
An Improved Lower Bound for theElementary Theories of TreesSergei VorobyovMax-Planck-Institut f�ur InformatikIm Stadtwald, D-66123, Saarbr�ucken, Germany(e-mail: sv@mpi-sb.mpg.de)Abstract. The �rst-order theories of �nite and rational, constructorand feature trees possess complete axiomatizations and are decidableby quanti�er elimination [15, 13, 14, 5, 10, 3, 20, 4, 2]. By using theuniform inseparability lower bounds techniques due to Compton andHenson [6], based on representing large binary relations by means ofshort formulas manipulating with high trees, we prove that all the abovetheories, as well as all their subtheories, are non-elementary in thesense of Kalmar, i.e., cannot be decided within time bounded by a k-story exponential function1 expk(n) for any �xed k. Moreover, for someconstant d > 0 these decision problems require nondeterministic timeexceeding exp1(bdnc) in�nitely often.1 IntroductionTrees are fundamental in Computer Science. Di�erent tree structures are used asunderlying domains in automated theorem proving, term rewriting, functionaland logic programming, constraint solving, symbolic computation, knowledgerepresentation, data type speci�cation, database theory, compiler construction.In this paper we address the problem of inherent computational complexityof di�erent �rst-order theories of trees. Probably the simplest and most widelyused theory of trees in the class we consider is the elementary theory of �nitetrees TA, also known as the theory of term algebras or the theory of locallyfree algebras, or Clark's equational theory. It axiomatizes the usual Herbranduniversum, specifying essentially that two terms are equal i� they coincide syn-tactically. Given a �nite or in�nite algebraic signature �, consider a theory TAaxiomatized in the �rst-order predicate calculus with equality by the axioms:(Ax1) 8x; y (f(x) 6= g(y)); f 6� g 2 �.(Ax2) 8x; y (f(x) = f(y)) x = y); f 2 �.(Ax3) 8x; y (x 6= t(x; y)); t(x; y) contains x,distinct from x.If � is �nite, one may also add the so-called Domain Closure Axiom:1 De�ne exp0(n) = n and expk+1(n) = 2expk(n);exp1(0) = 0 and exp1(n+ 1) = 2exp1(n).



(DCA) 8x _f2� � 9y x = f(y) �(i.e., every element of the domain is the value of some function or constant).For the case of �nite signatures, Malcev in 1961{62 [15] proved the decidabil-ity of (Ax1){(Ax3) and (Ax1){(Ax3), (DCA) by quanti�er elimination. Otherproofs are given in [13, 14, 5, 10], also by quanti�er elimination. In [24] (Ax1){(Ax3), (DCA) is proved decidable by A. Robinson's model completeness test.Rational Trees. The theory of rational trees is obtained from TA by replac-ing the acyclicity scheme (Ax3) with the following scheme (Ax4) correspondingto the acceptance of in�nite trees [14]:(Ax4) 8x 9 ! y � n̂i=1 yi = ti(x; y)�for every system of equations ^ni=1 yi = ti(x; y), where x, y are disjoint listsof variables, and the last conjunction contains no circular subsets yi1 = yi2^. . .^yij�1 = yij^ yij = yi1 . Maher [14] showed that for in�nite signatures (Ax1),(Ax2), (Ax4), and for �nite signatures (Ax1), (Ax2), (Ax4), (DCA) constitutecomplete axiomatizations for rational trees, and proved decidability by quanti�erelimination. The last result is also proved for �nite signatures by quanti�erelimination in [5].Feature Trees introduced and investigated in [1, 19, 3, 20, 11, 2] allow fornon-�xed and variable arities of tree nodes and constitute a convenient formal-ism for logic and constraint programming, knowledge representation. Intuitively,saying f(y)^yff1 ; : : : ; fng^f1(y; x1)^ : : :^fn(y; xn) in the language of featuretrees means that y labeled f has exactly the features (or selectors) f1; : : : ; fn,and accessing the components of y via fi's one gets elements xi.Formally, �x two �nite or countably in�nite recursive sets Lab of labels andFea of features. A path is a word in Fea�, " is the empty path. For two paths pand q, pq is a concatenation of paths p, q. A feature tree t is a partial functionfrom paths to labels Lab, t : Fea� ! Lab with a nonempty pre�x-closed domain,i.e., pq 2 dom(t)) p 2 dom(t) [1, 20, 4].For a feature tree and a path p 2 dom(t), a subtree t=p of t addressed by pis the feature tree de�ned by t=p �df f(q; A) j (pq;A) 2 tg (here we identifya function with its graph). De�ne ar(t), the root arity of a feature tree t, asff 2 Fea j f 2 dom(t)g.A feature tree t is �nite i� dom(t) is �nite. A feature tree t is rational i�:1) t has only �nitely many di�erent subtrees, and 2) t is �nitely branching: forevery p 2 dom(t), the root arity of t=p, ar(t=p), is �nite.Let F , R, and I denote the sets of all �nite, rational, and arbitrary featuretrees over Lab and Fea; call them the standard models. The �rst-order theo-ries of feature trees in the relational signature �(Lab; Fea) contain: 1) a unarypredicate symbol A for every A 2 Lab; 2) a binary predicate symbol f for ev-ery f 2 Fea; 3) a unary predicate symbol written ff1; : : : ; fng for every �niteff1; : : : ; fng � Fea (traditionally, for F � Fea, one writes xF instead of F (x)).



These symbols are interpreted in M 2 fR; F ; Ig as follows:{ M j= A(t) i� t(") = A;{ M j= f(t; t0) i� t=f = t0;{ M j= tF i� F = ar(t).Backofen and Smolka [3] axiomatize the theory of rational feature trees with-out the arity predicates yff1; : : : ; fng and prove its completeness and decidabil-ity by quanti�er elimination. Smolka and Treinen [20] axiomatize the theoryof rational feature trees with arity predicates, and Backofen and Treinen [4]prove its completeness (hence decidability) by using the classical Ehrenfeucht-Fra��ss�e games, demonstrating that every two models of the theory are elementar-ily equivalent. Backofen [2] also proves the completeness of the axiomatizationof the theory of rational feature trees with arity predicates by quanti�er elimi-nation.Contribution of the Paper. None of the papers cited above suggest anylower or upper complexity bounds for the theories of trees and the proposedquanti�er elimination procedures. In [12] Kunen conjectured and gave a sketchof the proof that the decision problem for TA (for in�nite signatures) is PSPACE -complete.In this paper by applying Compton-Henson's uniform lower bound techniques[6] based on encoding of large binary relations we prove that all theories of�nite and rational trees we cited above, as well as all their subtheories, are non-elementary2. We prove the followingMain Theorem. Let T be either: 1) the theory of �nite or rational trees over asignature with at least one non-unary function symbol, or 2) the theory of �niteor rational feature trees over the signature with at least one label and two features.Let T 0 � T be an arbitrary subtheory of T in the same signature, Val(T 0) andSat(T 0) be the sets of sentences true in all and in some models of T 0. Then:1. The decision problems for Val(T 0) and Sat(T 0) are both non-elementary.2. For some d > 0, both Val(T 0) and Sat(T 0) do not belong to the complexityclass NTIME (exp1(dn)). In other words, both require nondeterministicnon-elementary time exp1(dn) in�nitely often. utThe �rst and the best known proof of a non-elementary lower bound wasgiven by A. Meyer [16] for the weak monadic second-order logic of one successorfunction (B�uchi arithmetic).Outline of the Paper. After giving a brief account in the next section ofCompton-Henson's uniform lower bound method, we proceed to informal expla-nations followed by the proof of the Main Theorem. The whole idea becomesclear in Sections 3 and 4, where we represent binary relations by trees and ex-plain how to address concisely very deep occurrences in trees.2 A problem A is called elementary if and only if A 2 NTIME(expm(n)) for some�xed m 2 !, and non-elementary otherwise; NTIME (f(n)) is the class of problemsrecognizable by non-deterministic Turing machines within time f(n).



2 Compton-Henson's Lower Bounds TechniquesCompton and Henson in [6] developed a powerful and easy-to-use methods forestablishing lower bounds for the decision complexity of logical theories. Theirtechnique is based on the ideas of Trakhtenbrot and Vaught dating back to 50{60, used for proving the recursive inseparability of the sets of valid and �nitelyrefutable sets of formulas of the �rst-order predicate calculus [7, 21, 17]. Comp-ton and Henson re�ned the idea of recursive inseparability by replacing it with\inseparable by NTIME (t(n))-recognizable sets".The lower bounds method of Compton and Henson relies on the ability toexpress by short formulas of a theory all models, up to a certain size, of a uniquebinary relation. The larger is the size, the higher is the respective lower bound.Technically, the method of Compton and Henson has a great advantage overthe pioneer methods of Meyer, Stockmeyer, Fisher, Rabin [16, 23, 9, 8], since itallows one to avoid tedious encodings of Turing machines. To estimate the sizeof a binary relation representable by short formulas of a theory is much simplerthan to prove that all Turing machine computations up to a certain length areencodable in a theory.One of the (numerous) result in [6] useful to settle the nondeterministic timelower bounds is the following Theorem 5. To formulate it we need to de�ne theinterpretations of classes of binary relations in a theory.De�nition1 (Binary Relations). A binary relation is a model for the �rst-order language with equality and the unique binary predicate symbol P (x; y).The size of a binary relation is the cardinality of its carrier. utThe interpretations used in [6] are based on a kind of reducibility slightlydi�erent from the standard log-lin reducibility (cf., [23, 22]):De�nition2 (Reset Log-Lin Reducibility, [6], pp. 10{11). A function isreset log-lin computable i� it is computable by a deterministic Turing machinewithin logarithmic space and linear time, the machine is allowed to reset itsinput tape k times to the beginning of the tape (in one step), where k is �xedfor all inputs.Let L1 � A�1 and L2 � A�2 be two languages over �nite alphabets. We writeL1 �r-log-lin L2 and say that L1 is reset log-lin reducible to L2 if and only ifthere exists a reset log-lin computable function f : A�1 ! A�2 such thatx 2 L1 , f(x) 2 L2 for every x 2 A�1: utObviously, if L1 �r-log-lin L2, then any corresponding reducing function f islinearly bounded, i.e., for some constant c 2 !, jf(x)j � cjxj for all x 2 A�1. The�r-log-lin relation is transitive [6]. The following is straightforward:Proposition3. Suppose, L1 �r-log-lin L2 and t : ! ! ! is monotone increas-ing. Then L2 2 NTIME (t(n)) ) L1 2 NTIME(t(dn)+dn) for some d > 0. ut



De�nition4 (Interpretations of Binary Relations). Let C1; C2; : : : beclasses of binary relations and T be a theory in a language L. Suppose that foreach n 2 !nf0g there are formulas �n(x; u), �n(x; y; u) of the language L, resetlog-lin computable from n expressed in unary notation, such that forevery binary relation A 2 Cn there is a model B of T and an element m of Bsuch that the model h�Bn (x;m); �Bn (x; y;m)i3is isomorphic to A. Then the sequence fIn j n 2 !nf0gg of couples of formulasIn = h�n; �ni is called an interpretation of the classes Cn in the theory T . utTheorem5 (Compton-Henson [6], Theorem 6.2, p. 38). Let t(n) be atime resource bound such that for some d between 0 and 1 one has t(dn) =o(t(n)). Let Cn be the class of binary relations on sets of size at most t(n) andT be a theory. If there is an interpretation of the classes Cn in T , then T is hardvia reset log-lin reductions for the complexity classC = [c>0NTIME (t(cn)):This lower bound is hereditary in the sense that for each subtheoryT 0 � Val(T ), both Sat(T 0) and Val(T 0) are hard for the above complexity class Cvia reset log-lin reductions. utNote that the iterated exponential functions expk(n), exp1(n) all satisfy thecondition of the theorem. We use Theorem 5 with the resource bound exp1(n),which yields the intractability of a theory T as follows:Proposition6. Suppose, Theorem 5 applies to a theory T and the time resourcebound t(n) = exp1(n). Then:1. T is non-elementary.2. T 62 NTIME (exp1(dn)) for some d > 0, i.e., T requires nondeterministicnon-elementary time in�nitely often.3. 1 and 2 above are true for Val(T 0) and Sat(T 0) for every T 0 � T . utProof. 1) Suppose that T is elementary, i.e., T 2 NTIME (expm(n)) for some�xed m 2 !. For every A 2 C , by C -hardness of T , we have A �r-log-lin T .Hence, by Proposition 3, A 2 NTIME (expm(dn)) for some d > 0. Therefore,C � Sd>0NTIME (expm(dn)) � NTIME (expm+1(n)). A contradiction, since Cproperly contains NTIME (expm+1(n)) 4.3 As usual, this is the model with the carrier consisting of all elements x ofB satisfyingB j= �n(x;m) and the binary predicate P (x; y) de�ned on the elements x, y of thecarrier satisfying B j= �Bn (x; y;m).4 By the following well-known result from [18]: Let t1(n) and t2(n) be functions suchthat limn!1 t1(n+1)t2(n) = 0: Then there is a problem in NTIME(t2(n))nNTIME (t1(n)).



2) Let A 2 C belong to NTIME (exp1(c2n))nNTIME (exp1(c1n)) for somec2 > c1 > 0 5. By C -hardness of T , A �r-log-lin T via a function f such thatjf(x)j � djxj for some d > 0. We claim that T 62 NTIME (exp1(c0n)) for everyc0 < c1=d. If not, then by Proposition 3, A 2 NTIME (exp1(c0dn) + dn) �NTIME (exp1(c1n)), which contradicts to the choice of A. ut3 Trees Representing Binary RelationsWe apply Theorem 5 to the theories of trees with the time resource boundt(n) = exp1(n) thus obtaining the hereditarily non-elementary lower bounds.The model B in which we will interpret classes of binary relations accordingto De�nition 4 will always be the same and equal to the standard model ofthe corresponding theory. For the theory of term algebras TA this is the usualHerbrand universum over a functional signature.We can represent an arbitrary binary relation of size up to t(n) by a tree ofheight 2 � t(n) as follows. Suppose, we have means allowing us:{ to say succinctly6 that a tree p represents a pointer to an occurrence at deptht(n) (in some other tree); let the formula Pntn(p) express this fact;{ to specify concisely that a tree p is a pointer as above addressing an occur-rence of a tree s in a tree u; let this be expressed by the formula Stn(u; p; s).This is enough for dealing with binary relations of size up to t(n). In fact,every binary relation of size up to t(n) can be represented by a tree u of heightat most 2 � t(n) and bounded branching (two is enough) as follows. We representelements of a relation as pointers at depth t(n), and for every two elements i, jrepresented by pointers p, q respectively we say that i and j are related if andonly if the subtree of u addressed �rst by p and then by q (which is a subtree of tat depth 2 �t(n)) equals 1 for some distinguished tree denoted 1. So, the formulas�n(x; u) and �n(x; y; u) from De�nition 4 will be simply Pntn(x)^9sStn(u; x; s)and 9shStn(u; x; s)^ Stn(s; y; 1)i respectively7.In the next sections we show how to write reset log-lin computable shortformulas Pntn(p) and Stn(u; p; s) for addressing in subtrees down to deptht(n) = exp1(n).4 How to Address Deep OccurrencesInformally, we exploit the easy fact that a full binary tree contains exp1(n+1) =2exp1(n) subtrees at depth exp1(n).5 See the previous footnote.6 By using short formulas, cf., De�nition 4.7 Of course, not every such tree represents a binary relation, but every binary relationof size at most t(n) is represented this way. By De�nition 4, this is enough. A treerepresenting a binary relation has to have the branching degree at least two, and twosu�ces. This corresponds to the assumption that the language contains at least onek-ary function symbol with k � 2, or two features.



Suppose, we already know how to address succinctly in any tree down todepth t(n). We show that this is enough to succinctly address down to depth2t(n). Let a tree u be given and we would like to address its subtrees at depth2t(n). Since we are able to address down to depth t(n) we can describe a tree pwith the following properties (we later call it a pointer):1) down to depth t(n) the tree p represents a full binary tree;2) the subtrees of p at depth t(n) form (in some order, no matter which) asequence of pairs of trees hsi; vii for i = 0; : : : ; 2t(n);3) for every i = 1; : : : ; 2t(n) the tree si speci�es a selector (i.e., an argumentposition) in vi�1 such that vi is an immediate subtree of vi�1 at that position.4) the selector s0 speci�es a position of an immediate subtree v0 in u.Then the tree v2t(n) is a subtree of u at depth 2t(n), as needed. Notice thatto specify a subtree at depth 2t(n) we used only the ability to look at most atdepth t(n).5 Proof Plan, Iterative De�nitionsUsing the ideas sketched above we proceed to the de�nition of the formu-las �n(x; u) and �n(x; y; u) from De�nition 4, reset log-lin computable from n,needed to interpret binary relations, as requested by Theorem 5.To de�ne the necessary constructing blocks for �n(x; u) and �n(x; y; u) likePntn(p) and Stn(t; p; s) above, we will proceed by giving simultaneous iterativede�nitions of the form �P0(x) = 	 (x)Pn+1(x) = �(x;Pn); (1)de�ning (vectors of) new auxiliary predicates P for every n 2 !.The de�nition (1) starts from the basic case, where P0(x) are de�ned for allx by 	(x), containing no P. Whenever Pn(x) are de�ned, the next iterationPn+1(x) is de�ned by �(x;Pn) by using Pn(x) from the previous iteration.The predicates Pn do not form the part of the language, and for every �xedn 2 ! they can be eliminated by unfolding the iterative de�nition down to thebasic case. Unfortunately, the straightforward unfolding yields formulas growingexponentially as n grows8.However, under very general assumptions on the form of 	 , �, this iterativeunfolding can be done cleverly, so as Pn(x) grow only linearly with n. Thisis known as the standard abbreviation trick due to Meyer, Stockmeyer, Fisher,Rabin, which allows for rewriting a formulawith multiple occurrences of the samesubformula (but with di�erent parameters) as an equivalent formula containingjust one occurrence of the subformula, and only �xed number of variables. Thisstandard abbreviation trick is described in full detail by Stockmeyer [22], pp.189{190, also by Ferrante and Racko� [8], Chapter 7, pp. 153{161, and further8 Consider Pn+1(x;y) = 9z(Pn(x; z) ^ Pn(z;y)) growing as 2n.



by Compton and Henson in Section 3 of [6]. This trick allows one for the iterativede�nitions as above, to keep the size of Pn(x) proportional to n.In Section 8 we proceed semi-formally by just writing simultaneous itera-tive de�nitions of the form (1) above. We justify that such de�nitions indeedyield reset log-lin computable formulas in Section 9, where we briey describeCompton-Henson's abbreviation techniques, following Section 3 of [6].6 Snapshots and PointersHere we formalize the ideas presented in Section 4. In this and the followingtwo sections we speak about terms. It should be clear that the same can beconducted for feature trees, as we discuss in the end of Section 8.De�nition7 (Snapshots). Fix two arbitrary di�erent terms L and R and callthem the left and the right selectors respectively.A snapshot is a term of the form f(s; t) where s is a selector L or R, and fis a binary function symbol9. De�ne the following relations on selectors:SuccL(x; y) �df 9uvwhx = f(u; f(v; w)) ^ y = f(L; v)i (2)SuccR(x; y) �df 9uvwhx = f(u; f(v; w)) ^ y = f(R;w)i (3)Succ(x; y) �df SuccL(x; y) _ SuccR(x; y) (4)So, in Succ(x; y) the second argument of y is determined by its �rst argu-ment and the second argument of x. Notice that if f(s0; t0) = p0; p1; : : : ; pm =f(sm ; tm) is a sequence of snapshots such that Succ(pi�1; pi) for 1 � i � m,then tm is a subterm of t0 at depth m, and the word s1 : : : sm 2 fL;Rg� is thecorresponding path leading from t0 to tm.De�nition8 (exp1(n)-pointer). Let n 2 !. An exp1(n)-pointer (cf., Sec-tion 4) is a term p with the following properties:1. down to depth exp1(n) the term p represents a full binary tree constructedof the binary function symbol f ;2. the subterms of p at depth exp1(n), fp1; : : : ; pexp1(n+1)g (there areexp1(n+ 1) such subterms) are snapshots linearly ordered by the reexive-transitive closure of the Succ relation.Call the �rst and the last elements in the order mentioned in 2 the initial andthe �nal snapshots of the pointer p. ut9 We could have used any k > 2-ary symbol by �lling out its k � 2 extra argumentpositions with some term, say L.



7 The Predicates Pntn, Minn, Maxn, Matchn, StnWe are going to de�ne inductively the following predicates (cf., De�nition 8):{ Pntn(p) | p is an exp1(n)-pointer;{ Minn(t; s) | s is a minimal wrt Succ subterm of t among all subterms of tat depth exp1(n);{ Maxn(t; s) | s is a maximal wrt Succ subterm of t among all subterms oft at depth exp1(n).Suppose, p is an exp1(n)-pointer. Then Minn(p; s) and Max(p; u) meanthat s and u are the initial and the �nal snapshots of p.With the predicates Pntn, Minn, Maxn de�ned for every n 2 ! we canexplicitly de�ne the following useful predicate:Matchn(t; p) �df Pntn(p) ^ 9suxnMinn(p; s)^^hs = f(L; u) ^ t = f(u; x) _ s = f(R; u) ^ t = f(x; u)io: (5)Intuitively, Matchn(t; p) means that the initial snapshot s of the exp1(n)-pointer p matches t in the sense that Succ(f(x; t); s).With the predicates Pntn, Minn, Maxn, and Matchn at hand we can alsoexplicitly de�ne for all n 2 ! the most important for our purposes predicateStn(t; p; s) �df Pntn(p)^Matchn(t; p)^ 9uxhMaxn(p; u)^ u = f(x; s)i; (6)which expresses the fact that a exp1(n)-pointer p addresses the subterm s atdepth exp1(n+ 1) in a term t.8 Iterative De�nitions of Minn, Maxn, PntnHere are the simultaneous iterative de�nitions of Minn, Maxn, Pntn. In theright-hand sides of these de�nitions all the occurrences of Stn andMatchn shouldbe understood as abbreviations for the right-hand sides of (5) and (6).Min0(p; s) = 9xy�p = s = f(x; y) ^ [x = L _ x = R]�; (7)Minn+1(p; s) = 9ahPntn(a) ^ Stn(p; a; s)i^8bthPntn(b) ^ Stn(p; b; t)) :Succ(t; s)i; (8)Max0(p; s) = 9xy�p = s = f(x; y) ^ [x = L _ x = R]�; (9)Maxn+1(p; s) = 9ahPntn(a) ^ Stn(p; a; s)i^



8bthPntn(b) ^ Stn(p; b; t)) :Succ(s; t)i; (10)Pnt0(t) = 9xht = f(L; x) _ t = f(R; x)i; (11)Pntn+1(t) = 8pnMatchn(t; p)) 9uStn(t; p; u)^h:Maxn(t; p))9qv�Matchn(t; q) ^ Stn(t; q; v) ^ Succ(u; v)�io: (12)Finally, we make reference to the Meyer-Stockmeyer-Fisher-Rabin-Compton-Henson abbreviation trick described in Section 9 to get the �nal step in our proof:Lemma9. For every n 2 !nf0g the formulas�n(x; u) �df Pntn�1(x) ^ 9sStn�1(u; x; s);�n(x; y; u) �df 9shStn�1(u; x; s)^ Stn�1n(s; y; 1)iinterpreting binary relations up to size exp1(n) (cf., De�nition 4) are reset log-lin computable from n expressed in unary notation. utOur Main Theorem is now an immediate corollary to Theorem 5, Proposi-tion 6, and Lemma 9. To extend the above proof to the case of feature trees itsu�ces to replace terms and term equalities by feature trees and feature formu-las in the de�nitions of SuccL in (2), of SuccR in (3), of Matchn in (5), of Stnin (6), of Min0 in (7), of Max0 in (9), and of Pnt0 in (11). This is relativelystraightforward. For example, for L we select the unique feature tree satisfyingf(x)^xff1g^f1(x; x). Instead of term equalities with the binary function symbolx = f(y; z) we use the feature tree notation f(x)^xff1; f2g^ f1(x; y)^ f2(x; z).9 Iterative De�nitions Yielding Short FormulasIn this section we briey and semi-formally present results from Section 3 of [6]necessary for the justi�cation of the claim in Lemma 9. The interested readershould consult Chapter 7 of [8] for the explanation of the abbreviation trick.We are going to enrich the usual �rst-order language with the possibilities towrite explicit and (simultaneous) iterative de�nitions.Let L� be a language L extended with new predicate symbols, P be a pred-icate symbol from the extension. An explicit de�nition is a �gure of the form[P (x) � �], where P is a de�ned predicate, � is a de�ning prenex formula of L�containing no occurrences of P . For a formula  of L� the �gure [P (x) � �] isa formula of L� that means that P (x) is de�ned in  as �. Equivalently, in thesecond-order logic this can be interpreted as 8P�8x(P (x), �))  �.An iterative de�nition [P (x) � �]n, where � is called the operator formula, nwritten in unary notation, and P possibly occurring in �, is inductively de�nedas follows:



1) [P (x) � �]0 is equivalent to the explicit de�nition [P (x) � 9x(x 6= x)],2) [P (x) � �]n+1 is equivalent to hP (x) � [P (x) � �]n�i.Since the index n is written in unary, the length of the iterative de�nition isof the same order as the nested explicit de�nitions it replaces.Similarly, one can de�ne simultaneous iterative de�nitions of the form, where�i's can contain any of Pj's: 24P1(x1) � �1: : :Pk(xk) � �k 35nIterative and explicit de�nitions are made �rst-class constructs of the lan-guage L�. Thus, if � is a formula of L� and D is an explicit or iterative de�nitionthen D � is a formula of L�. But it is required that the iteration number sub-scripts are written in unary. The explicit and iterative de�nitions do not reallyextend the expressive power of the language, since they can always be elimi-nated. Theorem 10 below assures that this elimination can be done by giving atmost a linear growth of the length of formulas. This is exactly what is needed inde�ning the interpretations of classes of binary relations in a theory.Let L� be a language L extended with new predicate symbols P1; : : : ; Pk,and l be a �xed natural number. A prescribed set of formulas over L is a set of�gures of the form D1 � � �Di � � �Dm  ;where  is a prenex formula of L� without any explicit or iterative de�nitions,every P1; : : : ; Pk de�ned in some Dj , and for each i:{ either Di is an explicit de�nition with all predicates in its de�ning formulaappearing as de�ned predicates in the previous de�nitions Dj (j < i),{ or Di is a (simultaneous) iterative de�nition with operator formulas oflength � l, possibly containing the de�ned predicates in the previous de�nitionsDj (j < i) and in Di itself.Additionally, every variable in  and in de�ning formulas is quanti�ed justonce.Theorem10 (Compton-Henson, Theorem 3.4, p. 19). Let L be a �rst-order language. For each prescribed set of formulas over L there is a reset log-linreduction taking each formula in the set to an equivalent formula of L. utThis theorem considerably simpli�es proofs, since its provides quite liberalform of writing explicit and simultaneous iterative de�nitions.In practice, it is also very convenient (as we did) to split an iterative de�ni-tion into two parts, the (non-false) basic case and the inductive step by writingiterative de�nitions D of the form:D : P0(x) � 	 (x) and Pn+1(x) � �[x; Pn];and de�ne D0 to be [P � 	 ] and Dn+1 to be [P � Dn �].



Such iterative de�nitions with the non-false basic case can be easily trans-formed (by using boolean connectives) into the canonical form of iterative de�-nition above. In fact, de�ne � to be[8u:P (u)) 	 (x)] ^ [9vP (v)) �(x; P )]We claim that every iterative de�nition Dn is equivalent to [P � �]n+1. Infact, for n = 0 we have [P � �]1 = [P � [P � 9x(x 6= x)]�] = [P � 	 ] = D0, asneeded. Let the claim be true for n = n0. We prove it for n+ 1:Dn+1 = [P � Dn�] = [P � [P � �]n+1�] (�)= [P � [P � �]n+1�] = [P � �]n+2;as needed. The equality (*) is also validated by induction by using the fact that	 (x) is not tautologically false.Returning back to the iterative de�nitions in Sections 7 and 8, we see thatthe prescribed de�nitions for �n(x; u) and �n(x; y; u) given in Lemma 9 have theform (to be completely accurate, we have to transform all formulas to the prenexform and be careful about using di�erent variables in quanti�cations):�n(x; u)] = [D] �Pnt(x) ^ 9sSt(u; x; s)�;�n(x; y; u)] = [D] 9shSt(u; x; s) ^ St(s; y; 1)i;where [D] is 24Min = : : :Max = : : :Pnt = : : : 35n�1 hMatch = : : :i hSt = : : :i:So, Theorem 10 applies proving Lemma 9. utAcknowledgments. I am grateful to an anonymous referee of one of my papers,who pointed out the connection with the non-elementary theory of a pairingfunction (cf., Chapter 8 of [8]). The result we presented here is, however, stronger,since it gives hereditary non-elementary lower bounds.References1. H. A��t-Kaci, A. Podelski, and G. Smolka. A feature constraint system for logicprogramming with entailment. Theor. Comput. Sci., 122:263{283, 1994. Prelimi-nary version: 5th Intern. Conf. Fifth Generation Computer Systems, June 1992.2. R. Backofen. A complete axiomatization of a theory with feature and arity con-straints. J. Logic Programming, 24:37{71, 1995.3. R. Backofen and G. Smolka. A complete and recursive feature theory. Theor.Comput. Sci., 146:243{268, 1995. Also: Report DFKI{RR{92{30, 1992.4. R. Backofen and R. Treinen. How to win a game with features. In Constraints inComputational Logics'94, volume 845 of Lect. Notes Comput. Sci., pages 320{335.Springer-Verlag, 1994.



5. H. Comon and P. Lescanne. Equational problems and disuni�cation. J. Symb.Computation, 7:371{425, 1989.6. K. J. Compton and C. W. Henson. A uniform method for proving lower boundson the computational complexity of logical theories. Annals Pure Appl. Logic,48:1{79, 1990.7. Yu. L. Ershov, I. A. Lavrov, A. D. Taimanov, and M. A. Taitslin. Elementarytheories. Russian Math. Surveys, 20:35{105, 1965.8. J. Ferrante and C. W. Racko�. The computational complexity of logical theories,volume 718 of Lect. Notes Math. Springer-Verlag, 1979.9. M. J. Fisher and M. O. Rabin. Super-exponential complexity of Presburger arith-metic. In SIAM{AMS Proceedings, volume 7, pages 27{41, 1974.10. W. Hodges. Model Theory, volume 42 of Encyclopedia of Mathematics and itsApplications. Cambridge Univ. Press, 1993.11. J. Ja�ar and M. J. Maher. Constraint logic programming: A survey. J. LogicProgramming, 19 & 20:503{581, 1994.12. K. Kunen. Answer sets and negation as failure. In J.-L. Lassez, editor, 4th Inter-national Conference on Logic Programming, volume 1, pages 219{228. MIT Press,1987.13. K. Kunen. Negation in logic programming. J. Logic Programming, 4:289{308,1987.14. M. J. Maher. Complete axiomatizations of the algebras of �nite, rational, andin�nite trees. In 3rd Annual IEEE Symp. on Logic in Computer Science LICS'88),pages 348{357, 1988.15. A. I. Malcev. Axiomatizable classes of locally free algebras. In B. F. Wells, editor,The Metamathematics of Algebraic Systems (Collected Papers: 1936{1967), vol-ume 66 of Studies in Logic and the Foundations of Mathematics, chapter 23, pages262{281. North-Holland Pub. Co., 1971.16. A. R. Meyer. Weak monadic second-order theory of successor is not elementary-recursive. In R. Parikh, editor, Logic Colloquium: Symposium on Logic Held atBoston, 1972{1973, volume 453 of Lect. Notes Math., pages 132{154. Springer-Verlag, 1975.17. P. Odifreddi. Classical recursion theory, volume 125 of Studies in Logic and theFoundations of Mathematics. North-Holland Pub. Co., 1989. Second Edition,1992.18. J. I. Seiferas, M. J. Fisher, and A. R. Meyer. Separating nondeterministic timecomplexity classes. J. ACM, 25(1):146{167, 1978.19. G. Smolka. Feature constraint logics for uni�cation grammars. J. Logic Program-ming, 12:51{87, 1992.20. G. Smolka and R. Treinen. Records for logic programming. J. Logic Programming,18:229{258, 1994. Also: Report DFKI-RR{92{23, 1992.21. R. M. Smullyan. Theory of Formal Systems. Princeton University Press, revisededition, 1961.22. L. J. Stockmeyer. The complexity of decision problems in automata theory andlogic. PhD thesis, MIT Lab for Computer Science, 1974. (Also /MIT/LCS TechRep 133).23. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:preliminary report. In 5th Symp. on Theory of Computing, pages 1{9, 1973.24. S. Vorobyov. Theory of �nite trees revisited: Application of model-theoretic alge-bra. Technical Report CRIN{94{R{135, Centre de Recherche en Informatique deNancy, October 1994.



This article was processed using the LATEX macro package with LLNCS style


