
MAX-PLANCK-INSTITUTF�URINFORMATIK

 	
� �Structural Decidable Extensions of BoundedQuanti�cationSergei VorobyovMPI{I{94{257 October 1994

������ kI N F O R M A T I K
Im StadtwaldD 66123 Saarbr�uckenGermany

Author's AddressSergei Vorobyov (sv@mpi-sb.mpg.de),Max{Planck{Institut f�ur InformatikIm StadtwaldD-66123 Saarbr�uckenGermany(http://www.mpi-sb.mpg.de/guide/sta�/sv/sv.html)
Publication NotesTo appear in the Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principlesof Programming Languages (POPL'95), January 23-25, 1995, San Francisco, U.S.A. Preliminaryversions appeared as Technical Report CRIN{94{R-121, July 1994 (Centre de Recherche en Infor-matique de Nancy, France) and Research Report INRIA{94{RR{2309, September 1994 InstitutNational de Recherche en Informatique et en Automatique, France.
AcknowledgementsI am greatly indebted to Luca Cardelli, Benjamin Pierce, Mart��n Abadi, Roberto Amadio,Philippe de Groote, Didier Galmiche, Jean-Luc R�emy, Hubert Comon, Michel Parigot for invalu-able remarks, ideas, and discussions. I am grateful to my anonymous referee for his substantialhelp. To produce proof trees I used Paul Taylor's LaTEXmacro package. This work was mainlydone when I was at CRIN (Centre National de Recherche en Informatique de Nancy, France),which provided me the excellent research opportunities.

Abstract We show how the subtype relation of the well-known system F�, the second-order polymorphic �-calculus with bounded universal type quanti�cation andsubtyping, due to Cardelli, Wegner, Bruce, Longo, Curien, Ghelli, proved unde-cidable by Pierce (POPL'92), can be interpreted in the (weak) monadic second-order theory of one (B�uchi), two (Rabin), several, or in�nitely many successorfunctions. These (W)SnS-interpretations show that the undecidable systemFsub possesses consistent decidable extensions, i.e., Fsub is not essentially un-decidable (Tarski, 1949).We demonstrate an in�nite class of structural decidable extensions of F�,which combine traditional subtype inference rules with the above (W)SnS-interpretations. All these extensions, which we call systems F SnS� , are still morepowerful than F�, but less coarse than the direct (W)SnS-interpretations.The main distinctive features of the systems F SnS� are: 1) decidability,2) closure w.r.t. transitivity; 3) structuredness, e.g., they never subtype afunctional type to a universal one or vice versa, 4) they all contain the powerfulrule for subtyping boundedly quanti�ed types.

Structural Decidable Extensionsof Bounded Quanti�cationSergei G. Vorobyov �Max-Planck-Institut f�ur InformatikIm Stadtwald, D-66123, Saarbr�ucken, Germany(e-mail: sv@mpi-sb.mpg.de)AbstractWe show how the subtype relation of the well-known systemF�, the second-order polymorphic �-calculus with boundeduniversal type quanti�cation and subtyping, due to Cardelli,Wegner, Bruce, Longo, Curien, Ghelli [6, 2, 8], proved un-decidable by Pierce [12], can be interpreted in the (weak)monadic second-order theory of one (B�uchi), two (Rabin),several, or in�nitely many successor functions [13, 14]. These(W)SnS-interpretations show that the undecidable systemF� possesses consistent decidable extensions, i.e., F� is notessentially undecidable (Tarski et. al., 1949, [17]).We demonstrate an in�nite class of \structural" decidableextensions of F�, which combine traditional subtype in-ference rules with the above (W)SnS-interpretations. Allthese extensions, which we call systems FSnS� , are still morepowerful than F�, but less coarse than the direct (W)SnS-interpretations:F� � FSnS� � (W)SnS-interpretationsThe main distinctive features of the systems FSnS� are:1) decidability, 2) closure w.r.t. transitivity; 3) structured-ness, e.g., they never subtype a functional type to a universalone or vice versa, 4) they all contain the powerful rule forsubtyping boundedly quanti�ed types:� ` �1 � �1 � ; � � �1 ` �2 � �2� ` (8� � �1 : �2) � (8� � �1 : �2) (All)Key words: second-order polymorphic typed �-calculus,subtyping, system F�, bounded universal type quanti�ca-tion, parametric and inheritance polymorphisms, (un-)deci-dability, essential undecidability, (weak) monadic second-order theory of several successor functions (W)SnS.1 IntroductionThe advantages and usefulness of strict typing disciplinesin programming with static typing and rigid compile-time�This work was done while the author was at the Centre deRecherche en Informatique de Nancy, France

type control have been widely accepted, studied, and advo-cated in Software Engineering [10, 6, 4, 11] since creationof Simula-67, Algol-68, Pascal, Clu, Alphard, Modula, ML,Ada, etc. Typeful programming should be based on power-ful and, preferably, decidable type systems.The system F� is the polymorphic second-order typed �-calculus with subtyping, combining the universal (or para-metric) polymorphism of Girard's system F with Cardelli'scalculus of subtyping (inheritance polymorphism [3]). Intro-duced in [6], later improved, simpli�ed, and investigated bymany researchers [2, 1, 8, 12, 7, 5], the system F� serves acore calculus of type systems with subtyping and a model torepresent polymorphic and object-oriented features in pro-gramming languages.F� is an extension of F with subtyping. In addition to theusual functional and universal type formation of F , the sys-tem F� allows one to form boundedly quanti�ed types:8� � bound : body. Such type is a function on types trans-forming any subtype � of a bound into a type body[�=�].As F� also contains the largest type >, the unboundedtype quanti�cation of F is included as a particular case:8� � > : �.The systemF� consists of two components. The �rst one ax-iomatizes the subtyping relation on types � ` � � � . Thesecond generates the typing relation � ` t : �. Both com-ponents interact by means of the rules as (Subsumption),allowing one to derive the judgment � ` t : � from� ` t : � and � ` � � � .In [12] Pierce proved that already the subtyping componentof F� is undecidable, and hence the typing relation in F�is undecidable too. Using Ghelli's example of divergence ofF�-subtyping algorithm (mainly due to the subtle interac-tion between the quanti�er rule (All) above and transitiv-ity), he succeeded to encode instances of the terminationproblem into F�-subtyping judgments.Given an undecidable theory T one usually tries to weakenit to get a decidable subtheory Tdec � T . Accordingly, at-tempts were made to restrict F� to get decidable subsys-tems. In [7] the general quanti�er rule (All) above was re-placed by its weaker version:� ` �1 � �1 � ; � � > ` �2 � �2 (All-Top)� ` (8� � �1 : �2) � (8� � �1 : �2)Subtyping in the resulting subsystem F>� � F� is de-cidable. In [9] a decidable subsystem of F� is obtained by

restricting bounds in bounded quanti�cation to be >-free(with some relaxations to allow unbounded quanti�cation).An extensive discussion of di�erent other weakenings of thepowerful rule (All) is contained in [7].For an undecidable theory T there sometimes exists anotherpossibility, to reinforce it (instead of weakening) in orderto obtain a consistent decidable extension Tdec � T . Thisworks only if T is not essentially undecidable, i.e., possessesconsistent decidable extensions (A. Tarski, 1949, [17]).Curiously enough, F� appears to be undecidable, but notessentially [18], with in�nitely many nontrivial consistentdecidable extensions. This reopens the possibility for ob-taining good decidable systems relative to F� without sacri-�cing the general quanti�er rule (All) or somehow restrictingthe form of bounds in bounded quanti�cation.The �rst in�nite class of such extensions was introduced in[18], where it was shown that there exist in�nitely manyways to translate F�-subtyping judgments into formulas ofRabin's S2S. Each such translation maps the F�-axiomsto valid S2S-formulas, and each F�-inference rule preservesvalidity with respect to any S2S-translation. It follows thateverything provable in F� is valid in any S2S-interpretation.Consequently, F� is not essentially undecidable; any S2S-translation is a consistent decidable extension of F�. S2S-interpretations generalize for recursive types [19].Precautions, however, should be taken concerning consis-tency. For theories based on predicate calculus consistentmeans \do not prove everything". For theories, which arenot based on predicate calculus, like F�, consistent mightmean \do not subtype any pair of types" (weak consistency)or \do not subtype too many types" (strong consistency).S2S-interpretations appeared to be weakly, but not stronglyconsistent. They are coarse in the sense that they do notmake �ne distinction between di�erently structured types,and subtype too many of them, which is undesirable in stricttyping disciplines. In this paper we remedy this drawback bycombining our S2S-interpretations with the traditional F�-like subtype inference rules. These rules guarantee the so-called \strict structural subtyping", where the subtype re-lation is de�ned by co(ntra)variant induction on type struc-ture. This prevents us from subtyping di�erently structuredtypes, e.g., universal and functional ones.The main idea of our systems FSnS� is that they disablethe in�nite alternations of applications of the rule (All) andthe transitivity rule. This alternation is the source of non-termination and undecidability of F�, [12]. Instead, weprune proof tree branches, which may lead to in�nite al-ternations, and decide the remaining judgments by inter-preting them in (W)SnS. Of course, as F� is undecidable,and FSnS� are decidable extensions of F�, sometimes theyaccept F�-unprovable judgments. But this is a reasonableprice for attaining decidability.The scenario of the presentation is the following. Section 2recalls the system F�. (Un)decidability results concerningF� are listed in Section 3. Section 4 introduces systemsFSnS� . Section 5 describes the decision procedure. In Sec-tion 6 we show in�nitely many ways to interpret the sub-type relation in any (W)SnS. Section 7 discusses the con-sistency of FSnS� . In Section 8 we explain the rule inver-sion principle, the main tool of our proofs of the inclu-

sion F� � FSnS� and the transitivity of FSnS� . In Sec-tions 9 and 10 we show that the inversion principle does nothold for SnS-interpretations, but holds for systems FSnS� .In Sections 11, 12, and 13 we prove the inclusions F� �FSnS� � (W)SnS-interpretations and the transitivity of allFSnS� . Section 14 discusses further improvements of FSnS� .In Section 15 we sketch problems for future research. Ap-pendices A and B contain the reference material on second-order monadic theories and on Curien-Ghelli's algorithmicvariant of F�. The proofs are collected in Appendix C.In this paper we deal only with the subtyping relation. Com-binations with typing and related problems, like subject re-duction [20], typing proof normalization, the least type prop-erty, strong normalization are in the course of study and willbe considered elsewhere.Added in Proof. In [21] we continued the study of decid-able extensions of the F� subtyping relation and developedthe general theory of converging hierarchies of structural de-cidable extensions of the F�-subtyping. The systems FSnS�presented in this paper form just the �rst level of the hi-erarchies from [21]. In [22] we combined these hierarchieswith the standard F� term typing rules and obtained anin�nite family of the extensions of the polymorphic systemF� where both subtyping and typing are decidable.2 System F�For complete and exact reference see, e.g., [8, 12, 5]. Wejust briey remind the essential de�nitions, retaining thenotation of [12].De�nition 2.1 (Types) The set of F�-types is de�ned bythe following abstract grammar:T �df V j > j T! T j 8V� T :Twhere:1. V is a set of type variables denoted by Greek letters �,�, ;2. > is the largest type majorazing any other type, � � >;3. ! is the functional type constructor, � ! � is thetype of functions with domain of type � and codomainof type � ;4. 8� � � : � is a polymorphic boundedly quanti�ed type,i.e., a function assigning to each subtype � of �, � � �,the type � [�=�] obtained from � by substituting � in-stead of free occurrences of � (with usual non-clashingpreconditions on free variables). In 8� � � : � thebound � does not contain � free.The letters � , �, � from the end of the Greek alphabet de-note arbitrary (variable or compound) F�-types; 8� : � ab-breviates 8� � >:� ; FV (�) denotes the set of free variablesin �.De�nition 2.2 (Contexts) An F�-context is an orderedsequence �1 � �1; : : : ; �n � �n of �-relations between typevariables and F�-types such that:1. all �i are di�erent type variables, and

2. for each i, FV (�i) � f�1; : : : ; �i�1g.Contexts are denoted by capital Greek �. Dom(�) is the setof type variables appearing to the left of � in �. We write�(�) = � if � contains � � � and call � a bound of � in �.We de�ne ��(�) as �(�) if the latter is not a variable, andas ��(�(�)) otherwise. 2De�nition 2.3 (Subtyping Judgments)An F�-subtyping judgment is a �gure of the form:� ` � � �;where FV (�)[FV (�) � Dom(�). 2The intuitive semantics of a judgment � ` � � � is: �is a subtype of � provided that all �i mentioned in � aresubtypes of their respective bounds �i.De�nition 2.4 (Subtyping Rules) The F�-subtyping re-lation is generated by the system of 3 axioms and 3 inferencerules, shown in Figure 1.� ` � � � (Refl)� ` � � > (Top)� ` � � �(�) (TV ar)� ` �1 � �2 � ` �2 � �3� ` �1 � �3 (Trans)� ` �1 � �1 � ` �2 � �2� ` �1 ! �2 � �1 ! �2 (Arrow)� ` �1 � �1 � ; � � �1 ` �2 � �2� ` (8� � �1 : �2) � (8� � �1 : �2) (All)Figure 1: F� subtyping axioms and inference rulesLet `F� denote the least three-place relation � ` � � �containing all particular cases of the F�-axioms and closedwith respect to the F�-inference rules. Sometimes, by abus-ing notation, we denote by F� the set of subtyping judgmentsprovable in F�. 2De�nition 2.5 (Variants of F�) 1) Original Fun [6] re-places the (All) rule by the weaker rule (All-Fun) (Fig-ure 2).2) System F>� [7] replaces the rule (All) by its particularcase (All-Top) (Figure 2).3) System F�local [7] replaces the rule (All) by its modi�ca-tion (All-local) (Figure 2).By `Fun, `F>� and `F� local we denote the correspondingsubtyping relations. 2

� ; � � � ` �2 � �2� ` (8� � � : �2) � (8� � � : �2) (All-Fun)� ` �1 � �1 � ; � � > ` �2 � �2� ` (8� � �1 : �2) � (8� � �1 : �2) (All-Top)� ` �1 � �1 � ; � � �1 ` �2 � �2� ` (8� � �1 : �2) � (8� � �1 : �2) (All-local)Figure 2: Variants of the (All) rule3 (Un)DecidabilityThe interesting facts about F� are:Theorem 3.1 (Undecidability of F�, [12]) The relation`F� is undecidable. 2The weakenings of F� are however decidable:Theorem 3.2 (Decidability of Fun and F>� [7]) Bothrelations `Fun and `F>� are decidable. 2Nothing is known about decidability of F�local [7].In [18] we demonstrated that the decidability of F� could bereached also by reinforcement, and not only by weakening,as opposed to systems F>� and Fun.De�nition 3.3 (Essential Undecidability, [17]) A con-sistent theory T is essentially undecidable i� it has no con-sistent decidable extensions T 0 � T . 2De�nition 3.4 (Consistency) An extension of F� is con-sistent i� it is closed with respect to the F� inference rulesand does not subtype any two types. 2Remarks. 1) Further we replace \any two types" by \anytwo di�erently structured types" getting the stronger con-sistency. 2) As we are interested only in the extensions ofF�, the closure with respect to the F�-inference rules seemsnatural and meaningful. It would not be the case for F>�and Fun. 2Theorem 3.5 (F� Is Not Essentially Undecidable, [18])There exist in�nitely many di�erent consistent decidable ex-tensions of `F� . 2This result was obtained by interpreting the F�-subtypingrelation in S2S, the monadic second-order logic of two suc-cessors due to M. Rabin [13, 14]. The corresponding in-�nite class of extensions of F� (which we call the S2S-interpretations) and their properties are studied in [18].The main objection (by L. Cardelli and others) against theseextensions was that they were too coarse and non-structural.S2S-interpretations subtype too many types, sometimes

di�erently structured ones (i.e., universal and functionalones).In this paper we introduce a new in�nite class of decidableextensions of F� re�ning the S2S-interpretations . We callthese extensions systems FSnS� . We also (re)introduce theS2S-interpretations in a slightly more general setting andcall them SnS-interpretations (with S2S being a particularcase of SnS for n = 2). We prove that all systems FSnS� aremore powerful than F�, but being structural (they do notsubtype di�erently structured types any more), they are lesscoarse than SnS-interpretations:F� � FSnS� � SnS-interpretationsAgain note that the decidable system F>� introduced in [7]is weaker than F�: F>� � F�.4 System FSnS�De�nition 4.1 The system FSnS� is de�ned by the collec-tion of subtyping axioms and inference rules shown in Fig-ure 3, supposed to be applied bottom-up in the order of theirpresentation. � � � See F igure 3 � ��The DECIDE component in the rule (V ar-All-Decide) andthe whole FSnS� -decision procedure are described in the fol-lowing Sections. 2Roughly speaking, the system FSnS� is F� without the gen-eral transitivity rule (Trans) replaced by a built-in decisionprocedure DECIDE.Remarks and Explanations1. Our intention is to de�ne the decision and not semide-cision procedure for subtyping judgments. That is whywe are going to apply rules bottom-up and introducetwo constants TRUE and FALSE to treat both theaccepting and rejecting cases.2. Rules (Refl), (Top), and (TV ar) correspond exactlyto their F� counterparts. We formulate them as ruleswith the premises TRUE just to be able to treat sym-metrically the negative case FALSE in other rules ofFSnS� .3. Rules (Arrow) and (All) are the same as in F�.4. Motivation for the rules (Top-L) and (TV ar-R-2) is:the conclusions of these rules are NOT provable in F�(Proposition 4.2).5. Motivation for the rules (8 6� !) and (! 6� 8) is thesame: the conclusions of these rules are underivable inF�.6. The (V ar-Arrow) rule is just a half (with only arrow-types on the right of �) of Curien-Ghelli's algorithmictransitivity rule (AlgTrans), see [8] and Appendix B.

7. The crucial di�erence with F� is the absence of thegeneral rule (Trans) or of its algorithmic equivalent(AlgTrans) for universal types (see the rule (V ar-All)below). Transitivity in this case is dealt separately, bymeans of a DECIDE procedure. Note that we donot weaken the general F� quanti�er rule (All), whichremains the same as in FSnS� .8. The built-in procedure DECIDE appearing in thepremise of the rule(V ar-All-Decide) is a parameter of the system. Belowwe de�ne in�nitely many di�erent such procedures.Note, in particular, that if we de�ne the DECIDEprocedure recursively, as FSnS� plus the second half ofCurien-Ghelli's transitivity rule:� ` �(�) � (8� � � : �)� ` � � (8� � � : �) (V ar-All)then we will get exactly F�! 2Proposition 4.2 Subtyping judgments of the forms:1. � ` > � � (� 6= >),2. � ` � � � (� non-variable; � variable),where � is any context, are not provable in F�. 2Proof . See Appendix C.1. 25 Decision ProcedureThe rules of the system FSnS� read bottom-up can be seenas a decision procedure (with a built-in DECIDE oracle).Given a subtyping judgment, the rules of FSnS� apply deter-ministically in ordered manner (e.g., (V ar-All-Decide) doesnot apply before (V ar-All-2)). The rule application processalways terminates, provided that the built-inDECIDE pro-cedure is �nitely terminating, and this is the fundamentaldi�erence with F�, see [12].Proposition 5.1 (Finite Termination of FSnS�) For eve-ry subtyping judgment � ` � � � any FSnS� -proof tree is�nite. 2Proof . The complexity of judgments decreases as onemoves bottom-up. 2So the termination of the whole decision procedure dependson termination of its DECIDE component.Irreducible leaves of FSnS� -proof trees are either:1. TRUE or2. FALSE or3. of the form DECIDE(J), where J is a subtypingjudgment in the FSnS� -normal form, i.e.:J �df �1 � �1 : : : �n � �n ` � � �; (3)where �1; : : : ; �n; � are type variables, �1; : : : ; �n arearbitrary types, and � is a universal type.

TRUE� ` � � � (Refl)TRUE� ` � � > (Top)FALSE (for � 6= >)� ` > � � (Top-L)� ` �(�) � � (for different variables �; �)� ` � � � (TV ar-R-1)FALSE (� non-variable; � variable)� ` � � � (TV ar-R-2)FALSE� ` (8� � �1 : �2) � (�1 ! �2) (8 6� !)FALSE� ` (�1 ! �2) � (8� � �1 : �2) (! 6� 8)� ` �(�) � � ! �� ` � � � ! � (V ar-Arrow)TRUE� ` � � �(�) (TV ar)� ` �(�) � (8� � � : �) (if �(�) is a variable)� ` � � (8� � � : �) (V ar-All-1)� ` FALSE (if �(�) is > or an ! -type)� ` � � (8� � � : �) (V ar-All-2)DECIDE(� ` � � (8� � � : �))� ` � � (8� � � : �) (V ar-All-Decide)� ` �1 � �1 � ` �2 � �2� ` �1 ! �2 � �1 ! �2 (Arrow)� ` �1 � �1 � ; � � �1 ` �2 � �2� ` (8� � �1 : �2) � (8� � �1 : �2) (All)Figure 3: System FSnS�

Obviously:� if all leaves of a FSnS� -proof tree are TRUE, we declarethe input judgment valid;� if one of the leaves of FSnS� -proof tree is FALSE, wedeclare the input judgment invalid;� otherwise, before announcing our verdict we analyzeFSnS� -normal forms (3) using the built-in DECIDEprocedure.To decide normal forms (3) we use a method [18] of in-terpretations in monadic second-order theories of successorfunctions [14]:� �rst, we compile FSnS� -normal forms (3) in a monadicsecond-order theory,� second, we decide them using a decision procedure forthis theory.Therefore, instead of remaining in the undecidable F� weforget it and work in the decidable FSnS� , which replacesthe transitivity rule (Trans) by the transitivity implicitlypresent in a monadic second-order theory. As we show be-low, the proper choices of the DECIDE component leadto decidable extensions of F� (Theorem 11.1), closed withrespect to transitivity (Theorem 12.1).6 Interpreting FSnS� -Normal Forms in SnSIn [18] we introduced an in�nite class of direct interpreta-tions of F� into S2S, the monadic second-order arithmeticof two successor functions [13, 14]. These direct S2S-inter-pretations do not use any inference rules (as opposed to F�or FSnS�), immediately translating F�-judgments into S2S-formulas. Like this we established that F� possesses in-�nitely many di�erent consistent decidable extensions, i.e.,is not essentially undecidable.The drawback of the direct S2S-interpretationsof F� is thatthey subtype too many types (see [18] and below), in par-ticular, di�erently structured types. The systems FSnS� aremore subtle. By their very de�nition they do not subtypedi�erently structured types. They cannot prove a subtypingbetween, say, an !-type and a 8-type. The systems FSnS�apply the method of interpretations only to normal forms,i.e., to judgments of the form (3) inside the DECIDE pro-cedure.There is only a minor di�erence in de�ning the S2S-inter-pretations only for normal forms (3) and for general F�-subtyping judgments, so we give a complete de�nition ofS2S-interpretationsof F�. Also, S2S-interpretations gener-alize straightforwardly to SnS-interpretations for arbitraryn 2 N or even S!S.Choose and �x any monadic second-order theory of succes-sor function(s), say, B�uchi arithmetic S1S, Rabin's arith-metic S2S, : : : , SnS, S!S, or their weak counterparts, withsecond-order quanti�cations restricted to �nite sets (see Ap-pendix A).The intuition behind interpretations of F� into SnS is ex-tremely simple. We interpet the F� types as propositions of

SnS. Each F�-type � is assigned a SnS-formula S(x) withjust one free object variable x, and each subtyping relation� � � is translated into 8x(S(x) � T (x)), where S(x) andT (x) are SnS-formulas assigned to types � and � .Our translation satis�es the following properties:1. all axioms of F� are transformed into valid formulasof SnS;2. all F�-inference rules preserve validity with respect toany SnS, i.e., whenever both premises of a rule aretranslated into valid SnS-formulas, then the conclu-sion of the rule is also translated into such formula.3. consequently, by 1 and 2, any F�-subtyping judgmentis interpreted as a true formula of SnS, and, hence-forth, F� is not essentially undecidable, i.e., possessesconsistent decidable extensions; any SnS-translationof F� satisfying the above properties is such an exten-sion.It remains to show that the needed SnS-translations of F�with the above properties exist. We show it in the rest of thisSection. The idea is quite simple: interpret type variables�, �, : : : as corresponding SnS-atomic formulas A(x), B(x),: : : , choosing a new predicate variable for each new typevariable. Then knowing that S(x) and T (x) interpret � and� respectively, interpret:� � ! � as S(x) � T (x), or, more generally, asS(x) � T (f(x));� 8� � � : � as 82A�81x[A(x) � S(x)] � T (x)	, or, moregenerally, as82A�81x[A(x) � S(x)] � T (g(x))	 ;where f , g are arbitrary strings composed of SnS-successors.Introduction of parameters f and g allows us to de�ne in-�nitely many di�erent interpretations of F� in SnS, see [18].Surprising, but it works! We now proceed to formal de�ni-tions.De�nition 6.1 (SnS[F�](f ;g)-interpretations) Let fand g be two arbitrary strings composed of successor func-tion symbols of SnS. Both may be equal to the empty string".For an arbitrary type � of F�, the Types-As-Propositions-Interpretation of � in SnS with parameters f and g (theSnS[F�](f ;g)-interpretation for short) is de�ned as an SnS-formula [[�]]fg(x) with unique distinguished free object vari-able x by induction on the structure of �:

1: [[�]]fg(x) �df A(x) (a new predicatevariable A for each type variable �);2: [[>]]fg(x) �df x = x;3: [[� ! �]]fg(x) �df [[�]]fg(x) � [[�]]fg(f(x));4: [[8� � � : �]]fg(x) �df82A n81x �A(x) � [[�]]fg(x)� � [[�]]fg(g(x))o.The SnS[F�](f ;g)-interpretation is extended to all subtyp-ing judgments by:5: [[� � �]]fg �df 81x ([[�]]fg(x) � [[�]]fg(x));6: [[�1 � �1 : : : �n � �n ` � � �]]fg �df[[�1 � �1]]fg : : : [[�n � �n]]fg j=SnS [[� � �]]fg. 2De�nition 6.2 (Theory) De�ne the SnS[F�](f ;g)-theoryas:SnS[F�](f ;g) �df f � ` � � � j [[� ` � � �]]fggFurther we will freely say that a typing judgment is true orvalid in (or with respect to) a SnS[F�](f ;g)-interpretationi� it belongs to the set SnS[F�](f ;g). 2Remarks. In SnS[F�](f ;g)-interpretationwe use just one-variable restricted fragment of SnS. If f = g = " then thisfragment is also function-free (and can be seen as the propo-sitional second-order logic). x is the only free object vari-able of any SnS[F�](f ;g)-interpretation of any type. Sub-typing judgments are interpreted as statements about SnS-semantical consequence relation j=SnS containing no freeobject variables at all. Any SnS[F�](f ;g) is decidable. 2The SnS-interpretationsenjoy the following importantprop-erties:Lemma 6.3 (Embedding) 1) All axioms of F� are validwith respect to any SnS[F�](f ;g).2) All inference rules of F� preserve validity with respect toany SnS[F�](f ;g), i.e., if both premises of a rule are validin SnS[F�](f ;g), then so is the conclusion of the rule. 2Proof . Straightforwardly rephrasing the proof from [18].2As a direct consequence we have, [18]:

Theorem 6.4 (On Decidable Extensions of F�) AnySnS[F�](f ;g) is a consistent decidable theory containing allF�-derivable subtyping judgments. Henceforth, F� is not es-sentially undecidable possessing consistent decidable exten-sions. 2De�nition 6.5 (FSnS� (f ;g)) De�ne a system FSnS� (f ;g) asa combination of the inference rules from Figure 3 and aDECIDE procedure for SnS[F�](f ;g). 2Below, in Theorems 11.1 and 12.1 we show that all systemsFSnS� (f ;g) also extend F� but are less coarse than SnS-interpretations, i.e.,F� � FSnS� (f ;g) � SnS[F�](f ;g) (4)7 Consistency and Well-Structuredness of FSnS�Proposition 7.1 All systems FSnS� are consistent: they donot prove, e.g., ` > � (> ! >). Neither do they subtypeany pair of di�erently structured types. 2Proof . Immediate by de�nition. 28 Inversion PrincipleThe main tool of the proofs of inclusions (4) (Theorems 11.1and 12.1) and of the transitivity of FSnS� (f ;g) (Theorem13.1)is the well-known inversion principle. The rule invertibilityis the fundamental principle of the cut-free Gentzen-typederivation systems, see, e.g., [15].The inversion principle is the key property needed to provethe minimal typing property for F�. In fact, this is almostall what is needed to reconstruct F�-inferences into normalforms, [8].The inversion principle can be formulated as follows: for aninference rule of a system S� ` � � ` 	 (Rule)� ` �if a sequent � ` � from the conclusion is derivable in Sthen the premises are also derivable in S.The inversion principle is important for goal-oriented proof-search procedures, which are guaranteed to be completejust stupidly applying inference rules bottom-up. Proofsin systems satisfying the inversion principle are direct, con-structed from subproofs of subformulas of goal formulas, donot contain insights and roundabout ways.The inversion principle is not evident, or even fails for sys-tems with the CUT rule:� ` A � C � ` C � B (Cut)� ` A � BIn the presence of (Cut), one cannot always be sure thata provable formula � of the form A � B is obtained bysome (Rule) or by the (Cut). But applying (Cut) requiresingenuity to �nd intermediate formulas C, unattainable formechanic theorem provers.

Note that the usual transitivity rule of F�� ` �1 � �2 � ` �2 � �3 (Trans)� ` �1 � �3has the de�nite (Cut) form.Proposition 8.1 (Inversion for F�, [8]) In F� the rules(Arrow) and (All) are invertible. 2This may be seen as a good structural property.9 Failure of the Inversion Principle for SnS[F�](f ;g)The inversion principle fails for SnS-interpretations. Infact, we can have[[� ` (� ! �) � (�0 ! � 0)]]fgWITHOUT having[[� ` �0 � �]]fg and [[� ` � � � 0]]fgTake, for example, the judgment� � > ` (�! >) � (>! >)with the valid SnS-translation, but the SnS-translation of� � > ` > � �is false: 81x(Ax � x = x) 6j= 81x(x = x � Ax).10 Inversion Principle for FSnS�Inversion principle trivially holds for FSnS� :Lemma 10.1 (Inversion Principle) In any FSnS� (f ;g):� if � ` �1 ! �2 � �1 ! �2 is provable, then� ` �1 � �1 and � ` �2 � �2 are also provable;� if � ` (8� � �1 : �2) � (8� � �1 : �2) is provable,then � ` �1 � �1 and� ; � � �1 ` �2 � �2 are also provable. 2Proof . Immediate by de�nition. In FSnS� there are noother ways to subtype two !- or 8-types except applying(Arrow) or (All) (or by the (Refl), in which case the con-clusion is straightforward). 2The proofs in FSnS� are direct, one needs not subtype any-thing which do not belong to a goal subtyping judgment,proofs are conductedwithout roundabout ways and insights,completely deterministically.

11 FSnS� is More Powerful than F�Now we prove two strict inclusions:F� � FSnS� (f ;g) � SnS[F�](f ;g)So, the systems FSnS� occupy an intermediate position be-tween F� and SnS-interpretations: they are more strongthan F� and more subtle than SnS-interpretations. Notethat the decidable system F>� lies to the left of F� in theabove diagram.Remark. FSnS� is an in�nite family of systems. To decidenormal forms each system uses a parametric SnS[F�](f ;g)-interpretation . For each f and g we have di�erent para-metric FSnS� (f ;g). In fact, for the same f ; g we have theabove inclusion FSnS� (f ;g) � SnS[F�](f ;g). In general,FSnS� (f ;g) and SnS[F�](f 0;g0) are unrelated [18].Theorem 11.1 (F� � FSnS�) Each system FSnS� (f ;g) isstrictly more powerful than F� is: if a subtyping judgmentis provable in F� then it is also provable in FSnS� (f ;g); theconverse is not true in general. 2Proof . See Appendix C.2. 212 FSnS� Are Less Coarse than SnS-InterpretationsWe prove that FSnS� (f ;g) subtypes strictly less types thanthe corresponding SnS[F�](f ;g)-interpretation:Theorem 12.1 (FSnS� (f ;g) � SnS[F�](f ;g).) Each sys-tem FSnS� (f ;g) is strictly less powerful than the correspond-ing interpretation SnS[F�](f ;g): whatever is provable inFSnS� (f ;g) is also true in SnS[F�](f ;g); the converse in gen-eral does not hold. In particular, FSnS� does not subtype dif-ferently structured types (e.g., a universally quanti�ed and afunctional type). 2Proof . See Appendix C.3. 213 Transitivity of FSnS�Changing F� for FSnS� we gain decidability and do not losetransitivity! Transitivity is an indispensable property neededfor many purposes, in particular, for proof normalization,see [8, 21, 22].Theorem 13.1 (Transitivity of FSnS�) All systemsFSnS� (f ;g) are closed with respect to the transitivity rule(Trans):whenever � ` � � � and � ` � � � are provable inFSnS� (f ;g), then � ` � � � is also provable in FSnS� (f ;g).Proof . See Appendix C.4. 2

14 ImprovementsThe FSnS� -decision procedure may be obviously re�ned asfollows: instead of pruning the FAlg� -proof tree1 on the �rstapplication of (V ar-All-Decide), one may �x k 2 N andallow k applications of (V ar-All) on each branch of a sub-typing proof tree before applying (V ar-All-Decide), whichinvokes the brute force SnS-decision procedure for normalforms. Denote the resulting system FSnS� (f ;g)(k).Consider a simple example. The non-modi�ed procedureanalyzing the normal form�; � � (8�(>! >)! >) ` � � (8� :>! >)returns TRUE. But if we allow just one application of(V ar-All), we get �::: ` (> ! >) ! > � > ! >,then � ` > � > ! >, and, �nally FALSE, whichcorresponds exactly to the F�-proof.With these modi�cations we still have for all k 2 !F� � FSnS� (f ;g)(k)It is not di�cult to notice thatFSnS� (f ;g)(k+ 1) � FSnS� (f ;g)(k)and FSnS� (f ;g)(1) = F�.The general theory of the converging sequencesf FSnS� (f ;g)(k) g1k=0 is systematically developed in [21].15 ConclusionIn this paper we concentrated exclusively on the the sub-typing relations more powerful than in F�. When combinedwith the usual F�-term typing rules, our subtyping exten-sions produce systems, which type strictly more terms thanF�. Let � ` � � � be FSnS� -provable but F�-unprovable.Then �; x : �; f : � ! � ` f x : � in FSnS� , but isuntypable in F�.Therefore, the problems of subject reduction, strong normal-ization, and minimal typing are nontrivial for our extensions.If the general answers appear to be negative, it might beinteresting to investigate restricted classes and/or to mod-ify senses in which we understand the above properties. Itwould also be interesting to construct models of FSnS� . Thework on these problems has been started [21, 22, 20].As shows the example in Section 14, the systems FSnS� (andhence SnS-interpretations) do not separate the sets of F�-provable and F�-�nitely disprovable subtyping judgments.So, the problem is: whether these two sets are recursivelyseparable. If yes, the separating cover of F� will be a bet-ter substitute for the DECIDE component of the FSnS� -decision procedure.In a particular case, when f = g = ", our SnS-interpretationsof F�-subtyping are just interpretations into the second-order propositional logic. As it was established by Shamir1FAlg� is the Curien-Ghelli algorithmic equivalent formulation ofF� , see [8] and Appendix B

[16], the class PSPACE coincides with the class of lan-guages recognizable by the so-called interactive proof sys-tems. These systems are probabilistic algorithms exchang-ing messages in order to get convinced whether a given stringbelongs to a language with a given probability. It is chal-lenging to introduce probabilistic algorithms in the domainof type systems.Acknowledgments. I am greatly indebted to LucaCardelli,Benjamin Pierce, Mart��n Abadi, Roberto Amadio, Philippede Groote, Didier Galmiche, Jean-LucR�emy, Hubert Comon,Michel Parigot for invaluable remarks, ideas, and discus-sions. I am grateful to my anonymous referee for his sub-stantial help. To produce proof trees I used Paul Taylor'sLaTEXmacro package. This work was done when I was atCRIN (Centre National de Recherche en Informatique deNancy, France), which provided me the excellent researchopportunities.References[1] Breazu-Tannen, V., Coquand, T., C., G., and Scedrov,A. Inheritance as implicit coercion. Mathematical Structuresin Computer Science 93 (1991), 172{221.[2] Bruce, K. B., and Longo, G. A modest model of records,inheritance and bounded quanti�cation. Information andComputation 87 (1990), 196{240.[3] Cardelli, L. A semantics of multiple inheritance. Informa-tion and Computation 76 (1988), 138{164.[4] Cardelli, L. Typeful programming. Research Report 45,Digital Equipment Corporation System Research Center,1989.[5] Cardelli, L., Martini, S., Mitchell, J., and Scedrov,A. An extension of system F with subtyping. Informationand Computation (1994). To appear, preliminary version inLNCS'526, 1991, pp.550{570.[6] Cardelli, L., and Wegner, P. On understanding types,data abstraction, and polymorphism. Computing Surveys17, 4 (1985), 471{522.[7] Castagna, G., and Pierce, B. C. Decidable bounded quan-ti�cation. In 21st ACM Symp. on Principles of Program-ming Languages (1994), pp. 151{162.[8] Curien, P.-L., and Ghelli, G. Coherence of subsumption,minimum typing, and type checking in F�. MathematicalStructures in Computer Science 2 (1992), 55{91.[9] Katiyar, D., and Sankar, S. Completely bounded quan-ti�cation is decidable. In ACM SIGPLAN Workshop on MLand its Applications (1992).[10] Leivant, D. Polymorphic type inference. In 10th ACMSymp. on Principles of Programming Languages (1983),pp. 88{98.[11] Mitchell, J. C. Type theory for programming languages.In Handbook of Theoretical Computer Science (1990), J. vanLeeuwen, Ed., vol. B, Elsevier, pp. 365{458.[12] Pierce, B. C. Bounded quanti�cation is undecidable. In19th ACM Symp. on Principles of Programming Languages(1992), pp. 305{315.[13] Rabin, M. Decidability of second order theories and au-tomata on in�nite trees. Transactions of the AmericanMathematical Society 141 (1969), 1{35.[14] Rabin, M. O. Decidable theories. In Handbook of Mathemat-ical Logic (1977), J. Barwise, Ed., Studies in Logic and theFoundations of Mathematics, North Nolland, pp. 595{630.

[15] Schwichtenberg, H. Proof theory: some applications ofcut-elimination. In Handbook of Mathematical Logic (1977),J. Barwise, Ed., Studies in Logic and the Foundations ofMathematics, North-Holland Publishing Company, pp. 867{895.[16] Shamir, A. PSPACE=IP. In Proc. 31st IEEE FOCS (1990),IEEE, pp. 11{15.[17] Tarski, A., Mostowski, A., and Robinson, R. M. Un-decidable theories. Studies in Logic and the Foundationsof Mathematics. North-Holland Publishing Company, 1953.Third printing, 1971.[18] Vorobyov, S. F�: Bounded quanti�cation is NOT essen-tially undecidable. Technical Report CRIN{94{R{018, Cen-tre de Recherche en Informatique de Nancy, January 1994.FTP: FsubTAPI.[dvi,ps].Z .[19] Vorobyov, S. F� with recursive types: \Types-As-Propositions" Interpretations in M.Rabin's S2S. TechnicalReport CRIN{94{R{035, Centre de Recherche en Informa-tique de Nancy, February 1994. FTP: FsubREC.[dvi,ps].Z.[20] Vorobyov, S. �-�->-subject reduction and stucklessness forperfectly-structured second-order type systems with subtyp-ing. In preparation, April {September 1994.[21] Vorobyov, S. Hierarchies of decidable extensions ofbounded quanti�cation. Research Report INRIA{RR{2354,Technical Report CRIN{94{R{120, Centre de Recherche enInformatique de Nancy, August {September 1994. FTP:INRIA{RR{2354.ps.Z, FsubHi.[dvi,ps].Z .[22] Vorobyov, S. Extensions of F� with Decidable Typing.Technical Report CRIN{94{R{127, Centre de Recherche enInformatique de Nancy, September 1994. FTP: FsubDec-Typing.[dvi,ps].Z .Note. Papers withmention FTP: filenameare available by anony-mous ftp ftp.loria.fr directory pub/loria/prograis/vorobyovor via URL ftp://ftp.loria.fr/pub/loria/prograis/vorobyov(mosaic).A Monadic Second-Order ArithmeticsWe briey recall basic de�nitions and facts about decidable (weak)monadic second-order theories of one or several successors.Fix arbitrary n 2 ! [f!g. The alphabet of n-successor monadicsecond-order arithmeticSnS consists of: 1) in�nitelymany objectvariables x; y; z; : : :, 2) the equality predicate symbol =, 3) in-�nitely many unary (monadic) predicate variablesA; B; X; Y; : : :,4) one, several, or countably many successor function symbolsfsuccigi<n, 5) all usual boolean connectives, parentheses, 6) uni-versal and existential �rst- and second-order quanti�ers: 81, 91,82, 92.Terms are constructed as usual, starting from object variables byapplying the successor function symbol(s).Atomic formulas are either equalities of terms or expressions ofthe form A(t), where A is a predicate variable and t is a term.Formulas are constructed from atomic ones by the usual rulesusing boolean connectives, parentheses, �rst- and second-orderquanti�ers: 81x �, 91x �, 82X �, 92X �, (where x is an objectand X is a predicate variable).Interpretation. For an n-successor theory SnS consider the in-�nite n-ary tree T1n . Interpret: 1) object variables as nodes ofthe tree, 2) succi(t) as the i-th son of the node interpreting t, 3)equality, boolean connectives, and �rst-order quanti�ers as usual,4) predicate variables as arbitrary sets of nodes, 5) atomic for-mula A(t) as the membership relation \the node t is in the setA"; 6) second-order quanti�ers as quanti�ers over sets of nodes.

Denote by Th2(SnS) or simply by SnS the set of all formulasvalid under the above interpretation.Replacing the interpretation 6) of the second-order quanti�ersabove by the following clause:60) second-order quanti�ers are interpreted as quanti�ers over �-nite sets of nodes,we get the weak monadic second order arithmetic of n successors,denoted by WSnS.All theories WSnS and SnS are decidable.The most well known of all these are: B�uchi's arithmetic S1S,Rabin's arithmetic S2S, and their weak counterparts WS1S,WS2S. The theory S2S is strictly more powerful than WS2S,S1S, and easily encodes all SnS. For details see [13, 14].B FAlg� : Curien-Ghelli's Algorithmic Variant of F�Curien and Ghelli [8], Sect. 6.1, suggested FAlg� , an alternativeequivalent formulation of F�. We present it following [12]:� ` � � > (Top)� ` � � � (� is a variable) (Refl)� ` �(�) � �� ` � � � (AlgTrans)� ` �1 � �1 � ` �2 � �2� ` �1 ! �2 � �1 ! �2 (Arrow)� ` �1 � �1 � ; � � �1 ` �2 � �2� ` (8� � �1 : �2) � (8�� �1 : �2) (All)Three di�erences of FAlg� , as compared to F� are: 1) reexivity(Refl) is unlike (Refl) of F� is restricted to variables, 2) tran-sitivity (Trans) is replaced by (AlgTrans); 3) rules are appliedin ordered manner (e.g., (AlgTrans) never applies if (Refl) isapplicable).Remark. Note that the inversion principle trivially holds for the(Arrow) and (All) of FAlg� : a conclusion of each rule is prov-able i� so are the premises. Proofs in FAlg� are direct, withoutroundabout ways.Lemma B.1 (FAlg� � F�, [8]) The systems F� and FAlg� areequivalent: a subtyping judgment is derivable in F� i� it is deriv-able in FAlg� . 2As an immediate consequence we have the followingLemma B.2 (Inversion Principle for F�) In F�:� if � ` �1 ! �2 � �1 ! �2 is provable, then � ` �1 � �1and � ` �2 � �2 are also provable;� if � ` (8� � �1 : �2) � (8� � �1 : �2) is provable, then� ` �1 � �1 and � ; � � �1 ` �2 � �2 are also provable.

Proof . Using equivalence of F� and FAlg� . Let � ` �1 ! �2 ��1 ! �2 be provable in F�. Then it is provable in FAlg� . But theonly way to prove it in FAlg� consists in proving � ` �1 � �1 and� ` �2 � �2 in FAlg� (since inversion principle holds for FAlg�).Henceforth, by equivalence, � ` �1 � �1 and � ` �2 � �2are provable in F�. The proof of the second claim is exactly thesame. 2C ProofsC.1 Proof of Proposition 4.2Proof . (1). Is obvious. To prove (2) suppose, on the contrary,that a judgment of the form (2) is provable in F�, i.e., there existsa proof, i.e, a sequence of judgmentsJ0; J1; : : : ; Ji; : : : ; Jn � � ` � � �; (5)where each Ji is either an F�-axiom, or is obtained from someJk and Jl (k < i and l < i) in the sequence by application ofone of the F�-rules: (Arrow), (All), or (Trans). Without lossof generality we can suppose that Jn is the �rst appearance ofthe judgment of the form (2) in the proof (5); otherwise, we canmove left to select the �rst judgment of this form.It remains to notice that Jn cannot be an axiom, since there areno F�-axioms of the form (2). Next, neither (Arrow), nor (All)can produce a judgment of the form (2) (both produce types ofthe same structure). Therefore, (2) is obtained by (Trans). Butto derive (2) by (Trans) one needs either Jk � � ` � � � andJl � � ` � � � (� non-variable type), or Jk � � ` � � �and Jl � � ` � � � (� is a type variable). Therefore, Jk hasthe form (2) and appears in (5) before Jn. But this contradictsto the choice of Jn. 2C.2 Proof of Theorem 11.1Let a subtyping judgment J � � ` � � � be provable in F�.Then, by equivalence of F� and FAlg� (Lemma B.1), it is provablein FAlg� . Consider the FAlg� -inference tree of J. If this tree doesnot contain applications of the rule (AlgTrans) correspondingto the (V ar-All-Decide) rule, then this tree is also the FSnS� -inference tree of J and we are done.Suppose now that the FAlg� -inference tree T of J does containapplications of (AlgTrans) corresponding to the(V ar-All-Decide) rule. Transform this tree T as follows. Start-ing from the root J follow each branch till the �rst applica-tion of (AlgTrans) (if any), and cut it on this application soas the conclusion of (AlgTrans) remains in the tree. Denote byT 0(J1; : : : ; Jn) the resulting tree, where J1; : : : ; Jn are all leaves-conclusions of (AlgTrans) remaining after the above pruning.Note that T 0(J1; : : : ; Jn) is exactly the FSnS� -inference tree, andJ1; : : : ; Jn are precisely FSnS� -normal forms. Instead of applying(AlgTrans), the FSnS� -decision procedure transforms J1; : : : ; Jninto SnS-formulas and decides them. So, to �nish our proofwe have to prove that J1; : : : ; Jn are interpreted as true SnS-formulas.To do this, notice, that by equivalence of F� and FAlg� , all thejudgments J1; : : : ; Jn are provable in F�. But by Theorem 6.4above everything provable in F� is true with respect to any SnS-interpretation.The strictness of inclusion is simple: since FSnS� is decidable andF� is not, there should certainly exist FSnS� -provable and notF�-provable subtyping judgments. 2

C.3 Proof of Theorem 12.1Again applying Theorem 6.4 above, all FSnS� -inference rules pre-serve validity with respect to any SnS-interpretation. As nor-mal forms of FSnS� are decided by the same SnS-decision pro-cedure, they are simultaneously true with respect to an SnS-interpretation SnS[F�](f ;g) and FSnS� (f ; g). By de�nition,FSnS� (f ;g) does not subtype di�erently structured types, whereasSnS-interpretations do, e.g., ` > ! > � 8�:> is true in anySnS-interpretation. 2C.4 Proof of Theorem 13.1By induction on complexity of subtyping inference.Suppose the premises of the theorem hold, i.e.,� ` � � � and � ` � � � are FSnS� -provable.We must show that so is � ` � � �.We have to consider several cases:1. � is >;2. � is a type variable;3. � is an arrow or a universal type, both � and � are typevariables;4. � and � are both arrow types and � is a type variable;5. � and � are both universal types and � is a type variable;6. �, � , and � are all arrow types;7. �, � , and � are all universal types.Case 1. Vacuous: � ` � � >, always.Case 2. If � is a type variable then � and � should also be typevariables; otherwise the rule (TV ar-R-2) would disprove one ofthe premises of the theorem.So we should demonstrate that FSnS� -provability of:� ` � � �; (6)� ` � � (7)imply the FSnS� -provability of� ` � � (8)for type variables �, �, .Note that the FSnS� -proofs of (6) and (7) are just �nite sequencesof (TV ar-R-1)-applications �nishing by an application of (Refl).These two sequences could be easily merged into just one suchsequence proving (8). Indeed, starting from the judgment (8)by backward applications of (TV ar-R-1) we are guaranteed (byprovability of (6)) to reach � on the left of �, i.e., we reach (7),which is provable by hypothesis.Case 3. Suppose that � is either an !- or a 8-type, � and � aretype variables � and � respectively.We transform the proofs of� ` � � �; (9)� ` � � � (10)into the proof of � ` � � � (11)

as follows. Starting from the judgment (11) we �rst repeat (back-wards) exactly the same sequence of steps as in the proof of(9), which leads to � ` � � � (but applying (V ar-Arrow)or (V ar-All-1) instead of (TV ar-R-1)). This gives the inferenceof (11) from (10) used as axiom. We then repeat the proof of thelatter judgment, which exists by assumption. The result is thedesired proof.Case 4. Suppose � ` � � �1 ! �2; (12)� ` �1 ! �2 � �1 ! �2 (13)are FSnS� -provable. We must prove that so is� ` � � �1 ! �2 (14)The proof of (12) is a �nite sequence of (V ar-Arrow) followedeither a) by (Refl) or b) by (Arrow).In the Case 4.a we construct the proof of (14) (in a backwardman-ner) �rst applying to (14) exactly the same sequence of (V ar-Arrow)applications until (Refl), as in the proof of (12). This gives asubinference of (14) from (13) used as an axiom. We then com-plete the latter subinference by including the proof of (13) (whichis FSnS� -provable by assumption).In the Case 4.b we construct the proof of (14) as follows. Consid-ering the �nal part of the inference of (12) till the �rst applicationof (Arrow): � ` �1 ! �2 � �1 ! �2 (p)� ` �0 � �1 ! �2...� � �1 ! �2 (15)we see that (12) is provable i� (p) is provable. By the inversionproperty for FSnS� (Theorem 10.1) this implies provability of� ` �1 � �1; (16)� ` �2 � �2 (17)Similarly, provability of (13) implies provability of� ` �1 � �1; (18)� ` �2 � �2 (19)Applying the inductive hypothesis to (18) and (16), then to (17)and (19) we get the FSnS� -provability of � ` �1 � �1 and� ` �2 � �2.But this means that �1 ! �2 � �1 ! �2 is also FSnS� -provable.This allows us to transform the proof (15) into the proof of (14)by simple replacement of �1 ! �2 by �1 ! �2.Case 5. Suppose � ` � � (8� � �1 : �2); (20)� ` (8� � �1 : �2) � (8� � �1 : �2) (21)are FSnS� -provable. We have to prove that� ` � � (8� � �1 : �2) (22)The proof of (20) is a �nite (possibly empty) sequence of (V ar-All-1)followed either a) by (TV ar) or b) by (V ar-All-Decide).

In the Case 5.a we construct the proof of (22) �rst applying toit the same sequence of (V ar-All-1) as in the proof of (20), until(TV ar). This gives a subinference of (22) from (21) used as ax-iom. We then complete the latter subinference by including theproof of (21) (which is FSnS� -provable by assumption).In the Case 5.b we construct the proof of (22) as follows. Con-sider the �nal part of the inference of (20) till the application of(V ar-All-Decide):� ` DECIDE(� ` �0 � 8� � �1 : �2)(p)� ` �0 � (8� � �1 : �2)...� � (8� � �1 : �2) (23)We see that (20) is provable i� the FSnS� -normal form in (p) isvalid in a chosen theory SnS[F�](f ;g). As each SnS[F�](f ;g) ismore powerful than the correspondingFSnS� (f ;g) (Theorem12.1),the FSnS� (f ;g)-provability of (20) implies that:[[�]]fg j=SnS 81x[A0(x) � [[8� � �1 : �2]]fg(x)] (24)Similarly, the FSnS� (f ; g)-provability of (21) implies[[�]]fg j=SnS 81x[[[8� � �1 : �2]]fg(x) � [[8� � �1 : �2]]fg(x)](25)Henceforth, by syllogistics, (24) and (25) imply[[�]]fg j=SnS 81x[A0(x) � [[8� � �1 : �2]]fg(x)] (26)Now, to construct the inference of (22) we start by the sequenceof the same (V ar-All) applications as in (23) till � ` �0 �(8� � �1 : �2). After that we should apply either the rule (TV ar)(in this case we are done), or the rule (V ar-All-Decide) gettingDECIDE(� ` �0 � (8� � �1 : �2)). But in the latter caseDECIDE should necessarily return the result TRUE (by (26)),and the desired FSnS� (f ; g)-proof is completed.Case 7. Let� ` (8� � �1 : �2) � (8� � �1 : �2); (27)� ` (8� � �1 : �2) � (8� � �1 : �2) (28)We have to show� ` (8� � �1 : �2) � (8� � �1 : �2) (29)By Inversion principle (Lemma 10.1) from (27) and (28) we get:� ` �1 � �1 (30)�; � � �1 ` �2 � �2 (31)� ` �1 � �1 (32)�; � � �1 ` �2 � �2 (33)From (32) and (30) by induction hypothesis we get� ` �1 � �1 (34)From (31), (32) and (33) by induction hypothesis we get�; � � �1 ` �2 � �2 (35)(each time instead of using the hypothesis � � �1 we use thehypothesis � � �1 and (32)). But (34) and (35) imply (29).Case 6 is completely analogous to the preceding one. 2

������ kI N F O R M A T I KBelow you �nd a list of the most recent technical reports of the research group Logic of Programmingat the Max-Planck-Institut f�ur Informatik. They are available by anonymous ftp from our ftp serverftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible viaWWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWWaccess, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)can be ordered either by regular mail or by e-mail at the address below.Max-Planck-Institut f�ur InformatikLibraryattn. Regina KraemerIm StadtwaldD-66123 Saarbr�uckenGERMANYe-mail: kraemer@mpi-sb.mpg.deMPI-I-94-246 M. Hanus On Extra Variables in (Equational) LogicProgrammingMPI-I-94-241 J. Hopf Genetic Algorithms within the Framework ofEvolutionary Computation: Proceedings of theKI-94 WorkshopMPI-I-94-240 P. Madden Recursive Program Optimization Through InductiveSynthesis Proof TransformationMPI-I-94-239 P. Madden, I. Green A General Technique for Automatically OptimizingPrograms Through the Use of Proof PlansMPI-I-94-238 P. Madden Formal Methods for Automated ProgramImprovementMPI-I-94-235 D. A. Plaisted Ordered Semantic Hyper-LinkingMPI-I-94-234 S. Matthews, A. K. Simpson Reection using the derivability conditionsMPI-I-94-233 D. A. Plaisted The Search E�ciency of Theorem ProvingStrategies: An Analytical ComparisonMPI-I-94-232 D. A. Plaisted An Abstract Program Generation LogicMPI-I-94-230 H. J. Ohlbach Temporal Logic: Proceedings of the ICTL WorkshopMPI-I-94-229 Y. Dimopoulos Classical Methods in Nonmonotonic ReasoningMPI-I-94-228 H. J. Ohlbach Computer Support for the Development andInvestigation of LogicsMPI-I-94-226 H. J. Ohlbach, D. Gabbay, D. Plaisted Killer TransformationsMPI-I-94-225 H. J. Ohlbach Synthesizing Semantics for Extensions ofPropositional LogicMPI-I-94-224 H. A��t-Kaci, M. Hanus, J. J. M. Navarro Integration of Declarative Paradigms: Proceedingsof the ICLP'94 Post-Conference Workshop SantaMargherita Ligure, ItalyMPI-I-94-223 D. M. Gabbay LDS { Labelled Deductive Systems: Volume 1 |FoundationsMPI-I-94-218 D. A. Basin Logic Frameworks for Logic ProgramsMPI-I-94-216 P. Barth Linear 0-1 Inequalities and Extended ClausesMPI-I-94-209 D. A. Basin, T. Walsh Termination Orderings for Rippling

