasible
solution to the full system of constraints.

Consider the weighted directed graph G with the variables of the constraint
system as vertices, where a constraint xi ≥ λxj + βij is represented by an
edge from xi to xj with weight βij. An edge is called tight if the corresponding
constraint is satisfied as equality by x. Tight edges may be colored red, but at
most one outgoing red edge per vertex is allowed. A vertex with no outgoing
red edge is called a root.

Proposition 3.1 If every vertex has an outgoing red edge (i.e., there are no
roots), then x is the unique minimal solution of the constraint system.

Proof. Follows from Proposition 2.3. 2

This suggests the following natural approach: starting from a feasible solution,
we move in a nonpositive direction within the feasible region, making sure the
number of red edges is nondecreasing. This has a clear intuitive interpretation
as pulling a red tree down by its root, as explained below.

Definition 3.2 A red zone is a maximal subgraph G′ of G induced by red edges
such that for every two vertices u, v of G′ there is a vertex of G′ reachable
from both u and v by red paths (possibly empty) in G′. Every red zone is either
a red tree with a root (as defined above), or a red sun with a unique cycle and
incoming rays.

Definition 3.3 A pull-down of a red tree is performed as follows. The coor-
dinates of x corresponding to nodes in the tree are decreased in such a way
that the tree edges remain tight, while all other coordinates are kept fixed, until
some constraint is just about to be violated. An edge corresponding to such a
constraint (satisfied as equality) is then chosen, and is made the unique new
outgoing red edge from its tail.

Note that the tail of this new red edge will always be a node originating from
the red tree that was pulled down, due to the monotonicity of the constraints.
Also, roots are never created, i.e., once a vertex has acquired an outgoing red
edge, it will always have some outgoing red edge. Thus, a pull-down results
in one of the following three events, illustrated in Figure 1.
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(1) The root of the tree is eliminated, i.e., the whole tree grafts into a red
zone (possibly itself, thereby creating a sun). This decreases the number
of red trees by one.

(2) A proper subtree defects, i.e., the new outgoing red edge of some non-root
node connects the node and its predecessors to another red zone.

(3) A non-root node makes an internal switch, i.e., reconnects within the
same tree.

Intuitively, this may happen for the following reason (formalized in
Proposition 3.4). Every node xi in a red tree is expressible as a linear
function xi = λkxj + β of its root xj with the slope λk. By pulling the
root down (decreasing xj), we also decrease xi. At some point, a non-red
edge between two nodes in the red tree may become tight and create an
alternative path giving rise to the new function xi = λlxj + β ′ with a
smaller slope (the necessary condition for intersection), i.e., l > k, and
an internal switch occurs.

Figure 1. The possible results of a pull-down operation.

Algorithm 1, given in pseudo-code below, starts with a feasible solution (lines
2–3) and no red edges (line 4), and then repeatedly chooses a root and elimi-
nates it by repeated pull-downs (lines 9–20), until no roots remain. By Propo-
sition 3.1, this will yield the unique minimal solution, provided the algorithm
terminates. We will now prove that it does terminate, and also derive an upper
bound on its running time.

Proposition 3.4 If an internal switch occurs, then the depth of the switching
node increases.

Proof. During a pull-down, the feasible solution x is moving in the direction
−s for some nonnegative vector s. We will call si the speed of xi, and normalize
s by making the speed of the root equal to 1. 6 In order to keep a tree edge
from xi to xj tight, we must have si = λsj , hence the speed of any tree node
xi must be λdepth of xi. For any vertex xi not in the tree, we have si = 0.

Consider an edge from a tree node xi to a tree node xj , and suppose that the
depth of xi is strictly greater than the depth of xj . Then si ≤ λsj , and, since

6 Note that during a pull-down the root decreases the fastest.
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x is feasible, we have xi ≥ λxj +βij. This implies (xi−τsi) ≥ λ(xj−τsj)+βij

for any non-negative τ , i.e., the constraint will never be violated.

Thus, before an edge from xi to xj is colored red due to an internal switch,
the depth of xi must be less or equal to the depth of xj , hence the switch
increases the depth of xi. 2

Corollary 3.5 The number of successive pull-downs needed to eliminate the
root of a red tree is at most t2, where t is the number of nodes in the tree before
the first pull-down.

Proof. By Proposition 3.4, a node can perform at most t−1 internal switches,
and at most one defection, during the pull-downs. 2

The bound in Corollary 3.5 is asymptotically tight — below we give an exam-
ple when Θ(t2) pulls down are needed to eliminate one root.

Corollary 3.5 immediately yields an O(n3) upper bound on the total number
of pull-downs needed to eliminate all roots. However, we will now prove that,
by using a greedy strategy, always selecting the root of the smallest tree to be
eliminated, just O(n2) pull-downs suffice.

Proposition 3.6 By using the greedy strategy, all roots can be eliminated
using O(n2) pull-downs.

Proof. We always eliminate the root of the smallest tree. If there are k trees,
at least one of them must have at most ⌊n/k⌋ nodes, and thus the total number
of pull-downs is bounded above by

n
∑

k=1

(

n

k

)2

≤ n2
∞
∑

k=1

1

k2
=

π2n2

6
,

which is O(n2). 2

A single pull-down operation is performed by the algorithm in O(m) time as
follows. First, the speeds (of decrease) for all vertices are computed (lines 10–
12). Then, for each outgoing edge from a tree node, the algorithm determines
whether the edge would ever be violated (line 16), and if so, calculates time
until it this would happen (line 17). Finally, an edge with the minimal time
until violation is chosen (line 18), the values of tree nodes are decreased, and
edge colors are updated.

This results in the following

Theorem 3.7 The running time of Algorithm 1 is O(mn2).

Proof. By Proposition 3.6, since a single pull-down operation is performed in
O(m) time. 2
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Algorithm 1. Solves MD2-LEP with equal discounting factors.

Input: An MD2-system represented by a weighted graph G =
(V, E, w) and a discounting factor 0 < λ < 1. An edge (xi, xj) ∈
E ⊆ V 2 represents the linear constraint xi ≥ λxj + w(xi, xj).
Output: The least element of the feasible region of the input
system.

MD2
=
-Least-Element(V, E, w, λ)

(1) � Compute a feasible solution.

(2) ξ ← maxe∈E
w(e)

1− λ
(3) value[V ]← ξ
(4) color[E]← black
(5) while there is a root r of a smallest red tree
(6) � Eliminate r.
(7) while r is the root of a red tree T
(8) � Pull down T .
(9) VT ← nodes of T
(10) speed[V ]← 0
(11) foreach v ∈ VT by pre-order tree traversal
(12) speed[v]← λdepth of v in T

(13) ET ← black outgoing edges from VT

(14) time[ET ]←∞
(15) foreach (u, v) ∈ ET

(16) if speed[u] > λ · speed[v]

(17) time[(u, v)]← λ · value[v]− value[u] + w(u, v)

λ · speed[v]− speed[u]
(18) (u, v)← arg mine∈ET

time[e]
(19) foreach x ∈ VT

(20) value[x]← value[x]− speed[x] · time[(u, v)]
(21) color[outgoing edges from u]← black
(22) color[(u, v)]← red
(23) return value

A sample run of Algorithm 1 is given in Figure 2. It illustrates an important
property: an edge may become red more than once. If this had not been the
case, then an O(m) bound on the total number of pull-downs would easily
have followed.

The worst-case running time of Algorithm 1 is in fact Θ(mn2), since it
is possible to construct inputs of any size for which the algorithm proceeds as
follows.

10



Figure 2. Step by step illustration of the pull-downs performed by the algorithm on

a particular input with λ = 1/2. Marked vertices are nodes of the red tree chosen

for the next pull-down.

First, a single red tree spanning the entire graph is grown. It consists of a
chain of k vertices x1, . . . , xk connected by red edges of weight 0 and another k
vertices y1, . . . , yk connected by red edges with weights βj1 to the root vertex
x1. There are also black edges from every vertex yj to every vertex xi, i ∈
{2, . . . , k}, with weights βji. The root x1 has a black self-loop. We illustrate
in Figure 3, for simplicity, the case k = 3, which straightforwardly generalizes
to any k.

Pulling down the root x1 causes the value of yj to decrease according to yj =
βj1 + λx1. An internal switch occurs when the linear function yj = βj1 + λx1

intersects yj = βji + λix1 with i > 1, and yj “jumps” up the chain, because
the slope λi is less steep than λ. The algorithm terminates when the self-loop
of x1 becomes tight.

By choosing suitable weights, we can guarantee that the value of each yj during
the pull-downs will be a piecewise linear function of x1 consisting of k pieces
with slopes λl for decreasing l = k, . . . , 1. This will cause all vertices yj to
climb the chain one level at a time and result in a total of Θ(k2) = Θ(n2)
internal switches.

4 Different Discounting Factors

In this section we address the case when constraints may have different dis-
counting factors. Proposition 3.4 requires equal discounts, and although lifting
this assumption still leaves us with a variant — the product of discounts on the
path to the root decreases with every internal switch — and thereby a proof
of termination, it spoils the strongly polynomial bounds. Therefore, we use a
different method for this case, at the cost of a slightly worse time complexity.

11



x1

x2

x3

y1 y2 y3y3 βj1 + λx1

βj2 + λ2x1

βj3 + λ3x1

j = 1

j = 2

j = 3

Figure 3. A total of 6 internal switches can occur as the yj climb the chain.

Hochbaum and Naor [7] suggested a simple and fast deterministic O(mn2 log m)
algorithm for finding a feasible solution of any linear system with at most two
variables per inequality. We will show how to modify their algorithm so that
it can be used to solve our optimization problem MD2-LEP.

The approach of [7] consists in using the Fourier-Motzkin elimination method
[9]. To eliminate a variable xi, all inequalities containing xi are replaced with
inequalities L ≤ U for each pair L ≤ xi and xi ≤ U in the original system.
Feasibility is preserved, and the method can be applied recursively to com-
pute a feasible solution, or determine that none exists. However, the number
of inequalities created during a straightforward application of such repeated
elimination may be exponential.

The algorithm in [7] limits the growth of the number of inequalities during
the repeated Fourier-Motzkin elimination by simplifying the system before
each elimination. Using a decision procedure by Aspvall and Shiloach [1], the
algorithm attempts to locate a small interval containing a feasible value for
the variable to be eliminated. When the variable is restricted to this interval,
all but O(n) of the inequalities containing it can be identified as redundant.

In order to find such an interval in strongly polynomial time, the search is
confined to certain “interesting” values. For any two distinct variables xi and
xj , the feasible region of the subsystem of inequalities not containing variables
other than xi and xj lies between an upper and lower envelope, which are
piecewise linear functions in the xixj-plane; we denote the set of breakpoints
of these functions by B(xi, xj). The interesting values will be projections of
such breakpoints on the xi-axis.

The original algorithm [7] is focused on finding any feasible solution. Feasibility
is trivial for our systems, and the algorithm must be modified. We now state
the modified version, which solves our optimization problem MD2-LEP, and
refer the reader to [7] for a detailed description of the original algorithm.
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4.1 Algorithm 2

For each variable xi, we denote by x∗
i the minimal value of xi in any feasible

solution to the original system of inequalities. By Proposition 2.3, 〈x∗
1, . . . , x

∗
n〉

is the unique minimal element of the feasible region. Using Proposition 2.5
and 2.2, we compute values ai and bi such that ai ≤ x∗

i ≤ bi, and add the
inequalities ai ≤ xi ≤ bi to the system.

We then perform the steps (i)–(v) below for i = 1, . . . , n − 1 and maintain
the following invariant:

before the i-th iteration, 〈x∗
i , . . . , x

∗
n〉 is a feasible solution to the current

system of inequalities.

(i) Let B = 〈b1, . . . , bk〉 be the sorted sequence of xi-coordinates of the break-
points

⋃

i<j≤n B(xi, xj) of the current system.

To maintain the invariant, we must make sure that x∗
i remains a feasible value

for xi after the variable is restricted in step (iii).

(ii) Using the procedure of Aspvall and Shiloach [1] (which, given any value
ξ, decides whether ξ < x∗

i in O(mn) time), perform a binary search in B
to find bl and bl+1 such that bl ≤ x∗

i ≤ bl+1 (if there is no bl such that
bl < x∗

i , then we must have x∗
i = b1).

(iii) Add the inequalities bl ≤ xi and xi ≤ bl+1 to the current system.
(iv) For j = i, . . . , n, discard all inequalities that are redundant with respect

to all other inequalities not containing variables other than xi and xj .

For any xj , there will now be at most two inequalities containing xi and xj .

(v) Apply the Fourier-Motzkin elimination method to xi.

Since Fourier-Motzkin elimination preserves feasible ranges for the remaining
variables, the invariant is preserved.

After n−1 iterations of steps (i)–(v), what remains is xn and two inequalities
α ≤ xn and xn ≤ β, where α and β are constants. By the invariant, we have
α = x∗

n, and thus we assign α to xn. Backtracking, i.e., restoring previously
discarded inequalities containing xn−1 and xn, we assign to xn−1 the minimum
feasible value with respect to these inequalities and the value assigned to xn.
By the invariant and monotonicity, continuing in this fashion for xn−2, . . . , x1

gives us the optimal solution.

Our modifications do not significantly affect the worst case analysis in [7], and
this results in
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Theorem 4.1 The running time of Algorithm 2 is O(mn2 log m). 2

Assuming equal discounting factors does not substantially improve the running
time of Algorithm 2. The Fourier-Motzkin elimination introduces discounting
factors λk with k > 1, leaving us with a general MD2-system.

5 Applications

Solving the MD2-LEP has the following obvious optimal control interpreta-
tion. Starting in a state xi, an agent selects one of a few available actions.
Depending on the choice j, he gets paid some amount β and causes some
inflation rate λ, and the next day everything repeats from the state xj , ad
infinitum. An optimal agent’s strategy is described by the MD2-LEP instance
with constraints xi ≥ β + λxj defining the possible actions.

5.1 Two-Player Discounted Payoff Games

The model above is also known as a one-player discounted payoff game (DPG).
The two-player version of a DPG also has a second player who, alternating
the actions with the first one, tries to make the resulting payoff as small as
possible. Such games are known to be solvable in pure positional (memoryless)
strategies for both players [10].

Algorithm 1 from Section 3, when combined with the randomized combinato-
rial optimization game techniques [2], provides for the best currently available
algorithms for the two-player DPGs.

Theorem 5.1 A two-player DPG can be solved in randomized subexponential
time

mn2 ·min
(

f(nmax, mmax), f(nmin, mmin)
)

, (1)

where

f(n, m) = e2
√

n ln(m/
√

n)+O(
√

n+lnm) (2)

and nπ, mπ are the number of vertices and edges of player π ∈ {min, max}. 2

Algorithm 2 gives a similar bound for the case of a generalized DPG, with
different discounting factors. For previous algorithms, the bound was roughly
the square of (1), more precisely, f(nmax, mmax) · f(nmin, mmin).
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5.2 Ergodic Partition for Mean Payoff Games

We also obtain a new strongly subexponential algorithm for solving the ergodic
partition problem for mean payoff games (MPG): given an MPG find a par-
tition of its vertices into subsets with equal values, together with their values
[6]. Note that the algorithm from [3] is not strongly subexponential, it has a

bound of the form log(W ) · 2O(
√

n log n), where W is the maximum absolute
edge weight. The latter algorithm proceeds by bisecting the range of possible
values (hence the factor log W ), each time solving an instance of the longest
shortest paths problem (in strongly subexponential time). Now we can give a
strongly subexponential algorithm.

Theorem 5.2 The MPG ergodic partition problem can be solved in random-
ized strongly subexponential time (1).

Proof. Reduce an MPG instance to a DPG instance, as in [11]. This reduc-
tion does not change the game graph, just adds an appropriately selected
discounting factor. Finding values and optimal strategies of this DPG can be
done as explained in the previous section. The MPG optimal strategies and
values may be recovered from the DPG optimal strategies. 2

6 Conclusions

Motivated by applications to one- and two-player games, we constructed two
new strongly polynomial algorithms for finding unique optimal solutions to
system of linear 2-variable monotonic inequalities, running in time O(mn2)
and O(mn2 log m) for equal and different discounting factors, respectively.
Interestingly, there remains a big gap between finding feasible solutions to
such systems in O(m) time and solving them to optimality. Also our algorithm
for different discounting factors does not improve 7 asymptotically over the
feasibility algorithm [7] for arbitrary 2-variable constraints. Designing new,
more efficient algorithms to narrow the existing gaps, or establishing natural
lower bounds represent challenging algorithmic problems. Note that our equal
discounts algorithm, incidentally, has the same complexity as Bellman-Ford’s
shortest paths algorithm run from each vertex.

Extending the techniques to solve, in strongly polynomial time, MD-linear
programs, with no restriction on the number of variables per inequality, is an-
other challenging problem, with important consequences for linear program-
ming, game theory, and linear complementarity.

7 Actually, it does not exploit discountedness.
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