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Abstract
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Games on graphs have become an indispensable tool in modern computer science. They provide
powerful and expressive models for numerous phenomena and are extensively used in computer-
aided verification, automata theory, logic, complexity theory, computational biology, etc.

The infinite games on finite graphs we study in this thesis have their primary applications
in verification, but are also of fundamental importance from the complexity-theoretic point of
view. They include parity, mean payoff, and simple stochastic games.

We focus on solving graph games by using iterative strategy improvement and methods
from linear programming and combinatorial optimization. To this end we consider old strategy
evaluation functions, construct new ones, and show how all of them, due to their structural
similarities, fit into a unifying combinatorial framework. This allows us to employ randomized
optimization methods from combinatorial linear programming to solve the games in expected
subexponential time.

We introduce and study the concept of a controlled optimization problem, capturing the
essential features of many graph games, and provide sufficient conditions for solvability of
such problems in expected subexponential time.

The discrete strategy evaluation function for mean payoff games we derive from the new
controlled longest-shortest path problem, leads to improvement algorithms that are considerably
more efficient than the previously known ones, and also improves the efficiency of algorithms
for parity games.

We also define the controlled linear programming problem, and show how the games are
translated into this setting. Subclasses of the problem, more general than the games considered,
are shown to belong to NP∩coNP, or even to be solvable by subexponential algorithms.

Finally, we take the first steps in investigating the fixed-parameter complexity of parity,
Rabin, Streett, and Muller games.
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Composition of the Thesis

This thesis is composed of five published papers, preceded by an introductory
survey. The first three chapters of the survey gives an informal description of
the problems we investigate and our results, while the remainder summarizes
the contributions of the appended and supporting papers, and puts them into
the context of other research in the field. The survey is not intended to be
comprehensive, but rather to serve as a guide to the appended papers. A brief
summary in Swedish concludes the survey.
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1 Motivation

Game theory, in its broadest sense, is almost as old as civilization itself. Dur-
ing the European antiquity and middle ages, mathematics were often taught
in the form of entertaining games. Much later, the German philosopher and
mathematician Gottfried Wilhelm Leibniz (1646-1716) realized the need to
create a mathematical theory of games, a project that was to be continued
by other mathematicians, such as John von Neumann (1903-1957) and John
Nash (1928-). During the 20th century, game theory grew into a large and rich
field of study, spanning over diverse academic disciplines such as philosophy,
economics, sociology, operations research, biology, and mathematics.

In computer science, game theory has found a large number of applications,
and many great results have been achieved. Games are used as models for
computer systems, logics, automata, and complexity classes.

One of the greatest challenges for computer science today is the growing
need for verification of large hardware and software systems. Our society re-
lies more and more heavily on the correct functioning of computers and their
programs. At the same time, the systems become ever bigger and more com-
plex. Today, it is all but impossible for programmers to manually verify the
correctness of their code, and time will only make it more difficult. This is
why the need for automated verification methods increase dramatically. The
basic idea is that given a system, we want to be able to check that it has a
certain property. For a software driver controlling a printer, such a property
may be that it never deadlocks, and always returns to a state where it is ready
to handle a new request. In a larger system, involving many different compo-
nents, the properties to be checked can be considerably more complicated.

In principle, we already know how to verify the correctness of most sys-
tems. The problem is how to do itefficiently. As systems grow, the issue of
combinatorial explosion becomes troublesome. For most modern systems, it
is completely infeasible to explicitly check each and every possible system
behavior. Overcoming this obstacle is the main focus of a vast part of today’s
computer science research.

One possible approach is to describe the verification problem as a game. In-
finite two-person adversary full information games provide a well established
framework for modeling interaction between a system and its environment.
A correct system can be interpreted as a player who has a winning strategy

1



against any strategy of the malicious environment. In the same way, a verifi-
cation process can be considered as a proof that a system does possess such
a strategy. If the system loses, a winning strategy for the environment can
hint at necessary system improvements. During the last decades, substantial
progress has been made both on fitting diverse approaches to computer-aided
verification into the game-theoretic paradigm and, simultaneously, on devel-
oping efficient algorithms for solving games, i.e., determining the winner and
its strategy; see [21, 10, 27, 34, 52] and Paper I. In a program paper [44], Pa-
padimitriou stated that the complexity of finding Nash equilibria in a general
version of such games is, together with factoring, the most important open
problem on the boundary of P.

Casting the problems in a game-theoretic setting has the benefit of simplifi-
cation. Everything is reduced to a two-player game with simple rules, which
we can study. The theory gives a useful characterization of the optimal behav-
iors of rational players, the so-calledNash equilibria. The remaining question
is, for each game type, whether it is computationally feasible to find Nash
equilibria, and specifically, if they can be found in polynomial time. If we
conclude that this is not the case, then the original problem is also too hard,
and we need to look at other approaches. If, on the other hand, the game prob-
lem is efficiently solvable, we can try to extend the algorithms to work for the
original problem, with all involved details.

In model checking, we are given a model of a system and a formula in
some logic, and the question is whether the formula is true in the model. One
of the games we study, parity games, is polynomial time equivalent to model
checking for the modalµ-calculus. This logic is very expressive, subsuming
most of the commonly used temporal logics, such as LTL, CTL, CTL∗, etc.
This means that an efficient algorithm for solving parity games would also al-
low efficient model checking for a great number of properties. Unfortunately,
the computational complexity of solving parity games remains unknown. We
only know that the problem belongs to the class NP∩co-NP, but not whether
it is actually inP.

The same is true for other problems we study as well, including mean pay-
off and simple stochastic games, which can be used to model long-term aver-
age benefits and systems with random choices, respectively. The NP∩co-NP
membership gives hope that they may be efficiently solvable, and since the
problems are very useful, it is important to improve the known algorithms.

For other games, such as Rabin and Streett games, it is already known that
they are complete for presumably intractable complexity classes. However,
we might still want to solve special instances of these problems. This makes
it interesting to look at the complexity from other angles, to try to determine
which instances are actually solvable. One such possibility is to investigate
the so-called fixed parameter complexity.
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An approach to solving games on graphs that has not been thoroughly in-
vestigated previously is using combinatorial optimization. It is a large and
well-studied topic in computer science, and provides a rich toolbox of effi-
cient randomized algorithms and analytic tools that have successfully resolved
a wide spectrum of challenging problems. It seems natural to try to fit graph
games into the frameworks of combinatorial optimization, and apply known
techniques to attack and solve game-theoretic problems arising in verifica-
tion, but the full potential of this approach has yet to be determined. This
thesis presents a series of novel results that show how techniques from com-
binatorial linear programming can be applied successfully to creating better
algorithms for infinite games on graphs.

Many algorithms stated explicitly for a specific game become easier to ana-
lyze when stated in straightforward combinatorial terms, avoiding details that
are not essential. Formulating game-theoretic verification problems as general
combinatorial problems helps us understand their basic structure, and makes
it easier to design new algorithms for them.
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2 Our Contributions

The contributions of this thesis can be seen as a small part of the large effort
within computer science towards automated verification, outlined in Chap-
ter1. It also has relevance to automata and complexity theory.

Our main theme is strategy improvement algorithms for infinite duration
games played on graphs. The basic idea behind this approach is to assign
values to the strategies of one of the players, and then search the strategy
space guided by these values. The objective is to find the strategy that has
been assigned the largest value. Such a scheme for assigning values is called
a strategy evaluation function, and is mainly applicable to games withmem-
oryless determinacy(see Chapter6 and Paper III), when the strategy space
we need to consider is finite. They include parity, mean payoff, discounted
payoff, and simple stochastic games.

Apart from a strategy evaluation function, a strategy improvement algo-
rithm consists of a search policy, telling the algorithm how to proceed from
strategy to strategy until the one with the best value is found. Efficiency de-
pends crucially on this policy.

In this work we are concerned with both parts of strategy improvement
algorithms. We refine and invent new strategy evaluation functions and im-
provement policies in order to speed up the calculations performed in each
iteration and also get better overall complexity analysis. By analyzing the
combinatorial structure of the functions, we are able to show how random-
ization methods from combinatorial optimization can be used to provide new,
more efficient algorithms for solving games.

Our work on developing strategy evaluation functions has two parts. For
parity games, Vöge and Jurdziński invented the first discrete evaluation func-
tion. We refine their method, thereby limiting the maximal number of im-
provement steps for games with fewer colors than vertices. (For definitions
of the games; see Chapter4.) The modification is described in detail in Pa-
per I. For mean payoff games, we develop the first discrete strategy evaluation
function. It is based on the longest-shortest paths problem, a new, controlled
version of shortest paths. This allows improvement algorithms to avoid costly
high-precision computations with rational numbers in each iteration. In a
combinatorial model of computation, this makes the complexity bounds in-
dependent of the edge weights in the game graph. Also, it greatly improves
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practical efficiency. The function is described in Paper IV.
In analyzing the combinatorial structure of strategy evaluation functions,

we characterize all considered functions as beingrecursively local-global, and
in the case of parity and simple stochastic games evencompletely local-global.
For definitions of these classes, see Chapter8 and Paper II. They have a num-
ber of beneficial features, closely related to the well studiedcompletely uni-
modalfunctions [30, 54, 51, 8]. The characterization allows for an improved
analysis of some algorithms (Paper II). It also provides an abstract frame-
work for future investigations of improvement algorithms. Furthermore, we
can show that all the studied evaluation functions fit into the framework of
LP-type problems[48]. This implies that any algorithm for solving this gen-
eral class of combinatorial problems can be reused for games. Considerations
of this kind allowed us to develop the first randomized subexponential algo-
rithms for parity games (Paper I), mean payoff games (Paper IV), and simple
stochastic games with arbitrary outdegree [6, 7]. All of this is discussed in
Chapter8.

In Chapter5 and Paper V we develop another kind of unifying framework,
thecontrolled linear programming(CLP) problem. This is a version of linear
programming in which a controller is allowed to select and discard constraints
according to simple rules. It provides a simple, unified view of parity, mean
payoff, discounted payoff, and simple stochastic games, which can all be mod-
eled as particular, restricted instances of the CLP problem. We show that many
interesting subclasses of controlled linear programming belong to NP∩coNP,
and give algorithms for solving them, based on combinatorial optimization
and strategy improvement. We also give characterizations of subexponentially
solvable subclasses in terms of linear algebra.

In classical complexity, the border for feasibility is considered to coincide
with that for P. Since it remains unknown on which side of this border the
games we study belong, it makes sense to consider other aspects of their com-
plexity, in order to get a better understanding. In Chapter9 we consider the
fixed-parameter complexityof parity games. By combining known reductions,
we come to the interesting conclusion that under the most natural parame-
terizations, they belong to the same complexity class as Rabin, Streett, and
Muller games. This is a collision with classical complexity, since Rabin and
Streett games are complete for NP respectively coNP, and raises a number
of question regarding the common features of the games and their relations
to complexity classes. The exact fixed-parameter complexity of the games
remains unknown, but we show that if both players in a Streett game are re-
stricted to using only positional strategies, the problem becomes complete for
the presumably intractable class W[1].

In Chapter6 and Paper III we give a proof of the fact that parity and mean
payoff games are determined in positional strategies. This is by no means a
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new result. On the contrary, it is well known and can be proved in a number of
ways [19, 22, 42, 41, 55, 26]. Our motivation was to investigate if a completely
constructive proof could be given, without referring to any nonelementary
methods, fixed-point theorems, or limit arguments, while at the same time
working for both games in a uniform way. We also hope that it contributes,
together with the other proofs, to a better understanding of the inner workings
of the problems.
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3 Games and Combinatorial Optimization

Combinatorial optimization is all about finding a needle in a haystack. In
other words, we are given a finite, but usually very large, collection of objects,
and want to find an element that is in some sense optimal. In most cases,
there is a function from the collection to an ordered set, and we want to find
an object that maximizes the function value. Typically, the collection has a
succinct representation, and the actual number of objects is exponential in the
representation size. Therefore, checking all objects one by one and simply
picking the best is not feasible. This chapter describes what combinatorial
optimization has to do with solving games.

The games we study are not the kind you would pick out of a drawer at
night to play with friends. Rather, they were invented as models of other
phenomena, and the players are abstract thought-constructs. What we study
is how the games would end if we assume that the players are perfect, and
always use optimal strategies. Algorithms that answer this question are said
to solvethe games.

Many of the games we will discuss can actually be viewed as being played
by only one player. There is some goal that she wants to achieve, and the
question is whether there is a strategy that allows her to do this. Let us con-
sider an example. Suppose we have a directed acyclic graphG with weighted
edges, distinguished sources and targett, and a pebble placed ons. Now we
can imagine a player, who is allowed to move the pebble along edges of the
graph, with the goal of reachingt while keeping the total weight of traversed
edges smaller than some numberk.

The problem the player faces is clearly nothing else than the shortest path
problem for acyclic graphs, a well known optimization problem solvable in
polynomial time. This gives us a simple way of determining whether the
player has a strategy for getting tot with cost smaller thank, even though
there may be exponentially many paths froms to t. Simply apply a known
shortest-path algorithm. We will repeatedly encounter this kind of one-player
game, equivalent to some polynomial time solvable optimization problem.
They are primarily used as a help for solving more complicated games, where
an opponent is involved.

To continue our example, suppose we add another player. We call the orig-
inal playerM IN and the new oneMAX . We also divide the vertices of the
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graph into two sets,VMAX andVM IN . The goal ofM IN is still to reacht with
cost smaller thank, but now, as soon as the pebble reaches a vertex inVMAX ,
MAX selects the next edge to follow, and he tries to spoil the game forM IN.
Givenk, MAX wins if the sum of weights of edges that the pebble is moved
along before reachingt is at leastk.

Since the graph is acyclic, the pebble will never get to a vertex twice. Once
the pebble reaches a vertex,MAX tries to maximize the value of the remaining
path tot, regardless of what has happened earlier. Therefore, it is enough
for MAX to select one outgoing edge from each vertex inVMAX in advance,
deciding to only play along these edges. Such a selectionσ is called astrategy
for MAX . Now we can construct the subgraph ofG corresponding to a game
whereMAX has decided to play according toσ . It is obtained by removing
all edges leaving vertices inVMAX except those chosen byσ , and is called
Gσ . Now, by solving the shortest path problem onGσ , we can answer the
following question: Assuming thatMAX usesσ , what is the smallest costM IN

can achieve for reachingt? In this way, a specific number is associated withσ ,
corresponding to the outcome of the game whenMAX usesσ . For every other
strategy ofMAX , a cost can also be computed in the same way. This give us
a function from the strategies ofMAX to an ordered set. The function reflects
the relative quality of strategies, and is therefore called astrategy evaluation
function. We now have a scheme for computing the outcome of the game,
assuming that both players play optimally. For every strategyσ of MAX ,
compute the shortest path froms to t in Gσ , and return the maximum cost
over all strategies.

Unfortunately, the number of possible strategies ofMAX is huge, exponen-
tial in the size ofVMAX , so computing the value for each one is infeasible for
large graphs. In our current case, this is not a big concern, since the outcome
of the game is easily computable by a bottom-up dynamic programming al-
gorithm, after topologically sorting the vertices. Our simple game gives us
an example of how a two-player game, where a player can fix a strategy in
advance and the resulting one-player game is easy to solve, can be interpreted
as a combinatorial optimization problem. Compared to the standard short-
est paths problem, control has been given toMAX in some vertices, and we
therefore call it thecontrolled shortest pathsproblem. For acyclic graphs, it
is easy to solve, but as soon as cycles are possible, we get a much harder
problem, for which the exact complexity is unknown. It is closely related to
the so-called mean payoff games, and we study it in detail in Chapter7 and
Paper IV, deriving a way of assigning values to mean payoff game strategies.

Generally, when describing the games we study in combinatorial optimiza-
tion terms, the collection of objects we optimize over is the set of strategies
of MAX . This set can be exponentially large in the size of the graph used to
represent the game, and thus cannot be searched exhaustively. The function
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we optimize is a strategy evaluation function. In the game of our example, this
function is computed for a strategyσ by constructingGσ and solving the cor-
responding shortest-path problem. The strategy with the best function value
should also be an optimal strategy. This is clear in the above example, but
must be proved for more complicated games. More about this in Chapter7.
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4 Game Definitions

The games we study are played on finite, directed graphs. Detailed informa-
tion about definitions, algorithms, and other interesting results can be found
in, e.g., [19, 29, 22, 42, 12, 46, 56, 50, 55, 34, 52, 27], although this list is
far from comprehensive. With the exception of simple stochastic games, the
game graphs are leafless, and the games have infinite duration. There are two
players, Player 0 and Player 1. (In games with quantitative objectives, we
will often call themMAX and M IN instead.) In a game graphG = (V,E),
the vertices are partitioned into two sets,V0 andV1, corresponding to the two
players. A pebble is placed on a start vertexv0, and is moved by the players
along edges ofG. If the pebble is on a vertex inV0, Player 0 selects the next
edge to follow; otherwise Player 1 does. Again, simple stochastic games is
the only exception. In this case the graph has two sinks where the game ends,
and there are vertices belonging to neither player, where random choices are
made instead of player decisions.

By moving the pebble, the players construct a sequence of vertices (or,
equivalently, edges), called aplay.

Definition 4.0.1 A strategyfor Player 0 is a functionσ : V∗ ·V0→ V, such
that if σ(v0, . . . ,vk) = u, then(vk,u) ∈ E. A play v0,v1, . . . is consistentwith σ

if σ(v0, . . . ,vk) = vk+1 for all k such that vk ∈V0. Strategies for Player 1 are
defined symmetrically.

Given two strategies, one for each player, there is a unique play consis-
tent with both strategies, again with the exception of simple stochastic games.
What differentiates the games are the objectives of the players. Here we give
the necessary definitions for the games we will encounter most frequently in
the sequel.

Definition 4.0.2 In a parity game (PG), we are given a game graph G=
(V,E) and a coloring c : V → N. A play π is winning for Player 0 if the
largest color of a vertex appearing infinitely often inπ is even. Otherwise,π
is winning for Player 1.

Notice that parity games havequalitative objectives. Each player either
wins or loses a play, there is no notion of winning more or less. A strategyσ

of Player 0 iswinning if all plays consistent withσ are winning for Player 0.
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Definition 4.0.3 In a mean payoff game(MPG), we are given a game graph
G = (V,E) and acost functionw : E→ Z. The players are calledMAX and
M IN. If e1e2 . . . is the sequence of edges in a play, thenM IN paysMAX the
amountliminf k→∞ 1/k·∑k

i=1w(ei) (if the value is negative,MAX actually pays
M IN).

Thus mean payoff games havequantitativeobjectives. The players can win
more or less.

Definition 4.0.4 A discounted payoff game(DPG) is a game graph together
with a cost functionw : E→ Z and adiscounting factorλ ∈ (0,1). If e1e2 . . .
is the sequence of edges in a play, thenM IN paysMAX (1−λ ) ·∑∞

i=1 λ i ·w(ei).

DPGs are similar to MPGs, but for the latter, any prefix of a play can be
disregarded without affecting the outcome, while in a DPG, the first steps are
the least discounted, and thus have the largest influence.

Simple stochastic games, as mentioned, differ in that the game graph has
two sinks and probabilistic vertices belonging to neither player.

Definition 4.0.5 In a simple stochastic game(SSG) the vertex set V is parti-
tioned into the sets VMAX ,VM IN ,VAVG,{s0}, and{s1}, where s0 is the0-sink, s1

is the1-sink, and VAVG is the set ofaverage vertices. For each v∈VAVG there is
a probability distribution on all outgoing edges from v. Every time the pebble
reaches v∈ VAVG, the next edge to follow is selected randomly, according to
this distribution. The goal ofMAX is to maximize the probability of reaching
the 1-sink, whileM IN tries to minimize this probability.

All the games have associated decision problems. For parity games it is the
question whether Player 0 has a winning strategy. For the quantitative games,
the question is ifMAX has a strategy that ensures payoff at leastk, or in the
case of simple stochastic games, that the probability of reaching the 1-sink is
at leastk, for some numberk.

All these decision problems belong to the complexity class NP∩coNP; see,
e.g., [22, 43, 29, 56, 11]. None of them is known to belong to P. This sta-
tus is interesting. It implies that the problems are highly unlikely to be NP-
complete, and it is not at all impossible that there are efficient algorithms for
solving them. Very few natural problems have been shown to be in NP∩coNP
without at the same time being in P. Up until recently, thePRIMES problem
shared this status, but it has subsequently been shown to have a polynomial
time algorithm [1]. There is a known chain of polynomial time reductions
between the games: PG≤p MPG ≤p DPG ≤p SSG; see, e.g., [56, 46]. It
is not known whether any of the reductions can be reversed.
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5 A General Game-Like Problem

As we saw in Chapter3, some games can be described as combinatorial op-
timization problems, and vice versa. In this chapter we describe a game-like
combinatorial optimization problem, more general than the games described
in Chapter4. In fact, it is general enough to model all of them. This problem
was first defined and studied in Paper V. We describe it as a game, played by
MAX andM IN.

The game consists of a systemS of linear inequalities over the variables
x = {x1,x2, . . . ,xn}, owned byMAX , andy = {y1,y2, . . . ,ym}, possessed by
M IN. Every constraint has the form

xi ≤ pk
i (y)+wk

i , or

y j ≤ ql
j(x)+w′j

l
,

wherepk
i andql

j are linear homogeneous polynomials withnonnegativeco-

efficients, andwk
i ,w
′l
j ∈ R, for i ∈ {1, . . . ,n}, k ∈ {1, . . . ,ni}, j ∈ {1, . . . ,m},

l ∈ {1, . . . ,mj}, n,ni ,m,mj ∈ N+. For each variablev∈ x∪y, there is at least
one constraint withv in the left-hand side.

The game is played as follows. First,MAX selects a setσ of n constraints,
such that for eachxi ∈ x, there is exactly one constraint inσ with xi in the
left-hand side. Then,M IN makes a similar selectionτ of one constraint per
variable iny. This results in the linear systemS(σ ,τ), consisting only of the
constraints inσ andτ. Next, an arbiter solves the linear program

maximize∑v, v∈ x∪y

subject to S(σ ,τ).

If the result is a finite numberc, thenM IN pays the amountc to MAX (if c
is negative,MAX will have to payM IN). If the system is unbounded,M IN

pays an infinite amount, whileMAX loses infinitely much if the system is
infeasible.

Once the players have selected their strategies, the computation of the out-
come only involves solving a linear program, which Khachiyan proved can be
done in polynomial time. Thus the interesting question is how difficult it is to
compute the best strategies for the two players.

To investigate this, it is helpful to describe the game as a combinatorial
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problem. This is achieved by noting that onceMAX has decided on a strategy,
the smallest valueM IN can achieve by any strategy can be computed by con-
sidering the systemS(σ) consisting of all constraints with variables fromy on
the left-hand side, but only those fromσ for variables fromx [2]. We simply
solve the linear program

maximize∑v, v∈ x∪y

subject to S(σ).

This means that as soon asMAX has selected a strategy, the outcome of the
game can be computed in polynomial time. Thus we have a suitable strategy
evaluation function, and are left with a typical combinatorial problem: given
exponentially many possible strategies, each associated with a real number
or ±∞, find the one with the largest value. We call this thecontrolled linear
programming(CLP) problem, and study it in Paper V and [2].

If we allow coefficients in the polynomials defining constraints to be neg-
ative, the problem becomes NP-complete; see Paper V. However, with non-
negative coefficients, things are much more interesting. We first invented the
controlled linear programming problem as a generalization of the longest-
shortest paths problem defined in Paper IV. Thus it can be used to model both
parity and mean payoff games. In Paper V, we show that if the coefficients are
restricted to be integral, the problem still belongs to NP∩coNP, even though
this class appears to be considerably more general than mean payoff games.
The NP∩coNP membership is shared by a number of other subclasses, includ-
ing generalizations of discounted payoff and simple stochastic games, that can
also be solved in randomized subexponential time, using methods from com-
binatorial linear programming.

We are interested in the CLP problem for a number of reasons. First, it gives
us another unified view of strategy improvement, in addition to the concept of
recursively local-global functions discussed in Chapter8. Second, through
the CLP problem, we can give uniform and easy proofs for some of the most
important properties of strategy evaluation functions; see Chapter7. Third,
as the CLP problem is described in terms of linear algebra, the multitude of
results from this field can be used for investigating game problems, a work we
begin in Paper V and [2]. Fourth, the CLP problem leads to the interesting
question of how much the games from Chapter4 can be generalized while
staying in NP∩coNP. This question is also given partial answers in Paper V
and [2].

Given a CLP instanceS, with rational coefficients and constants, and pair
(σ ,τ) of strategies, we get a systemS(σ ,τ) with exactly one constraint per
variable. We can rewrite this system in matrix form asAx≤ b whereA is a
square matrix andb is a vector. The value of the strategy pair ismax{1Tx|Ax≤
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b}. In [2] we show that this is a finite number if and only if the systemAx= 0
has the 0 vector as itsuniquesolution. This means that we can reformulate
the problem of solving parity and mean payoff games in the following way.
We are given a CLP problem. The question is whether there is a strategyσ of
MAX such that for every strategyτ of M IN, the square matrixA obtained by
writing S(σ ,τ) in matrix form has{0} as its kernel.

A CLP instanceS is said to bestrongly boundedif for every pair(σ ,τ), the
linear program

maximize∑v, v∈ x∪y

subject to S(σ ,τ).

has a finite optimal solution. As can be seen from Paper V, the systems
achieved by reduction from discounted payoff or simple stochastic games are
strongly bounded. We show in [2] that all systems in this more general class
can be optimized by subexponential algorithms and the corresponding deci-
sion problem belongs to NP∩coNP.
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6 Memoryless Determinacy

What makes the methods for solving graph games discussed in Chapter7
and8 work, is the fact that parity, mean payoff, discounted payoff, and sim-
ple stochastic games all have the property known asmemoryless determinacy.
This means that for each vertex a player owns, he can decide before the game
even starts what he will do if the play ever reaches the vertex, without jeopar-
dizing the payoff. Memoryless determinacy allows us to focus only onposi-
tional strategies.

Definition 6.0.6 A positional strategyfor Player 0 is a strategy that depends
only on the last vertex of the play so far, not on the whole history. In other
words, it is a functionσ : V0 → V, such that ifσ(u) = v, then(u,v) ∈ E.
Positional strategies for Player 1 are defined symmetrically.

A qualitative graph game has memoryless determinacy if, for every in-
stance, one of the players has a winning positional strategy. If a game has
quantitative objectives and memoryless determinacy, every instance has an
optimal value each player can achieve, and positional strategies guaranteeing
these values.

Since parity games have memoryless determinacy, the vertices of any in-
stance can be divided into two sets,W0 andW1, such that whenever the game
starts from a vertex inW0, Player 0 has a winning positional strategy, and
otherwise Player 1 does. These sets are called thewinning setsof the play-
ers. Furthermore, the players haveuniformpositional winning strategies from
their whole winning sets. This means that whenever play starts inW0, Player 0
can use thesamepositional strategy, regardless of which vertex inW0 is the
first.

It has been known for some time that the games we investigate have mem-
oryless determinacy. Ehrenfeucht and Mycielski proved it for mean payoff
games as early as in 1973 [18, 19]. Memoryless determinacy for parity games
can be proved as a corollary of this result. The proof utilizes a sophisticated
cyclic interplay betweeninfinite duration games and theirfinite counterparts.
Properties of the infinite games are shown by considering the finite games and
vice versa. Ehrenfeucht and Mycielski raised the question whether it is pos-
sible to give a direct proof, avoiding this cyclic dependence. Paper III answer
the question affirmatively. Later, Gurvich, Karzanov, and Khachiyan gave a
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constructive proof [29]. It is rather involved, using estimates of norms of so-
lutions to systems of linear equations, convergence to the limit, and precision
arguments.

Emerson [20], unaware of Ehrenfeucht’s and Mycielski’s proof, sketched
the first memoryless determinacy proof for parity games in 1985. His proof
is based on a fairly complicated simplification by Hossley and Rackoff [32]
of Rabin’s original decidability proof [47] for Rabin automata. It relies on
König’s lemma. A later, more self-contained, determinacy proof by Emerson
and Jutla [22] relies heavily on theµ-calculus, and is non-constructive. For
example, the definition of a strategy in [22] uses properties of all paths in
a binary tree, a set of continuum cardinality. Mostowski [42] independently
proved the same result in 1991.

As mentioned, memoryless determinacy for parity games can also be proved
as a simple corollary to the result for mean payoff games. A parity game with
n vertices can be reduced to a mean payoff game on the same graph. If a ver-
tex in the parity game has colork, all its outgoing edges are assigned weight
(−1)k ·nk. It is easy to verify thatMAX can get a nonnegative payoff in the
mean payoff game if and only if Player 0 wins the parity game; see, e.g., [46].

Later McNaughton [41] proved memoryless determinacy for a subclass of
Muller games, defined by the structure of the winning condition, and includ-
ing parity games. The proof is constructive, and allowed McNaughton to
give an exponential time algorithm for finding optimal strategies. In 1998
Zielonka gave two elegant proofs for parity games on possibly infinite graphs
[55]. One of them is constructive; see also the survey by Küsters in [27]. Re-
cently, Zielonka and Gimbert were able to identify a set of conditions on the
payoff function which are sufficient for memoryless determinacy, and which
are satisfied by both parity and mean payoff games [26].

The proof given in Paper III is simple, direct, and works uniformly for a
number of games, including parity and mean payoff. The condition is that the
game has an equivalent finite version, played until the first vertex repetition,
and that the winner is determined by the sequence of vertices on the resulting
loop, modulo cyclic permutations. It proceeds by elementary induction on
the edges of the game graph, completely avoiding powerful external methods.
Like the proof in [19], it utilizes finite duration versions of the games, but there
is no cyclic dependence between properties of finite and infinite games. The
proof is constructive, even though the algorithm it straightforwardly suggests
is not very efficient.
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7 Strategy Evaluation and Iterative
Improvement

When solving games with memoryless determinacy, we can restrict our atten-
tion to thefinite set of positional strategies for each player. One of the most
important methods for finding the best such strategies isiterative strategy im-
provement. Originally developed for Markov decision processes [33, 13], this
approach has been extensively used to solve games; see, e.g., [31, 12, 36, 46,
52] and Papers I, II, IV and V. The idea is to assign values to the positional
strategies of one of the players. An initial strategy is selected and then itera-
tively improved by local changes, guided by the values.

The way values are assigned to strategies is crucial for strategy improve-
ment algorithms to work. When seen as functions defined on the space of
positional strategies, all strategy evaluations we consider, except the one for
the CLP problem in its most general form, satisfy the property that local op-
tima are global. Furthermore, every global optimum corresponds to a strategy
that is “sufficiently good”. In parity games, this means that it is winning from
all vertices where this is possible. For all evaluation functions, the value of
a strategy is a vector of values for the individual vertices of the game. This
allows us to use the concepts ofattractivesingle switches, andstablestrate-
gies. Roughly speaking, a switch isattractive if it selects a successor with a
better valuewith respect to the current strategy. A strategy isstableif it has
no attractive switches. The strategy evaluation functions we consider have the
following two properties.

Profitability of attractive switches.Let σ be a strategy andv a vertex. If the
value underσ of the successorσ(v) of v is worse than the value of one ofv’s
other successorsw (the switch to this successor isattractive), then changing
σ in v to w results in a better strategy (the switch isprofitable). This property
(attractive implies profitable) ensures 1) monotonicity and termination, and 2)
that the algorithms can move to better strategies without actually evaluating
the neighbors of the current one. In games such as mean payoff games, where
the edges have weights, the impact of the edges used must also be considered;
see Paper IV.

Optimality of stable strategies.If a strategy isstable, i.e., has no attractive
switches, then it is globally optimal. Consequently, the algorithms can termi-
nate, reporting a global optimum, as soon as a stable strategy is found, without
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evaluating its neighbors.

Together, these two properties imply that we can let the iterative improve-
ment be guided by attractiveness of switches. As long as there are attractive
switches, we can make them, knowing that they are profitable. And if there are
no attractive switches, we know that the current strategy is globally optimal.
Relying on attractiveness, rather than investigating neighboring strategies ex-
plicitly, does not change the behavior of algorithms, only makes them more
efficient.

In what follows, we will consider strategy evaluation functions for simple
stochastic, discounted payoff, mean payoff, and parity games. The one for
simple stochastic games is the oldest and best known. It is used by, e.g., Con-
don [12], who attributes it to Hoffman and Karp. Simple stochastic games are
also the most general of the games we consider. The drawback of this measure
is that each function evaluation involves solving a linear program with high
precision. The measures for mean payoff and parity games avoid this. The
mean payoff game function is the newest, recently discovered in Paper IV. It
is discrete, simple, and efficient to compute. For parity games, Vöge and Jur-
dziński developed the first discrete strategy evaluation function in 2000 [52].
Papers I and V present modifications that allow for better complexity analysis.

The theory of controlled linear programming also involves strategy im-
provement, and provides a unified view of the strategy evaluation functions
presented here.

One of the major contributions of this thesis is to show that all the strat-
egy evaluation functions we investigate, except for general CLP, can be used
together with randomized improvement policies, without reductions, to yield
expected subexponential running time. This was previously only known for
the case of binary simple stochastic games [36]. We discuss this further in
Chapter8.

7.1 Strategy Evaluation for Simple Stochastic Games

There is a well-known strategy evaluation function for simple stochastic games
[12, 36]. Given a strategyσ of MAX , the value of a vertex is the probability of
reaching the 1-sink whenMAX usesσ andM IN uses an optimal counterstrat-
egy againstσ . The value ofσ can be taken to be either a vector containing all
vertex values, or simply their sum. Keeping track of the individual vertex val-
ues allows algorithms to make use of attractive switches. The counterstrategy
of M IN and the vertex values can be found by solving a linear program; see,
e.g., [12] and Paper V.
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7.2 Strategy Evaluation for Discounted Payoff Games
For discounted payoff games, there is a similar strategy evaluation function,
discussed by Puri [46]. Again, given a strategyσ of MAX , the value of a
vertexv is the same as its value in the one player gameGσ , whereMAX fixes
σ , and onlyM IN has choices. This value can be computed in polynomial time
using a fixed-point iteration method, or by solving a linear program.

7.3 Strategy Evaluation for Parity Games
Vöge and Jurdziński developed a discrete strategy evaluation function for par-
ity games [52]. It makes the game quantitative, rather than qualitative, by
stipulating that the players should try to win with the largest possible color,
and should also try to optimize the colors seen on the path to the optimal loop.

Strategy improvement could already be used for parity games by reducing
to discounted or simple stochastic games. The benefit of Vöge’s and Jurdz-
iński’s function is that it is more efficient to compute. It avoids solving linear
programs with high precision, instead using simple graph algorithms.

The strategy evaluation function from [52] assumes that all vertices have
different colors, and the total number of different values that can be assigned
to a vertex is2Ω(n), wheren is the number of vertices, regardless of the number
k of colors in the original game. This is also the best known bound for any
deterministic strategy improvement algorithm using the function.

In Paper I, we modify the function, avoiding the reduction to games with
unique vertex colors. Basically, rather than keeping track of individual ver-
tices that are visited on the path to the optimal loop, we record thenumber
of vertices of each color. This allows us to improve the analysis for many
algorithms toO(poly(n) · (n/k+1)k).

7.4 Strategy Evaluation for Mean Payoff Games
In Paper IV we develop the first discrete strategy evaluation function for mean
payoff games. The main idea behind this function is to look at a controlled
version of the shortest paths problem. As we saw in Chapter3, this problem
is easy to solve on acyclic graphs, but for general directed graphs, it is consid-
erably more complicated. We call the problemlongest-shortest paths(LSP),
since the controller (MAX ) tries to make the shortest path from each vertex
as long as possible. Given a graphG with sink t and strategyσ of MAX in
the controlled vertices, we assign values to vertices in the following way. If
a negative weight cycle is reachable fromv in Gσ , thenv gets value−∞. If
only positive value loops are reachable fromv, andt is not, thenv gets value
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+∞. Otherwise, we assignv the value of the shortest path fromv to t in Gσ .1

When we reduce mean payoff games to the longest-shortest paths problem,
MAX can secure a value larger than 0 in the game from exactly the vertices
where he can get value+∞ in the LSP.

The LSP problem should not be confused with the NP-hardlongest path
problem. The difference is that in LSP, cycles are considered as infinitely
long or infinitely short paths, while the longest path problem does not consider
them as paths at all. Under reasonable assumptions, the decision version of
the LSP problem belongs to NP∩coNP; see Paper IV.

The strategy evaluation function is easy to compute, using standard graph
algorithms. The only arithmetic involved is additions and comparisons of
numbers in the same order of magnitude as the edge weights. This makes
algorithms considerably easier to implement, and much more efficient, than
those that reduce to discounted or simple stochastic games and use the known
evaluation functions for those games. These two factors also makes it attrac-
tive for solving parity games, giving a better complexity compared to Paper I.

Reduction to simple stochastic games can be uses to solve mean payoff
games in randomized subexponential time; see, e.g., [7]. The new strategy
evaluation function allowed us to show that in a combinatorial model of com-
putation, the subexponential running time can be made completely indepen-
dent of the edge weights.

7.5 Strategy Evaluation for Controlled Linear Program-
ming

Recall that in the controlled linear programming problem (with nonnegative
coefficients) a strategy is a selection of exactly one constraint per controlled
variable. For an instanceSand a strategyσ , the value of each variable under
σ can be computed by solving the linear program

maximize∑v, v∈ x∪y

subject toS(σ).

Paper V shows that for this evaluation function, attractive switches are prof-
itable. Since all the games above can be rewritten as CLP instances, this gives
a unified proof that attractivity implies profitability for all the strategy evalua-
tion functions in this chapter.

In general, stability does not imply optimality in the CLP problem. How-
ever, it does for several broad subclasses, including those needed to cover the

1Loops with weight 0 constitute a special case, which complicates matters. Such loops can be
avoided; see Paper IV for details.
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games, as shown in Paper V.

7.6 Mixed Strategies and Interior Point Methods
The strategy evaluation functions for mean payoff, discounted payoff, and
simple stochastic games, as well as the controlled linear programming prob-
lem, can also be extended to covermixed positional strategies, whereMAX

assigns a probability distribution to the set of edges leaving each of his ver-
tices. When the pebble reaches a vertex, he decides which edge to follow
next randomly, according to this distribution. Iterative improvement can still
be guided by the attractiveness of local changes. This corresponds to going
through interior points of a polytope in a geometrical setting. Paper V de-
scribes this approach. An application to discounted payoff games can also be
found in [45].
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8 Combinatorial Optimization

One of the main contributions of this thesis is a unified characterization of
strategy evaluation functions for games. For this purpose, we introduce the
classes of completely local-global and recursively local-global functions, com-
binatorial counterparts of the strategy evaluation functions, and analyze their
properties. The strategy evaluation functions we have seen are specific for
each game, and the many details involved make it difficult to determine the
structure of the functions. In order to understand and exploit their similarities
and abstract properties, it is useful to study them in a unified way. This chapter
outlines such a view.

The framework we propose is that of combinatorial optimization, which
provides a rich toolbox of efficient deterministic and randomized algorithms
and analytic tools that have successfully resolved many challenging prob-
lems. It seems natural to apply combinatorial and randomized algorithms
to attack and solve game-theoretic problems arising in verification. Many
algorithms become easier to analyze and reason about when stated in com-
binatorial terms, rather than game-theoretic. The reformulation also helps
understanding and appreciating the problems better. Moreover, realizing the
common structures underlying different games allows easy reuse of any future
results for specific games in a more general setting. Our contribution towards
these goals is twofold.

First, we show that some infinite games, including parity, mean payoff, dis-
counted payoff, and simple stochastic, being recast in combinatorial terms
turn out to be very easy-to-understand optimization problems, with clear and
transparent structure. The simplicity of this structure allows one to abstract
away from the complicated technical details of the games, and concentrate on
essential properties, applying the full potential of combinatorial optimization
and algorithmics. The set of all positional strategies of Player 0 in a graph
game is isomorphic to ahyperstructure, a Cartesian product of finite sets, or
simplices. We identify classes of functions with simple combinatorial defini-
tions, that correspond to strategy evaluation functions. Thus, solving parity,
mean payoff, and simple stochastic games amounts to finding global maxima
of functions in these classes. The corresponding problem is easy to explain
and can be appreciated by every mathematician and computer scientist.

Second, to optimize the function classes identified here, we suggest the
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reuse of randomized subexponential algorithms developed for combinatorial
linear programming. This establishes a direct relation between combinatorial
optimization and game theory.

These considerations led to the first known expected subexponential algo-
rithms for parity games, presented in Paper I, mean payoff games in Paper IV,
and simple stochastic games of arbitrary outdegree [4, 3].

The theory of completely local-global (CLG) functions, presented in this
chapter and Paper II, unifies several directions of research: connections to
completely unimodal (CU) and local-global (LG) pseudo-Boolean optimiza-
tion [30, 54, 51, 8], relation to linear programming, and analysis of single
and multiple switching algorithms. This theory keeps much of the structure
from the games, while making similarities and parallels between the games
and other areas transparent.

Our starting point was an approach of Ludwig [36] who adapted a subex-
ponential linear programming algorithm for the subclass of binary simple
stochastic games. The possibilities of extending it for the general case and
applying it directly to parity games remained undiscovered until we started
investigating the combinatorial structure of the strategy evaluation functions.

The basic observation underlying our work is that iterative strategy im-
provement is closely connected to combinatorial optimization. In both cases,
the objective is to find the element with the best value in a prohibitively large
set. Any efficient algorithms for such a problem will have to make use of
the structure of the value assignment. We make the connection explicit by
examining how the evaluation functions for parity, mean payoff, discounted
payoff, and simple stochastic games, as well as controlled linear program-
ming, are structured. We believe that abstracting away from the specifics of
each game, and concentrating on the common properties of these functions,
will help in resolving the complexity of the problems. We demonstrate that
the functions arising from the games we consider are very similar to local-
global and completely unimodal functions that have previously been studied
by the combinatorial optimization [54, 30, 53, 49], and linear programming
communities [25, 24, 37]. We also show how this realization can be used to
solve games, applying methods from linear programming.

8.1 Strategy Spaces and Hyperstructures
To represent the strategy spaces for memoryless determined games, as well
as the controlled linear programming problem, in a unified way, we use the
concept ofhyperstructures, or products of simplices.

Definition 8.1.1 LetP1,P2, . . . ,Pd be nonempty, pairwise disjoint sets. Then
the productP = P1×·· ·×Pd is called ahyperstructureof dimension d.
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We use the term “hyperstructure” in analogy with hypercubes. When|Pi |= 2
for all 1≤ i ≤ d, the structure is isomorphic to thed-dimensional Boolean
hypercube. Elements of the structure are called vertices. Two vertices ofP
areneighborsif they differ in exactly one coordinate.

A substructureof P is a productP ′ = ∏d
j=1P ′

j , where/0 6= P ′
j ⊆P j for

all j. A facetof P is a substructure obtained by fixing the choice in exactly
one coordinate. ThusP ′ is a facet ofP if there is a j ∈ {1, . . . ,d} such
that |P ′

j | = 1 andP ′
k = Pk for all k 6= j. Whenever|P ′

j | = 1 for some j,
this coordinate can be disregarded, since it is fixed, and we can consider such
structures to have a smaller dimension.

In a graph game where Player 0 controlsd vertices, numbered 1 through
d, let Ei be the set of edges leaving vertexi. Then thed-dimensional hyper-
structureS= E1×·· ·×Ed corresponds to the set of positional strategies for
Player 0. Two vertices ofSare neighbors exactly when we can get one of the
corresponding strategies from the other by a single switch.1 When Player 0
has only binary choices,S is a hypercube. In a controlled linear programming
instance withd controlled variables,Ei is the set of constraints for variablexi .
A substructure of a hyperstructure corresponding to the strategies in a game
is the set of strategies in a subgame, where some edges leaving vertices inV0

have been deleted.
More about properties and terminology for hyperstructures can be found in

Paper II and in [3, 7].

8.2 Functions on Hyperstructures
Functions on hyperstructures have been extensively studied in the combina-
torial optimization community. Special attention has been given to functions
on hypercubes; see, e.g., [8, 51]. In general, the problem of finding the max-
imum of an arbitrary function on a hyperstructure is of course exponential in
the dimension; there is no better method than to evaluate the function for every
vertex of the structure. For some classes of functions, however, better bounds
are known. For others, the exact complexity is unknown. One of these is the
class ofcompletely unimodal(CU) functions [30, 54, 51, 8].2 They are usually
defined as having the real or natural numbers as codomain, but any partially
ordered set can be used without losing any of the essential properties, as we
show in [4].

In Paper II and [4, 7] we define the related class of completely local-global
(CLG) functions. It is more general than the CU functions, but in fact, every
CLG function can be reduced to a CU function such that the unique maxi-

1Recall that a single switch changes a positional strategy in exactly one vertex.
2Also known as abstract optimization functions [25].
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mum of the latter is one of the maxima of the former. This has the benefit
that any new results for CU functions immediately apply for optimizing CLG
functions, even though working directly on the CLG function gives a better
running time for most algorithms.

In [7] we show that the strategy evaluation functions for parity and simple
stochastic games are completely local global. This means that any efficient
method for optimizing CU functions can be applied to solving games. In
particular, Williamson Hoke conjectured that any CU function on a hypercube
can be optimized in randomized polynomial time [54]. If this is true, the same
result immediately follows for parity, mean payoff, discounted payoff, and
simple stochastic games.

Notation.We will consistently useP andD to denote hyperstructures and
partially ordered sets, respectively. Iff : P → D is a function, andP ′ is a
substructure ofP, we usef|P ′ to denote the restriction off to P ′.

When studying combinatorial function optimization two of the most impor-
tant concepts are local and global optima. We remind of their definitions:

Definition 8.2.1 Let f : P → D be a partial function and let D be partially
ordered by�.

1. p is aglobal maximumof f if f (p) is defined and f(p)� f (q) for every
q∈P such that f(q) is defined.

2. p is a local maximumof f if f (p) is defined and f(p) � f (q) for every
neighborq of p such that f(q) is defined.

Global and localminimaare defined symmetrically.

We now define the the most general class of functions that we know allow
for subexponential optimization.

Definition 8.2.2 ([4, 3, 7]) A partial function f: P→D is calledrecursively
local-global(RLG) if

1. for all neighbors p and q onP such that f(p) and f(q) are defined, the
two function values are comparable,

2. for every substructureP ′ of P, every local maximum of the restriction
f|P ′ of f toP ′ is also global.

All the strategy evaluation functions mentioned in Chapter7, except the
one for the CLG problem in its full generality, are RLG. We will show that
this is enough to ensure that they can be optimized in expected subexponential
time in the number of dimensions (controlled vertices of Player 0). The RLG
property does not, however, account for all the nice features of strategy eval-
uation functions. For the total functions, corresponding to parity, discounted
payoff, and simple stochastic games, the subclass of completely local-global
functions improve this situation.
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Definition 8.2.3 ([4, 7]) A total function f: P → D such that all neighbors
have comparable function values iscompletely local-global(CLG) if the fol-
lowing holds for every substructureP ′ of P:

1. every local maximum of f|P ′ is also global,
2. every local minimum of f|P ′ is also global,
3. every pair of local maxima of f|P ′ is connected by a path of local maxima,
4. every pair of local minima of f|P ′ is connected by a path of local minima.

The definition is rather technical, but actually captures properties of strategy
evaluation functions in a very nice way. As discussed in Chapter7and Papers I
and II their maxima can be found bymultiple switching algorithms. Such
algorithms make several attractive switches at once. For the algorithms to be
correct, multiple switches must be profitable. We showed in [4, 7] that this is
indeed the case for all CLG functions.

Theorem 8.2.4 Let f : P → D be a CLG function, x∈P and y∈P be
vectors such that yi 6= xi implies f(x)≺ f (x with coordinate j changed to yj).
Then f(x)≺ f (y).

CLG functions also have a number of other interesting properties [4, 7]. Pa-
per II and [6] shows that through reduction to CU functions, any binary CLG
function can be optimized with a randomized multiple switching algorithm,
augmented with random sampling, in expected timeO(20.453n).

8.3 The Structure of Strategy Evaluation functions
As mentioned, the strategy evaluation functions discussed in Chapter7, again
with the general CLP problem as only exception, are all RLG. For parity and
simple stochastic games, the functions are even CLG.

Theorem 8.3.1 ([4, 7]) The strategy evaluation functions for parity and sim-
ple stochastic games are CLG.

This gives an alternative way of showing that multiple switching algorithms
can be used with these function, and immediately implies that they possess a
number of other interesting properties [4, 7].

The strategy evaluation function for mean payoff games from Paper IV is
only defined for strategies such that the subgraph induced by the strategy has
no negative weight cycles. Thus it cannot be CLG. It is, however, RLG, which
we demonstrate here, since the proof has not been published elsewhere.

Theorem 8.3.2 The strategy evaluation function for mean payoff games is
RLG.
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Proof. Let (G,w) be an instance of longest-shortest paths withn vertices, ob-
tained by reduction from a mean payoff game. The codomain of the strategy
evaluation function isZn. The function is defined exactly for the set of ad-
missible strategies. For two tuplesx = (x1, . . . ,xn) andy = (y1, . . . ,yn), we
say thatx < y if xi ≤ yi for all i ∈ {1, . . . ,n} and the inequality is strict in at
least one coordinate. Any substructure of the hyperstructure corresponding
to all strategies ofMAX represents the strategies in a subgraph with the same
unique sink asG. From the fact that any stable strategy is globally optimal
(see Paper IV), we can infer that on any substructure, any local optimum of
the function is also global.

It remains to show that the values of any two neighbors for which the func-
tion is defined are comparable. This follows by considering the subgraph
where only these two strategies exist (MAX has a choice only in one vertex).
If the values were incomparable, both of them would be locally maximal, con-
tradicting the first part of the proof.

8.4 RLG Functions and LP-Type Problems

LP-type problems were first defined by Sharir and Welzl [48, 38]. They are in-
tended as an abstract framework, capturing the structure of combinatorial lin-
ear programming and related problems, such asM INI BALL andPOLYDIST.
The randomized subexponential algorithm for linear programming they devel-
oped together with Matoušek [38], actually solves any LP-type problem.

This section shows how optimizing RLG-functions can be reduced to solv-
ing LP-type problems. Together with the results of Section8.3, this provides
a somewhat surprising link between game theory and computational geome-
try, since many problems from the latter domain can also be expressed in the
LP-type framework. It also allows us to transfer any possible new algorithms
for LP-type problem to RLG-optimization and games.

In order to pursue the analogy between hyperstructure optimization and LP-
type problems, we need the following definition.

Definition 8.4.1 Let P = Πd
i=1Pi be a hyperstructure, and E a subset of⋃d

i=1Pi . Then struct(E) is the substructureΠd
i=1(Pi ∩E) of P. Thus, if

E does not have elements from eachP j , then struct(E) = /0.

We now define the abstract framework; see [48, 38] for details.

Definition 8.4.2 Let H be a finite set,W a linearly ordered set, and g: 2H →
W a function. The pair(H,g) is called anLP-type problemif it satisfies the
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following properties.

F ⊆G⊆ H =⇒ g(F)≤ g(G) (8.1)

F ⊆G⊆ H

g(F) = g(G)
h∈ H

 =⇒


g(F ∪h) > g(F)

⇐⇒
g(G∪h) > g(G)

(8.2)

Intuitively, each element ofH corresponds to an element of somePi , and
the value of a subset ofH will be the maximal function value on the corre-
sponding substructure.

A basis is a subsetB of H with g(B′) < g(B) for all B′ ⊂ B. The bases
we will be considering correspond to vertices in hyperstructures. Abasis for
G⊆ H is a basisB⊆ G with g(B) = g(G), in our case corresponding to a
vertex ofstruct(G) that maximizes the function value. To “solve” an LP-type
problem means to find a basis forH. Note that “basis” is not the same as
“basis forH”.

Definition 8.4.3 Let f : P → D be an RLG function. For every substructure
P ′ of P, define wf (P ′) to be the function value of the global maximum of
f|P ′ , if f is defined for some vertex ofP ′. Otherwise, wf (P ′) is undefined.

Now we are ready to prove the main theorem of this section. It generalizes
a result we showed in [4] for total RLG functions.

Theorem 8.4.4 An RLG-function f: P → D, where D is linearly ordered,
can be expressed as an LP-type problem(H,g) such that a basis for H defines
a global maximum of f .

Proof. Recall thatP = ∏d
j=1P j and letH be the disjoint union of allP j .

Let m= |H|. We assume, without loss of generality, thatD is disjoint from
the natural numbers. The value set of our LP-type problem will beW =
{0,1, . . . ,2m}∪D, with the usual orders on{0, . . . ,2m} andD, andn < d for
all n∈ N andd ∈ D. Now defineg : 2H →W .

g(G)=


|G| ∈ N if struct(G) = /0;

m+ |G| ∈ N if struct(G) 6= /0 andwf (struct(G)) is undefined;

wf (struct(G)) otherwise.

Property (8.1) of Definition8.4.2is immediate: ifF ⊆G andg(F)∈D then
struct(F) is a substructure ofstruct(G), so the maximum off on struct(F) is
no bigger than the maximum onstruct(G). If g(F) ∈ N theng(G) is either a
bigger natural number or an element ofD. We proceed to proving (8.2).
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Let F ⊆ G⊆ H be such thatg(F) = g(G) and takeh ∈ H. We need to
prove thatg(F ∪h) > g(F) ⇐⇒ g(G∪h) > g(G). If g(F) ∈ N, thenF = G,
since otherwiseg(G) would be greater thang(F), and the equivalence follows.
Assumeg(F) ∈ D. The left-to-right implication is clear: ifg(F) ∈ D then
struct(F∪h) is a substructure ofstruct(G∪h). Thereforeg(F∪h)≤ g(G∪h),
and we getg(G∪h)≥ g(F ∪h) > g(F) = g(G).

Now supposeg(G∪h) > g(G). It remains to show thatg(F∪h) > g(F). As-
sume the contrary and letx∈ struct(F) be a local maximum off onstruct(F).
Note thatg(G) = g(F) = g(F∪h) by assumptions (g(F) cannot be greater than
or incomparable tog(F∪h) by Property (8.1) of Definition8.4.2, which holds
by the first part of this proof). Since any neighbor ofx on struct(G∪h) is an
element of eitherstruct(F ∪h) or struct(G), they all have smaller, equal, or
undefined values, sox is a local maximum onstruct(G∪h). This contradicts
the assumption thatstruct(G∪h) has a greater local maximum, so(H,g) is an
LP-type problem.

We now show that that an elementx∈P is a local maximum off if and
only if it is also a basis forH. If x is a maximum off , theng(x) = g(H). Also,
sincex has exactly one component for everyP j , any subset ofx has a value
in N. Thusx is a basis forH.

If, on the other handx is a basis forH then it must have exactly one com-
ponent from eachP j : if x∩P j = /0 for some j, thenx would not have the
same value asH. Otherwise, if|x∩P j | > 1 for some j, then there would be
a subset ofx with the same value. Thusx corresponds to an element ofP.
Sinceg(x) = g(H) it must be a global maximum off onP.

Although the theorem requires a linear order, which is not guaranteed by
the RLG definition, this is not a major drawback. First, many algorithms
for solving LP-type problems do not rely on the order being total. Second,
the orders on strategy values for parity, mean payoff, discounted payoff, and
simple stochastic games, as well as controlled linear programs, can easily be
made total. Rather than comparing values of strategies componentwise in the
tuple of vertex values, comparing them lexicographically extends the order to
a total one.

8.5 Subexponential Optimization
Even though Khachiyan showed that the linear programming problem can
be solved in polynomial time in 1979, research on algorithms has continued.
For instance, Karmarkar developed a practically more efficient polynomial
algorithm based on an interior point approach. One of the main reasons for the
continuing interest in the problem is that it has not been determined whether
there is astrongly polynomial algorithm for linear programming. Such an
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algorithm would be polynomialin the number of constraints and variablesin
a combinatorial model of computation, while the running times Khachiyan’s
and Karmarkar’s algorithms also depend on the actual numbers involved.

This led to the study of combinatorial linear programming. In 1992 a break-
through was achieved when Kalai showed that a randomized algorithm could
solve the problem in expected strongly subexponential time [35]. The same
result was independently proved by Matoušek, Sharir, and Welzl [38, 48, 39].

In 1995, Ludwig used the same techniques to develop a subexponential
randomized algorithm for binary simple stochastic games; games with vertex
outdegree at most two [36]. It has a2O(

√
n) upper bound on the number of

strategy evaluations, wheren is the number of vertices.
This result was a great improvement over earlier deterministic algorithms,

but it has a drawback. Any simple stochastic game can be reduced to one with
outdegree at most two, but if the original game has unbounded outdegree, the
reduction increases the number of vertices toΩ(n2). When applying Ludwig’s

algorithm, the number of iterations becomes2O(
√

n2) = 2O(n).
Also, for solving parity and mean payoff games, reducing to simple stochas-

tic games and applying the algorithm has another drawback. Every strategy
evaluation requires solving a linear program with high precision.

Since the strategy evaluation function developed by Vöge and Jurdziński
[52] had overcome the latter problem, we investigated how both the limit on
outdegree, and the need for solving linear programs could be dealt with at the
same time. This resulted in Paper I in which we modify both the evaluation
function and Kalai’s randomized algorithm. This shows that parity games can
be solved in expected subexponential time without the need for costly high-
precision arithmetic in each iteration.

The strategy evaluation function presented in Paper IV achieves the same
for mean payoff games. Earlier algorithms for these games were pseudo-
polynomial;O(poly(n) ·W), whereW is the largest edge weight [29, 56]. This
can turn out badly whenW is exponential inn, as is the case when reducing
from parity games. The subexponential bound we achieve isindependentof
W in a combinatorial model of computation. Through a reduction, it also
provides a simpler and more efficient method for solving parity games; see
Paper IV.

To summarize, all strategy evaluation functions discussed in Chapter7 can
be optimized using at most2O(

√
nlogn) function evaluations, wheren is the

number of controlled vertices. To do this, we can use either a version of
Kalai’s algorithm, or the version of the algorithm by Matoušek, Sharir, and
Welzl shown as Algorithm1; see also Paper V for applications to the con-
trolled linear programming problem.

The algorithm starts with a vertex of the hyperstructure (a strategy) and
randomly picks a facetF , not containing the vertex, to be temporarily thrown
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Algoritm 1: MSW Optimization Algorithm

MSW(HyperstructureP, RLG-function f , initial vertexv0)
(1) if dim(P) = 0
(2) return v0

(3) choose a random facetF of P, not containingv0

(4) v∗← MSW(P \F, f ,v0)
(5) u← the neighbor ofv∗ onF
(6) if f (u) > f (v∗)
(7) return MSW(F, f ,u)
(8) else
(9) return v∗

away. It then recursively optimizes the function on the remaining structure,
finding vertexv∗. If v∗ is at least as good as its neighboru onF , the algorithm
terminates, sincev∗ is a local, and thus global, maximum. Otherwise, it jumps
to u, and recursively optimizes the function onF .

The analysis from [38, 39] needs to be modified somewhat, since the do-
mains of some RLG-functions are not linearly ordered. This is done in [7].
Note that the RLG property is essential for Algorithm1 to work correctly. If
the function to be optimized is not RLG, the algorithm can fail to find even a
local minimum.
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9 Fixed-Parameter Complexity

Although the material in this chapter does not conform exactly to the main
theme of the thesis, it describes the starting point for an important compli-
mentary field of research. As we have seen, the exact computational com-
plexity for many graph games is unknown; the upper and lower bounds do
not match. Other games are hard for presumably intractable classes. The goal
of the research started and outlined here is to give a more subtle and refined
classification of their complexity than classical theory is able to do.

To solve games with high or unknown complexity in practice, we can con-
sider other aspects of their complexity, such as whether they arefixed-parame-
ter tractable[16]. Quite often a problem instance (game) of sizen contains a
“natural” parameterk (number of colors or pairs), and the question is whether
it can be solved in timef (k) ·nO(1) for an arbitrary functionf . A positive an-
swer indicates that large problem instances can be solved, as long as the value
of the parameter is small. Since PTIME-membership proofs for, e.g., parity
games appear elusive, looking at the fixed-parameter complexity is a natural
first step. Many important combinatorial problems have been classified as
fixed-parameter tractable or intractable [16, 9, 14, 23].

Here we consider the parameterized complexity of parity, Streett, Rabin,
and Muller games. Typically, such games have decision algorithms of com-
plexity nO(k). Settling their fixed-parameter tractability would give us a better
understanding of which instances are practically solvable. On the other hand,
proving fixed-parameter intractability saves any future work on finding poly-
nomial time algorithms for parity games. Consequently, investigation of the
fixed-parameter complexity is a promising and challenging research direction.

9.1 Fixed-Parameter Tractability
The theory of fixed-parameter complexity is two-dimensional [16]. A param-
eterized language Lover a finite alphabetΣ is a subset ofΣ∗×N. Call L fixed-
parameter tractable(FPT) if there is a recursive functionf and an algorithm
that determines if(x,k) ∈ L in time f (k) ·nc for n = |x| and some constantc.
The class XP is defined to contain all problems solvable in timenf (k) for some
recursive functionf , and it is known that FPT(XP [16]. The basic working
hypothesis of fixed-parameter complexity is that the intermediate classW[1],
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with complete problemsPARAMETERIZED CLIQUE andINDEPENDENTSET,
is also different from FPT, and there is strong evidence in support of this con-
jecture [16].1 Recently, Downeyet al. [15] introduced the new classM[1],
lying between FPT andW[1]. It is also believed to be different from FPT
(otherwise there would be a subexponential algorithm forSAT) and should
be useful for proving hardness results, since it is also presumably weaker than
W[1]. The main parametric classes form the following “weirdness” hierarchy
[16, 9]:

FPT ⊆M[1]⊆W[1]⊆ ·· · ⊆W[P]⊆ AW[∗]⊆ XP.

To establish hardness or membership in these classes, one uses FPT-reductions
[16]. For our purposes, problemA is FPT-reducible toB (A≤ f p B) if there is
a Turing machineMB with oracle forB decidingA, which on instance〈x,k〉
terminates in timef (k) · |x|c and is only allowed to form queries〈x′,k′〉 ∈ B
with k′ ≤ f (k) (herec is some constant andf is an arbitrary function.) The
formal definitions ofW[1], ..., W[P], andAW[∗] can be found in the mono-
graph by Downey and Fellows [16] and the definition ofM[1] in [23]. Every
problem that is hard for a class higher than FPT is considered fixed-parameter
intractable. For recent surveys and articles on parameterized complexity we
refer to [14, 15, 23].

9.2 Fixed-Parameter Complexity of Graph Games
For parity games, the most natural parameter is the number of colors. The
relevance of this parameter is confirmed by the fact that when reducing from
µ-calculus model checking, the number of colors correspond to the nestling
depth of the fixpoint operators; see, e.g., [27]. In Rabin and Streett games, the
number of pairs in the winning condition is a suitable parameter. For Muller
games, we can take the number of equivalence classes of vertices, with respect
to the winning condition, as parameter.

In [5] we show that, somewhat surprisingly, from the fixed-parameter point
of view, parity games belong to thesamecomplexity class as Streett, Rabin,
and colored Muller games, with the above parameterizations. The standard
reductions from parity to Rabin or Streett games, and from these to Muller
games, are actually FPT reductions. To get the result we modified the known
reduction from Muller to parity games; see, e.g., [40, 28, 50]; making it FPT.
Most of the proof was already implicit in other work on the games involved
[17], but the result had not been stated explicitly, and its implications, there-
fore, never considered.

We thus know that the four games belong to the same fixed-parameter class,

1This hypothesis is stronger than P6= NP.
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but which one that is remains unknown. The only known upper bound is that
they belong toXP, whose complete problems are provably intractable. De-
termining whether the games are fixed-parameter tractable or else complete
for some class higher in the hierarchy shown in Section9.1would be of great
interest. In [5] we provide a number of partial results in this direction. In
particular, we show that if the players in Streett games are restricted to using
only positional strategies, the problem is hard forW[1], and thus presumably
not fixed-parameter tractable. We also consider a number of other parame-
terizations and show results for subclasses of colored Muller games, some of
which were implicit in [17].
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11 Summary in Swedish

Spelteorin har under det senaste seklet utvecklats av flera generationer fram-
stående matematiker, till exempel John von Neumann, Leonid Kantorovich
och John Nash. Den är nu en mogen disciplin med kapacitet att modellera och
finna optimala beteenden i komplicerade scenarier, där många aktörer agerar
i enlighet med sina intressen.

Också inom datavetenskapen har spelteorin funnit ett stort antal tillämp-
ningar, och forskningen har lett fram till många användbara resultat. Spel
används som modeller för datorsystem, logiker, automater och komplexitet-
sklasser.

En av de stora utmaningarna för dagens datavetenskap är det växande be-
hovet av att verifiera stora mjuk- och hårdvarusystem, det vill säga kontrollera
att de fungerar som avsett. Idag är det i princip omöjligt för programmerare att
manuellt kontrollera att deras kod är korrekt, och i takt med att datorsystemen
växer kommer det att bli ännu svårare. Därför behövs datorstödda verifier-
ingsmetoder. Grundidén är att ta ett system och testa en viss egenskap. Ofta
är dessa egenskaper ganska enkla, till exempel att systemet inte ska hänga sig,
men för större system kan de också bli avsevärt mer komplicerade.

I princip vet vi redan hur vi kan kontrollera systemen maskinellt. Problemet
är att göra det effektivt. När systemen växer blir många av dagens metoder
helt enkelt för långsamma. Att råda bot på detta är en av de stora utmaningarna
för dagens datavetenskap.

Verifieringsproblemen kan i många fall ses som spel. Oändliga tvåperson-
spel med full information utgör ett väletablerat sätt att modellera interaktionen
mellan ett system och dess omgivning. Om omgivningen kan vinna, genom
att spela så att systemet tvingas bete sig på ett felaktigt sätt, är systemet inko-
rrekt. Givet en sådan spelmodell återstår att avgöra om det finns ett effektivt
sätt att räkna ut vem som vinner, under antagandet att båda spelarna använder
sina bästa strategier.

Ett av de spel vi undersöker i denna avhandling, paritetsspel, kan ses som
en modell för att testa om ett system tillfredsställer krav definierade i logiken
µ-kalkyl. Övriga spel som behandlas har andra, liknande tillämpningar.

Avhandlingen fokuserar på strategiförbättringsalgoritmer för oändliga spel
på grafer. Enkelt uttryckt gäller det först att hitta ett sätt att utvärdera strategier
så att man givet en förlorande strategi kan hitta en bättre. Utvärderingen ger
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strategin ett värde, och kallas strategievalueringsfunktion. Meningen är att de
bästa strategierna ska ha det högsta funktionsvärdet. Denna metod går i första
hand att tillämpa när det finns ett ändligt antal strategier, vilket är fallet för
paritetsspelen och deras släktingar.

Förutom evalueringsfunktionen behövs en metod för att givet en strategi
hitta en annan, med bättre funktionsvärde. Hur denna metod väljs har en
avgörande inverkan på algoritmens effektivitet.

I detta arbete behandlar vi båda delarna av strategiförbättringsalgoritmer.
Vi uppfinner nya strategievalueringsfunktioner och förfinar gamla. Genom
att undersöka dessa funktioners kombinatoriska struktur visar vi också hur
slumpbaserade metoder från kombinatorisk optimering kan användas för att
hitta strategier med större och större värden. Detta leder till nya, mer effektiva
algoritmer för att lösa de spel vi undersöker.

Vårt arbete med att utveckla strategievalueringsfunktioner har tre delar.
För paritetsspel förfinar vi den funktion som Vöge och Jurdziński utveck-
lat, vilket leder till bättre komplexitetsanalys för vissa algoritmer. Vi pre-
senterar den första diskreta evalueringsfunktionen för så kallade medelavkast-
ningsspel. Den är baserad på vad vi kallar längsta-kortaste vägen, en ny, kon-
trollerad och spellik, version av problemet att hitta den kortaste vägen mellan
två noder i en riktad graf. Fördelen med denna funktion är att algoritmer kan
undvika att göra kostsamma högprecisionsberäkningar varje gång en strategi
utvärderas. I en kombinatorisk beräkningsmodell blir tidsåtgången för sådana
algoritmer oberoende av vikterna i spelgrafen. Till sist visar vi att strategieval-
uering också kan användas på ett förtjänstfullt sätt för att lösa ett nytt problem,
kontrollerad linjärprogrammering. Detta problem definieras i avhandlingen,
och generaliserar de spel vi undersöker.

Vi analyserar den kombinatoriska strukturen hos de strategievaluerings-
funktioner vi behandlar. Det visar sig att samtliga har likartad struktur, vilket
gör det möjligt att förbättra analysen för vissa algoritmer. Vidare visar vi att
problemet med att hitta den strategi som har störst värde kan reduceras till att
lösa problem av så kallad LP-typ, definierade av Matoušek, Sharir och Welzl.
Detta innebär att alla algoritmer för att lösa de senare kan användas också för
paritetsspelen och deras släktingar.

I synnerhet visar vi att alla de spel vi undersöker, samt många restriktioner
av kontrollerad linjärprogrammering, kan lösas med de subexponentiella al-
goritmer för kombinatorisk linjärprogrammering som uppfanns av Kalai re-
spektive Matoušek, Sharir och Welzl.

Det är fortfarande oklart om paritetsspel kan lösas i polynomisk tid. Sam-
tidigt är det mycket osannolikt att det skulle gå att visa några icketriviala undre
gränser inom ramen för klassisk komplexitetsteori. Vi påbörjar därför arbetet
med att klassificera deras så kallade fixparameterkomplexitet. Det visar sig
att paritetsspel från denna synvinkel är ekvivalenta med rabin-, streett- och
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mullerspel, vilket kontrasterar mot klassisk komplexitetsteori. Den exakta fix-
parameterkomplexiteten är fortfarande okänd, men vi visar att en variant av
streettspel, där bara positionella strategier är tillåtna, har hög komplexitet.

Avhandlingen innehåller också ett bevis för att paritets- och medelavkast-
ningsspel är bestämda i positionella strategier. Detta är på intet vis ett nytt
resultat. Många andra bevis har redan publicerats. Motivet är att undersöka
om ett helt konstruktivt bevis är möjligt, utan att referera till ickeelementära
metoder eller fixpunktsteorem, samtidigt som det fungerar likformigt för båda
typerna av spel. Vi hoppas att det, tillsammans med andra bevis, kan bidra till
att öka förståelsen för spelens inre mekanik.
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A Discrete Subexponential Algorithm for Parity

Games�

Henrik Björklund, Sven Sandberg, and Sergei Vorobyov

Computing Science Department, Uppsala University, Sweden

Abstract. We suggest a new randomized algorithm for solving parity
games with worst case time complexity roughly

min

(

O

(

n
3 ·

(n

k
+ 1

)k
)

, 2O(
√

n log n)

)

,

where n is the number of vertices and k the number of colors of the
game. This is comparable with the previously known algorithms when
the number of colors is small. However, the subexponential bound is an
advantage when the number of colors is large, k = Ω(n1/2+ε).

1 Introduction

Parity games are infinite games played on finite directed bipartite leafless graphs,
with vertices colored by integers. Two players alternate moving a pebble along
edges. The goal of Player 0 is to ensure that the biggest color visited by the pebble
infinitely often is even, whereas Player 1 tries to make it odd. The complexity
of determining a winner in parity games, equivalent to the Rabin chain tree
automata non-emptiness, as well as to the µ-calculus1 model checking [5,3], is
a fundamental open problem in complexity theory [11]. The problem belongs to
NP∩coNP, but its PTIME-membership status remains widely open. All known
algorithms for the problem are exponential, with an exception of [12] when the
number of colors is large and games are binary.

In this paper we present a new discrete, randomized, subexponential algo-
rithm for parity games. It combines ideas from iterative strategy improvement
based on randomized techniques of Kalai [9] for Linear Programming and of
Ludwig [10] for simple stochastic games, with discrete strategy evaluation sim-
ilar to that of Vöge and Jurdziński [15]. Generally, algorithms for parity games
are exponential in the number of colors k, which may be as big as the number
n of vertices. For most, exponentially hard input instances are known [4,3,2,14,
8]. Our algorithm is subexponential in n. Earlier we suggested a subexponen-
tial algorithm [12], similar to [10], but based on graph optimization rather than
linear programming subroutines. Both algorithms [10,12] become exponential

� Supported by Swedish Research Council Grants “Infinite Games: Algorithms and
Complexity”, “Interior-Point Methods for Infinite Games”.

1 One of the most expressive temporal logics of programs [3].

H. Alt and M. Habib (Eds.): STACS 2003, LNCS 2607, pp. 663–674, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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for graphs with unbounded vertex outdegree. The present paper eliminates this
drawback. There is a well-known reduction from parity to mean payoff games,
but the best known algorithms for the latter [7,16,13] are known to be exponen-
tial (pseudopolynomial). Reducing parity to simple stochastic games [16] leads
to manipulating high-precision arithmetic and to algorithms invariably subexpo-
nential in the number of vertices, which is worse than an exponential dependence
on colors when colors are few.

A recent iterative strategy improvement algorithm [15] uses a discrete strat-
egy evaluation involving game graph characteristics like colors, sets of vertices,
and path lengths. Despite a reportedly good practical behavior, the only known
worst-case bound for this algorithm is exponential in the number of vertices,
independently of the number of colors.

Our new algorithm avoids any reductions and directly applies to parity games
of arbitrary outdegree. We use a discrete strategy evaluation measure similar to,
but more economical than the one used in [15]. Combined with Kalai’s and
Ludwig’s randomization schemes this provides for a worst case bound that is
simultaneously subexponential in the number of vertices and exponential in the
number of colors. This is an advantage when the colors are few.

Outline. After preliminaries on parity games, we start by presenting a sim-
pler, Ludwig-style randomized algorithm in combination with an abstract dis-
crete measure on strategies. This simplifies motivation, exposition, and defini-
tions for the specific tight discrete measure we build upon. We then proceed to
a more involved Kalai-style randomized algorithm allowing for arbitrary vertex
outdegrees. All proofs can be found in [1].

2 Parity Games

Definition 1 (Parity Games). A parity game is an infinite game played on a
finite directed bipartite leafless graph G[n, k] = (V0, V1, E, c), where n = |V0∪V1|,
E ⊆ (V0 × V1) ∪ (V1 × V0), k ∈ N, and c : V0 ∪ V1 → {1, . . . , k} is a coloring
function. The sizes of V0 and V1 are denoted by n0 and n1, respectively. Starting
from a vertex, Player 0 and 1 alternate moves constructing an infinite sequence
of vertices; Player i moves from a vertex in Vi by selecting one of its successors.
Player 0 wins if the highest color encountered infinitely often in this sequence is
even, while Player 1 wins otherwise.2 ��

Parity games are known to be determined : from each vertex exactly one
player has a winning positional strategy, selecting a unique successor to every
vertex [5]. All our results straightforwardly generalize to the non-bipartite case.

A binary parity game is a game where the vertex outdegree is at most two.

2 We systematically use n for the number of vertices and k for the number of colors;
consequently we usually skip [n, k] in G[n, k].
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3 Ludwig-Style Algorithm with a Well-Behaved Measure

Every positional strategy of Player 0 in a binary parity game can be associated
with a corner of the n0-dimensional boolean hypercube. If there is an appropriate
way of assigning values to strategies, then we can apply an algorithm similar to
[10] to find the best strategy as follows.

1. Start with some strategy σ0 of Player 0.
2. Randomly choose a facet F of the hypercube, containing σ0.
3. Recursively find the best strategy σ′ on F .
4. Let σ′′ be the neighbor of σ′ on the opposite facet F . If σ′ is better than σ′′,

then return σ′. Else recursively find the optimum on F , starting from σ′′.

To guarantee correctness and subexponentiality, the assignment cannot be com-
pletely unstructured. Also, evaluating strategies is costly, so a full evaluation
should only be performed for strategies that are really better than the current
one. In subsequent sections, we present a function Evaluate that given a strat-
egy σ returns an assignment νσ of values to vertices of the game that meets the
following criteria (where ≺ is a comparison operator on the values).

Stability. Let σ(v) be the successor of vertex v selected by strategy σ and let
σ(v) be the other successor of v. If νσ(σ(v)) 	 νσ(σ(v)) for all vertices v of
Player 0, then σ is optimal (maximizes the winning set of Player 0).

Uniqueness of optimal values. All optimal strategies have the same valua-
tion. (This is essential for a subexponential bound.)

Profitability. Suppose that νσ(σ(u)) 	 νσ(σ(u)) for every vertex u ∈ V0 \ v
and νσ(σ(v)) ≺ νσ(σ(v)) (attractiveness). Let σ′ be the strategy obtained
by changing σ only at v (single switch), and let νσ′ be its valuation. Then
νσ(v) ≺ νσ′(v) and νσ(u) 
 νσ′(u) for all other vertices u (profitability).

The Ludwig-style algorithm with Evaluate applies to solving binary parity
games. The evaluation function has the benefit that in step 4 of the algorithm,
σ′′ does not have to be evaluated, unless the recursive call is needed.

Ludwig [10] shows that his algorithm for simple stochastic games has a
2O(

√
n0) upper bound on the expected number of improvement steps. With only

minor modifications, the same proof shows that the Ludwig-style algorithm to-
gether with our Evaluate function has the same bound for parity games.

The value space of Evaluate allows at most O(n3 ·(n/k+1)k) improvement
steps. Since the algorithm makes only improving switches, the upper bound on
the number of switches of the combined approach is

min

(

O

(

n3 ·
(n

k
+ 1

)k
)

, 2O(
√

n0)

)

.

Any parity game reduces to a binary one. This allows for a subexponential
algorithm for games with subquadratic total outdegree. For arbitrary games the
reduction gives a quadratic explosion in the number of vertices and the Ludwig-
style algorithm becomes exponential. In Section 10 we achieve a subexponential
bound by employing a more involved randomization scheme from [9].
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4 Strategies and Values

For technical reasons, each vertex is assigned a unique value, called a tint.

Definition 2 (Tints). A bijection t : V → {1, . . . , n} such that c(u) ≤ c(v) ⇒
t(u) ≤ t(v) assigns tints to vertices. The color of a tint s ∈ {1, . . . , n} equals
c(t−1(s)). ��

Note that tints of vertices of the same color form a consecutive segment of
natural numbers. Subsequently we identify vertices with their tints, and slightly
abuse notation by writing c(t) for the color of the vertex with tint t.

Definition 3 (Winning and Losing Colors and Tints). Color i is winning
for Player 0 (Player 1 resp.) if it is even (odd resp.). Tint t is winning for
Player 0 (Player 1 resp.) if its color c(t) is. A color or tint is losing for a player
if it is winning for his adversary. ��

Note that tints of different colors are ordered as these colors. Within the same
winning (resp. losing) color the bigger (resp. smaller) tint is better for Player 0.

In this section we define the ‘value’ of a strategy – the target to be iteratively
improved. An elementary improvement step is as follows: given a strategy σ of
Player 0, its value is a vector of values of all vertices of the game, assuming that
the adversary Player 1 applies an ‘optimal’ response counterstrategy τ against
σ. The value of each vertex is computed with respect to the pair of strategies
(σ, τ), where the optimality of τ is essential for guiding Player 0 in improving
σ. We delay the issue of constructing optimal counterstrategies until Section 9,
assuming for now that Player 1 always responds with an optimal counterstrategy.

Definition 4. A positional strategy for Player 0 is a function σ : V0 → V1,
such that if σ(v) = v′, then (v, v′) ∈ E. Saying that Player 0 fixes his positional
strategy means that he deterministically chooses the successor σ(v) each time the
play comes to v, independently of the history of the play. Positional strategies
for Player 1 are defined symmetrically. ��

Assumption. From now on we restrict our attention to positional strategies
only. The iterative improvement proceeds by improving positional strategies for
Player 0, and this is justified by Profitability, Stability, and Uniqueness Theo-
rems 20, 22, and 23 below. The fact that Player 1 may also restrict himself to
positional strategies is demonstrated in Section 9.

Definition 5 (Single Switch). A single switch in a positional strategy σ of
Player 0 is a change of successor assignment of σ in exactly one vertex. ��

When the players fix their positional strategies, the trace of any play is a
simple path leading to a simple loop. Roughly speaking, the value of a vertex
with respect to a pair of positional strategies consists of a loop value (major
tint) and a path value (a record of the numbers of more significant colors on the
path to the major, plus the length of this path), as defined below.

Notation 6 Denote by V i the set of vertices of color i and by V >t the set of
vertices with tints numerically bigger than t. ��
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Definition 7 (Traces, Values). Suppose the players fix positional strategies
σ and τ , respectively. Then from every vertex u0 the trace of the play takes a
simple δ-shape form: an initial simple path (of length q ≥ 0, possibly empty)
ending in a loop:

u0, u1, . . . uq, . . . , ur, . . . us = uq, (1)

where all vertices ui are distinct, except uq = us. The vertex ur with the maximal
tint t on the loop uq, . . . , ur, . . . , us = uq in (1) is called principal or major.

Values for Non-principal Vertices. If the vertex u0 is non-principal, then
its value νσ,τ (u0) with respect to the pair of strategies (σ, τ) has the form (L, P, p)
and consists of:

Loop Value (Tint) L equal to the principal tint t;
Path Color Hit Record Relative to t defined as a vector

P = (mk, mk−1, . . . , ml, 0, . . . , 0
︸ ︷︷ ︸

l − 1 times

),

where l = c(t) is the color of the principal tint t, and

mi =
∣
∣{u0, u1, . . . ur−1} ∩ V i ∩ V >t

∣
∣

is the number of vertices of color i ≥ l on the path to from u0 to the major
ur (except that for the color l of the major we account only for the vertices
with tint bigger than t.)

Path Length p = r.

Values for Principal Vertices. If the vertex u0 is principal (case q = r = 0
in (1)) then its value νσ,τ (u0) with respect to the pair of strategies (σ, τ) is defined
as (t, 0̄, s), where 0̄ is a k-dimensional vector of zeros.

Path Value is a pair (P, p), where (t, P, p) is a vertex value. ��
The reason of the complexity of this definition is to meet the criteria enu-

merated in Section 3 and simultaneously obtain the ‘tightest possible’ bound on
the number of iterative improvements. It is clear that such a bound imposed by
the value measure from Definition 7 is O(n3 · (n/k + 1)k).

5 Value Comparison and Attractive Switches

Definition 8 (Preference Orders). The preference order on colors (as seen
by Player 0) is as follows: c ≺ c′ iff (−1)c · c < (−1)c′ · c′.

The preference order on tints (as seen by Player 0) is as follows:

t ≺ t′ iff (−1)c(t) · t < (−1)c(t′) · t′. ��

We thus have . . . ≺ 5 ≺ 3 ≺ 1 ≺ 0 ≺ 2 ≺ 4 ≺ . . . on colors.
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Definition 9 (‘Lexicographic’ Ordering). Given two vectors (indexed in de-
scending order from the maximal color k to some l ≥ 1)

P = (mk, mk−1, . . . , ml+1, ml),

P ′ = (m′
k, m′

k−1, . . . , m
′
l+1, m

′
l),

define P ≺ P ′ if the vector

(
(−1)k · mk, (−1)k−1 · mk−1, . . . , (−1)l+1 · ml+1, (−1)l · ml

)

is lexicographically smaller (assuming the usual ordering of integers) than the
vector

(
(−1)k · m′

k, (−1)k−1 · m′
k−1, . . . , (−1)l+1 · m′

l+1, (−1)l · m′
l

)
. ��

Definition 10 (Path Attractiveness). For two vertex values (t, P1, p1) and
(t, P2, p2), where t is a tint, l = c(t) is its color, and

P1 = (mk, mk−1, . . . , ml+1, ml, . . . , m1),

P2 = (m′
k, m′

k−1, . . . , m
′
l+1, m

′
l, . . . , m

′
1),

say that the path value (P2, p2) is more attractive3 modulo t than the path value
(P1, p1), symbolically (P1, p1) ≺t (P2, p2), if:

1. either (mk, mk−1, . . . , ml+1, ml) ≺ (m′
k, m′

k−1, . . . , m
′
l+1, m

′
l),

2. or (mk, mk−1, . . . , ml+1, ml) = (m′
k, m′

k−1, . . . , m
′
l+1, m

′
l) and

(−1)l · p1 > (−1)l · p2. (2)

Remark 11. Note that (2) means that shorter (resp. longer) paths are better for
Player 0 when the loop tint t is winning (resp. losing) for him. ��

Definition 12 (Value Comparison). For two vertex values define
(t1, P1, p1) ≺ (t2, P2, p2) if

1. either t1 ≺ t2,
2. or t1 = t2 = t, and (P1, p1) ≺t (P2, p2). ��

Definition 13 (Vertex Values). The value νσ(v) of a vertex v with respect
to a strategy σ of Player 0 is the minimum of the values νσ,τ (v), taken over all
strategies τ of Player 1. ��

In Section 9 we show that the ‘minimum’ in this definition can be achieved
in all vertices simultaneously by a positional strategy τ of Player 1.

Definition 14. The value of a strategy σ of Player 0 is a vector of values of
all vertices with respect to the pair of strategies (σ, τ), where τ is an optimal
response counterstrategy of Player 1 against σ; see Section 9. ��

3 In the sequel, when saying “attractive”, “better”, “worse”, etc., we consistently take
the viewpoint of Player 0.
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Definition 15. A strategy σ′ improves σ, symbolically σ ≺ σ′, if νσ(v) 
 νσ′(v)
for all vertices v and there is at least one vertex u with νσ(u) ≺ νσ′(u). ��
Proposition 16. The relations ≺ on colors, tints, values, and strategies, and
≺t on path values (for each t) are transitive. ��

Our algorithms proceed by single attractive switches only.

Definition 17 (Attractive Switch). Let (t1, P1, p1) and (t2, P2, p2) be the val-
ues with respect to σ of vertices v1 and v2, respectively. Consider a single switch
in strategy σ of Player 0, consisting in changing the successor of v with respect
to σ from v1 to v2. The switch is attractive if (t1, P1, p1) ≺ (t2, P2, p2). ��
Remark 18. Note that deciding whether a switch is attractive (when comparing
values of its successors) we do not directly account for the color/tint of the
current vertex. However, this color/tint may be eventually included in the values
of successors possibly dependent on the current vertex.

6 Profitability of Attractive Switches

Our algorithms proceed by making single attractive switches. Attractiveness is
established locally, by comparing values of a vertex successors with respect to a
current strategy; see Definition 17.

Definition 19. Say that a single switch from σ to σ′ is profitable if σ ≺ σ′. ��
Profitability of attractive switches is crucial for the efficiency, correctness, and

termination of our algorithms, as explained in Sections 3 and 10. Profitability
is a consequence of the the preceding complicated definitions of values, value
comparison, and strategy evaluation.

Theorem 20 (Profitability). Every attractive switch is profitable:

1. it increases the value of the vertex where it is made, and
2. all other vertices either preserve or increase their values,

i.e., the switch operator is monotone. ��

7 Stability Implies Optimality

The Main Theorem 22 of this section guarantees that iterative improvement
can terminate once a strategy with no attractive switches is found. In more
general terms it states that every local optimum is global. This is one of the
main motivations for the complex strategy evaluation definitions.

Definition 21. Say that a strategy σ is stable if it does not have attractive
switches with respect to τ(σ), an optimal counterstrategy of Player 1. ��

In Section 9 we show that all optimal counterstrategies provide for the same
values. Thus stability of σ in the previous definition may be checked after com-
puting any optimal counterstrategy τ(σ).

Theorem 22 (Stability). Any stable strategy of Player 0 is optimal: vertices
with loop values of even colors form the winning set of Player 0. ��
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8 Uniqueness of Optimal Values

Theorem 22 does not guarantee that different stable (hence optimal) strategies
provide for the same (or even comparable) vectors of values for the game ver-
tices. The uniqueness of optimal values is however crucial for the subexponential
complexity analysis of Sections 3 and 10, and is provided by the following

Theorem 23 (Uniqueness). Any two stable strategies of Player 0 give the
same values for all vertices of the game. ��

9 Computing Optimal Counterstrategies

Let Gσ be the game graph induced by a positional strategy σ of Player 0 (delete
all edges of Player 0 not used by σ). Partition vertices of Gσ into classes Lt

containing the vertices from which Player 1 can ensure the loop tint t, but cannot
guarantee any worse loop tint. This can be done by using finite reachability in Gσ

as follows. For each tint t in ≺-ascending order, check whether t can be reached
from itself without passing any tint t′ > t. If so, Player 1 can form a loop with t
as major. Since the tints are considered in ≺-ascending order, t will be the best
loop value Player 1 can achieve for all vertices from which t is reachable. Remove
them from the graph, place them in class Lt, and proceed with the next tint.

For each class Lt, use dynamic programming to calculate the values of 1-
optimal paths of different lengths from each vertex to t. For each vertex, the
algorithm first computes the optimal color hit record (abbreviated chr in the
algorithm) over all paths of length 0 to the loop major (∞ for each vertex except
t). Then it calculates the color hit record of optimal paths of length one, length
two, and so forth. It uses the values from previous steps in each step except the
initial one.4

Algorithm 1: Computing path values within a class Lt.
PathValues(Lt)
(1) t.chr[0]← (0, . . . , 0)
(2) foreach vertex v ∈ Lt except t

(3) v.chr[0]←∞
(4) for i← 1 to |Lt| − 1
(5) foreach vertex v ∈ Lt except t

(6) v.chr[i]← min≺t
{AddColor(t, v′.chr[i−1], t(v)) : v′ ∈

Lt is a successor of v)}
(7) foreach vertex v ∈ Lt except t

(8) v.pathvalue← min≺t
{(v.chr[i], i) : 0 ≤ i < |Lt|}

(9) t.pathvalue← min≺t
{v.pathvalue : v ∈ Lt is a successor of t}

(10) t.pathvalue.pathlength← t.pathvalue.pathlength + 1

4 The algorithm assumes the game is bipartite; in particular, t in line (9) cannot be a
successor of itself. It can be straightforwardly generalized for the non-bipartite case.
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The function AddColor takes a tint, a color hit record, and a second tint.
If the second tint is bigger than the first one, then AddColor increases the
position in the vector representing the color of the second tint. The function
always returns ∞ when the second argument has value ∞.

The algorithm also handles non-binary games.

Lemma 24 (Algorithm Correctness). The algorithm correctly computes val-
ues of optimal paths. Moreover:

1. optimal paths are simple;
2. the values computed are consistent with an actual positional strategy that

guarantees loop value t. ��

Lemma 25 (Algorithm Complexity). The algorithm for computing an op-
timal counterstrategy runs in time O(|V | · |E| · k), where |V | is the number of
vertices of the graph, |E| is the number of edges, and k is the number of colors.

10 Kalai-Style Randomization for Games with

Unbounded Outdegree

As discussed in Section 3, any non-binary parity game reduces to a binary one,
and the Ludwig-style algorithm applies. However, the resulting complexity gets
worse and may become exponential (rather than subexponential) due to a pos-
sibly quadratic blow-up in the number of vertices. In this section we describe a
different approach relying on the randomization scheme of Kalai [9,6] used for
Linear Programming. This results in a subexponential randomized algorithm di-
rectly applicable to parity games of arbitrary outdegree, without any preliminary
translations. When compared with reducing to the binary case combined with
the Ludwig-style algorithm of Section 3, the algorithm of this section provides
for a better complexity when the total number of edges is roughly Ω(n log n).

Games, Subgames, and Facets. Let G(d, m) be the class of parity games with
vertices of Player 0 partitioned into two sets U1 of outdegree one and U2 of an
arbitrary outdegree δ(v) ≥ 1, with |U2| = d and m ≥

∑

v∈U2
δ(v). Informally, d

is the dimension (number of variables to determine), and m is a bound on the
number of edges (constraints) to choose from. The numbers of vertices and edges
of Player 1 are unrestricted.

Given a game G ∈ G(d, m), a vertex v ∈ U2 of Player 0, and an edge e leaving
v, consider the (sub)game F obtained by fixing e and deleting all other edges
leaving v. Obviously, F ∈ G(d−1, m−δ(v)) and also, by definition, F ∈ G(d, m),
which is convenient when we need to consider a strategy in the subgame F as a
strategy in the full game G in the sequel. Call the game F a facet of G.

If σ is a positional strategy and e is an edge leaving a vertex v of Player 0, then
we define σ[e] as the strategy coinciding with σ in all vertices, except possibly
v, where the choice is e. If σ is a strategy in G ∈ G(d, m), then a facet F is
σ-improving if some witness strategy σ′ in the game F (considered as a member
of G(d, m)) satisfies σ ≺ σ′.
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The Algorithm takes a game G ∈ G(d, m) and an initial strategy σ0 as inputs,
and proceeds in three steps.

1. Collect a set M containing r pairs (F, σ) of σ0-improving facets F of G and
corresponding witness strategies σ � σ0.
(The parameter r specified later depends on d and m. Different choices of
r give different algorithms. The subroutine to find σ0-improving facets is
described below. This subroutine may find an optimal strategy in G, in
which case the algorithm returns it immediately.)

2. Select one pair (F, σ1) ∈ M uniformly at random. Find an optimal strategy σ
in F by applying the algorithm recursively, taking σ1 as the initial strategy.5

3. If σ is an optimal strategy also in G, then return σ. Otherwise, let σ′ be a
strategy differing from σ by an attractive switch. Restart from step 1 using
the new strategy σ′ and the same game G ∈ G(d, m).

The algorithm terminates because each solved subproblem starts from a
strictly better strategy. It is correct because it can only terminate by return-
ing an optimal strategy.

How to Find Many Improving Facets. In step 1 the algorithm above needs to
find either r different σ0-improving facets or an optimal strategy in G. To this
end we construct a sequence (G0, G1, . . . , Gr−d) of games, with Gi ∈ G(d, d + i).
All the d + i facets of Gi are σ0-improving; we simultaneously determine the
corresponding witness strategies σj optimal in Gj . The subroutine returns r
facets of G, each one obtained by fixing one of the r edges in Gr−d ∈ G(d, r). All
these are σ0-improving by construction.

Let e be the target edge of an attractive switch from σ0. (If no attractive
switch exists, then σ0 is optimal in G and we are done.) Set G0 to the game
where all choices are fixed as in σ0[e], and all other edges of Player 0 in G are
deleted. Let σ0 be the unique, hence optimal, strategy σ0[e] in G0. Fixing any
of the d edges of σ0 in G defines a σ0-improving facet of G with σ0 as a witness.

To construct Gi+1 from Gi, let e be the target edge of an attractive switch
from σi in G. (Note that σi is optimal in Gi but not necessarily in the full game
G. If it is, we terminate.) Let Gi+1 be the game Gi with e added, and compute
σi+1 as an optimal strategy in Gi+1, by a recursive application of the algorithm
above. Note that fixing any of the i+1 added target edges defines a σ0-improving
facet of G. Therefore, upon termination we have r such facets.

Complexity Analysis. The following recurrence bounds the expected number of
calls to the algorithm solving a game in G(d, m) in the worst case:

T (d, m) ≤
r∑

i=d

T (d, i) + T (d − 1, m − 2) +
1

r

r∑

i=1

T (d, m − i) + 1

5 Rather than computing all of M , we may select a random number x ∈ {1, . . . , r}
before step 1 and compute only x improving facets. This is crucial in order for the
computed sequence of strategies to be strictly improving, and saves some work.
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The first term represents the work of finding r different σ0-improving facets
in step 1. The second term comes from the recursive call in step 2. 6 The last term
accounts for step 3 and can be understood as an average over the r equiprobable
choices made in step 2, as follows. All facets of G are partially ordered by the val-
ues of their optimal strategies (although this order is unknown to the algorithm).
Optimal values in facets are unique by Theorem 23, and the algorithm visits only
improving strategies. It follows that all facets possessing optimal strategies that
are worse, equal, or incomparable to the strategy σ of step 2 will never be visited
in the rest of the algorithm. In the worst case, the algorithm selects the r worst
possible facets in step 1. Thus, in the worst case, in step 3 it solves a game in
G(d, m − i) for i = 1, . . . , r, with probability 1/r. This justifies the last term.

Kalai uses r = max(d, m/2) in step 1 to get the best solution of the recur-

rence. The result is subexponential, mO(
√

d/ log d). By symmetry, we can choose
to optimize a strategy of the player possessing fewer vertices.

Let ni denote the number of vertices of player i. Since m is bounded above
by the maximal number of edges, (n0 + n1)

2, and d ≤ min(n0, n1), we get

min

{

2
O

(

(log n1)·
√

n0/ log n0

)

, 2
O

(

(log n0)·
√

n1/ log n1

)
}

as the bound on the number of calls to the algorithm. Combining it with the
bound on the maximal number of improving steps allowed by our measure yields

min

{

2
O

(

(log n1)·
√

n0/ log n0

)

, 2
O

(

(log n0)·
√

n1/ log n1

)

, O

(

n3 ·
(n

k
+ 1

)k
)}

.

If n0 = O(poly(n1)) and n1 = O(poly(n0)) then this reduces to

min

{

2O(
√

n0 log n0), 2O(
√

n1 log n1), O

(

n3 ·
(n

k
+ 1

)k
)}

.

These are the bounds on the number of recursive calls to the algorithm.
Within each recursive call, the auxiliary work is dominated by time to compute
a strategy value, multiplying the running time by O(n · |E| · k).
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Abstract. We present several new algorithms as well as new lower and
upper bounds for optimizing functions underlying infinite games perti-
nent to computer-aided verification.

1 Introduction

Infinite two-person adversary full information games are a well established frame-
work for modeling interaction between a system and its environment. A correct
system can be naturally interpreted as a player possessing a winning strategy
against any strategy of the malicious environment. Respectively, a verification
process can be considered as a proof that a system does possess such a strategy.
If the system loses, then a winning strategy for the environment encompasses
possible system improvements. During the last decades a substantial progress
has been achieved both on fitting diverse approaches to computer-aided verifi-
cation into the game-theoretic paradigm and, simultaneously, on developing effi-
cient algorithms for solving games, i.e., determining the winner and its strategy
[6,10,13,18,22,31]. A naturally appealing approach to solving games [12,21,31]
consists in taking an initial strategy of the system and gradually ‘improving’
it, since a non-optimal strategy is outperformed by some counterstrategy of the
environment. This allows for improving either the strategy, or the system, or
both. In this paper we address the complexity of such an approach in an ab-
stract model based on pseudo-Boolean functions possessing essential properties
of games.

Game theory suggests, for numerous types of games, a nice characterization
of the optimal solutions for behaviors of rational players, the so-called Nash
equilibria. The ‘only’ remaining problem left widely open is: ‘What is the ex-
act computational complexity of finding Nash equilibria (optimal strategies) in
two-person games with finitely many strategies? Could such games be solved in
polynomial time? ’ This is a fundamental problem, the solution to which de-
termines whether or not, and to what extent game theory will be applicable
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to solving and optimizing real large-scale games emerging from practical ver-
ification of complex reactive systems. The problem is known to belong to the
complexity class NP∩coNP (therefore, most probably not NP-complete, luck-
ily!) but is not known to be polynomial time solvable. The best currently known
algorithms are exponential (sometimes subexponential). Clearly, superpolyno-
mial algorithms will not allow for practical solutions of the real-life verification
games, no matter how fast the progress in hardware continues. Consequently,
this problem is one of the most practical and (together with the NP versus P)
most fundamental problems in the foundations of computing, complexity theory,
and automata theory [27].

In this paper we address the efficiency of iterative improvement algorithms
for solving games in the following abstract setting. Consider a game where one of
the players has n binary choices, e.g., selects whether to move left or right1 in n
places, and every combination of choices is given a cost, reflecting how good this
strategy (combination of choices) is against a perfect adversary. This results in
an n-dimensional valued Boolean hypercube, or a pseudo-Boolean function. Con-
sequently, everything boils down to optimizing a pseudo-Boolean function. How
fast can we optimize such a function? Despite its simplicity, the question appears
extremely difficult for the classes of functions with special properties pertinent
to games. Not surprisingly, there are not so many strong and general results of
this kind in the literature. The best bound in Tovey’s survey [30] is O(2n/2);
Mansour and Singh [25] suggest an O(20.773n) algorithm (for Markov decision
processes), and we independently obtain an improved bound O(20.453n) for a
similar algorithm in a more general setting [5,8]. Ludwig [24] suggested a subex-
ponential O(2

√
n) algorithm for binary simple stochastic games, which becomes

exponential for games of unbounded (non-binary) outdegree. We suggested sev-
eral [3,6,7,8] subexponential algorithms for games of arbitrary outdegrees.

The development of our theory is primarily motivated by the so-called par-
ity games, which are infinite games played on finite directed bipartite leafless
graphs, with vertices colored by integers. Two players alternate moving a pebble
along edges. The goal of Player 0 is to ensure that the biggest color visited by
the pebble infinitely often is even, whereas Player 1 tries to make it odd. The
complexity of determining the winner in parity games, equivalent to the Rabin
chain tree automata non-emptiness, as well as to the µ-calculus2 model checking
[13,14], is a fundamental open problem in complexity theory [27]. The prob-
lem belongs to NP∩coNP, but its PTIME-membership status remains widely
open. Discounted mean payoff [34] and simple stochastic games [11,12], relevant
for verification of probabilistic systems, are two other classes to which our theory
applies [8].

We exploit the fundamental fact, apparently unnoticed before, that functions
arising from such games possess extremely favorable structural properties, close

1 The restriction to two successors is no loss of generality, since a game with non-
binary choices may be reduced to binary. However, complexity gets worse, and this
issue is dealt with in Section 9.

2 One of the most expressive temporal logics of programs [13].
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to the so-called completely unimodal functions [19,33,32,30]. These functions are
well known in the field of pseudo-Boolean optimization [9,20], an established area
of combinatorial optimization, in which local search [1,30] is one of the domi-
nating methods. The complexity of local search for different classes of functions
were carefully investigated [30,19,33]. However, all previously known algorithms
for completely unimodal functions were exponential [30,9]. A fruitful idea came
from linear programming. In the early 90’s Kalai [23] and Matoušek, Sharir,
Welzl [29,26] came up with strongly subexponential randomized algorithms for
linear programming. Later Ludwig [24] adapted it to binary simple stochastic
games, and we to binary parity games [28]. We also figured out that Kalai’s and
Sharir–Welzl’s randomized schemes fit perfectly well for completely unimodal
optimization [2,5,4] and parity games [28]. Later we succeeded to generalize and
adapt those subexponential schemes to create a discrete subexponential algo-
rithm for general (non-binary) parity games [6], and extend it to combinatorial
structures (which we call completely local-global) more directly reflecting games
[7,8,3].

In this paper we present new upper bounds on the number of iterations of var-
ious iterative improvement algorithms for optimization of completely unimodal
pseudo-boolean functions (CUPBFs). Such functions possess several remarkable
properties: 1) unique minimum and maximum on every subcube, 2) every vertex
has a unique neighborhood improvement signature. The problem of optimiz-
ing CUPBFs has been studied before [19,33], but only few and weak bounds
are known. Only a very restrictive subclass of decomposable CUPBFs is known
to allow for polynomial time randomized optimization. The best known upper
bounds are exponential, but it is conjectured that any CUPBF can be optimized
in polynomial time [33].

We investigated and compared, both theoretically and practically3, five algo-
rithms for CUPBF optimization: the Greedy Single Switch Algorithm (GSSA),
the Random Single Switch Algorithm (RSSA), the All Profitable Switches Algo-
rithm (APSA), the Random Multiple Switches Algorithm (RMSA), and Kalai-
Ludwig’s Randomized Algorithm (KLRA). The GSSA and the RSSA have been
studied by others in the context of CUPBF optimization. We first proposed the
use of the APSA and RMSA in this context in [2]. It turns out that complete
unimodality allows, knowing all improving neighbors of a vertex, to improve
by simultaneously jumping towards all or some of them. (Actually any 0-1 lin-
ear combination of improving directions gives an improvement; this allows for
non-local search algorithms that behave surprisingly well in practice.) The only
nontrivial lower bound that has been shown is an exponential one for the GSSA
[32]. Local search iterative improvement algorithms are appealing, easy to im-
plement, and efficient in practice. But no nontrivial upper bounds are known for
those algorithms, except for subclasses of all CUPBFs. We settle several such
nontrivial bounds in this paper. The fifth algorithm, KLRA, was first proposed
in [24] for solving simple stochastic games, with a subexponential upper bound

3 Our results on practical evaluation and comparison of the algorithms can be found
in [2,5,4].
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on the expected running time. We show that it can be modified to solve the
CUPBF optimization problem, still in expected subexponential time.

Outline of the paper. In Section 2 we recall the definitions and main results
concerning completely unimodal functions. Section 3 describes five iterative im-
provement algorithms for completely unimodal functions. Section 4 is devoted to
the random multiple switches algorithm, whereas Section 5 covers single greedy
single random, and all profitable switches algorithms. Section 6 adds random
sampling to the random multiple switches algorithm, while Section 7 does the
same to all other algorithms. Section 8 describes the Kalai-Ludwig-style algo-
rithm. Section 9 generalizes the previous results to completely local-global func-
tions and presents the Sharir-Welzl-style algorithm for these functions.

2 Completely Unimodal Pseudo-Boolean Functions

Parity and simple stochastic games can be solved by maximizing appropriately
defined functions on neighborhood graphs representing sets of strategies. The
prototypical case of such neighborhood graphs is the Boolean hypercube, and the
essential structure of games pertinent to optimization by iterative improvement
is captured, in the first approximation, by completely unimodal functions on
Boolean cubes [19,32,33,30]. Much of the theory we present can be understood
and developed in terms of completely unimodal functions, and until Section 9
we concentrate on this case.

In general, parity and simple stochastic games require less restrictive neigh-
borhood structures and functions. In [7] we succeeded to characterize them as
a class we called completely local-global (CLG) functions, defined on Cartesian
products of arbitrary finite sets, rather than on Boolean hypercubes. These func-
tions, considered in Section 9, were crucial in our development [6,7] of subex-
ponential algorithms for parity games with arbitrary outdegree. This is because
reducing such games to binary ones quadratically increases the number of ver-
tices. As a consequence, a straightforward reduction renders subexponential al-
gorithms exponential [6].

Let H(n) denote the n-dimensional Boolean hypercube {0, 1}n, for n ∈ N
+. A

pseudo-Boolean function is an injective4 mapping H(n) → R associating a real
number to every n-dimensional Boolean vector. For 0 ≤ k ≤ n, a k-dimensional
face of H(n), or a k-face, is a collection of Boolean vectors obtained by fixing n−k
arbitrary coordinates and letting the k remaining coordinates take all possible
Boolean values. Faces of dimension 0 are called vertices, faces of dimension 1 are
called edges. Faces of dimension n − 1 are called facets. Two vertices that share
an edge are called neighbors. Each vertex v in H(n) has exactly n neighbors,
forming the standard neighborhood of v on H(n).

4 The standard injectiveness restriction is lifted in Section 9.
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Complete Unimodality. A pseudo-Boolean function f is called completely uni-
modal (CUPBF for short) if one of the following four equivalent conditions holds
[19,33]:

1. f has a unique local minimum on each face,
2. f has a unique local maximum on each face,
3. f has a unique local minimum on each 2-face,
4. f has a unique local maximum on each 2-face.

Improving directions. Let f : H(n) → R be a CUPBF and let v be a vertex on
H(n). Number the dimensions of H(n) from 0 to n−1. For each i ∈ {0, 1, ..., n−
1}, let vi be the neighbor of v that is reached by moving in coordinate i from v.
Let pi be 1 if f(v) < f(vi), otherwise 0. Then we call p = [p0, p1, ..., pn−1] the
vector of improving directions (VID) of v under f .

In the sequel we will usually abuse terminology by identifying a function and
a (valued) hypercube it is defined upon. By ‘optimizing’ we mean ‘maximizing ’.

3 Five Iterative Improvement Algorithms

A standard local-search improvement algorithm starts in an arbitrary point v0
of the hypercube H(n) and iteratively improves by selecting a next iterate with
a better value from a polynomial neighborhood N(vi) of the current iterate.

Specific instances of the standard algorithm are obtained when one fixes:

1. the neighborhood structure on H(n),
2. the disciplines of selecting the initial point and the next iterate.

Two major local-search improvement algorithms, the Greedy Single Switch Algo-
rithm (GSSA) and the Random Single Switch Algorithm (RSSA) have previously
been investigated and used for optimizing CUPBFs [30]. We also investigate the
All Profitable Switches Algorithm (APSA) and the Random Multiple Switches
Algorithm (RMSA). Strictly speaking, neither APSA, nor RMSA is a local-search
algorithm. The first one operates with neighborhood structures which vary de-
pending on the CUPBF being optimized. The second chooses the next iterate
from a non-polynomially bounded (in general) neighborhood of the current it-
erate. Finally, we show how the subexponential Kalai-Ludwig’s Randomized Al-
gorithm (KLRA) for solving binary simple stochastic games can be modified
to optimize CUPBFs, and show that it is subexponential for this problem as
well, with expected worst case behavior 2O(

√
n). This algorithm has so far been

unknown in the field of CUPBF optimization.

Greedy Single Switch Algorithm (GSSA). This is a local-search algorithm
that at every iteration chooses the highest-valued neighbor of the current vertex
as the next iterate. Recall that every vertex of H(n) has exactly n neighbors (in
the standard neighborhood). Unfortunately, this algorithm may take exponen-
tially many steps to find the maximum of a CUPBF [32].
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Random Single Switch Algorithm (RSSA). This is a local-search algo-
rithm that at every iteration chooses uniformly at random one of the higher-
valued neighbors of the current vertex as the next iterate. This algorithm may
also take exponentially many iterations to find the global maximum. Although
its expected running time for general CUPBFs is unknown, Williamson Hoke
[33] has shown, using a proof technique due to Kelly, that the RSSA has ex-
pected quadratic running time on any decomposable hypercube. Call a facet F
an absorbing facet if no vertex on F has a higher-valued neighbor that is not on
F . A hypercube is called decomposable iff it has dimension 1 or has an absorbing
facet that is decomposable. This result, together with the fact that in a CUPBF
there is a short improving path from any vertex to the maximum (i.e., Hirsch
conjecture holds), form grounds for the polynomial time optimization conjecture
for CUPBFs [33] (currently open).

All Profitable Switches Algorithm (APSA). The All Profitable Switches
Algorithm (APSA) at every iteration computes the VID s of a current iterate v
and inverts the bits of v in positions where s has ones to get the new iterate v′

(i.e., v′ := v XOR s.)
This algorithm may also be seen as a local-search algorithm, but the structure

of the neighborhood is not fixed a priori (as for GSSA and RSSA), but rather
changes for each CUPBF.

APSA is a stepwise improvement algorithm for CUPBFs because the current
iterate v is the unique global minimum on the face defined by fixing all coordi-
nates corresponding to zeros in the VID s. Therefore, the next iterate v′ (which
belongs to the same face) has a better function value.

Random Multiple Switches Algorithm (RMSA). Like APSA, the Ran-
dom Multiple Switches Algorithm (RMSA) at every iteration computes the VID
s of a current iterate v. However, to get the next iterate v′ RMSA inverts bits
in v corresponding to a nonempty subset s′ of the nonzero bits in s, chosen
uniformly at random (i.e., v′ := v XOR s′.)

RMSA is a stepwise improvement algorithm for CUPBFs because the current
point v is the unique global minimum on the face defined by fixing the coordi-
nates in v corresponding to zeros in s′. Thus the next iterate v′, belonging to
this face, must have a better function value. Note that RMSA selects at random
from a neighborhood that may be exponentially big in the dimension. So, strictly
speaking, this is not a polynomial local-search improvement algorithm.

Kalai-Ludwig’s Randomized Algorithm (KLRA). In a major break-
through Kalai [23] suggested the first subexponential randomized simplex al-
gorithm for linear programming. Based on Kalai’s ideas, Ludwig [24] suggested
the first subexponential randomized algorithm for simple stochastic games with
binary choices. We show that Ludwig’s algorithm without any substantial mod-
ifications performs correctly and with the same expected worst-case complexity
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2O(
√

n) for optimizing CUPBFs. Kalai-Ludwig’s algorithm may informally be
described as follows.

1. Start at any vertex v of H(n).
2. Choose at random a coordinate i ∈ {1, . . . , n} (not chosen previously).
3. Apply the algorithm recursively to find the best point v′ with the same i-th

coordinate as vi.
4. If v′ is not optimal (has a better neighbor), invert the i-th component in v′,

set v := v′ and repeat.

4 The Random Multiple Switches Algorithm

The only two algorithms that were previously studied for the CUPBF optimiza-
tion problem are: 1) the GSSA, 2) the RSSA. The GSSA makes an exponential
number of steps on CUPBFs constructed in [32]. If extremely unlucky, the RSSA
can make an exponential number of steps on CUPBFs generated by Klee-Minty
cubes, but nevertheless its expected runtime on such cubes is O(n2), quadratic
in the number of dimensions. The same expected quadratic upper bound holds
for the RSSA running on the class of the so-called decomposable CUPBFs (of
which Klee-Minty’s form a proper subclass) [33, p. 77-78]. Besides these results,
there are no other known: 1) nontrivial lower bounds for the problem, 2) better
upper bounds for any specific algorithms. Nevertheless, [33, p. 78] conjectures
that the RSSA is (expected) polynomial on all CUPBFs.

It is worth mentioning, however, that for any CUPBF with optimum v∗ and
any initial vertex v0 there is always an improving path from v0 to v∗ of length
hd(v0, v

∗), the Hamming distance between v0 and v∗. Therefore, the ‘Hirsch con-
jecture’ about short paths to the optimum holds for CUPBFs (thus the potential
existence of ‘clever’ polynomial time algorithms is not excluded).

Simultaneously, nothing except this ‘trivial linear’ Ω(n) lower bound is cur-
rently known for the CUPBF optimization problem. For the broader classes of
all pseudo-Boolean and all unimin functions5 there are the Ω(2v/

√
n) and the

Ω(2v/n1.5) lower bounds, respectively, for any deterministic algorithms, and the
Ω(2n/2 · n) lower bound for any randomized algorithms [30, Thm. 14, p. 66,
Coroll. 21, p. 71, Coroll. 19, p. 69].

In view of the above results our new, presented in this section, O(20.773n) =
O(1.71n) upper bound for our new RMSA (Randomized Multiple Switch Algo-
rithm)6 should be considered an improvement. The key step consists in exploiting
complete unimodality and the next simple lemma, giving a lower bound on the
per-step improvement of the target function value by the RMSA, exponential in
the number of improving directions in the current vertex.

5 Possessing a unique minimum.
6 Which is not local-search type. Maybe this is the reason it was not considered in

general pseudo-Boolean optimization; it is only correct for CUPBFs.
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Lemma 1. The expected function value improvement of the RMSA step from a
vertex v with i > 0 improving directions is at least 2i−1.

This makes the RMSA attractive: we can guarantee that the expected ‘value
jump’ in each step is relatively high, provided, there are many improving direc-
tions. If the average number of improving directions per vertex visited during
a run of the RMSA were at least k, the algorithm would terminate in at most
O(2n−k) steps. In particular, n/2 average improving directions would give an
O(2n/2) upper bound. Can we guarantee any nontrivial lower bound on the
number of improving directions in any run of the RMSA? Fortunately, the fun-
damental property that in every completely unimodal cube every possible bit
vector of improving directions is present exactly once [33, p. 75-76] allows us to
do this. The proof of the following theorem assumes the worst (and seemingly
unrealizable) case that the algorithm is always unlucky, selecting a vertex with
the fewest possible number of improving directions, and the cube generated by
these direction is numbered by the smallest possible successors of the current
value. This forces the worst case and settles an upper bound on the number of
RMSA iterations in the worst case.

Theorem 1. The expected number of iterations made by the RMSA on an n-
dimensional CUPBF is less than 20.773n = 1.71n, for sufficiently large n.

After we obtained the bound from Theorem 1, we were pointed out that a
similar bound for the same algorithm, but applied to Markov decision processes,
was proved earlier in [25]. Later it became clear that our result is stronger, after
we succeeded to reduce simple stochastic games to CLG-functions and CLG-
functions to CU-functions [7]. Moreover, we substantially improve the bound
from Theorem 1 below 2n/2 in Section 6 (for a variant of the algorithm).

5 Single Greedy, Single Random, and All Profitable
Switches Algorithms

We start with a simple lower bound on the per-step improvement for all three
algorithms. This bound is weaker than for the RMSA. Consequently, the upper
bounds we can settle for these algorithms are weaker. Nevertheless, the practi-
cal behavior of these algorithms shown in experiments [2,5,4] make them very
attractive.

Proposition 1. When the APSA, the GSSA, or the RSSA makes a switch in
a vertex with i improving directions the value of the target function increases at
least by i (by expected value at least i/2 for the RSSA).

Theorem 2. For any 0 < ε < 1 the APSA, the GSSA,, and the RSSA make
fewer than 2n−(1−ε) log(n) iterations on any n-dimensional CUPBF, for suffi-
ciently large n.
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Remark 1. 1) Note that it is stronger than claiming ‘fewer than 2n−c (for a
constant c > 0)’, but 2) weaker than ‘fewer than 2cn (for a constant 0 < c < 1)’.
3) This upper bound is better than the 5/24 · 2n − 45 lower bound for any local
improvement algorithm on a uniminmax function [30, Thm 23, p. 72].

6 Adding Random Sampling to the RMSA

The RMSA can be considerably improved by adding random sampling. If we start
the RMSA from a ‘good’ vertex, with a value close to the optimum, the RMSA
guarantees a reasonably short run before finding it, as is shown in Section 4.
The trick is to select a good initial vertex by making an optimal number of
random probes picking the one with the best value, and to minimize the overall
running time. We call the modified algorithm the RMSA-RS and parameterize
it by the number of randomly sampled vertices. For this modified algorithm, a
better upper bound can be shown, when we choose the parameter optimally:

Theorem 3. The RMSA-RS can be parameterized in such a way that its ex-
pected running time on an n-dimensional CUPBF is O(20.453n) = O(1.37n).

As described, the RMSA-RS always makes 20.453n random samplings, before
starting any optimizations, so its expected best case is Ω(20.453n). Although
other single or multiple switch algorithms we consider have worse known upper
bounds, they show much better practical behavior.

7 Adding Random Sampling to the APSA, the GSSA,
and the RSSA

As we saw in the previous section, a better bound can be proved for the RMSA
when random sampling is added. In this section we show that random sampling
also allows for better bounds for the APSA, the GSSA, and the RSSA. The
bounds are not as strong, however, as the one for the RMSA with random
sampling.

Theorem 4. For any 0 < ε < 1/2 the All Profitable Switches, the Greedy Sin-
gle Switch, and the Randomized Single Switch Algorithms with initial random
sampling of 2

n
2 −( 1

2 −ε) log(n) vertices make less than 2
n
2 −( 1

2 −ε) log(n) iterations on
any n-dimensional CUPBF, for sufficiently large n.

Corollary 1. With the initial random sampling of 2
n
2 −( 1

2 −ε) log n vertices, for
any ε ∈ (0, 1/2), the APSA, the GSSA, and the RSSA have running times
(expected in the case of RSSA) that are O(2

n
2 −( 1

2 −ε) log n).
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8 Kalai-Ludwig’s Algorithm for CUPBFs

We were the first to observe [2] that the Kalai-Ludwig’s Randomized Algorithm
(KLRA) initially designed for linear programming [23] and later adapted for sim-
ple stochastic games [24], works perfectly for CUPBF optimization, also provid-
ing subexponential expected running time 7. Modified for CUPBF optimization
the KLRA is shown below.

Algorithm 1: Kalai-Ludwig’s Algorithm for CUPBFs
KLRA(CUPBF H, initial vertex v0)
(1) if dim(H) = 0
(2) return v0
(3) else
(4) choose a random facet F of H containing v0
(5) v∗ ← KLRA(F , v0)
(6) if neighbor u of v∗ on H\F is better than v∗

(7) return KLRA(H \ F , u)
(8) else
(9) return v∗

It turns out that the algorithm is correct and terminating:

Theorem 5. For every CUPBF, KLRA terminates and returns the global max-
imum.

The following adjusts the theorem and proof in [24] to the case of CUPBFs.

Theorem 6. The expected running time of KLRA on a CUPBF is 2O(
√

n).

Our experiments on randomly generated CUPBFs [2,5,4] indicate that KLRA
performs better than its theoretical subexponential upper bound. Surprisingly,
7 Added in proof: Bernd Gärtner pointed out to us that he came up to similar

results in [16] (journal version [17]), also building on the ideas of Kalai, Matoušek,
Sharir, and Welzl. Rather than using the standard terminology of completely uni-
modal functions [19,32,33,30], B. Gärtner employs a less common and quite inex-
pressive term abstract optimization functions instead, and this unfortunate choice
partially explains why his results have not become widely known in pseudo-Boolean
optimization. It should be noted, however, that our algorithms and analysis are more
general (see the next section), since they apply not only for Boolean cubes, but to
hyperstructures (products of simplices) as well. We also allow the functions to take
values in partially rather than totally ordered sets. Additionally, we relax and do
not stipulate the “unique sink on every subcube” property. All this is more ade-
quate for games and provides for better complexity bounds. We thank B. Gärtner
for his pointers and observations.
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the other four algorithms considerably outperform KLRA, although no subexpo-
nential bounds are currently known for them. It is reasonable to believe that for
some of the algorithms there may be subexponential or better upper bounds. In
this work we proved the first nontrivial upper bounds for these algorithms. The
bounds we showed are still exponential, but not expected to be tight. Rather,
they are to be viewed as a first step towards settling the precise complexity of
these algorithms on CUPBFs.

9 Completely Local-Global (CLG) Functions

So far we restricted our attention to binary games. Although every non-binary
game can be reduced to a binary one, the resulting number of vertices is propor-
tional to the size of the initial graph. This may give a quadratic blow-up in the
number of vertices (e.g., for graphs of linear outdegree), and the 2O(

√
n) bound

becomes exponential, since n is quadratic in the initial number of vertices. In
this section we show how to apply more sophisticated algorithms directly on
non-binary structures, maintaining the subexponential bounds. We start with a
non-binary generalization of hypercubes.

Definition 1 (Hyperstructure). For each j ∈ {1, . . . , d} let Pj = {ej,1, . . . ,

ej,δj
} be a finite set. Call P =

∏d
j=1 Pj a d-dimensional hyperstructure, or

structure for short. ��
A substructure P ′ ⊆ P is a product P ′ =

∏d
j=1 P ′

j , where ∅ �= P ′
j ⊆ Pj for

all j. If each P ′
j has only two elements, then identify P ′ with H. Call P ′ a facet

of P if there is a j such that P ′
k = Pk for all k �= j, and P ′

j has only one element.
Say that x, y ∈ P, are neighbors iff they differ in only one coordinate. Thus each
x ∈ P has exactly

∑d
j=1(δj −1) neighbors. The neighbor relation defines a graph

with elements of the hyperstructure as nodes, allowing us to talk about paths
and distances in the hyperstructure. A structure P =

∏d
j=1 Pj has d dimensions

and n =
∑d

j=1 δj facets.
Throughout this section, let D be some partially ordered set. We now con-

sider functions defined on P with values in D. Functions with partially ordered
codomains are better suited for games [7].

A local maximum of a function f : P → D is a vertex in P with value bigger
than or equal to all its neighbors. A global maximum is a vertex with a function
value bigger than or equal to the values of all other vertices. In particular, any
global maximum is comparable with all other vertices. Local and global minima
are defined symmetrically.

Definition 2 (CLG-function on a hyperstructure). Let f : P → D be a
function such that all neighbors have comparable values. Say that f is a CLG-
function if the following properties hold on every substructure of P:

1. any local maximum of f is also global;
2. any local minimum of f is also global;
3. any two local maxima are connected by a path of local maxima;
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4. any two local minima are connected by a path of local minima.
By a CLG-structure we mean a CLG-function together with the underlying

hyperstructure.

We note in passing that CLG-functions can be defined on hypercubes as
well (with the same four properties), and CUPBFs can be defined: 1) with a
partial set D as co-domain, and 2) on hyperstructures. The relaxation of the
co-domain from R to D is an advantage (the essential properties rely only on the
order of neighbors), important for the applications to games. Many properties
are also carried on from hypercubes to hyperstructures, usually with a modified
formulation. Multiple switches algorithms, like APSA and RMSA, generalize to
hyperstructures as well.

As shown in [7], Algorithm 2 optimizes CLG-functions on hyperstructures

in expected time 2O(
√

d log(n/
√

d)+log n), where n =
∑d

j=0 δj . For games, where
the maximal outdegree is d and n = O(d2), the bound collapses to 2O(

√
d log d).

The algorithm is adapted from the linear programming algorithm by Matoušek,
Sharir and Welzl [29,26]. If P happens to be binary, the algorithm coincides with
Kalai-Ludwig’s algorithm; see Section 8.

Algorithm 2: MSW-Style Optimization Algorithm
Optimize(CLG-structure P, initial vertex v0)
(1) if P = v0
(2) return v0
(3) else
(4) choose a random facet F of P, not containing v0
(5) v∗ ← Optimize(P \ F, v0)
(6) if neighbor u of v∗ on F is better than v∗

(7) return Optimize(F, u)
(8) else
(9) return v∗

The importance of CLG-functions stems from the fact that the strategy mea-
sures from [24,31,6] are indeed CLG-functions, as shown in [7]. Moreover, CLG-
functions on hypercubes can be transformed to CUPBFs by introducing an arti-
ficial order on unordered neighbors [7]. Also, CLG-functions on hyperstructures
can be transformed analogously to CUPBF-like functions on hyperstructures. Fi-
nally, we showed in [7] that any CLG-function reduces to an LP-type problem, an
abstract framework for linear programming [29] and problems in computational
geometry [26,15]. These reductions provide a strong argument for CLG-functions
as a link between well-studied areas that look very different on the surface.

CLG-functions simultaneously allow for subexponential and multiple switch
algorithms. Although the latter currently have worse known upper bounds, good
practical behavior of such algorithms, confirmed by experiments, make them
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very attractive and competitive [2,5,4]. We hope that a thorough investigation
of random walks on the favorable CU- or CLG-structures will allow for improved
bounds for multiple switching algorithms, both on the average and in the worst
case.
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15. B. Gärtner. A subexponential algorithm for abstract optimization problems. SIAM
Journal on Computing, 24:1018–1035, 1995.
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Abstract

We give a simple, direct, and constructive proof of memoryless determinacy for parity and
mean payo& games. First, we prove by induction that the 8nite duration versions of these games,
played until some vertex is repeated, are determined and both players have memoryless winning
strategies. In contrast to the proof of Ehrenfeucht and Mycielski, Internat. J. Game Theory,
8 (1979) 109–113, our proof does not refer to the in8nite-duration versions. Second, we show
that memoryless determinacy straightforwardly generalizes to in8nite duration versions of parity
and mean payo& games.
c© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Parity games are in8nite duration games played by two adversaries on 8nite leaf-
less graphs with vertices colored by nonnegative integers. One of the players tries to
ensure that the maximal vertex color occurring in the play in8nitely often is even,
while the other wants to make it odd. The problem of deciding the winner in parity
games is polynomial time equivalent to the Rabin chain tree automata (or parity tree
automata) nonemptyness, and to the model checking problem for the �-calculus [6], one
of the most expressive temporal logics of programs, expressively subsuming virtually
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all known such logics. For these reasons, parity games are of considerable importance
and have been extensively studied by the complexity-theoretic, automata-theoretic, and
veri8cation communities.
One of the fundamental properties of parity games, which almost all decision algo-

rithms rely upon, is the so-called memoryless determinacy. Vertices of every game can
be partitioned into winning sets of both players, who possess positional winning strate-
gies from all vertices in their winning sets. This means that for each vertex owned
by a player, the player can decide in advance what to do if the play reaches that
vertex, by deterministically selecting one of the outgoing edges independently of the
history of the play. Moreover, revealing this positional strategy in advance is not a dis-
advantage.
Emerson [4] sketched the 8rst memoryless determinacy proof for parity games 1 as

early as in 1985. His proof is based on a (fairly complicated) simpli8cation by Hossley
and Racko& [8] (relying on K-onig’s lemma) of Rabin’s original proof [12] of the
nonemptyness problem for Rabin automata. A later, more self-contained, determinacy
proof by Emerson and Jutla [5] relies heavily on the �-calculus, and is non-constructive.
For example, the de8nition of a strategy in [5] uses properties of all paths in a binary
tree, a set of continuum cardinality. Later McNaughton [10] and Zielonka [15] gave
alternative proofs discussed below.
Today it is interesting to note that memoryless determinacy of parity games is a one-

line consequence (using a simple reduction; see, e.g., Puri [11]) of the earlier more
general result of Ehrenfeucht and Mycielski [2,3] on memoryless determinacy of the
so-called mean payo8 games.
Mean payo& games are also in8nite duration games played by two adversaries on

8nite graphs, but with weighted edges. Players try to maximize/minimize the limit mean
value of edge weights encountered during the play. It was proved by Ehrenfeucht and
Mycielski [2,3] that every mean payo& game has a unique value � such that Player 0
can ensure a gain of at least � and Player 1 can ensure a loss of at most �, i.e.,
the games are determined. Furthermore, each player can secure this value by using a
positional (memoryless) strategy.

The proof for mean payo& games given by Ehrenfeucht and Mycielski [3] relies
upon a sophisticated cyclic interplay between in&nite duration games and their &nite
counterparts. Proofs for in8nite games rely on properties of 8nite games and vice versa.
The authors asked whether it is possible to give a direct, rather than roundabout proof,
a question we succeeded to answer aNrmatively in this paper. Memoryless determinacy
for mean payo& games was later shown constructively by Gurvich et al. [7], but their
proof is rather involved, using estimates of norms of solutions to systems of linear
equations, convergence to the limit, and precision arguments.
The purpose of this paper is to give a simple and direct proof that works uniformly

for both parity and mean payo& games. Our proof does not involve any auxiliary
constructions or machinery (like �-calculus, or linear algebra, or limits), proceeds by
elementary induction, and constructs positional strategies for more complicated games
from strategies for simpler ones. Similar to [3], we rely on &nite duration versions

1 Actually for Rabin pairs automata, but easily transfers to parity games/automata.
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of the games, played until the 8rst vertex repetition. However, in contrast to [3], we
completely avoid roundabout proofs of the properties of 8nite games using in8nite
ones and vice versa. Our proof is constructive, although the algorithm it provides is
not intended to be very eNcient. Due to the importance of parity games and mean
payo& games, we feel that a straightforward and constructive proof of memoryless
determinacy, common to both games, and without involving external powerful methods
should be interesting and useful.
Two interesting memoryless determinacy proofs were given by McNaughton [10]

and Zielonka [15], and both have very nice features. McNaughton studies a broad
abstract class of games on &nite graphs (including parity games), for which the winning
conditions can be stated in terms of winning subsets of vertices. His proof provides a
necessary and suNcient condition for such games to possess memoryless determinacy.
This proof is constructive, but does not apply directly to mean payo& games, since the
set of vertices visited in8nitely often in a play does not uniquely determine its value.
Zielonka [15] gives two simple and elegant proofs that work for parity games with a
possibly in&nite number of vertices, but not for mean payo& games. The 8rst version
of Zielonka’s proof is constructive and uses induction on the number of colors and
vertices (trans8nite induction if there are in8nitely many vertices). The second version
is shorter but nonconstructive.
In contrast, our argument exploits structural similarities of parity and mean payo&

games to give a uniform proof for both. It would be interesting to know whether our
proof technique can be extended to more general classes of discounted and simple
stochastic games [16]. Our current assumption on a winning condition, which allows
to reduce in8nite to 8nite duration games and conduct the uniform proof, is too strong,
and should be relaxed to cover discounted and simple stochastic games.
The interest in parity games and mean payo& games is to a large extent motivated

by their complexity-theoretic importance. For both games, the corresponding decision
problems belong to the complexity class NP∩ coNP, but their PTIME membership
status remains open. Much of the research in the complexity of solving these games
relies on memoryless determinacy, e.g., [1,7,9,13,16]. Some papers rely essentially on
memoryless determinacy, as [1,16], while others prove it independently, explicitly or
implicitly [7].

1.1. Outline of the paper

Section 2 gives basic de8nitions concerning parity games. Theorem 3.1 of Section 3
shows determinacy of 8nite duration parity games, with strategies requiring memory.
The proof is by elementary induction on the number of vertices in a 8nite tree. Sec-
tion 4 provides intermediate results about the properties of positional strategies in
8nite duration games, needed in later sections. In Section 5 we prove by induction
on the number of edges in the games, that 8nite duration parity games are solv-
able in positional strategies. This is the main theorem in the paper. We extend the
proof to in8nite duration parity games in Section 6. In Section 7 we show how the
proof for parity games generalizes to yield memoryless determinacy of mean payo&
games.
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2. Parity games

We assume the standard de8nition of parity games (PGs). These are in&nite duration
adversary full information games played by Players 0 and 1 on &nite directed leaPess
graphs G=(V; E) with vertices colored by natural numbers. The vertices of the graph
are partitioned into sets V0 and V1, and every vertex has at least one outgoing edge
(i.e., there are no leaves or sinks). The game starts in some vertex, and Player i
chooses a successor when a play comes to a vertex in Vi. In this way, the players
construct an in8nite sequence of vertices, called a play. The parity of the largest color
occurring in8nitely often in this play determines the winner: even/odd is winning for
Player 0/Player 1, respectively.
A (general) strategy of Player i is a function that for every 8nite pre8x of a play,

ending in a vertex v∈Vi, selects a successor of v (move of the player). A positional
strategy for Player i is a mapping selecting a unique successor of every vertex v∈Vi.
When a play comes to v∈Vi, Player i unconditionally selects the unique successor
determined by the positional strategy, independently of the history of the play. Thus
positional strategies are memoryless.
When considering a positional strategy 	 of Player i, it is often useful to restrict

to the graph G	 obtained from G by removing all outgoing edges from vertices in Vi,
except those used by 	.

3. Finite duration parity games

Together with the in8nite duration parity games de8ned above, we also consider
their &nite duration counterparts, fundamental to our proofs. Such games are played
on the same graphs as PGs, but only until the 8rst loop is constructed. We 8rst establish
memoryless determinacy for 8nite duration games and then extend it to in8nite duration
ones.
A &nite duration parity game (FPG) Ga starts in vertex a, and players alternate

moves until some vertex vl is visited for the second time. At this point the loop
from vl to vl constructed during the play is analyzed, and the maximal vertex color
c occurring on this loop determines the winner. If c is even, then Player 0 wins;
otherwise, Player 1 wins.
FPGs are 8nite perfect information zero-sum games (the loser pays $1 to the winner).

By the general theorem of game theory (proved nonconstructively using Brouwer’s or
Kakutani’s 8xpoint theorems), every such game has a value. However, for the special
case of FPGs, the proof of this fact is very simple and constructive. The argument
is quite well known and can be attributed to Zermelo [14]. Nevertheless, to make the
paper self-contained and to stress that probabilistic strategies 2 are not needed to decide
a winner in a 8nite duration parity game, we give a direct proof here.

2 Necessary, for example, in the “stone-paper-scissors” game.
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Proposition 3.1. The vertices of any FPG G can be partitioned into sets W0(G) and
W1(G) such that Player i can win Gv when v∈Wi(G).

De�nition 3.2. The set Wi(G) in Proposition 3.1 is called the winning set for Player i.

Proof. Starting from every vertex v construct an AND-OR tree of all possible develop-
ments of an FPG starting at v. This tree is 8nite, with leaves corresponding to the 8rst
vertex repetitions on paths from the root. Mark those leaves with 0 or 1 corresponding
to which player wins in the leaf (on the corresponding loop). Evaluate the root of
the tree bottom-up by repeatedly using the rules: (1) if a vertex u of Player i has a
successor marked i, then mark u with i; (2) if all successors of a vertex u of Player i
are marked 1− i, then mark u with 1− i. This evaluation uniquely determines the mark
of the root, 0 or 1.

Note that although implementing a winning strategy according to the construction
in the above proof does not need randomness, it requires memory to keep the history
of the play in order to decide where to move at each step. In the following sections,
based on Proposition 3.1, we show how to construct positional strategies.

4. Positional strategies in �nite duration (parity) games

Finite duration parity games are slightly less intuitive and require di&erent arguments
compared to their in8nite counterparts. For example, any 8nite pre8x of an in8nite play
does not matter when determining the winner in an in8nite game. In contrast, this pre8x
is essential in deciding the winner in a 8nite duration game, because its every vertex is
a potential termination point of the game. Some other common in8nite-case intuitions
fail for 8nite games, and need some extra care.
This section con8rms two basic intuitions about positional strategies in FPGs. The

8rst one is an apparently obvious fact that you can win from a vertex provided you win
from some of its successors. It is used to prove the second, demonstrating that when
a player uses an optimal positional strategy, the play never leaves her winning set. In
in8nite games, both lemmas are one-line consequences of memoryless determinacy, but
we stress that we need to prove these properties for 8nite games and without relying
on determinacy.

Lemma 4.1. In any FPG, if Player i has a positional strategy winning from some
successor u of v∈Vi, then Player i has a positional strategy winning from v.

(The straightforward construction “play from v to u and then follow the positional
winning strategy from u” is not completely obvious. Assume a positional winning
strategy from u uses in v an edge di&erent from (v; u). The previous construction
simply does not yield a positional strategy.)
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Proof. Let us briePy discuss the recurring idea of the arguments we rely upon. Suppose
Player i 8xes a positional strategy 	, and consider the graph G	, where all other choices
for Player i are removed. Then Player i wins from a vertex x i& Player 1 − i cannot
force a play in G	 from x into a simple loop losing for Player i.
Let 	 be a positional strategy winning for Player i from some successor u of v∈Vi.

If 	 is winning also from v (which can be checked by inspecting the loops reachable
from v in G	 as explained above), the claim follows. Otherwise, there is a loop �,
losing for Player i, reachable by a path � from v in G	. We claim that Player 1 − i
cannot force a play in G	 from u to any vertex on � and �, including v. Indeed, the
opposite would imply that Player i loses from u. Change 	 only at v, obtaining 	′

with 	′(v)= u. Player i still wins from u with 	′, since the set of plays in G′
	 from

u remains the same as in G	, and exactly the same loops can be forced from v by
Player 1− i.

Important observation: We pause here to make an important observation. The argu-
ment in the proof of Lemma 4.1 actually applies to the whole class of 8nite duration
games that, like FPGs: (1) stop as soon as some vertex is 8rst revisited, (2) for which
the winner is determined by the sequence of vertices on the resulting simple loop,
and (3) independently of the initial vertex the loop is traversed from. Condition 3
is not satis8ed, e.g., for 8nite versions of discounted mean payo& games or simple
stochastic games [16].
This class includes, in particular, the 8nite decision version of mean payo& games,

considered in Section 7. We encourage the reader to verify that all subsequent proofs
in this section and Section 5 apply for this general class of games. Actually, our proof
of memoryless determinacy of 8nite mean payo& games in Section 7.2 relies on this
observation and thus recycles the work done for parity games.
The next lemma puts the (yet unproved) assumption “if both players win by posi-

tional strategies from every vertex in their respective winning 3 sets” in the premise.
Under this assumption it shows that no play consistent with such a winning positional
strategy leaves the player’s winning set.

Lemma 4.2. In any FPG, suppose 	0 and 	1 are positional strategies for Player 0
and 1 such that Player i by using 	i wins every game that starts in Wi(G), for
i∈{0; 1}. Then all plays starting in Wi(G) and played according to 	i stay in Wi(G).

Proof. Consider a game on the graph G	i starting in some vertex from Wi(G). In this
game, we can assume that all vertices belong to Player 1 − i because there are no
choices in Player i’s vertices. By Lemma 4.1, any edge (u; v) with v∈W1−i(G) must
also have u∈W1−i(G), so there are no edges from Wi(G) to W1−i(G) in G	i .

This lemma will be extensively used in the inductive proof of the main theorem in
the next section, where its premise will be guaranteed to hold by inductive assumption.

3 Winning by some, maybe nonpositional strategy.
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5. Memoryless determinacy of �nite duration parity games

In this section we prove the main theorem of the paper, which implies memoryless
determinacy of the in8nite duration parity games (Section 6). The proof itself does not
use any reference to the in8nite games. In Section 7 we extend this theorem to 8nite
and in8nite duration mean payo& games. Actually, the proof of Theorem 5.1 is not
modi8ed, we just show how to adjust winning conditions so as to reuse the theorem
and its proof as they are.

Theorem 5.1. In every FPG G, there are positional strategies 	0 of Player 0 and 	1
of Player 1 such that Player i wins by using 	i whenever a play starts in Wi(G), no
matter which strategy Player 1− i applies.

Proof. The proof is by induction on the number |E|−|V | of choices of both players. We
stress once again that the proof applies to a more general class of games, as observed
in Section 4, and therefore will be reused to demonstrate memoryless determinacy of
the decision version of 8nite mean payo& games in Section 7.2.
The base case is immediate: if |E|= |V | then there are no vertices with a choice,

and all strategies are positional.
For the inductive step we split into three cases, depending on whether there are

vertices x from which the player who owns x can win. Let V ∗
i ⊆Vi (for i=0; 1) be

the sets of vertices of Player i with outdegree more than 1. Assume the theorem holds
whenever |E| − |V |¡n, and consider |E| − |V |= n.
Case 1: V ∗

0 ∩W0(G) �= ∅. Take x∈V ∗
0 ∩W0(G) and let e be an edge leaving x such

that Player 0 can win Gx after selecting e in the 8rst move. (The rest of the Player 0
strategy does not need to be positional.) Consider the game G′ in which we remove all
edges leaving x, except e. By inductive assumption, there are positional strategies 	i
such that Player i applying 	i wins any play in G′ that starts in Wi(G′). These strategies
are also positional strategies in G. We will prove that 	i is winning for Player i in G
if the play starts in a vertex from Wi(G′).
Suppose v∈W0(G′) and Player 0 uses 	0 in Gv. Any play in Gv following 	0 was

also possible in G′
v. Since all such plays are winning for Player 0 in G′

v, all of them
are also winning for Player 0 in Gv. Therefore, W0(G′)⊆W0(G).
Now assume v∈W1(G′) and Player 1 uses 	1 in Gv. Notice that x∈W0(G′), since

there is a winning strategy that uses e and the game terminates as soon as x is revisited.
By Lemma 4.2, whenever Player 1 uses 	1, no play in G′

v, hence in Gv, can ever reach x,
because G′

v and Gv di&er only in edges leaving x. But any play in Gv according to 	1
not reaching x was possible also in G′

v, so Player 1 wins any such play in Gv. Hence,
W1(G′)⊆W1(G).
Since Wi(G′)⊆Wi(G), and W0(G′), W1(G′) form a partition, we thus showed that

Wi(G)=Wi(G′) and Player i wins Gv using 	i, for any v∈Wi(G).
Case 2: V ∗

1 ∩W1(G) �= ∅ and Case 1 does not apply. The proof is symmetrical to
Case 1.
Case 3: V ∗

0 ∩W0(G)=V ∗
1 ∩W1(G)= ∅. Since only Player i may have choices in

W1−i(G), we will assume that all vertices in Wi(G) belong to V1−i, that is, Wi(G)=V1−i
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Fig. 1. If we remove e from G, then u changes from losing to winning for Player 0.

for i∈{0; 1}. We may also assume that one of the players has choices; otherwise the
base case applies.
We 8rst prove that there are no edges between the winning sets. Suppose, towards

a contradiction, that there is an edge e from v∈W1(G) to u∈W0(G). Fig. 1 depicts
this situation, where round and square vertices belong to Player 0 and 1, respectively
(the case of an edge back is symmetric).
Although u is losing for Player 1, there must be a way for Player 1 to win a play

that starts in v even if Player 0 moves by e to u. This can only be done if Player 1
can force the play back to v, because any other winning play for Player 1 from v via
u would be a winning play from u as well. However, Player 1 cannot win if a play
starts in u. Therefore, if the game starts in u, and is forced by Player 1 to v, Player 0
must be able to do something else in order to win, rather than selecting e. Thus there
must be another edge d leaving v.
Now create the game G′ by removing the edge e. Since Player 0 has less choices,

we must have W0(G′)⊆W0(G). By inductive assumption, there are positional strategies
	0 and 	1, winning from W0(G′) and W1(G′), respectively. Since all vertices in W0(G′)
can be assumed to belong to V1, Lemma 4.2 implies that there are no edges leaving
W0(G′). This in turn means that u belongs to W1(G′). Otherwise, Player 0 could have
won from v in G by following e, because the play would have never left W0(G′), and
any loop formed would have been winning for Player 0.
When e was removed, vertex u turned from losing to winning for Player 1. This

implies that in G′, Player 1 must force the play from u to v in order to win, since all
other plays would have been possible in G as well, and all were losing for Player 1.
In G, however, no matter how Player 1 forced the play from u to v, Player 0 could
win by using d and some strategy for the remaining play. All these plays are possible
in G′ as well, so Player 1 cannot win from u in G′. This contradiction shows that
there can be no edge e from W1(G) to W0(G). By symmetric reasoning, there are no
edges from W0(G) to W1(G).
Now, since there are no edges between the winning sets, and both players lack

choices within their own winning sets, any positional strategy is optimal, i.e., winning
from all vertices in the player’s winning set.
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6. Extension to in�nite duration parity games

We now show that a positional strategy that wins an FPG starting in vertex v also
wins, for the same player, the in8nite duration parity game starting in v on the same
game graph.
Let 	 be a winning strategy (positional or not) of Player i (for i∈{0; 1}) in the

FPG starting from v. No matter what the opponent does, the 8rst revisit to a previously
visited vertex vl guarantees that the maximal color on the loop from vl to vl is winning
for Player i. Now forget what happened on the path from vl to vl, assume vl is visited
for the 8rst time, and let the FPG develop further. The next time some vertex v′l
(not necessarily equal to vl) is revisited, we also know that the maximal color on the
loop from v′l to v

′
l is winning for Player i. Again, forget what happened on the path

from v′l to v
′
l, assume v′l is visited for the 8rst time, and let the FPG develop further.

In this way, using the winning strategy for Player i, we construct an in8nite sequence
of loops and the corresponding in8nite sequence of maximal colors S = {ci}∞i=1 winning
for Player i. It follows that the maximal color hit in the in8nite game in8nitely often
is the maximum appearing in S in8nitely often. This also means that the winning sets
of the players in the in8nite and 8nite games coincide.
The following theorem makes the above argument formal. It also establishes the

converse, that positional winning strategies in in8nite parity games are winning in
8nite ones.

Theorem 6.1. A positional strategy 	 of Player i wins in an in&nite duration PG Gv
if and only if it wins in the corresponding FPG.

Proof. We will show that 	 wins the in8nite game if and only if the highest color
on every simple loop reachable from v in G	 is winning for Player i. The latter is
equivalent to 	 winning the 8nite game.
If G	 contains a loop reachable from v with a highest color losing for Player i, then

	 is losing: Player 1− i can go to this loop and stay in it forever.
Conversely, suppose G	 does not contain any loops with losing highest color reach-

able from v. We will prove that there is no in8nite path starting from v in G	 on which
the highest color appearing in8nitely often is losing for Player i. Assume, towards a
contradiction, that there is such a path p on which the highest color occurring in8nitely
often is c. There must be some vertex u of color c that appears in8nitely often on p.
But between any two such appearances of u on the path, all other vertices on some
simple loop containing u must appear. Among these vertices, at least one should have
a winning color higher than c, by assumption. This means that some winning color
higher than c appears in8nitely often on p, contradicting the assumption.

As a direct consequence, the memoryless determinacy of Theorem 5.1 holds also for
in8nite duration parity games.

Corollary 6.2. In every PG G, there are positional strategies 	0 of Player 0 and 	1
of Player 1 such that Player i wins by using 	i whenever a play starts in Wi(G), no
matter which strategy Player 1− i applies.
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7. Extension to mean payo* games

This section shows how the memoryless determinacy proof for parity games extends
to mean payo& games.

7.1. Finite and in&nite duration mean payo8 games

Mean payo8 games [3,7,16] are similar to parity games. Let V =V0 ∪V1, V0 ∩V1 = ∅,
E⊆V ×V (where, for each u∈V , there is some v with (u; v)∈E), and c :E→R.
De8ne the game graph �=�(V0; V1; E; c). Starting in some prede8ned vertex v0, the
two players move by selecting edges from their respective vertex sets in the same way
as in parity games. This yields an in8nite play (sequence of vertices) p= v0v1v2 : : :
Player 0 wants to maximize

�0(p) = lim inf
n→∞

1
n

n−1∑

i=0
c(vi; vi+1)

and Player 1 wants to minimize

�1(p) = lim sup
n→∞

1
n

n−1∑

i=0
c(vi; vi+1):

Analogously to the 8nite version of parity games, we de8ne &nite duration mean payo8
games (FMPGs). Like in FPGs, a play starts in the initial vertex v0 and ends as soon
as a loop is formed. The value �(p) of the play p= v0v1 · · · vm · · · vn, where vm= vn,
is the mean value of the edges on this loop:

�(p) =
1

n− m
n−1∑

i=m
c(vi; vi+1):

Player 0 wants to maximize this value and Player 1 wants to minimize it.
FMPGs are, like FPGs, 8nite, zero-sum, perfect information games, and are therefore

determined. Also like FPGs, FMPGs are a special case of such games, for which this
fact can be proved in an elementary way.

Proposition 7.1. For every FMPG starting in any vertex u, there is a value �(u) such
that Player 0 can ensure a gain of at least �(u), and Player 1 can ensure a loss of
at most �(u), independently of the opponent’s strategy.

Proof. Similar to the proof of Proposition 3.1, consider the 8nite tree of all possible
plays from u. Assign to each leaf the value of the play it represents. Let all internal
vertices corresponding to choices of Player 0 be MAX-vertices, and let the choices of
Player 1 be MIN-vertices. The root of the resulting MIN-MAX-tree can be straight-
forwardly evaluated in a bottom-up fashion, and its value is the value �(u) of the
game starting from u.

The following lemma, proved in [3], using only elementary means, shows that a
strategy in an FMPG G yields a strategy in the corresponding MPG �, guaranteeing
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the same value. Thus it is enough to show that there are optimal positional strategies
in FMPGs.

Lemma 7.2 (Ehrenfeucht-Mycielski [3]). A strategy 	 of Player i in an FMPG G
can be modi&ed to a strategy 	̃ in the corresponding MPG � such that the following
properties hold.
(1) If 	 secures the value � in G, then 	̃ secures � in �.
(2) If 	 is positional, then 	̃= 	 so 	̃ is also positional.

7.2. Main theorem for the decision version of &nite mean payo8 games

Consider the decision version of 8nite duration mean payo& games, denoted
FMPG(D), in which we are only interested in whether the value of a play is greater
than some threshold t, not in the actual value. The winning condition for Player 0
is either �(p)¿t or �(p)¿t. This allows us to de8ne winning sets similarly to the
case of 8nite duration parity games. Say that u∈W0(G) if Player 0 has a strategy that
ensures a value �(u)¿t, and u∈W1(G) otherwise.

As was observed in Sections 4 and 5, the proofs of Lemmas 4.1, 4.2, and of
Theorem 5.1 work without any modi8cations for a broader class of games satisfy-
ing the following.

Assumptions. (1) A play on a game graph starts in a vertex and stops as soon as a
loop is formed, and
(2) The winner is determined by the sequence of vertices on the loop, modulo cyclic

permutations.

These assumptions on the winning condition are suNcient to prove Theorem 5.1, and
Lemmas 4.1 and 4.2 upon which it depends, as can be readily veri8ed by inspecting
their proofs. It clearly holds for FMPG(D)s, where a sequence of vertices uniquely
determines a sequence of edges, because there are no multiple edges, and their average
cost determines the winner. Therefore, we obtain the following memoryless determinacy
result for the decision version of 8nite mean payo& games.

Theorem 7.3. In every FMPG(D), each player has a positional strategy that wins
from all vertices in the player’s winning set.

By Lemma 7.2, this result extends to the in8nite duration mean payo& games.

7.3. Ergodic partition theorem for mean payo8 games

In this section we reinforce Theorem 7.3 by proving that each vertex v in an FMPG
has a value, which both players can secure by means of positional strategies whenever
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Fig. 2. The ergodic partitions of G.

a play starts in v. Moreover, the same pair of strategies can be used independently of
the starting vertex. More formally:

Theorem 7.4 (Memoryless determinacy and ergodic partition). Let G be an FMPG
and {Ci}mi=1 be a partition (called ergodic) of its vertices into classes with the same
value xi, as given by Proposition 7.1. There are positional strategies 	0 and 	1 for
Player 0 and 1 with the following properties:

if the game starts from a vertex in Ci, then 	0 secures a gain ¿xi for Player 0,
and 	1 secures a loss 6xi for Player 1.

Moreover, Player 0 has no vertices with outgoing edges leading from Ci to Cj with
xi¡xj, and Player 1 has no vertices with outgoing edges leading from Ci to Cj with
xi¿xj.

Proof. By Proposition 7.1, there exist values x1¡x2¡ · · ·¡xm and a partition C1;
C2; : : : ; Cm such that for every starting vertex u∈Ci of an FMPG G both players ensure
for themselves (possibly by nonpositional strategies) the value xi. Now, for every value
xi solve two FMPG(D) problems (using Theorem 7.3), as shown in Fig. 2:
(1) 8nd the winning set W0 and corresponding strategy 	0 of Player 0 securing a gain

¿xi when a play starts in W0.
(2) 8nd the winning set W1 and corresponding strategy 	1 of Player 1 securing a loss

6xi when a play starts in W1.
Consider W0 ∩W1. In this (nonempty) set both Player 0 can secure a gain ¿xi by
means of 	0, and Player 1 can secure a loss 6xi by means of 	1. In other words,
W0 ∩W1 =Ci.
By Lemma 4.2, any play starting from W0 always stays in this set, when Player 0

uses 	0 (Player 1 has no edges out of it), and symmetrically for W1.
We repeat the argument above for all values x1; : : : ; xm getting winning positional

strategies 	i0; 	
i
1. Using the property from the preceding paragraph we merge all these

strategies into positional strategies 	0 and 	1 for Player 0 and Player 1 as stated in
the theorem. Simply de8ne 	0 as coinciding with 	i0 on the set of vertices V0 ∩Ci, and
similarly for 	1.

By Lemma 7.2, the same results on memoryless determinacy and ergodic partition
from Theorem 7.4, hold also for (in8nite duration) mean payo& games. Moreover, it is
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easy to see that these results hold (with the same proof) in the version of parity games
where Player 0 and 1 not only want to win with some even/odd color, but want to win
with highest possible even/odd color. This version of parity games is especially suitable
for solving by means of a randomized subexponential algorithm described in [1], as
well as by an iterative strategy improvement algorithm from [13].

8. Conclusions

We have presented a new uni8ed proof of the well-known memoryless determinacy
results for parity and mean payo& games on 8nite graphs. There are several previous
proofs, but we nonetheless think our proof is useful since it combines several nice
properties. It is simple and constructive, providing an easy introduction to the 8eld.
Relying only on elementary methods, it illustrates that proving the basic properties of
in8nite games does not need to attract external notions of limits and approximation.
The distinctive feature of our proof is that we 8rst establish memoryless determinacy
for the 8nite duration versions of the games and then extend it to in8nite duration. As
a consequence, we avoid cyclic, roundabout proofs, as in Ehrenfeucht–Mycielski [3],
thus answering positively their question whether one could avoid circularity proving
determinacy of in8nite and 8nite duration mean payo& games. Our proof indicates that
in this respect 8nite duration parity and mean payo& games are “more fundamental”,
directly implying memoryless determinacy for their in8nite duration counterparts. Fur-
thermore, by applying to both parity and mean payo& games, the proof stresses the
structural similarities between both games.
Can our proof be extended for more general classes of games including discounted

payo8 games and simple stochastic games [16]? Our current assumptions on the win-
ning condition (see Section 7.2) do not apply to these games. Discounted payo& games
can be formulated in a 8nite-duration version, but Lemmas 4.1 and 4.2 do not hold for
them. We do not know whether there is a 8nite-duration version of simple stochastic
games, and although some version of the lemmas hold in the in8nite version, it is
unclear whether this suNces for the proof. Nevertheless, we feel that the structures of
these games have relevant features in common with parity and mean payo& games.
It would be interesting to know whether memoryless determinacy can be proved uni-
formly for all four games, with our proof technique or another.
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Abstract

We suggest the first strongly subexponential and purely combinatorial algorithm
for solving the mean payoff games problem. It is based on iteratively improving the
longest shortest distances to a sink in a possibly cyclic directed graph. We iden-
tify a new “controlled” version of the shortest paths problem. By selecting exactly
one outgoing edge in each of the controlled vertices we want to make the shortest
distances from all vertices to the unique sink as long as possible. Under reasonable
assumptions the problem belongs to the complexity class NP∩coNP. Mean payoff
games are easily reducible to this problem. We suggest an algorithm for computing
longest shortest paths. Player Max selects a strategy (one edge in each controlled
vertex) and player Min responds by evaluating shortest paths to the sink in the re-
maining graph. Then Max locally changes choices in controlled vertices looking at
attractive switches that seem to increase shortest paths lengths (under the current
evaluation). We show that this is a monotonic strategy improvement, and every lo-
cally optimal strategy is globally optimal. This allows us to construct a randomized

algorithm of complexity min(poly · W, 2O(
√

n log n)), which is simultaneously pseu-
dopolynomial (W is the maximal absolute edge weight) and subexponential in the
number of vertices n. All previous algorithms for mean payoff games were either ex-
ponential or pseudopolynomial (which is purely exponential for exponentially large
edge weights).
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1 Introduction

Infinite games on finite graphs play a fundamental role in model checking,
automata theory, logic, and complexity theory. We consider the problem of
solving mean payoff games (MPGs) [9,21,20,10,26], also known as cyclic games
[14,22]. In these games, two players take turns moving a pebble along edges
of a directed edge-weighted graph. Player Max wants to maximize and player
Min to minimize (in the limit) the average edge weight of the infinite path
thus formed. Mean payoff games are determined, and every vertex has a value,
which each player can secure by a uniform positional strategy. Determining
whether the value is above (below) a certain threshold belongs to the complex-
ity class NP∩coNP. The well-known parity games, also in NP∩coNP, poly-
nomial time equivalent to model-checking for the µ-calculus [12,11], are poly-
nomial time reducible to MPGs. Other well-known games with NP∩coNP

decision problems, to which MPGs reduce, are simple stochastic [6] and dis-
counted payoff [23,26] games. At present, despite substantial efforts, there are
no known polynomial time algorithms for the games mentioned.

All previous algorithms for mean payoff games are either pseudopolynomial
or exponential. These include a potential transformation method by Gurvich,
Karzanov, and Khachiyan [14] (see also Pisaruk [22]), and a dynamic program-
ming algorithm solving k-step games for big enough k by Zwick and Paterson
[26]. Both algorithms are pseudopolynomial of complexity O(poly(n) · W ),
where n is the number of vertices and W is the maximal absolute edge weight.
For both algorithms there are known game instances on which they show a
worst-case Ω(poly(n)·W ) behavior, where W may be exponential in n. Reduc-
tion to simple stochastic games [26] and application of the algorithm from [17]
gives subexponential complexity (in the number of vertices n) only if the game
graph has bounded outdegree. The subexponential algorithms we suggested for

simple stochastic games of arbitrary outdegree in [3,4] make 2O(
√

n log n) itera-
tions, but when reducing from mean payoff games, the weights may not allow
each iteration (requiring solving a linear program) to run in strongly polyno-
mial time, independent of the weights. This drawback is overcome with the
new techniques presented here, which avoid the detour over simple stochastic
games altogether.

We suggest a strongly subexponential strategy improvement algorithm, which
starts with some strategy of the maximizing player 1 Max and iteratively
“improves” it with respect to some strategy evaluation function. Iterative
strategy improvement algorithms are known for the related simple stochas-

1 The games are symmetric, and the algorithm can also be applied to optimize for
the minimizing player. This is an advantage when the minimizing player has fewer
choices.
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tic [15,7], discounted payoff [23], and parity games [24,2]. Until the present
paper, a direct combinatorial iterative strategy improvement for mean pay-
off games appeared to be elusive. Reductions to discounted payoff games and
simple stochastic games (with known iterative strategy improvement) lead to
numerically unstable computations with long rationals and solving linear pro-
grams. The algorithms suggested in this paper are free of these drawbacks. Our
method is discrete, requires only addition and comparison of integers in the
same order of magnitude as occurring in the input. In a combinatorial model
of computation, the subexponential running time bound is independent of the
edge weights. There is also a simple reduction from parity games to MPGs,
and thus our method can be used to solve parity games. Contrasted to the
strategy improvement algorithms of [24,2], the new method is conceptually
much simpler, more efficient, and easier to implement.

We present a simple and discrete randomized subexponential strategy im-
provement scheme for MPGs, and show that for any integer p, the set of
vertices from which Max can secure a value > p can be found in time

min(O(n2 · |E| · W ), 2O(
√

n log n)),

where n is the number of vertices and W is the largest absolute edge weight.
The first bound matches those from [14,26,22], while the second part is an
improvement when, roughly, n log n < log2 W .

The new strategy evaluation for MPGs may be used in several other itera-
tive improvement algorithms, which are also applicable to parity and simple
stochastic games [24,15,7]. These include random single switch, all profitable
switches, and random multiple switches; see, e.g., [1]. They are simplex-type
algorithms, very efficient in practice, but without currently known subexpo-
nential upper bounds, and no nontrivial lower bounds.

Outline. Section 2 defines mean payoff games and introduces the associ-
ated computational problems. Section 3 describes the longest-shortest paths
problem and its relation to mean payoff games. In addition, it gives an intu-
itive explanation of our algorithm and the particular randomization scheme
that achieves subexponential complexity. Section 4 describes the algorithm in
detail and Section 5 proves the two main theorems guaranteeing correctness.
In Section 6 we explain how to improve the cost per iteration, while detailed
complexity analysis is given in Section 7. Possible variants of the algorithm are
discussed in Section 8. Section 9 shows that the longest-shortest path problem
is in NP∩coNP. In Section 10 an example graph family is given for which the
wrong choice of iterative improvement policy leads to an exponential number
of iterations. Finally, Section 11 discusses the application of our algorithm to
solving parity games.
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2 Preliminaries

2.1 Mean Payoff Games

A mean payoff game (MPG) [21,20,10,14,26] is played by two adversaries,
Max and Min, on a finite, directed, edge-weighted, leafless graph G = (V =
VMax � VMin, E, w), where w : E → Z is the weight function. The players
move a pebble along edges of the graph, starting in some designated initial
vertex. If the current vertex belongs to VMax, Max chooses the next move,
otherwise Min does. The duration of the game is infinite. The resulting infinite
sequence of edges is called a play. The value of a play e1e2e3 . . . is defined as
lim infk→∞ 1/k · ∑k

i=1 w(ei). The goal of Max is to maximize the value of the
play, while Min tries to minimize it. In the decision version, the game also
has a threshold value p. We say that Max wins a play if its value is > p,
while Min wins otherwise. Until Section 7.2 we assume such thresholds to be
integral.

A positional strategy for Max is a function σ : VMax → V such that (v, σ(v)) ∈
E for all v ∈ VMax. Positional strategies for Min are defined symmetrically. Ev-
ery mean payoff game has a value and is memoryless determined, which means
that for every vertex v there is a value ν(v) and positional strategies of Max

and Min that secure them payoffs ≥ ν(v) and ≤ ν(v), respectively, when a play
starts in v, against any strategy of the adversary [21,20,10,14,22,5]. Moreover,
both players have uniform positional strategies securing them optimal payoffs
independently of the starting vertex. Accordingly, throughout the paper we re-
strict our attention to positional strategies only. Given a positional strategy σ
for Max, define Gσ = (V, E ′), where E ′ = E \{(v, u)|v ∈ VMax and σ(v) �= u},
i.e., Gσ results from G by deleting all edges leaving vertices in VMax except
those selected by σ. Note that if both players use positional strategies, the
play will follow a (possibly empty) path to a simple loop, where it will stay
forever. The value of the play is the average edge weight on this loop [10,14].

2.2 Algorithmic Problems for MPGs

We will address several computational problems for mean payoff games.

The Decision Problem. Given a distinguished start vertex and a threshold
value p, can Max guarantee value > p?

p-Mean Partition. Given p, partition the vertices of an MPG G into subsets
G≤p and G>p such that Max can guarantee a value > p starting from every
vertex in G>p, and Min can secure a value ≤ p starting from every vertex
in G≤p.
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Ergodic Partition. Compute the value of each vertex of the game. This
gives a partition of the vertices into subsets with the same value. Such a
partition is called ergodic [14].

Our basic algorithm solves the 0-mean partition problem, which subsumes the
p-mean partition. Indeed, subtracting p from the weight of every edge makes
the mean value of all loops (in particular, of optimal loops) smaller by p, and
the problem reduces to 0-mean partitioning. The complexity remains the same
for integer thresholds p, and changes slightly for rational ones; see Section 7.
Clearly, the p-mean partitioning subsumes the decision problem. Section 7.2
extends the basic algorithm to solve the ergodic partition problem. Another
problem to which our algorithm may be extended is finding optimal strategies
in MPGs.

Our proofs rely on a finite variant of mean payoff games, where the play stops
as soon as some vertex is revisited and the mean value on the resulting cycle
determines the payoff. Thus, for a play e1e2 . . . erer+1 . . . es, where er . . . es is
a loop, the value is

∑s
i=r w(ei)/(s − r + 1). Ehrenfeucht and Mycielski [10]

proved the following (see also [5]).

Theorem 2.1 The value of every vertex in the finite-duration version of mean
payoff games equals its value in the infinite-duration version. �

The next corollary will be used implicitly throughout the paper.

Proposition 2.2 A positional strategy σ of Max gives value > p in a vertex,
if and only if all loops reachable from it in Gσ have average value > p. �

In particular, Max can ensure value > 0 if and only if all reachable loops are
positive. Since the partition threshold 0 has a special role in our exposition,
we call the G>0 partition the winning set of Max.

3 A High-Level Description of the Algorithm

We start by informally describing the essential ingredients of our algorithm.

3.1 The Longest-Shortest Paths Problem

The key step in computing 0-mean partitions can be explained by using a “con-
trolled” version of the well-known single source (target) shortest paths problem
on directed graphs. Suppose in a given digraph some set of controlled vertices
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is distinguished, and we can select exactly one edge leaving every controlled
vertex, deleting all other edges from these vertices. Such a selection is called
a positional strategy. We want to find a positional strategy that maximizes
the shortest paths from all vertices to the distinguished sink (also avoiding
negative cycles that make the sink unreachable and the distances −∞). For
a strategy σ denote by Gσ the graph obtained from G by deleting all edges
from controlled vertices except those in σ. Formally, the problem is specified
as follows.

The Longest-Shortest Paths Problem (LSP).
Given:

(1) a directed weighted graph G with unique sink t,
(2) some distinguished controlled vertices U of G, with t �∈ U .

Find:

• a positional strategy σ such that in the graph Gσ the shortest simple path
from every vertex to t is as long as possible (over all positional strategies).

If a negative weight loop is reachable from a vertex, the length of the shortest
path is −∞, which Max does not want. If only positive loops are reachable,
and t is not, then the shortest path distance is +∞. 2

For our purposes it suffices to consider a version of the LSP problem with the
following additional input data.

Additionally Given:

• some strategy σ0, which guarantees that in the graph Gσ0 there are no cycles
with nonpositive weights.

This additionally supplied strategy σ0 guarantees that the longest shortest
distance from every vertex to the sink t is not −∞; it is not excluded that σ0

or the optimal strategy will make some distances equal +∞. We make sure
that our algorithm never comes to a strategy that allows for nonpositive cycles.
The simplifying additional input strategy is easy to provide in the reduction
from MPGs, as we show below.

Note that for DAGs, the longest-shortest path problem can be solved in poly-
nomial time using dynamic programming. Start by topologically sorting the

2 The case of zero weight loops is inconsequential for the application to mean payoff
games, and we only need to consider it when proving that the LSP problem is in
NP∩coNP in Section 9.
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vertices and proceed backwards from the sink (distance 0), using the known
longest-shortest distances for the preceding vertices.

3.2 Relating the 0-Mean Partition and Longest-Shortest Paths Problems

The relation between computing 0-mean partitions and computing longest
shortest paths is now easy to describe. To find such a partition in an MPG
G, add a retreat vertex t to the game graph with a self-loop edge of weight 0,
plus a 0-weight retreat edge from every vertex of Max to t. From now on, we
assume G has undergone this transformation. Clearly, we have the following
property.

Proposition 3.1 Adding a retreat does not change the 0-mean partition of
the game, except that t is added to the G≤0 part. �

This is because we do not create any new loops allowing Max to create positive
cycles, or Min to create new nonpositive cycles. Max will prefer playing to t
only if all other positional strategies lead to negative loops.

The key point is now as follows. Break the self-loop in t and consider the
LSP problem for the resulting graph, with t being the unique sink. The set
VMax becomes the controlled vertices, and the initial strategy (the “addition-
ally given” clause in the LSP definition above) selects t in every controlled
vertex, guaranteeing that no vertex has distance −∞. 3 We have the following
equivalence:

Theorem 3.2 The partition G>0 consists exactly of those vertices for which
the longest-shortest path distance to t is +∞. �

As early as in 1991 Leonid Khachiyan (private communication) considered the
following variant of Longest-Shortest Paths.

Blocking Nonpositive Cycles. Given a directed edge-weighted leafless
graph G, a vertex v, and a set of controlled vertices, where the controller has
to choose exactly one outgoing edge, does he have a selection such that in the
resulting graph (obtained after deleting all unselected edges from controlled
vertices) there are no nonpositive weight cycles reachable from v? �

As an immediate consequence one has the following

3 Actually, there may exist negative value loops consisting only of vertices from
VMin. Such loops are easy to identify and eliminate in a preprocessing step, using
the Bellman–Ford algorithm. In the sequel we assume that this is already done.
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Proposition 3.3 1. The problems 0-Mean Partition in Mean Payoff Games 4

and Blocking Nonpositive Cycles are polynomial time equivalent.

2. Blocking Nonpositive Cycles is in NP∩coNP.

3. Blocking Nonpositive Cycles is polynomial time reducible to Longest-Shortest
Paths. �

Note that in Longest-Shortest Paths, except being interested in the +∞ dis-
tances to the sink (which corresponds to positive loops in Blocking Nonpositive
Cycles) we are additionally interested in computing finite distances. Our al-
gorithm iteratively improves these finite distances (until hopefully improving
them to +∞).

To our knowledge, there are no other mentions of the Longest-Shortest Paths
problem and its relation to mean payoff games in the literature. 5

Actually, the evaluation of the shortest paths for a fixed positional strategy
gives a useful quality measure on strategies that can be used in other iterative
improvement schemes. We discuss some possibilities in Section 8.

3.3 The Algorithm

Our algorithm computes longest-shortest paths in the graph resulting from
a mean payoff game (after adding the retreat vertex and edges, as explained
above), by making iterative strategy improvements. Once a strategy is fixed,
all shortest paths are easily computable, using the Bellman-Ford algorithm.
Note that there are negative weight edges, so the Dijkstra algorithm does not
apply. An improvement to the straightforward application of the BF-algorithm
is described in Section 6. Comparing a current choice made by the strategy
with alternative choices, a possible improvement can be decided locally as
follows. If changing the choice in a controlled vertex to another successor
seems to give a longer distance (seems attractive), we make this change. Such
a change is called a switch.

We prove two crucial properties (Theorems 5.1 and 5.2, respectively):

(1) every such switch really increases the shortest distances (i.e., attractive
is improving or profitable);

4 Recall that this problem consists in finding the set of the game vertices from
which the maximizing player can secure a positive mean value.
5 The authors would appreciate any references.
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(2) once none of the alternative possible choices is attractive, all possible
positive-weight loops Max can enforce are found (i.e., stable is opti-
mal). 6

Although our subexponential algorithm proceeds by making just one attractive
switch at a time, other algorithms making many switches simultaneously are
also possible and fit into our framework. Such algorithms are discussed in
Section 8.

Another interpretation of our algorithm is game-theoretic. Max makes choices
in the controlled vertices, and the choices in all other vertices belong to Min.
For every strategy of Max, Min responds with an optimal counterstrategy,
computing the shortest paths from every vertex to the sink. After that, the
algorithm improves Max’s strategy by making an attractive switch, etc.

3.4 Randomization Scheme

The order in which attractive switches are made is crucial for the subexpo-
nential complexity bound; see Section 10 for an example of an exponentially
long chain of switches. The space of all positional strategies of Max can be
identified with the Cartesian product of sets of edges leaving the controlled
vertices. Fixing any edge in this set and letting others vary determines a facet
in this space.

Now the algorithm for computing the longest-shortest paths in G looks as
follows, starting from some strategy σ assumed to guarantee for shortest dis-
tances > −∞ in all vertices.

(1) Randomly and uniformly select some facet F of G not containing σ.
Throw this facet away, and recursively find a best strategy σ∗ on what
remains. This corresponds to deleting an edge not selected by σ and
finding the best strategy in the resulting subgame.

(2) If σ∗ is optimal in G, stop (this is easily checked by testing whether there
is an attractive switch from σ∗ to F ). The resulting strategy is globally
optimal, providing for the longest-shortest distances.

(3) Otherwise, switch to F , set G = F , denote the resulting strategy by σ,
and repeat from step 1.

This is the well-known randomization scheme for linear programming due to
Matoušek, Sharir, and Welzl [18,19]. When applied to the LSP and MPG

problems, it gives a subexponential 2O(
√

n log n) expected running time bound

6 The case when zero-weight loops are interpreted as good (winning) for Max is
considered in Section 9.
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[18,4]. An essential condition for the analysis to work is as follows. The strat-
egy evaluation we use satisfies the property that facets are partially ordered by
the values of their best strategies. After finding the optimum on one facet, the
algorithm will never visit a facet with an optimum that is not strictly better in
the partial order. It follows that the so-called hidden dimension decreases ran-
domly, and the subexponential analysis of [18,19] applies. Another possibility
would be to use the slightly more complicated randomization scheme of Kalai
[16], as we did in [2] for parity games, which leads to the same subexponential
complexity bound.

4 Retreats, Admissible Strategies, and Strategy Measure

As explained above, we modify an MPG by allowing Max to “surrender” in
every vertex. Add a retreat vertex t of Min with a self-loop of weight 0 and a
retreat edge of weight 0 from every vertex of Max to t. Clearly, Max secures
a value > 0 from a vertex in the original MPG iff the same strategy does it in
the modified game. Assume from now on that the retreat has been added to
G. Intuitively, the “add retreats” transformation is useful because Max can
start by a strategy that chooses the retreat edge in every vertex, thus “losing
only 0”. We call strategies “losing at most 0” admissible.

Definition 4.1 A strategy σ of Max in G is admissible if all loops in Gσ

are positive, except the loop over the retreat vertex t. �

Our algorithm iterates only through admissible strategies of Max. This guar-
antees that the only losing (for Max) loop in Gσ is the one over t.

4.1 Measuring the Quality of Strategies

We now define a measure that evaluates the “quality” of an admissible strat-
egy. It can be computed in strongly polynomial time, as shown in Section 6.

Given an admissible strategy σ, the best Min can hope to do is to reach
the 0-mean self-loop over t. Any other reachable loop will be positive, by the
definition of an admissible strategy. The shortest path from every vertex v to
t is well-defined, because there are no nonpositive cycles in Gσ (except over
t). Therefore, we define the value of a strategy in a vertex as follows.

Definition 4.2 For an admissible strategy σ of Max, the value valσ(v) of
vertex v is defined as the shortest path distance from v to t in Gσ, or +∞ if
t is not reachable. �
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It follows that for admissible strategies finite values may only result from
shortest paths leading to the sink (retreat) t.

Note that there is a positional counterstrategy of Min that guarantees the
shortest paths are taken in each vertex, namely the strategy defined by the
shortest path forest; see, e.g., [8]. The relative quality of two admissible strate-
gies is defined componentwise.

Definition 4.3 Let σ and σ′ be two admissible strategies. Say that σ is better
than σ′, formally denoted σ > σ′, if valσ(v) ≥ valσ′(v) for all vertices v ∈ V ,
with strict inequality for at least one vertex. Say that σ ≥ σ ′, if σ > σ′ or they
have equal values in all vertices. �

The notation below will be useful for describing switches.

Notation 4.4 If σ is a strategy of Max, x ∈ VMax, and (x, y) ∈ E, then the
switch in x to y changes σ to the new strategy σ[x 
→ y], defined as

σ[x 
→ y](v)
def
=




y, if v = x;

σ(v), otherwise. �

The following definition makes a distinction between switches that improve
the strategy value, and switches that merely look like they do. Later (Corol-
lary 5.5) we will prove that the two notions are equivalent.

Definition 4.5 Given an admissible strategy σ, a switch σ[v 
→ u] is:

(1) attractive, if w(v, u) + valσ(u) > valσ(v);
(2) profitable, if σ[v 
→ u] is admissible and σ[v 
→ u] > σ. �

4.2 Requirements for the Measure

The algorithm relies on the following properties.

(1) If σ is an admissible strategy, and there is no better admissible strategy,
then σ is winning from all vertices in Max’s winning set G>0. This is
evident from the definitions.

(2) Every combination of attractive switches is profitable (Theorem 5.1).
(3) If an admissible strategy has no attractive switches, then there is no

better admissible strategy (Theorem 5.2).

Property (2) guarantees monotonicity, termination, and a pseudopolynomial
upper bound. Another advantage of (2) is as follows. To find profitable switches,

11



we only need to test attractivity, which is efficient as soon as the measure has
been computed. Testing profitability would otherwise require recomputing the
measure for every possible switch.

5 Correctness of the Measure

In this section we state the two major theorems, guaranteeing that every step
is improving and that the final strategy is the best, respectively. Afterwards,
we give two corollaries that are not strictly necessary for the algorithm to
work, but which with little extra effort give an additional insight into the
problem.

5.1 Attractiveness Implies Profitability

Our first theorem states that any combination of attractive switches is prof-
itable. This means that we never have to actually evaluate other strategies
before selecting the next iterate. Instead we can let the improvement scheme
be guided by attractiveness. Monotonicity, guaranteed by Theorem 5.1, im-
plies that every sequence of attractive switches will always terminate. Recall
that an admissible strategy does not permit any negative or zero value loops.

Theorem 5.1 If σ is an admissible strategy then any strategy obtained by one
or more attractive switches is admissible and better. Formally, if the switches

in si to ti are attractive for 1 ≤ i ≤ r and σ′ def
= σ[s1 
→ t1][s2 
→ t2] · · · [sr 
→

tr], then σ′ is admissible and σ′ > σ.

Proof. It is enough to prove that all loops in Gσ′ are positive and the value
does not decrease in any vertex. Then it follows that σ′ is admissible and the
value in every si increases strictly, hence σ′ > σ, because

valσ′(si) = w(si, ti) + valσ′(ti) [by definition]

≥ w(si, ti) + valσ(ti) [ti’s value does not decrease (to be shown)]

> valσ(si). [the switch in si to ti is attractive]

First, we prove that every loop present in Gσ′ , but not in Gσ, is positive.
Second, we prove that for every path from some vertex v to t present in Gσ′ ,
but not in Gσ, there is a shorter path in Gσ.

1. New loops are positive. Consider an arbitrary loop present in Gσ′ , but
not in Gσ. Some of the switching vertices si must be on the loop; denote them
by {v0, . . . , vp−1} ⊆ {s1, . . . , sr}, in cyclic order; see Figure 1.
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v0
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vp−1

x0

x1

x2

xp−1

y0

y1

y2

yp−1

Figure 1. A loop in Gσ′ not in Gσ is depicted. Strategy σ breaks the cycle in vertices
v0, . . . , vp−1, and instead follows the dashed paths to t, each of total edge weight yi.
The weight of the segments between two adjacent vi’s is xi.

To simplify notation, let vp
def
= v0. Since the switch in vi (0 ≤ i ≤ p − 1) is

attractive, valσ(vi) is finite, and there is a path in Gσ from vi to t. Denote by
xi the sum of weights on the shortest path from vi to vi+1 under σ′ and let
yi = valσ(vi), i.e., yi is the sum of weights on the path from vi to t under σ.

Moreover, xp
def
= x0 and yp

def
= y0. Note that

yi = valσ(vi) < w(vi, σ
′(vi)) + valσ(σ

′(vi)) ≤ xi + yi+1,

where the first inequality holds because the switch in vi to σ′(vi) is attractive
and the second because valσ(σ′(vi)) is the length of a shortest path from σ′(vi)
to t and xi−w(vi, σ

′(vi))+yi+1 is the length of another path. Combining these
p equalities for every i, we get

y0 < x0 + y1

< x0 + x1 + y2

< x0 + x1 + x2 + y3

...

< x0 + x1 + · · ·+ xp−1 + y0.

Therefore, x0 + · · ·+ xp−1 > 0, hence the loop is positive.

2. New paths to the sink are longer. Consider an arbitrary shortest
path from a vertex v to t, present in Gσ′ but not in Gσ. It must contain one
or more switching vertices, say {v1, . . . , vp} ⊆ {s1, . . . , sr}, in order indicated;
see Figure 2.

Under strategy σ′, denote by x0 the sum of edge weights on the path from v to
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v v1 v2 vpx0 x1 x2 xp

y1 y2
yp

t

Figure 2. The path going right occurs in Gσ′ but not in Gσ. Strategy σ breaks the
path in vertices v1, . . . , vp by going up and following the curved paths to t, each of
total edge weight yi. The edge weight of the segments between two adjacent vi’s is
xi.

v1, by xp the sum of weights on the path from vp to t, and by xi (1 ≤ i ≤ p−1)
the sum of weights on the path from vi to vi+1. Let yi = valσ(vi) (attractiveness
of switches in vi implies that yi are finite and determined by paths to the sink).
As above, note that, for 1 ≤ i ≤ p − 1 one has

yi < w(vi, σ
′(vi)) + valσ(σ′(vi)) ≤ xi + yi+1,

for the same reason as in the previous case, and if we let yp+1 = 0 it holds for
i = p as well. Combining these p inequalities we obtain

x0 + y1 < x0 + x1 + y2

< x0 + x1 + x2 + y3

< x0 + x1 + x2 + x3 + y4

...

< x0 + · · ·+ xp.

Thus the path from v to t in Gσ taking value x0 + y1 is shorter than the new
path in Gσ′ . �

5.2 Stability Implies Optimality

Our second theorem shows that an admissible strategy with no attractive
switches is at least as good as any other admissible strategy. This means that
if we are only looking for the vertices where Max can enforce positive weight
loops (when solving mean payoff games) we can stop as soon as we find an
admissible stable strategy. It also follows that if there are no zero-weight loops
in G, then any stable admissible strategy is optimal. Section 9 deals with the
case where zero-weight loops are considered good for Max.

Theorem 5.2 If σ is an admissible strategy with no attractive switches, then
σ ≥ σ′ for all admissible strategies σ′.

Proof. The proof is in two steps: first we prove the special case when Min

does not have any choices, and then we extend the result to general games.
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1. One-player games. Assume Min does not have any choices, i.e., the
out-degree of every vertex in VMin is one. Let σ be an admissible strategy with
no attractive switches. We claim that every admissible strategy σ ′ is no better
than σ, i.e., σ′ ≤ σ.

1a. Finite values cannot become infinite. First, we prove that if valσ(v) <
∞ then valσ′(v) < ∞. Consider, toward a contradiction, an arbitrary loop
formed in Gσ′ , not formed in Gσ (recall that a positive loop is the only way
to create an infinite value). There is at least one vertex on this loop where σ
and σ′ make different choices; assume they differ in the vertices v0, . . . , vp−1 in

cyclic order. Figure 1 shows the situation and again let vp
def
= v0. Denote by xi

the sum of edge weights on the path from vi to vi+1 under strategy σ′, and let
yi = valσ(vi), i.e., yi is the sum of edge weights on the path from vi to t under

strategy σ. Let xp
def
= x0 and yp

def
= y0. The condition “no switch is attractive

for σ” says exactly that yi ≥ xi + yi+1. Combining these p inequalities, we
obtain

y0 ≥ x0 + y1 [by non-attractiveness in v0]

≥ x0 + x1 + y2 [by non-attractiveness in v1]

≥ x0 + x1 + x2 + y3 [by non-attractiveness in v2]

...

≥ x0 + x1 + · · · + xp−1 + y0. [by non-attractiveness in vp−1]

Thus x0 + x1 + · · · + xp−1 ≤ 0. Since σ′ is admissible, there can be no such
(nonpositive) loops, a contradiction.

1b. Finite values do not improve finitely. Assume valσ(v) < valσ′(v) <
∞. 7 As in the previous proof, consider the path from v to t under σ′. The
strategies must make different choices in one or more vertices on this path,
say in v1, . . . , vp, in order; Figure 2 applies here as well.

Under strategy σ′, denote by x0 the sum of weights on the path from v to v1,
by xp the sum of weights on the path from vp to t, and by xi (1 ≤ i ≤ p − 1)
the sum of weights on the path from vi to vi+1. Let yi = valσ(vi), i.e., yi is the
sum of weights on the path from vi to t under σ. The condition “no switch
is attractive for σ” says exactly that yi ≥ xi + yi+1, for 1 ≤ i ≤ p − 1, and

7 Recall that σ and σ′ are admissible, so finite values may only result from paths
leading to t.
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yp ≥ xp. Combining these p inequalities, we obtain

y1 ≥ x1 + y2 [by non-attractiveness in v1]

≥ x1 + x2 + y3 [by non-attractiveness in v2]

≥ x1 + x2 + x3 + y4 [by non-attractiveness in v3]

...

≥ x1 + x2 + · · · + xp−1 + yp [by non-attractiveness in vp−1]

≥ x1 + x2 + · · · + xp−1 + xp, [by non-attractiveness in vp]

and in particular x0+y1 ≥ x0+· · ·+xp. But x0+y1 = valσ(v) and x0+· · ·+xp =
valσ′(v), so indeed we cannot have better finite values under σ′ than under σ.

2. Two-player games. Finally, we prove the claim in full generality, where
Min may have choices. The simple observation is that Min does not need
to use these choices, and the situation reduces to the one-player game we
already considered. Specifically, let σ be as before and let τ be an optimal
counterstrategy of Min, obtained from the shortest-path forest for vertices
with value < ∞ and defined arbitrarily in other vertices. Clearly, in the game
Gτ , the values of all vertices under σ are the same as in G, and σ does not
have any attractive switches. By Case 1, in Gτ we also have σ ≥ σ′. Finally,
σ′ cannot be better in G than in Gτ , since the latter game restricts choices for
Min. �

As a consequence, we obtain the following

Corollary 5.3 In any MPG G every admissible stable strategy is winning for
player Max from all vertices in G>0. �

The following property is not necessary for correctness, but completes the
comparison of attractiveness versus profitability.

Corollary 5.4 If an admissible strategy σ′ is obtained from another admissi-
ble strategy σ by one or more non-attractive switches, then σ ′ ≤ σ.

Proof. Consider the game (V, E ′, w′), where E ′ = E \ {(u, v) : u ∈ VMax ∧
σ(u) �= v ∧ σ′(u) �= v} and w′ is w restricted to E ′. In this game, σ has no
attractive switches, and both σ and σ′ are admissible strategies in the game,
hence by Theorem 5.2, σ ≥ σ′. �

As a special case (together with Theorem 5.1), we obtain the following equiv-
alence.

Corollary 5.5 A single switch (between two admissible strategies) is attrac-
tive if and only if it is profitable. �
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6 Efficient Computation of the Measure

For an admissible strategy σ the shortest paths in Gσ (strategy measure) can
be computed by using the Bellman–Ford algorithm for single-sink shortest
paths in graphs with possibly negative edge weights; see, e.g., [8]. This algo-
rithm runs in O(n · |E|) time. Every vertex can have its shortest path length
improved at most O(n ·W ) times (W is the largest absolute edge weight; dis-
tances are increased in integral steps). Since there are n vertices, the number
of switches cannot exceed O(n2 ·W ). Together with the O(n · |E|) bound per
iteration this gives total time O(n3 · |E| · W ). Here we show how to reuse the
shortest distances computed in previous iteration to improve this upper bound
by a linear factor to O(n2 · |E| ·W ). Since there are no known nontrivial lower
bounds on the number of improvement steps, it is practically important to
reduce the cost of each iteration.

We first compute the set of vertices that have different values under the old
and the new strategies σ and σ′, respectively, and then recompute the values
only in these vertices, using the Bellman–Ford algorithm. If the algorithm
improves the value of ni vertices in iteration i, we only need to apply the
Bellman–Ford algorithm to a subgraph with O(ni) vertices and at most |E|
edges; hence it runs in time O(ni · |E|). Since the maximum possible number of
integral distance improvements in n vertices is n2 ·W , the sum of all ni’s does
not exceed n2 ·W , so the total running time becomes at most O(n2 · |E| ·W ),
saving a factor of n. It remains to compute, in each iteration, which vertices
need to change their values. Algorithm 1 does this, taking as arguments a
game G, the shortest distances d : V → N ∪ {∞} computed with respect
to the old strategy σ, the new strategy σ′, and the set of switched vertices
U ⊆ V , where σ′ differs from σ.

Algorithm 1. Mark all vertices v for which valσ(v) �= valσ′(v).

Mark-Changing-Vertices(G, U ⊆ V, d : V → N ∪ {∞})
(1) mark all vertices in U
(2) while U �= ∅
(3) remove some vertex v from U
(4) foreach unmarked predecessor u of v in Gσ′

(5) if w(u, x) + d[x] > d[u] for all unmarked successors x of u in Gσ′

(6) mark u
(7) U←U ∪ {u}

Theorem 6.1 If an attractive (multiple) switch changes an admissible strat-
egy σ to σ′, then for every vertex v ∈ V , the following claims are equivalent.

(1) Algorithm 1 marks v.
(2) Every shortest path from v to t in Gσ passes through some switch vertex.
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(3) valσ(v) �= valσ′(v).

Proof. (1) =⇒ (2). By induction on the set of marked vertices, which
expands as the algorithm proceeds. The base case holds since the vertices
marked before the while loop are the switch vertices; these clearly satisfy (2).
For the induction step, assume the claim holds for every marked vertex and
that vertex u is about to be marked on line 6. Let x be any successor of u
included in some shortest path from u to t in Gσ. Since w(u, x) + d[x] = d[u],
and by the condition on line 5, x must be already marked. Hence, by the
induction hypothesis, every shortest path through x passes through U . This
completes the induction step.

(2) =⇒ (1). For an arbitrary vertex v, consider all its shortest paths in Gσ.
Denote by v the maximal number of edges passed by such a path before a
vertex in U is reached (so v is the unweighted length of an initial segment).
The proof is by induction on v. The base case is clear: v = 0 iff v ∈ U , and
all vertices in U are marked. Assume that the claim holds for all vertices u
with u < k and consider an arbitrary vertex v with v = k. By the inductive
hypothesis, all successors of v that occur on a shortest path are marked. Hence,
when the algorithm removes the last of them from U , the condition on line 5
is triggered and v is marked.

(3) =⇒ (2). If some shortest path from v to t in Gσ does not pass through
a switch vertex, then the same path is available also in Gσ′ , hence valσ(v) =
valσ′(v).

(2) =⇒ (3). Assume (2) and consider an arbitrary shortest path from v to t
in Gσ′ . If it contains any switch vertices, let u be the first of them. The same
path from v to u, followed by the path in Gσ from u to t, gives a shorter path
in Gσ, since the length of shortest paths strictly increase in switch vertices.
If the path does not contain any switch vertices, then by (2) it is longer than
every shortest path in Gσ. �

We thus showed that Algorithm 1 does what it is supposed to. To finish the
argument, we show that it runs in time O(|E|), so it is dominated by the time
used by the Bellman–Ford algorithm.

Proposition 6.2 Algorithm 1 can be implemented to run in time O(|E|).

Proof. Every vertex can be added to U and analyzed in the body of the while

loop at most once. The condition on line 5 can be tested in constant time if
we keep, for each vertex u, the number of unmarked successors x of u with
w(u, x) + d[x] = d[u]. Thus, the time taken by the foreach loop is linear in
the number of predecessors of v (equivalently, in the number of edges entering
v), and the claim follows. �
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7 Complexity of the Algorithm

Section 2 lists several computational problems for mean payoff games. We first
show that our basic 0-mean partition algorithm with small modifications also
solves the p-mean partition and the splitting into three sets problems with the
same asymptotic running time bound. In Section 7.2, we show how to solve the
ergodic partition problem, which introduces a small extra polynomial factor
in the complexity.

7.1 Complexity of Partitioning with Integer Thresholds

Our basic algorithm in Section 3 solves the 0-mean partition problem for
MPGs. The p-mean partition problem with an integer threshold p can be
solved by subtracting p from all edge weights and solving the 0-mean partition
problem. As a consequence, we also solve the decision problem for integer p.
Zwick and Paterson [26] consider a slightly more general problem of splitting
into three sets around an integer threshold p, with vertices of value < p, = p,
and > p, respectively. We can solve this by two passes of the p-mean partition
algorithm. First, partition the vertices into two sets with values ≤ p and > p,
respectively. Second, invert the game by interchanging VMin and VMax and
negating all edge weights, and solve the (−p)-mean partition problem. These
two partitions correspond to the < p and ≥ p partitions of the original game,
and combining the two solutions we get the desired three-partition for only
twice the effort.

We now analyze the running time of our algorithms, asymptotically the same
for all versions of the problem mentioned in the previous paragraph. The com-
plexity of a strategy improvement algorithm consists of two parts: the cost of
computing the measure times the number of iterations necessary. Section 6
demonstrates that this combined cost is at most O(n2 · |E| · W ). This is the
same complexity as for the algorithm by Zwick and Paterson for the splitting
into three sets problem [26, Theorem 2.4]. If W is very big, the number of it-
erations can of course also be bounded by

∏
v∈VMax

outdeg(v), the total number
of strategies for Max.

Using the randomization scheme of Matoušek, Sharir, and Welzl from Sec-

tion 3.4 we obtain the simultaneous bound 2O(
√

n log n), independent of W .
Combining the bounds, we get the following.
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Theorem 7.1 The decision, p-mean partition, and splitting into three sets
problems for mean payoff games can be solved in time

min
(
O(n2 · |E| · W ), 2O(

√
n log n)

)
. �

Note that a more precise estimation replaces n by |VMax| in the subexponential
bound, since we only consider strategies of Max. Also, n ·W can be replaced
by the length of the longest shortest path, or any upper estimate of it. For
instance, one such bound is the sum, over all vertices, of the maximal positive
outgoing edge weights.

7.2 Computing the Ergodic Partition

We now explain how to use the solution to the p-mean partition problem to
compute the ergodic partition. We first describe the algorithm, which uses
an algorithm for the p-mean partition problem with rational thresholds as a
subroutine. We then analyze our algorithm for the case of rational thresholds,
and finally bound the total running time, including all calls to the p-mean
partition algorithm.

Denote by w− and w+ the smallest and biggest edge weights, respectively.
Then the average weight on any loop (i.e., the value of any vertex in the
MPG) is a rational number with denominator ≤ n in the interval [w−, w+].
We can find the value for each vertex by dichotomy of the interval, until each
vertex has a value contained in an interval of length ≤ 1/n2. There is at
most one possible value inside each such interval (the difference between two
unequal mean loop values is at least 1/n(n − 1)), and it can be found easily
[14,26]. The interval is first partitioned into parts of integer size. After that
we deal with rational thresholds p/q, where q ≤ n2. We therefore have to
solve the p-mean partition problem when the threshold p is rational and not
integral. As is readily verified, our algorithm directly applies to this case: only
the complexity analysis needs to be slightly changed.

The subexponential bound does not depend on thresholds being integers, but
we need to analyze the depth of the measure. After subtracting p/q from each
(integral) weight w, it can be written in the form (qw − p)/q, so all weights
become rationals with the same denominator. The weight of every path of
length k to t has the form (

∑k
i=1 wi) − kp/q. The sum

∑k
i=1 wi can take at

most n · W different values, and k can take at most n values, so each vertex
can improve its value at most n2 ·W times. Thus, solving the 0-mean problem
for rational thresholds takes at most n times longer.

During the dichotomy process, we consider subproblems with different thresh-
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olds. The thresholds are always in the range [w−, w+], so the largest absolute
edge weight is linear in W . We will bisect the intervals at most O(log(W ·n2))
times. The total number of vertices in the subproblems solved after bisect-
ing k times is at most n. The complexity function T is superlinear in n, so
that T (i) + T (j) ≤ T (i + j). Hence the total time for the subproblems after
k bisections does not exceed that of solving one n-vertex game. This shows
that the whole computation takes time O(log(W ·n) · T ), where T is the time
for solving the p-mean partition problem. We summarize this in the following
theorem.

Theorem 7.2 The ergodic partition problem for mean payoff games can be
solved in time

min
(
O(n3 · |E| · W · log(n · W )), (log W ) · 2O(

√
n log n)

)
. �

Zwick’s and Paterson’s algorithm for this problem has the worst-case bound
O(n3·|E|·W ) [26, Theorem 2.3], which is slightly better for small W , but worse
for large W . Note that the algorithm [26] exhibits its worst case behavior on
simple game instances.

8 Variants of the Algorithm

Theorem 5.1 shows that any combination of attractive switches improves the
strategy value, and thus any policy for selecting switches in each iteration will
eventually lead to an optimal strategy. In particular, all policies that have been
suggested for parity and simple stochastic games apply. These include the all
profitable, random single, and random multiple switch algorithms; see, e.g., [1].
In our experiments with large random and non-random game instances these
algorithms witness extremely fast convergence. In this section we suggest two
alternative ways of combining policies.

Initial Multiple Switching. We can begin with the strategy where Max

goes to the sink t in each vertex and rather than starting the randomized
algorithm described in Section 3.4 immediately, instead make a polynomially
long sequence of random (multiple) attractive switches, selecting them at each
step uniformly at random. Use the last strategy obtained, if not yet optimal,
as an initial one in the randomized algorithm above. There is a hypothesis due
to Williamson Hoke [25] that every completely unimodal function (possessing
a unique local maximum on every boolean subcube) can be optimized by
the random single switch algorithm in polynomially many steps. The longest-
shortest paths problem is closely related to CU-functions. Investigating these
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problems may shed light on possibilities of polynomial time optimization for
both.

Proceeding in Stages. Another version of the algorithm starts as described
in the previous subsection, and afterward always maintains a partition of the
vertices (from which the longest shortest distance is not yet +∞) into two sets:
R of vertices where Max is still using the conservative strategy of retreating
immediately to the sink t, and N of all other vertices. In all vertices in N∩VMax,
Max already switched away from retreating. Since the value of a vertex can
only increase, Max will never change back playing to retreats in those vertices
(so retreat edges from vertices in N may be safely removed without influencing
the 0-mean partition). We fix the choices in R and proceed as in Section 3.4,
to find the best strategy in controlled vertices in N . If the resulting strategy
is globally optimal (contains no attractive switches in R), we stop. Otherwise
we make some or all attractive switches in vertices in R. Each stage of this
version of the algorithm is subexponential, and there are only linearly many
such stages, because a vertex leaving R never returns back.

9 The LSP Problem is in NP∩coNP

The decision version of the LSP problem, restricted to determine whether the
longest shortest path from a distinguished vertex s to the sink is bigger than
a given bound D is another example of a problem in NP∩coNP.

Recall that in the definition of the LSP problem (Section 3.1) we have not
stated how the shortest distance to the sink is defined when the Max player
can enforce a zero-weight loop. This was unneeded because such loops are un-
interesting for Max in mean payoff games for reaching a positive mean value.
Zero-weight loops are impossible in admissible strategies, and only such strate-
gies are needed (visited) by our algorithms to compute zero-mean partitions
in games. However, in the LSP problem it is natural to postulate that when-
ever Max can enforce a zero-weight cycle, the distance to the (unreachable)
sink becomes +∞. We show here that a minor modification allows us to reuse
Theorems 5.1 (attractiveness implies profitability) and 5.2 (stability implies
optimality), as well as subexponential algorithms from Sections 3.3, 3.4, to
compute longest shortest paths, and to prove the NP∩coNP-membership.

The necessary modification is achieved by making the following simplifying
assumption about the instances of the LSP problem.

22



Assumption. A graph in an LSP problem instance does not contain zero-
weight loops. �

This assumption may be done without loss of generality. Indeed, if the graph
G has n vertices, we can multiply all edge weights by n + 1 and add 1. As
a result, zero loops will disappear (become positive), and the lengths l, l′ of
all paths/simple loops in G and the modified graph G′ will only differ within
the factor of (n + 1), i.e., l(n + 1) < l′ ≤ l(n + 1) + n. Consequently, all
negative/positive loops in the original graph will preserve their signs.

Proposition 9.1 The decision version of the LSP problem (subject to the
assumption above) is in NP∩coNP.

Proof. First note that we can add retreat edges to any LSP problem instance
similarly as to MPGs: from any controlled vertex, make an extra edge to the
sink with value −2 ·n ·W − 1. Thus, we guarantee that there is an admissible
strategy, namely the one always using the retreat edge. In a solution to the
transformed LSP problem, a vertex has value < −n · W , iff it can only reach
the sink through a retreat edge, iff it has value −∞ in the original problem.

Both for YES- and NO-instances, the short witness is an optimal (stable)
positional strategy σ in controlled vertices of the transformed problem. By
computing the shortest paths to the sink in Gσ, i.e., computing the strategy
measure, it can be verified in polynomial time that no switch is attractive
and thus that the strategy is optimal by Theorem 5.2. This can be used as a
witness for YES-instances by testing if the value is > D, and for NO-instances
by testing whether the value is ≤ D. �

The absence of zero-weight loops is essential in the proof above. The example
in Figure 3 demonstrates a zero-weight loop, and a stable strategy, which does
not provide the optimal (in the LSP sense) solution.

t
00

1

−1

Figure 3. Switching to the dotted edge is not attractive, but improves the values in
all vertices to +∞.

For mean payoff games we were satisfied with the definition of optimality that
only stipulates that Max can secure positive-weight loops whenever possible.
Thus, in Figure 3 the strategy “go to t” in the leftmost vertex is MPG-optimal,
but not LSP-optimal. In contrast, the LSP-optimality makes zero-weight loops
attractive (shortest distance to the sink equals +∞). This was essentially used
in the proof of Proposition 9.1 and can always be achieved by making the initial
transformation to satisfy the Assumption.
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10 LSP: Exponential Sequences of Attractive Switches

One might conjecture that any sequence of attractive switches converges fast
on any LSP problem instance, and consequently MPGs are easily solvable
by iterative improvement. It is not so easy to come up with “hard” LSP
examples. In this section we present a set of instances of the LSP problem and
an improvement policy, selecting an attractive switch in every step, leading
to exponentially long sequences of strategy improvements. This shows that
the LSP problem is nontrivial, and the choice of the next attractive switch is
crucial for the efficiency.

Consider the (2n + 2)-vertex graph in Figure 4, where round vertices belong
to Max, square ones to Min, and the leftmost vertex is the sink. The optimal
strategy of Max is marked by the dashed edges. Adding N is unnecessary
here (N may be set to 0 for simplicity), but will be needed later.
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Figure 4. LSP instances allowing for exponentially long chains of improving switches.

If the iterative improvement algorithm starts from the strategy “go left every-
where” and always makes the rightmost attractive single switch, it visits all
2n possible strategies of Max, as can be readily verified.

The LSP instances above can be generated from MPGs as follows. In Figure 4,
add a self-loop of weight zero in the leftmost vertex. Add the retreat vertex and
edges as explained in Section 3.2. If the algorithm initially switches from the
“go to the retreat everywhere” strategy to the “go left everywhere”, and then
always chooses the rightmost attractive single switch, it follows exactly the
exponentially long chain of improving strategies, as in the LSP case. Adding
N now is essential to keep all the paths nonnegative; otherwise, the initial
“switches from the retreat” would be non-attractive.

Actually, the LSP-instances in Figure 4 are “trivial”, because the graphs are
acyclic and longest-shortest distances are easily computable by dynamic pro-
gramming in polynomial time, as mentioned in the end of Section 3.1. These
LSP-instances are also easily solvable by the “random single switches” policy,
selecting an attractive switch uniformly at random. The reason is as follows.
The second from the left dashed edge remains always attractive, and once the
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algorithm switches to this edge, it will never switch back. Such an edge defines
a so-called absorbing facet. Obviously, the random single switch algorithm is
expected to switch to the absorbing facet in polynomially many, namely O(n),
steps. The problem that remains has one dimension less, and the preceding
dashed edge determines an absorbing facet. The algorithm converges in O(n2)
expected iterations. Currently we are unaware of any LSP instances that re-
quire superpolynomially many steps of the single random, multiple random,
or all profitable (attractive) switches algorithms.

The example of this section is inspired by the one due to V. Lebedev men-
tioned in [14], and kindly provided by V. Gurvich. Unlike the GKK-algorithm
[14], which is deterministic and bound to perform the exponential number of
iterations, corresponding exactly to the exponential sequence determined by
the rightmost attractive switches above, our randomized algorithms quickly
solve the examples from this section.

11 Application to Parity Games

The algorithm described in this paper immediately applies to parity games,
after the usual translation; see, e.g., [23]. Parity games are similar to mean
payoff games, but instead of weighted edges they have vertices colored in
nonnegative integer colors. Player Even (Max) wants to ensure that in every
infinite play the largest color appearing infinitely often is even, and player
Odd (Min) tries to make it odd. Parity games are determined in positional
strategies [13,5].

Transform a parity game into a mean payoff game by leaving the graph and the
vertex partition between players unchanged, and by assigning every vertex 8

of color c the weight (−n)c, where n is the total number of vertices in the
game. Apply the algorithm described in the preceding sections to find a 0-
mean partition. The vertices in the partition with value > 0 are winning for
Even and all other are winning for Odd in the parity game.

Actually, the new MPG algorithm, together with a more economic translation
and more careful analysis, gives a considerable improvement for parity games
over our previous algorithm from [2], which has complexity

min
(
O(n4 · |E| · k · (n/k + 1)k), 2O(

√
n log n)

)
,

where n is the number of vertices, |E| is the number of edges, and k is the

8 Formally, we have to assign this weight to every edge leaving a vertex, but it
makes no difference.
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number of colors. Thus, in the worst case the first component in the upper
bound may be as high as O(|E| · n5 · 2n), when the number of colors equals
the number of vertices. The MPG algorithm improves the first component in
the upper bound to O(n2 · |E| · (n/k + 1)k), thus gaining a factor of n2 · k.
To prove this bound, we assign weights to vertices more sparingly than in the
mentioned reduction. It is readily verified that we may equally well give a
vertex of color c the weight (−1)c · ∏c−1

i=0(ni + 1), where ni is the number of
vertices of color i. In the worst case (when all ni are roughly equal), this gives
W = O((n/k + 1)k).

There are two reasons for this improvement. First, each vertex can improve its
value at most n · (n/k +1)k times, compared with n2 · (n/k +1)k in [2] (this is
because the measure for every vertex in [2] is a triple, rather a single number,
containing additionally the loop color and the path length, now both unneeded;
however the shortest distance may be as big as the sum of all positive vertices).
Second, we now apply the simpler and more efficient counterstrategy algorithm
from Section 6, which saves an extra factor nk.

Moreover, translating a parity game into an MPG allows us to assign weights
even more sparingly, and this additionally improves over (n/k + 1)k. Indeed,
if we want to assign a minimum possible weight to a vertex of color i, we may
select this weight (with an appropriate sign) equal to the total absolute weight
of all vertices of preceding colors of opposite parity, plus one. This results in
a sequence w0 = 1, w1 = −(n0 · w0 + 1), wi+2 = −(ni+1 · wi+1 + ni−1 · wi−1 +
· · · + 1) = −ni+1 · wi+1 + wi. In the case of k = n (one vertex per color) it
results in the Fibonacci sequence with alternating signs: w0 = 1, w1 = −2,
wi+2 = −wi+1 + wi, which is, in absolute value, asymptotically O(1.618n),
better than 2n.

Finally, the new MPG-based algorithm for parity games is easier to explain,
justify, and implement.

12 Conclusions

We defined the longest shortest path (LSP) problem and showed how it can
be applied to create a discrete strategy evaluation for mean payoff games.
Similar evaluations were already known for parity [24,2], discounted payoff
[23], and simple stochastic games [17], although not discrete for the last two
classes of games. The result implies that any strategy improvement policy may
be applied to solve mean payoff games, thus avoiding the difficulties of high
precision rational arithmetic involved in reductions to discounted payoff and
simple stochastic games, and solving associated linear programs.
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Combining the strategy evaluation with the algorithm for combinatorial linear

programming suggested by Matoušek, Sharir, and Welzl, yields a 2O(
√

n log n)

algorithm for the mean payoff game decision problem.

An interesting open question is whether the LSP problem is more general than
mean payoff games, and if it can find other applications. We showed that it
belongs to NP ∩ coNP, and is solvable in expected subexponential randomized
time.

The strategy measure presented does not apply to all strategies, only admissi-
ble ones, which do not allow nonpositive weight loops. This is enough for the
algorithm, but it would be interesting to know if the measure can be modified
or extended to the whole strategy space, and in this case if it would be com-
pletely local-global, like the measures for parity and simple stochastic games
investigated in [4].

The major open problem is still whether any strategy improvement scheme
for the games discussed has polynomial time complexity.
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ABSTRACT

We introduce and investigate the new Controlled Linear Programming Problem.
In a system of linear constraints of the form xi ≤ pj

i (x̄) + wj
i , where pj

i are linear homo-
geneous polynomials with nonnegative coefficients, some variables are controlled and the
controller wants to select exactly one constraint for each controlled variable in a way that
makes max

∑
xi subject to the remaining constraints as large as possible (over all selections).

We suggest several iterative strategy improvement policies (simplex-like and interior-point),
prove optimality conditions in several important cases, describe subexponential algorithms,
and interior point ones, and show that the decision version of the problem is a member of
NP∩coNP whenever stability yields optimality, and also when all coefficients are nonneg-
ative integers.

It turns out that the well known mean payoff, discounted payoff, and simple stochastic
games are easily reducible to the Controlled LP-Problem. This suggests a simple
unifying view of all these games as particular restricted instances of the problem.

We show that a slight generalization of the problem allowing for negative coefficients in
the constraint polynomials pj

i leads to NP-hardness.
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1 Introduction

Consider a succinctly represented family F = {Pi}i∈I of instances of a polynomially solvable
optimization problem. Find an instance with the largest possible value of the associated
objective function. We are better off with a concrete example.

Longest Shortest Paths. Let Pi’s be weighted digraphs with distinguished source s and
sink t. Find the graph with the longest shortest s-t-distance. As an example of succinct
representation, consider a digraph G with a distinguished subset of controlled vertices C,
and generate Pi’s by selecting exactly one outgoing edge per controlled vertex. This gives a
compact representation of an exponential in |C| family of graphs. This problem, called the
Longest Shortest Paths (LSP) problem, has useful applications and is investigated in [4].

The example of a controlled problem above, in which the controller selects options in
order to maximize the target function over all possible selections, seems deceptively simple
to generalize. Take Max-Bipartite Matching or Max-Flow and allow the controller to choose
edges from some vertices so as to minimize the resulting maximum matching/flow. Natural
and simple as these problems sound, they turn out to be NP-hard; see Section 12.

The questions which immediately appear are as follows. Can we equip the family F with
a meaningful polynomial neighborhood structure and corresponding target/quality function1

allowing for a polynomial local search (PLS)? Combinatorially we get a directed graph with
family members as vertices and edges corresponding to quality improvements. How fast can
we find local maxima in this graph? It turns out that our chances are better than exponential
in the LSP problem [5]. How about the quality of local maxima in this structure? How can we
verify that a given local maximum is global? Can we guarantee that every local maximum
is global? All those questions have satisfactory positive solutions in the case of the LSP
problem.

Now the main question. Are there any other useful controlled optimization problems
with the positive (satisfactory) answers to the questions above? Do they have good and
interesting applications?

In this paper we introduce and investigate another problem of this kind, dubbed the
Controlled LP-Problem. In a system of linear constraints of the form xi ≤ pj

i (x̄) + wj
i ,

where pj
i are linear homogeneous polynomials with nonnegative coefficients and wj

i ∈ R,
some variables are controlled and the controller wants to select exactly one constraint for
each controlled variable in a way that makes max

∑
xi, subject to the remaining constraints,

as large as possible (over all selections).
It turns out that the well known mean payoff, discounted payoff, and simple stochastic

games [9, 11, 7, 22], as well as the LSP problem [5], are easily reducible to the Controlled
LP-Problem. This suggests a simplified unifying view of all these games as particular
restricted instances of the problem, and proves its usefulness. The subexponential algorithms
for the CLPP (Section 11) are immediately applicable to solve all the above games.

The CLPP with nonnegative coefficients demonstrates a robust structure amenable to a

1Note that there are target functions in each instance, now we are talking about the “second-order” function
comparing quality of instances.
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polynomial local search (PLS). Looking at unselected controller constraints, which have less
restrictive right-hand sides in the optimal solution, compared to the current selection, allows
for defining a numerous monotonic iterative improvement schemes (discrete and interior point
attractive switches; Sections 3, 4). As a result, the problem of finding local maxima for the
CLPP in this case can be solved in subexponential time (Section 11). In many interesting
cases of the CLPP with nonnegative coefficients, we also prove that a stable (not locally
improvable) pure strategy (selection) of constraints is also globally optimal (Section 7). In
these cases we can find global maxima in subexponential time, and the corresponding decision
problem (is there a selection providing for the optimum value above the threshold) is in
NP∩coNP (Section 7.4). We also investigate a case of the CLPP with nonnegative integer
coefficients, which is in NP∩coNP, but without the “stability ⇒ optimality” property and
without known subexponential iterative improvement algorithms (Section 8). This shows, in
particular, that there is a CLPP subclass, which belongs to NP∩coNP, while being more
general than any of the games mentioned above.

The next natural step in generalization leads to (presumable) intractability. We show
show that a slight generalization of the CLPP, allowing for negative coefficients in the poly-
nomials pj

i , leads to NP-hardness. As a result, we have a sufficiently sharp classification of
NP∩coNP and NP cases in terms of nonnegative/arbitrary coefficients in the right-hand
sides of the CLPP constraints. Our examples of the Controlled Bi-Partitite Match-
ing and Controlled Max-Flow confirm this classification (Section 12).

Notations, Conventions. By boldface x, y, and 1 we denote column vectors of vari-
ables xi, yi, and ones, and by xT the transposed row vector. A linear polynomial is called
homogeneous if it contains no free members, i.e., of the form cTx.
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2 The Controlled Linear Programming Problem

Let x = (x1, . . . , xn), y = (y1, . . . , ym) be two vectors of variables, called controlled and
uncontrolled, respectively. Let pj

i (y) and ql
k(x) be homogeneous linear polynomials with non-

negative real coefficients, and wj
i , w

′l
k ∈ R, for i ∈ {1, . . . , n}, j ∈ {1, . . . , ni}, k ∈ {1, . . . ,m},

l ∈ {1, . . . ,mk}. A linear constraint is called:

• optional if it has form xi ≤ pj
i (y) + wj

i , and

• compulsory if it has form yk ≤ ql
k(x) + w

′l
k .

(For notational convenience we assume “bi-partiteness”: xi’s and yj’s alternate in constraint
sides. This is no loss of generality and can always be achieved by introducing new variables.)

Definition 2.1 (Controlled LP-Problem) Given the data as above, find a tuple, called
a positional strategy, (j1, . . . , jn) ∈ ∏n

j=1{1, . . . , nj} that renders maximal (over all pos-
sible such tuples) the value of the objective function

∑n
i=1 xi +

∑m
i=1 yi subject to the sys-

tem of constraints S(j1, . . . , jn) consisting of all compulsory and the optional constraints
xi ≤ pji

i (y) + wji

i for i = 1, . . . , n. �

Quite often we want to maximize the values of all variables. This is not the same as
maximizing their sum in case some variable is unbounded. Section 3.1 explains how to
proceed in this case.

Proviso. To avoid immediate unboundedness of a feasible constraint system, we assume
that every variable occurs in the left-hand side of some constraint. �

The name for this problem comes from the intuition that the controller selects exactly
one optional constraint for each controlled variable xi to maximize the objective function. In
general, some selections of optional constraints may lead to infeasible systems (the value of
objective function is −∞), some to polyhedra unbounded in some coordinate directions (the
value +∞), and some to nonempty polyhedra with a finite optimum of the target function.

It would be more appropriate (but would overload the terminology) to call the problem
the Positive Controlled LP-Problem, since we impose the positiveness of the coeffi-
cients in polynomials. We show that this restriction is crucial for efficiency; see Section 9.
Whenever it causes no confusion, we omit the adjective “positive”.

Definition 2.1 introduces the optimization problem. As usual, the corresponding decision
version is defined by giving an additional bound and asking whether there exists a selection
rendering the objective function larger than that bound.
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3 Discrete Switching Algorithms

A selection λ = (j1, . . . , jn) of optional constraints, is called a pure2 strategy. Denote
S(j1, . . . , jn) the resulting system of constraints obtained by taking all compulsory con-
straints and leaving only the jk-th optional constraint for each variable xk, k = 1, . . . , n. Say
that a strategy λ is admissible if S(λ) is feasible (has a solution).

Consider an optimal solution (x∗,y∗) to a feasible system S(j1, . . . , jn), maximizing the
target function 1Tx + 1Ty, symbolically,

(x∗,y∗) = arg max{1Tx + 1Ty subject to S(j1, . . . , jn)}.

Say that a switch for variable xk from jk-th to j ′k-th constraint is attractive, if

pjk

k (y∗) + wjk

k < p
j′k
k (y∗) + w

j′k
k . (1)

Say that a sequence of switches for variables x1, . . . , xn from (j1, . . . , jn) to (j ′1, . . . , j
′
n) is

profitable, if for each variable v in x, y one has

max{v subject to S(j1, . . . , jn)} ≤ max{v subject to S(j ′1, . . . , j
′
n)}, (2)

and for some variable the inequality (2) is strict.
We have the following two important theorems, underlying a wide range of iterative

improvement algorithms for the controlled LP-problem. The first theorem guarantees strict
monotonic improvement of attractive switches. It will be the corollary of the more general
theorem in Sections 5.

Theorem 3.1 Every sequence of attractive switches is profitable and transforms an admis-
sible strategy into an admissible one. �

Say that an admissible strategy is stable if it does not have attractive switches. For many
important cases of the Controlled LP-Problem, discussed below, we have the following
polynomial-time optimality test.

Theorem 3.2 Every stable strategy is optimal. �

Theorems 3.1 and 3.2 immediately suggest the following correct and complete generic
algorithm for solving, in some cases, the Controlled LP-Problem.

Generic Algorithm for Controlled LP

1. Start with any admissible initial strategy (we discuss below how to select such strate-
gies.)

2or discrete
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2. Proceed by making any attractive switches, until obtaining a stable strategy. (Sim-
plify the system if necessary by getting rid of unbounded variables and associated
constraints. It is essential that this simplification takes place only after reaching a
stable strategy; see Section 3.1.)

3. In many important cases (Sections 7) the resulting stable strategy is also optimal.

Specific iterative strategy improvement algorithms are obtained by imposing a policy on
selecting attractive switches at every iteration. Some possible policies are: single random
switch, all attractive switches, random multiple attractive switches (Section 11.1). We also
discuss two randomized subexponential algorithms for the Controlled LP-Problem,
based on adapting the schemes for LP due to Kalai [13] and Matoušek, Sharir, Welzl [16]
(Section 11.2). In general, there are examples of “poor” switching policies leading to an
exponential number of switches [5], so the problem is by no means trivial.

3.1 Eliminating Unbounded Variables and Constraints

In many circumstances we want to maximize the values of all variables, rather than just the
sum of all variables. In this case we need to get rid of the unbounded variables, simplify the
system, and proceed with the remaining variables. Here is the recipe.

Theorem 3.3 Eliminating unbounded variables and constraints from the system S(λ), does
not affect the optimal values of the remaining variables, provided that λ is stable.

Proof. Assume the value of a controlled variable xi is bounded in S(λ). Since xi has no
attractive switches, every unbounded variable must have the coefficient 0 in every constraint
for xi. Therefore, xi will not be affected by the elimination of the unbounded variables.
Suppose the value of an uncontrolled variable yi is bounded in S(λ). Then it has a bounded
constraint. Since the unbounded constraints never will tighten the value of yi, even if the
bounded constraints go unbounded, we can safely remove them. �

Eliminating unbounded variables allows us to assume in the premises of theorems below,
without loss of generality, that a system has a finite optimal solution under a current strategy.

It is easy to construct an example where an elimination in a system with an unstable
strategy has a devastating effect to the solution. Consider the unstable strategy ((1,0),(1,0),
(0,1)) in Figure 1 in Section 6 and the notational explanations there. Eliminating the
unbounded variables and constraints will give v3 the final value of 1, while its correct value
is infinity.

3.2 Retreats: Boundedness and Feasibility

An alternative way of avoiding unboundedness is to add retreat constraints for the uncon-
trolled variables. They are called retreats because we can imagine a minimizing player
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(opponent) choosing constraints for the uncontrolled variables, and using the retreats only
when the value for a variable threatens to become unbounded.

To do this, compute an upper bound M on the largest finite value a variable can take
in the solution to the linear program arising from any strategy of the maximizer. Then add
a constraint yk ≤ M , for each uncontrolled variable yk. After solving the new system, any
variable that gets a value close to M has an unbounded value in the optimal solution to the
original problem.

Similarly, we can add retreats for the maximizer, in order to ensure that there is at least
one strategy that yields a feasible linear program. Add a constraint xi ≤ −M for each
controlled variable xi. Now the strategy that for every controlled variable selects the retreat
constraint is admissible.
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4 Interior Point Algorithms

The previous discrete switching algorithms can be seen as a simplex-like, visiting the vertices
of the Cartesian product

∏n
i=1{1, . . . , ni} (the space of pure/discrete strategies), monotoni-

cally improving the target function value. Let us extend this by allowing the algorithm to
visit the interior of the product of simplices. The adequate setting for this is as follows
(previously suggested and investigated by us in the context of simple stochastic games in
[19, 18]).

For every controlled vertex xi let a nonnegative vector λ̄i = (λ1
i , . . . , λ

ni
i ) have the l1-norm

equal to 1, i.e.,
∑ni

j=1 λj
i = 1. Combine all the constraints for each controlled variable xi into

a weighted sum:

ni∑
j=1

λj
i (p

j
i (y) + wj

i ). (3)

Collect all the constraints (3), for all controlled variables, together with all compulsory
constraints, and denote the resulting system by S(λ) = S(λ̄1, . . . , λ̄n). Call the vector of
vectors λ = (λ̄1, . . . , λ̄n) a mixed strategy. Each such mixed strategy is an interior point of
the product of simplices. In contrast a strategy λ̄i with exactly one component λj

i equal 1 is
called pure. Call a mixed strategy λ admissible if the system of constraints S(λ) is feasible.

Similar to the discrete case, we will introduce a notion of attractive interior point switch,
and will prove three facts, guaranteeing the correctness of a wide range of interior point
algorithms:

1. for an admissible strategy, any combination of attractive switches leads to an admissible
strategy and a better target function value (Section 5);

2. for any stable mixed strategy (no attractive switches) there is a pure no-worse stable
strategy (Section 6);

3. every pure stable strategy is optimal, in many important cases discussed in Section 7.

Now the Generic Algorithm from Section 3 works perfectly well for the generalized case
of interior-point switches.
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5 Attractiveness and Profitability

Definition 5.1 Given an admissible interior point strategy λ = (λ̄1, λ̄2, ..., λ̄n), let (x∗,y∗)
be an optimal solution to the system S(λ). Then an interior point (single) switch for variable
xi from λ̄i to λ̄′

i is called attractive, if

∑
j

λj
i (p

j
i (y

∗) + wj
i ) <

∑
j

λ′
i
j
(pj

i (y
∗) + wj

i ). (4)

Say that the switch from λ to another strategy λ′ = (λ̄′
1, . . . , λ̄

′
n) is profitable, if λ′ is admis-

sible and for each variable v in x, y one has

max{v subject to S(λ)} ≤ max{v subject to S(λ′)}, (5)

and for some variable the inequality (5) is strict. �

Theorem 5.2 Any combination of attractive switches is profitable.

Proof. Assume attractive switches were made, from strategy λ to λ′. Let (x∗,y∗) be the op-
timal solution to the old LP S(λ). For every switched variable xi, we have the old constraint
xi ≤

∑
j λj

i (p
j
i (y) + wj

i ), and the new constraint xi ≤
∑

j λ′
i
j(pj

i (y) + wj
i ). By definition of

an attractive switch, we have (4) satisfied.
Then it is easy to see that (x∗,y∗) is a solution to the new LP S(λ′), because every

constraint is either the same or more generous, i.e., has a larger right-hand-side, by (4).
Take one switched variable xi, let x′

i = xi + ε, for a small enough ε > 0. Then (x∗,y∗),
where xi in x∗ is replaced by x′

i is a solution to the new LP S(λ). This follows from the two
facts:

1. x′
i does not violate its constraint because the attractive switch made it more generous.

2. The increase of xi does not offend any other constraints, because the polynomials
pj

i (y) and ql
k(x) have only non-negative coefficients, so no constraint is tightened by

an increase in xi.

We have thus shown that the resulting strategy is admissible and that there exists a better
solution to the new LP. Therefore, the switch is profitable. In addition, we see that the
values of variables where attractive switches are made are guaranteed to increase in an
optimal solution to the new system.

Note that the argument above essentially uses the fact that the polynomials pj
i and qj

i

in right-hand sides of constraints have nonnegative coefficients. The above argument fails, if
negative coefficients are allowed. �

Now Theorem 3.1 follows immediately, as a corollary.
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6 Discretization

In this section we show that every stable mixed (interior-point) strategy λ can be made
discrete (pure). This simplification allows us to concentrate on discrete/pure strategies
while proving optimality of stable strategies in Section 7.

Theorem 6.1 For every mixed stable strategy there exists a discrete/pure strategy providing
for a no-worse value of the target function.

Proof. Assume λ = (λ̄1, . . . , λ̄n) is mixed and stable, and the optimal solution to the system
S(λ) is (x∗,y∗). For every non-discrete λ̄i = (λ1

i , . . . , λ
ni
i ) consider all λj

i > 0. For all such λj
i

the values of the corresponding right-hand sides of the constraints pj
i (y

∗) + wj
i are the same,

since there are no attractive switches. Denote this value z.
Obtain λ̄′

i from λ̄i by discretization as follows. Take any k such that λk
i > 0, set λ

′k
i

equal one, and all other components of λ̄′
i equal zero. Since xi ≤

∑ni

j=1 λj
i (p

j
i (y

∗) + wj
i ) =∑ni

j=1 λj
iz = 1 · z = pk

i (y
∗) + wk

i , switching from λ̄i to λ̄′
i leaves the solution (x∗,y∗) feasible.

Therefore, the value of the target function does not get worse. Repeat the same argument
for each non-discrete component λ̄i. �

In Figure 1 we give the graph representation of the following controlled linear program,
where all constraints are optional:{

v1 ≤ v2,
v1 ≤ 0,

{
v2 ≤ v1,
v2 ≤ 0,

{
v3 ≤ v2,
v3 ≤ 1.

As an example, a mixed (actually, pure) strategy ((1, 0), (1, 0), (0, 1)) selects the first
constraints for v1,2 and the second for v3.

It is conceivable, as Figure 1 shows, that after discretization described in the proof above
the resulting strategy becomes unstable. In this case it will be enough to proceed with
attractive switches, and apply the argument again. This will eventually result in a discrete
stable strategy.

v1 v2 v3

00

0

0

0

1

Figure 1: In this controlled LP there is a strategy that is stable before but not after dis-
cretization. Round vertices are controlled.

Consider the mixed strategy ((1/2, 1/2), (1/2, 1/2), (0, 1)), in which the controller selects
for v1,2 each of the optional constraints with equal probability 1/2, and for v3 purely selects
v3 ≤ 1. This strategy is stable yielding the optimal target value 1, but its discretization to
((1, 0), (1, 0), (0, 1)) becomes unstable, the attractive switch in v3 to v3 ≤ v2 makes all three
variables unbounded.
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7 Stability and Optimality

As discussed in Section 7.5, in general, a stable strategy in an instance of the Positive
Controlled LP-Problem is not necessarily optimal. In this and subsequent sections we
also present several important particular cases when the desired implication “stability ⇒
optimality” holds, i.e., a stable strategy is guaranteed to be optimal. This suggests an easy
polynomial-time verification of optimality, used by all our algorithms in Section 11.

7.1 Univariate Discounted Case

Let 0 < δ < 1 be fixed, and consider the Positive Controlled LP-Problem with
restricted right-hand sides of one of the forms:

x ≤ w + δ · y, (6)

y ≤ w + δ · x, (7)

y ≤ 0, (8)

where x is a controlled variable, y is a noncontrolled variable, and w ∈ R. In other words,
we restrict the number of variables in the right hand sides to at most one, with the coef-
ficient smaller than one. Note that constraints of the form y ≤ w may be introduced as
abbreviations for y ≤ w + δx′, x′ ≤ 0 + δy′, y′ ≤ 0.

Theorem 7.1 Every discrete/pure stable strategy of the controller (Max) in the Positive
Controlled LP-Problem instance with constraints of the form (6) – (8) is optimal.

Proof. Let λ be a stable strategy in a problem instance S. Assume S(λ) is feasible, and
let (x∗,y∗) be an optimal solution. We claim and prove shortly that this optimal solution is
finite.

A function p mapping variables in x and y to R is called a potential function for the
system S(λ) if for every constraint u ≤ w + δ · v (y ≤ 0, resp.) one has p(u) ≤ w + δ · p(v)
(p(y) ≤ 0, resp.).

It is easy to see that the components of a finite optimal solution to S(λ) determine
potentials for the system S(λ). Let us take the potential function p obtained this way and
make the following potential transformation to the whole system S:

• if u ≤ w+δ ·v is a constraint, change it to u ≤ w′ +δ ·v, where w′ = w−p(u)+δ ·p(v).

Since the strategy λ is stable, after the potential transformation, for every constraint
x ≤ w′ + δ · y that is not in λ one has w′ ≤ 0, with w = 0 for constraints in λ. This follows
from the fact that stability means choosing a constraint with the maximal right-hand side
(no attractive switches). Define an optimal counterstrategy τ(λ) of the controller’s opponent
against λ as a selection, for each variable, of one of the compulsory constraints that are
tight in the optimal solution for S(λ) (i.e., satisfied as equalities). This means that in a
strategy τ(λ) in system S(λ) there are also no attractive switches for the opponent (defined
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symmetrically as for the controller). It follows that after the potential transformation for
each constraint of the controller’s opponent y ≤ w′ + δ · x one has w′ ≥ 0, with w′ = 0 for
constraints in τ(λ).

Suppose the controller and his opponent, starting in a variable v0, play a version of Gen-
eralized Geography constructing a (finite or infinite) sequence of variables v0, v1, v2, . . .
as follows. The owner of vi selects a constraint vi ≤ wi,i+1 + δ · vi+1; this determines the next
variable in the sequence, or the sequence terminates, if the constraint vi ≤ 0 is chosen.

The cost c(v0, v1, . . . ) of each such finite or infinite sequence is determined as the sum∑
i δ

iwi,i+1. Note immediately (by telescoping) that the potential transformation p(.) changes
the costs to:

1. c′(v0, . . . , vl+1) = c(v0, . . . , vl+1) − p(v0) + δl · p(vl+1), for a finite sequence, and

2. c′(v0, v1 . . . ) = c(v0, v1, . . . ) − p(v0), for an infinite one.

Therefore, the costs of paths after a potential transformation of S shift by a constant,
in particular, when the controller and the opponent follow the pair of positional strategies
λ and τ(λ) the cost of the path π they form equals zero. Therefore, the cost of the same
path before the transformation is p(v0) − p(vl+1) or p(v0), depending on whether it is finite
or infinite.

Suppose now, toward the contradiction that the strategy λ is not optimal, and there is a
better strategy λ′ providing for a larger value of the target function, consequently, for some
variable v0. Let the controller use this strategy, but the opponent sticks to the previous
strategy τ(λ). Then the cost of the path π′ they construct in the transformed S consists
of the zero-weight edges consistently chosen by the opponent plus nonpositive edge weights
chosen according to λ′. Therefore, the cost of this path π′ is nonpositive, i.e., no better than
of π. It follows, that the same relation holds for the cost of paths π and π ′ in the system S
before the transformation, i.e., π′ is no better for the controller. Therefore, λ′ is no better
than λ. This contradiction shows that λ is optimal.

It remains to show that for any feasible S(λ) its optimal solution is finite. Indeed, no
matter which constraints the parties select, the cost of a finite or infinite path followed is
bounded by W · ∑

i δ
i ≤ W/(1 − δ), where W is the biggest constant w occurring in the

constraints S. �

7.2 Multivariate Discounted Case

Consider the multivariate discounted case, when constraints are allowed to have form either
u ≤ c (c a constant), or:

u ≤
∑

i

ai · vi, (9)

where u and vi’s are variables, and ai’s are positive constants such that
∑

i ai < 1.
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Note that we can equivalently allow for only one type of constraints, namely:

u ≤
∑

i

ai · vi + w, (10)

because such a constraint is expressible via u ≤ ∑
aivi + a′v′ and v′ ≤ w/a′, where a′ > 0 is

small enough.

Theorem 7.2 Let S be an instance of the multivariate discounted Positive Controlled
LP-Problem. Then every discrete/pure stable strategy λ is optimal.

Proof. Suppose λ is a stable discrete strategy, the system S(λ) is feasible, and let (x∗,y∗)
be an optimal solution to S(λ). We will shortly prove that this optimal solution is finite.

Generalizing the previous definition, a function p mapping variables in x and y to R is
called a potential function for the system S(λ) if for every constraint u ≤ ∑

i aivi (y ≤ c,
resp.) one has p(u) ≤ ∑

i aip(v) (p(y) ≤ c, resp.).
It is easy to see that the components of a finite optimal solution to S(λ) determine

potentials for the system S(λ). Let us take the potential function p obtained this way and
make the potential transformation defined below to the whole system S (rather than S(λ)).

To define an appropriate potential transformation we first need to introduce auxiliary
terminology. For our purposes, a directed hypergraph consists of vertices (one per variable in
S) and directed hyperedges of the form (u, a1v1, . . . , akvk, w) where u is the source, v1, . . . , vk

are weighted targets, and w ∈ R is the hyperedge weight. A strategy for the controller (and
the opponent) is a selection of a exactly one hyperedge corresponding to the associated
constraint.

Now the desired potential transformation is defined by changing the hyperedge (u, a1v1, . . . ,
akvk, w) weights as follows

w′ = w − p(u) +
∑

i aip(vi) (11)

(Note that y ≤ c also forms a hyperedge with source y, no targets, of weight c, which is
transformed to c′ = c − p(y).)

Let hyperedge (u, a1v1, . . . , akvk, w) be selected in λ, and (u, a′
1v

′
1, . . . , a′

kv
′
k, w̄) be any

other hyperedge from u. Then, by definition of p(.) and since λ is stable, we have

p(u) =
∑

i

aip(vi) + w ≥
∑

i

a′
ip(v′

i) + w̄.

As a consequence, all hyperedges in λ get weight exactly 0, and all other controller hyperedges
get nonpositive weights.

Define an optimal counterstrategy τ(λ) against λ for the opponent as a selection, for every
variable, of a hyperedge corresponding to any of his tight constraints (holding as equalities)
in the optimal solution (x∗,y∗) for S(λ). For each such hyperedge (u, a1v1, . . . , akvk, w) and
any other hyperedge λ, and (u, a′

1v
′
1, . . . , a′

kv
′
k, w̄) from u, we have

p(u) =
∑

i

aip(vi) + w ≤
∑

i

a′
ip(v′

i) + w̄.
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Therefore, the potential transformation makes weights of hyperedges in τ(λ) exactly zero,
and all other opponent hyperedges get nonnegative weights.

Now suppose, toward a contradiction, that λ is not optimal, and there is a better strategy
λ′ for the controller, providing for a larger value of the target function, hence, a larger value
for some variable v0.

When the controller and his opponent, starting from v play a Tree-Like Generalized
Geography, then the cost of such a play is defined as a sum of weights of all hyperedges
traversed. In particular, when they follow the pair of strategies λ, τ(λ), the total sum of
all hyperedges is zero, because only 0-weight hyperedges are used by both parties. Suppose,
however, that the controller deviates from λ to the allegedly better λ′, but the opponent
consistently sticks to τ(λ). Then the cost of the game cannot become positive, since the
controller does not have positive-weight hyperedges, and the opponent only plays 0-weight
hyperedges. Therefore, λ′ cannot provide an improvement (larger value) compared to what
λ does. This contradiction shows that λ is optimal. To complete the proof it remains to
notice that:

1. The cost of the same play π in a potentially transformed and non-transformed systems
differ only by a constant (by telescoping).

2. The cost of any play is bounded.

These facts follow from the assumption that max
∑

i ai = δ < 1 and therefore the total cost
of a play cannot exceed C · ∑i δ

i = C/(1 − δ). �

7.3 Univariate Non-Discounted Case

Let us consider the case of “one variable with coefficient one” in the right-hand sides, i.e.,
all the constraints have the form:

u ≤ w + v, (12)

where u, v are variables, and w ∈ Z. Besides, we allow one (or more) compulsory constraint
of the form

t ≤ 0. (13)

Due to our proviso that every variable appears in the left-hand-side of some constraint,
the variables in (13) are the only possible sinks in a directed graph built on variables with
directed edges corresponding to inequalities.

For reasons, which become clear later, we need to stipulate another important

Condition. In the directed graph determined by the constraints there are no zero-weight
cycles. A (simple) cycle is a sequence of edges u

w→ v corresponding to constraints u ≤ w+v.
As usual, the weight of this cycle is the sum of edge weights. �
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Imposing this condition does not lead to a loss of generality. Indeed, suppose there
are zero-weight loops in a graph or, we do not know3. We will describe the edge weight
transformation ∆+1

×n that transforms all zero-weight loops into positive-weight ones4, and
preserves the signs of weights of all other loops (positive are turned into positive and negative
to negative). The desired transformation is as follows. Multiply all edge weights by n and add
one, where n is the number of vertices (variables). Every negative weight loop in the original
graph remains negative, because its weight is the transformed graph is ≤ −1 ·n+1 ·(n−1) =
−1. All non-negative loops obviously become positive. Now, if an optimal loop in the system
before the transformation has weight 0 (the target function has the +∞ value in this case)
then the same loop will be “slightly” positive and optimal in the ∆+1

×n-transformed system,
and also results in an unbounded target value.

Theorem 7.3 Let λ be a discrete stable strategy, the graph determined by S does not have
zero-weight cycles, S(λ) is feasible and has a finite5 optimal solution. Then λ is optimal.

Proof. Suppose, λ is a stable discrete strategy. Consider the potential p defined on variables
by giving them the respective values of an optimal solution. For every edge/constraint
u ≤ w + v the potentials satisfy p(u) ≤ w + p(v), with equalities for the tight constraints
(e.g., for those selected in λ.) Define an optimal counterstrategy τ(λ) for the opponent as any
selection of exactly one tight constraint per his variable. Make a potential transformation of
the graph of S, by changing the weight of each edge according to w′

u,v = wuv − p(u) + p(v).
After this transformation: 1) all edges in λ become 0-weight, and all other controller edges
become non-positive (by stability); 2) all edges in τ(λ) become 0-weighted, and all other
edges of the opponent become non-negative; 3) weights of all loops remain unchanged ; 4)
weights of finite paths v0, . . . , vl change by a constant −p(v0)+p(vl) (telescoping), hence the
relation (<, =, >) between costs of two paths to a sink remains unchanged.

Let us assume, toward a contradiction, that λ is not optimal and there exists a better
strategy λ′, providing for a larger value of the target function, hence of some variable v0.
Suppose, the controller switches to this strategy λ′, but the opponent persistently uses
the strategy τ(λ). Now in the trace created from v0 uniquely determined by the pair of
strategies λ′ and τ(λ) every edge is nonpositive (we assume the potential transformation has
been performed). This trace may be:

1. either finite, terminating in a sink (13); in this case the value for v0 is non-positive,
and this contradicts to the assumption that λ′ provides a better value for v0 than λ;

2. or infinite; in this case the value for v0 must be negative; indeed, due to our construc-
tion, the graph does not contain zero-weight cycles, and this property is preserved

3Note that our definition of a zero-weight loop assumes that the controller and the opponent cooperate in
constructing such loops, which they actually may not want.

4For other applications in Section 10.3 we analogously turn, by ∆−1
×n (which subtracts rather than adds 1),

zero-weight loops to negative-weighted and preserve weight signs of all other loops.
5This assumption is no loss of generality; see the end of Section 3.1.
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during the potential transformation; since only non-positive edges are used by λ′ and
τ(λ), the only possible cycles formed by λ′ and τ(λ) are negative; hence v0 will be a
negative value (or −∞) in this case.

This contradiction shows that λ is indeed an optimal strategy. �

The proof shows that the Condition is essential. Indeed, if there are zero-weight loops,
there may be stable but non-optimal strategies. Consider the following simple example.

x1 x2

t

0

0

11

Figure 2: In this controlled LP there is a strategy that is stable, but not optimal. Round
vertices are controlled.

The corresponding system of constraints is:{
x1 ≤ 1 + t,
x1 ≤ x2,

{
x2 ≤ 1 + t,
x2 ≤ x1,

t ≤ 0.

The strategy choosing the first constraints for each of x1, x2 is stable, and gives finite
values 1,1 for both. However, a better strategy consists in selecting the second constraints,
which leads to an unbounded solution, x1 = x2 = anything. Indeed, by deviating from the
first stable strategy the controller creates a zero loop, which allows for unboundedness.

7.4 NP∩coNP-Membership

In all the above cases with the property that stability implies optimality, the corresponding
decision problem for the Positive Controlled LP-Problem is in NP∩coNP. For a
YES-instance, just guess a pure strategy λ and verify that the value of the optimal solution
in the resulting LP S(λ) is above the threshold.

For a NO-instance, guess a strategy, verify in polynomial time that it is stable and thus
optimal and confirm that the corresponding LP has a value below the threshold.

Hence, the univariate discounted, multivariate discounted, and univariate non-discounted
cases are all in NP∩coNP.

7.5 The General Positive Controlled LP Case

As we have shown, in many important special cases of Positive Controlled LP-Problem
stability implies optimality. This has very nice algorithmic and complexity-theoretic conse-
quences. For the general case however, stability does not imply optimality. We show this
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by giving a counterexample. Compared to the example in Section 7.3, the one presented
here demonstrates that the unboundedness is not essential and we cannot even attain finite
optimal values by stable strategies.

Consider the following controlled linear program:

Maximize v1 + v2 + v3 subject to

Compulsory constraints:{
v3 ≤ v2

v3 ≤ 2
Optional constraints:{

v1 ≤ v3

v1 ≤ 1{
v2 ≤ v1

v2 ≤ 1

The corresponding graph is shown in Figure 3.

v1 v2

v3

0 0

0

11

2

Figure 3: In this controlled LP there is a strategy that is stable but not optimal. Round
vertices are controlled.

If the controller selects the constraints v1 ≤ 1 and v2 ≤ 1, the strategy is stable and the
value is 3 (value 1 for each variable). However, if he had selected v1 ≤ v3 and v2 ≤ v1, we
would have had the linear program:

Maximize v1 + v2 + v3 subject to

{
v3 ≤ v2

v3 ≤ 2
v1 ≤ v3

v2 ≤ v1,

which evaluates to 6 (value two for each variable).
Notice that this example does not contain any hyperedges, i.e., constraints with more

than one variable on the right-hand side.



– 18 –

8 NP∩coNP Case: Positive Integer Coefficients

In this section we investigate the controlled LP problem, restricted to have only nonnegative
integers as coefficients in the constraints, and prove the following result.

Theorem 8.1 The controlled LP problem with nonnegative integer coefficients belongs to
the complexity class NP∩co-NP.

For this case, stability does not imply optimality (Section 7.5). Therefore, more advanced
reasoning is needed, compared with Section 7.4. Throughout this section we assume that
the systems have retreats for both players. This guarantees that there are feasible solutions
and that the optimal values are finite. We begin by formally defining cyclic dependencies.

Definition 8.2 A system S with only one constraint per uncontrolled variable has a cyclic
constraint over variable v if there is a controller strategy σ such that in S(σ) there is a cyclic
sequence of controlled variables v = v1, v2, . . . , vk = v such that for each i ∈ {1, 2, . . . , k−1},
there is a constraint of the form vi ≤ poly(y, vi+1) + wi.

6 If there is a strategy with at least
two distinct such sequences, then S has multiple cyclic constraints over v. �

In the sequel we will need the following technical result.

Lemma 8.3 Suppose that system S has only one constraint for each variable. If S has a
cyclic constraint over some variable, then S is either infeasible or unbounded.

Proof. If S is feasible and has a cyclic constraint over x, then, by combining constraints, we
get x ≤ c · x + poly(x \ {x},y). For any finite solution to S, the polynomial poly(x \ {x},y)
evaluates to some finite number. Since c is a positive integer constant, the value of x can be
increased arbitrarily without violating the constraints. �

The next lemma follows from the previous one and our assumptions.

Lemma 8.4 Given a problem instance S, let σ be an optimal strategy for Max. Then
there is a selection τ of exactly one constraint for each non-controlled variable from the tight
constraints in S(σ), such that in S(σ, τ), the system with only the constraints from σ and τ ,
there are no cyclic constraints.

Proof. Let (x∗,y∗) be an optimal solution to S(σ). Since there are retreats and σ is optimal,
S(σ) has a feasible solution and (x∗,y∗) assigns every variable a finite value.

If, for every choice of τ from the tight compulsory constraints, there exists a cyclic
dependency, then by Lemma 8.3 the system is either infeasible or unbounded. Either way,
we have a contradiction. �

6Since the opponent has no choices, each of his constraints y ≤ Q can be substituted in the right-hand sides
of the controller’s constraints and all non-controlled variables can be eliminated. For notational simplicity
we assume here that this transformation is already done.
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We call a selection τ as in the above lemma an optimal counterstrategy for Min.

Lemma 8.5 Let S be a system with only one constraint per uncontrolled variable, without
multiple cyclic constraints and without cyclic constraints with coefficients larger than 1. Let
σ be stable in S. Suppose there is a cyclic constraint with sequence x0, x1, . . . , xk = x0 that
Max can enforce. Further, assume that by enforcing it, switching from σ only in variables
in {x1, . . . , xk}, Max can get unbounded values. Call the strategy after switching σ ′. If we
do potential transformation on S, using the value of each variable under σ as the potentials,
then every constraint for a variable xi, i ∈ {1, . . . , k} in σ′ is homogeneous.

Proof. For each xi, let ci be the constraint for xi in S(σ′). Also, let wi be the constant
term in ci and qi the value of the rest of the right-hand side of ci, except xi+1, under σ.
First note that no variable except xi+1 in any constraint ci in the cycle can depend on any
variable in {x1, . . . , xk}. If this were the case, there would be multiple cyclic constraints.
Suppose that xi1, xi2 , . . . , xir are the variables for which the constraints differ between σ
and σ′. For each variable v, let p(v) be its value under σ. For every j ∈ {1, . . . , r} we
have p(xij) ≥ wij + qij + wij+1 + qij+1 + · · · + p(xij+1

), since σ is stable. By combining
such constraints we get

∑
i∈{1,...,k} wi + qi ≤ 0. Since σ′ gives unboundedness, the sum must

actually equal 0.
By combining constraints in a similar way we see that for every j ∈ {1, . . . , r}, the value

p(xij) equals wij +qij +wij+1 +qij+1 + · · ·+p(xij+1
). The new constant term in the constraint

cij is wij − p(xij) + qij + wij+1 + qij+1 + · · · + p(xij+1
) = p(xij) − p(xij) = 0. For every other

constraint in {ci|1 ≤ i ≤ k} the claim follows because they were tight under σ. �

Lemma 8.6 Assume the same situation as in Lemma 8.5, but switching to σ ′, enforcing
the cyclic constraint, Max creates an infeasible system. Then, after the same potential
transformation, at least one constraint for a variable xi, i ∈ {1, . . . , k} in σ′ has a negative
constant term.

Proof. Follows by an argument similar to that in the proof of Lemma 8.5. �

Together, Lemmas 8.5 and 8.6 show that any cyclic constraint such that Max can achieve
unbounded values by only switching to the constraints associated with the cyclic constraint
gets homogeneous constraints after potential transformation with respect to a stable strategy.
If there is such a cyclic constraint, it is easy to detect.

Lemma 8.7 Let S be a system with only one constraint per uncontrolled variable. Let σ and
σ′ be two strategies such that neither S(σ), nor S(σ′) has any cyclic constraints. Assume
that σ is stable. Then σ′ is no better than σ.

Proof. Since S(σ′) has no cyclic constraints, the dependence of the variables on each other
can be described by a DAG G, where the sinks are the variables with constraints of the form
y ≤ w, for a constant w, in S(σ′). For each variable v, let p(v) and p′(v) be the value of
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v under σ and σ′, respectively. Let the sequence T of variables be a topological sorting of
G. We prove by induction on the number of later elements in T that p′(v) ≤ p(v) for every
variable v. If v is last in T , then v is a sink in G and has a constraint of the form v ≤ w, for
constant w, in S(σ′). Since σ is stable we have w = p′(v) ≤ p(v).

Assume that for all elements u after v in T , we have p′(u) ≤ p(u). Let the constraint for
u in S(σ′) be v ≤ c1 · x1 + . . . ck · xk + w. Then p′(v) = c1 · p′(x1) + . . . ck · p′(xk) + w. Since
σ is stable we have p(v) ≥ c1 · p(x1) + . . . ck · p(xk) + w. By inductive assumption this is no
less than c1 · p′(x1) + . . . ck · p′(xk) + w = p′(v). �

The following procedure can be used to verify that a system S does not have a solution
with value at least k.

1. Guess an optimal strategy pair (σ, τ).

2. Check that σ is stable.

3. Check that S(τ) has a finite optimal solution, and thus that σ is optimal.

If these steps can all be computed in polynomial time (as we actually show below), then
the problem is in co-NP.

Verifying that a strategy is stable is easy, so the question is whether we can determine if a
system with only one constraint per uncontrolled variable allows Max to create unbounded
values.

The first thing we can check is whether there is a strategy σ ′ such that S(σ′, τ) has a
cyclic constraint over variables x1, . . . , xk such that in some constraint xi ≤ poly(y, xi+1), the
coefficient in front of xi+1 is larger than 1. This can be done in polynomial time by search
on a graph representation of S(τ).

The next step is to check whether there is a strategy σ ′, such that S(σ′, τ), has a multiple
cyclic constraint over some variable. This can be done in the following way. Consider the
system S(τ). For each pair (y, z) of variables appearing together in some constraint, say one
for x, use graph reachability to check whether x can be reached from both y and z in the
graph representation of S(τ). The running time for this step is polynomial.

Once we know that there are no cyclic constraints with coefficients larger than 1 and
no multiple cyclic constraints over any variable, it remains to check whether there is some
single cyclic constraint with only unit coefficients that allows Max to get an unbounded
value. After potential transformation with respect to σ, we search for a cyclic constraint
with only homogeneous constraints. If it exists, the system is unbounded by Lemma 8.6,
and the strategy τ we guessed was incorrect. If, on the other hand, there is no such cyclic
constraint, then we claim that σ is optimal. Indeed, if there are no cyclic constraints at
all, the claim follows from Lemma 8.7. Otherwise, we can pick a cyclic constraint, say over
x1, x2, . . . , xk, and remove all constraints for the variables xi, and variables who depend on
them. This does not affect the other variables. By applying the argument recursively to this
smaller system S ′, we know that σ restricted to S ′ is optimal. This means that no strategy
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which enforces the cyclic constraint over x1, . . . , xk can give a feasible system. The same
must, for the same reasons, hold for any other cyclic constraint. Now by Lemma 8.5, σ is
optimal in S. Thus we have short witnesses for NO-instances, and Theorem 8.1 follows.

Corollary 8.8 The controlled LP problem with all coefficients equal to 0 or larger than 1
belongs to the complexity class NP∩co-NP.

9 The General Controlled LP Problem is NP-Hard

We now prove that allowing one negative coefficient in the right-hand side polynomials makes
the Controlled LP-Problem NP-hard.

Definition 9.1 The General Controlled LP-problem is defined as in Definition 2.1,
with the difference that we allow negative coefficients in the polynomials pj

i (y) and ql
k(x).

Theorem 9.2 The General Controlled LP-problem is NP-hard.

Proof. We prove NP-hardness by reducing from 3-SAT. Given an instance φ of 3-SAT with
the variables (x′

1, ..., x
′
n) and the clauses (C ′

1, ..., C
′
m), construct a controlled linear program

with the variables (x1, ..., xn), (x̄1, ..., x̄n), and (C1, ..., Cm), where xi represents x′
i, x̄i repre-

sents ¬x′
i and Cj represents the truth value of C ′

j. For every variable x′
i in φ construct the

following compulsory constraints:

xi ≤ 1,

x̄i ≤ 1 − xi.

For every clause C ′
j = l1 ∨ l2 ∨ l3 in φ add the following optional constraint:




Cj ≤ l1,
Cj ≤ l2,
Cj ≤ l3.

The objective function to be maximized is
∑n

i=1(xi + x̄i)+
∑m

j=1 Cj. It is easy to see that
every optimal solution will have xi + x̄i = 1. Thus

∑n
i=1(xi + x̄i) +

∑m
j=1 Cj = n +

∑m
j=1 Cj.

Assume the optimal solution to the LP is n + m. Then n +
∑m

j=1 Cj = n + m implies∑m
j=1 Cj = m, and we know that ∀i : (xi ≤ 1 ∧ x̄i ≤ 1), which implies ∀j : Cj ≤ 1. Then

if
∑m

j=1 Cj = m, there must exist a variable in every clause that is equal to 1, i.e., φ is
satisfiable.

Assume φ is satisfiable. There must exist a variable assignment that assures that every
clause is satisfied, i.e., ∀j : Cj = 1, which implies

∑m
j=1 Cj = m. Thus the optimal solution

to the LP program is n + m. �
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10 Controlled LP Applications

10.1 Simple Stochastic Games

In this section we show how controlled LPs express simple stochastic games (SSG), a subclass
of stochastic games introduced and studied by Shapley [21] (see [7, 8, 10] for a thorough
treatment). A simple stochastic game is given by a directed graph G = (V ∪ {0, 1}, E),
where the distinguished vertices 0 and 1 are called the 0-sink and the 1-sink, and the vertex
set V is partitioned into subsets V1, V0, Vavg of the maximizing player 1, minimizing player
0, and probabilistic ones. Starting in the initial vertex players move a pebble selecting
outgoing edges from their vertices. When the pebble comes to a probabilistic vertex, one
of the outgoing edges is randomly selected, according to a specified probability distribution.
The play stops when the pebble comes to a sink. Player 1 wants to maximize and player 0
to minimize the probability of getting to the 1-sink. SSGs turn out to possess a value ν and
are solvable in positional strategies, optimal for both players, securing them the equilibrium
probability ν of getting to the 1-sink.

The natural decision problem consists in determining, given an SSG and a probability
p ∈ [0, 1], whether the value of the game is ≥ p. Condon [7] showed that this problem is in
NP∩coNP, and suggested several algorithms for finding values and optimal strategies.

Actually, the first step Condon [7] applies is polynomial reduction7 of an arbitrary SSG
to a stopping SSG with a negligibly different value. Say that an SSG stops with probability 1
if no matter how players select moves, the game comes to a sink with probability 1. Roughly
(see [7, 22] for details), every edge (u, v) with assigned probability p in the original game8

transforms into two edges: (a) one going to the 0-sink, with probability pq, and (b) the
other, with probability p(1− q), from u to v, where q is appropriately selected exponentially
small probability.

Suppose an SSG has undergone such a transformation. After throwing away all edges
of type (a) the corresponding instance of the controlled LP problem is easy to construct.
Write optional constraints x ≤ p ·y for every edge (x, y) from V1, and compulsory constraints
y ≤ p · x for every edge from V0, where p < 1 is the probability assigned to the edge in the
transformation above. If (u, vi) are edges from a vertex in Vavg with assigned probabilities
pi, i ∈ I, then write a compulsory constraint u ≤ ∑

i∈I pi · vi (clearly,
∑

i∈I pi < 1 by
construction). Add compulsory constraints v0 ≤ 0 and v1 ≤ 1 for sinks.

Clearly, the resulting controlled LP is just a particular case of the discounted multivariate
case considered in Section 7.29. An additional advantage is that we do not need to transform
the game into a binary one, which may increase the number of vertices quadratically, and
turn a subexponential (in the number of variables) algorithm into an exponential one.10

7Corrected in [22] to become polynomial.
8Edges of players 0 and 1 are given probability 1.
9Actually, Shapley in the original definition of SGs stipulated discountedness; see [12].

10One may argue that such a quadratic blow-up in the number of vertices may only happen when there are
quadratically many edges, and therefore, Ludwig’s algorithm [14] remains subexponential in the length of
input. More precisely, let n and m = Θ(n2) be the numbers of vertices and edges in the original game; hence
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Since every polynomial defining a constraint, except for the 1-sink, is homogeneous, any
choice of optional constraints will yield a feasible linear program. In fact, for any such LP,
setting all variables to zero gives a feasible solution, so there is no problem with selecting an
initial admissible strategy. As an additional benefit, we also have interior point algorithms
available.

10.2 Discounted Payoff Games

In this section we show how to describe Discounted Payoff Games as univariate dis-
counted Positive Controlled LP-Problem. Let the game G = (V = VMin∪VMax, E, w, δ)
be given; see [22] for definitions. The objective of the adversaries is to maximize/minimize

(1 − δ)
i=∞∑
i=0

δi · w(ei),

and it has been shown that the optimal value vector of a DPG is the unique solution to the
set of equations [22]:

xi =

{
max(i,j)∈E{(1 − δ)wij + δxj} if i ∈ VMax,
min(i,j)∈E{(1 − δ)wij + δxj} if i ∈ VMin.

It is straightforward to see that this corresponds to the following controlled LP:

Maximize
∑

i vi subject to

Compulsory constraints:
vi ≤ (1 − δ)(wij + δvj), for vi ∈ VMin and (vi, vj) ∈ E.

Optional constraints:
vi ≤ (1 − δ)(wij + δvj), for vi ∈ VMax and (vi, vj) ∈ E.

This controlled LP is exactly of the form discussed in Section 7.1, hence stability implies
optimality. Any stable vector in the linear program will also satisfy the system of equations
determining the optimal vector of a Discounted Payoff Game. Therefore, a DPG can
be expressed as a univariate discounted Positive Controlled LP-Problem.

the size of the input graph is |G| = Θ(n2). Reducing to the game of outdegree 2 results in n′ = Θ(n2) vertices,

and Ludwig’s algorithm solves such a game in 2O(
√

n′) = 2O(n) = 2o(|G|) time, subexponential in input size |G|.
This argument is, however, faulty, because in the scenario described above any straightforward algorithm
is subexponential in the length of input. Indeed, there may be at most nn = 2n log n = 2o|G| strategies,
hence every brute-force search for the best strategy in this space does the job in time subexponential in
|G|. Therefore, a more adequate meaning of subexponential in this context should be given/estimated in
the number of vertices, rather than the input size. In particular, in the above scenario Ludwig’s algorithm
should be considered exponential in n. In Section 11 we give precise bounds for our algorithms in terms of

the numbers of vertices n and edges m, like 2O(log m·
√

n/ log n) and 2O(
√

n log(m/
√

n)+log m), subexponential in
n whenever m = Θ(poly(n)).
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10.3 The Longest Shortest Paths

The Longest Shortest Paths Problem (LSP) [5] consists in finding, for a given
weighted digraph with a sink and a set of controlled vertices, a selection of exactly one edge
from each controlled vertex maximizing the lengths of the shortest paths from all vertices to
the sink.

An instance I of the LSP problem reduced to two instances L− and L+ of the univariate
non-discounted Positive Controlled LP-Problem. The need for two instances arises
from the different interpretations of zero-weight loops in the LSP and controlled LP. Such
loops give zero distance in the LSP, but yield unbounded values of the associated variables
in the LP.

The two instances L− and L+ are obtained by first applying to I the transformations
∆−1

×n and ∆+1
×n, respectively, from Section 7.3.

Afterward, to get L− and L+ write optional constraints

x ≤ w(x,y) + y

for each controlled vertex with successor y via edge (x, y) of weight w(x,y). Write compulsory
constraints

y ≤ w(y,x) + x

for each uncontrolled vertex y. Add the constraint t ≤ 0 for the sink and the “retreat”
constraints x ≤ −M for each controlled vertex, where M > 0 is big enough.

In L− every nonpositive loop from I becomes negative, and every positive loop remains
positive. Starting with the admissible strategy “retreat everywhere”, run any version of
iterative improvement by attractive switches on L−, throwing away unbounded variables
and constraints, as described in Section 3.1. To find out the original value for finite paths,
we divide by n and round up to the nearest integer.

After solving L− we know that all vertices corresponding to unbounded variables are part
of positive loops in the LSP instance I. All vertices corresponding to finite values bigger
than zero have also chosen the optimal strategy and obtained optimal values. If the finite
values are less then zero then it is possible that there exists a zero-weight loop in I, which
was not found in L−.

To find out whether this is the case, we solve the second instance L+, and for every
variable with a finite value less than zero in L− we check whether its value in L+ is unbounded
or not. If it is, we know that such variable have value 0 in I.

All previous results and algorithms now apply to the LSP problem.

10.4 Mean Payoff Games

Mean Payoff Games are adversary two-player full information infinite games played on
finite, directed, edge-weighted, leafless graphs. The objective of the players is to maxi-
mize/minimize, in the limit, the sum of the edge weights divided by the number of edges
traversed. These games are interesting in their own right but are also motivated by the
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fact that Parity Games (and thus model checking) reduce to them. For details see
[17, 9, 11, 20, 6]. Many important decision and optimization problems are reducible [4] to
the Longest Shortest Paths problem, discussed in Section 10.3. Therefore it follows di-
rectly that they can be expressed by the univariate non-discounted Positive Controlled
LP-Problem.
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11 Algorithms

11.1 Single and Multiple Switch Algorithms

In Section 3 we discussed a generic switching algorithm for the Positive Controlled
LP-Problem. There are several switching schemes that can be employed in this template
algorithm, and we describe some of them briefly here. For more detailed descriptions and
applications of these schemes see [1].

• Single Random Switch: select uniformly at random exactly one out of the attractive
switches in each iteration.

• Single Greedy Switch: select “greedily” exactly one most attractive switch (switch to
the most relaxing constraint) in each iteration.

• All Attractive Switches : perform all attractive switches at every iteration.

• Random Multiple Attractive Switches : flip a coin for every attractive switch in each
iteration (or uniformly at random choose a subset of all available attractive switches.)

11.2 Randomized Subexponential Algorithms

Khachiyan was the first to show that linear programming can be solved in polynomial time.
His algorithm, as well as the one of Karmarkar, are polynomial in the size of the input, but
the running times cannot be bounded solely in the numbers of constraints and variables.
The question whether there is an algorithm that is (strongly) polynomial in the combina-
torial model of computation remains open, and research in this area continues. In a major
breakthrough, Kalai showed in 1992 that the problem does at least have a strongly subexpo-
nential solution [13]. Matoušek, Sharir, and Welzl independently proved the same result for
another algorithm [15]. In 1995, Ludwig was the first to propose using these techniques in a
game-theoretic setting [14], but in a restricted form, only for games on graphs of outdegree
2.

11.2.1 Kalai-Style Randomization for Controlled LP

Kalai’s approach can be successfully adapted for solving Positive Controlled LP-
Problem in subexponential time (in the number of variables and constraints).

Given an instance S of PCLP, a subproblem F is obtained by fixing one optional constraint
for some controlled variable. In combinatorial terms, F is a facet in the space of positional
strategies of the controller in S. This establishes the “constraints ↔ facets” relation.

The Kalai-style algorithm for the PCLP proceeds as follows (cf., [2, 3]). Given an instance
S and a strategy σ, it applies recursively to find a big enough set S of better subproblems
(facets) that have optimal strategies better than σ (with a larger value of the target func-
tion). This is accomplished by starting with the subproblem where all optional constraints,
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except those in σ, are removed, and iteratively adding improving (attractive) constraints;
each such constraint defines a better subproblem. (The algorithm may terminate if during
this phase it finds an optimal strategy in S, or +∞ results.) Sampling uniformly at ran-
dom from S, the algorithm selects a subproblem F , in which it recursively finds an optimal
strategy σ′. All facets in S are ordered according to the values of their best strategies.
Due to randomization, all positions for F in this ordering are equiprobable. The algorithm
never again visits a facet worse than F . It follows that the hidden dimension (the unknown
number of better subproblems remaining after σ ′ is obtained) decreases randomly. This re-

sults in a randomized algorithm with subexponential 2O(log m·
√

n/ log n) expected number of
iterations for the Positive Controlled LP-Problem (whenever stability implies opti-
mality; otherwise we find a local optimum in subexponential time), where n and m are the
numbers of controlled variables and optional constraints, respectively. If we assume that m
is polynomially bounded in n, the bound is 2O(

√
n log n).

11.2.2 Matoušek-Sharir-Welzl-Style Randomization for Controlled LP

Associating optional constraints with facets in the space of controller’s positional strategies,
provides the intuitions necessary for applying other approaches from combinatorial linear
programming to the PCLP. In particular, we can adapt the algorithm by Matoušek, Sharir,
and Welzl (MSW). This algorithm is more intuitive, and easier to explain for PCLP than
Kalai’s. The function opt S(σ) works as the target function being optimized.

Algorithm 1: MSW-Style Algorithm for PCLP
PCLP-MSW(S, σ0)
(1) if every controlled variable has only one optional constraint in S
(2) return σ0

(3) choose a random optional constraint x ≤ e not selected by σ0

(4) σ∗ ← PCLP-MSW(S \ {x ≤ e}, σ0)
(5) σ1 ← Switch(σ∗, x ≤ e)
(6) if opt S(σ1) > opt S(σ∗)
(7) S ′ ← S \ {x ≤ e′ : e′ �= e}
(8) return PCLP-MSW(S ′, σ1)
(9) else return σ∗

The Switch function takes a strategy σ and an optional constraint x ≤ e and returns the
strategy obtained by changing the choice of σ for x to x ≤ e. In combinatorial optimization
terms, line 3 of the algorithm corresponds to selecting a facet in the space of positional
strategies. Line 4 corresponds to recursive optimization on the rest of this space.

The expected number of iterations of this algorithm is 2O(
√

n log(m/
√

n)+log m), where n and
m are the numbers of controlled variables and optional constraints, respectively, similar to
the bound for Kalai’s algorithm. Again, if m is polynomial in n, the bound is 2O(

√
n log n).
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12 Controlled Max Bipartite Matching and Max Flow

Previous sections show that a number of problems that belong to P have controlled versions
in NP∩co-NP, but also that the general controlled LP problem (where negative coefficients
are allowed) is NP-complete. It actually seems that the latter case is more common, and
here we give two additional examples.

In the Controlled Max Bipartite Matching problem, we are given a bipartite,
undirected graph G = (V = (A∪B), E), a subset C ⊆ V of controlled vertices, and a function
c : C → N that for each controlled vertex says how many incident edges the controller is
allowed to remove.

The Controlled Max Bipartite Matching problem is NP-complete. An optimal
strategy of the controller can serve as a short witness. We show hardness by reduction from
Set Cover. Given an instance (X,F, k) of Set Cover, where X is a set, F ⊆ P(X),
and k ∈ N, the question is whether there is a subset S ⊆ F of size at most k, such that
every element in X is a member of some set from S. To solve it we produce an instance of
Controlled Max Bipartite Matching as follows.

The two vertex sets are X and F . An edge (u, v) ∈ X × F belongs to the edge set
E iff u ∈ v. For each vertex u ∈ X the controller can remove all but one adjacent edge
(c(u) = deg(u)− 1). Edges can be removed so that the maximum bipartite matching is ≤ k
if and only if there was a set cover of size at most k in (X,F, k).

The more general, but still polynomial, Maximum Flow problem can be easily ex-
pressed by linear programs, but not in the form of positive constraint we use in PLCP.
Skew symmetry and flow preservation constraints require negative coefficients. Actually, no
matter which representation tricks one tries to use, negative coefficients are unavoidable.
Indeed, Controlled Maximum Flow is also NP-hard.

In the Controlled Maximum Flow problem, a flow network is given, together with
a subset C of the vertices of the network. There is also a function c : C → N. The problem
is to remove c(v) or fewer outgoing edges from every v ∈ C in a way that minimizes the
maximum flow in the remaining network. NP-hardness can be proved by reduction from
CNF-Non-Validity; the problem of determining whether a given CNF formula is not a
tautology. CNF-Non-Validity is NP-complete, since CNF-Validity is co-NP-complete.
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13 Conclusions

We briefly enumerate several problems remaining to be investigated.

1. Interior point schemes should be investigated further, as per their potential advantage
over discrete schemes. Although we know how to make interior point search subexpo-
nential, there are further problems. It is conceivable that the interior point algorithms
can make exponentially many discretization steps before finding the optimal solution.
We hope this is not the case in the restricted cases of the Controlled LP-Problem.

2. For many special cases, local search algorithms, similar to those for the related games,
give optimal results. In the general case, local search does not give optimal solutions. In
the case of integer coefficients, however, we could still prove NP∩coNP-membership.
Can this problem also be solved in expected subexponential time?

3. Does the general positive controlled LP problem belong to coNP?

4. The positive controlled LP problem catches many important optimization problems,
including several games. Are there any other interesting optimization problems of this
kind?

5. Can the subexponential upper bound for the problem be improved to 2o(
√

n log n), or
even to a polynomial one?
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