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Abstract. The first-order theories of finite and rational, constructor
and feature trees possess complete axiomatizations and are decidable
by quantifier elimination [15, 13, 14, 5, 10, 3, 20, 4, 2]. By using the
uniform inseparability lower bounds techniques due to Compton and
Henson [6], based on representing large binary relations by means of
short formulas manipulating with high trees, we prove that all the above
theories, as well as all their subtheories, are non-elementary in the
sense of Kalmar, i.e., cannot be decided within time bounded by a k-
story exponential function' exp(n) for any fixed k. Moreover, for some
constant d > 0 these decision problems require nondeterministic time
exceeding exp,, (|dn]) infinitely often.

1 Introduction

Trees are fundamental in Computer Science. Different tree structures are used as
underlying domains in automated theorem proving, term rewriting, functional
and logic programming, constraint solving, symbolic computation, knowledge
representation, data type specification, database theory, compiler construction.
In this paper we address the problem of inherent computational complexity
of different first-order theories of trees. Probably the simplest and most widely
used theory of trees in the class we consider is the elementary theory of finite
trees TA, also known as the theory of term algebras or the theory of locally
free algebras, or Clark’s equational theory. It axiomatizes the usual Herbrand
universum, specifying essentially that two terms are equal iff they coincide syn-
tactically. Given a finite or infinite algebraic signature Y, consider a theory TA
axiomatized in the first-order predicate calculus with equality by the axioms:

(Az1)  vz,y (f(T) # 9(7)), f#£geX.
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(Az3) V&, ¥ (¢ # (2, 7)), t(x,y) contains z,

distinct from z.

If X is finite, one may also add the so-called Domain Closure Aziom:
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(i.e., every element of the domain is the value of some function or constant).

For the case of finite signatures, Malcev in 1961-62 [15] proved the decidabil-
ity of (Az1)-(Ax3) and (Ax1)-(Ax3), (DCA) by quantifier elimination. Other
proofs are given in [13, 14, 5, 10], also by quantifier elimination. In [24] (Az1)-
(Az3), (DCA) is proved decidable by A. Robinson’s model completeness test.

Rational Trees. The theory of rational trees is obtained from TA by replac-
ing the acyclicity scheme (Ax3) with the following scheme (Ax4) corresponding
to the acceptance of infinite trees [14]:

(Art) vEIT (A v =6(ET)

for every system of equations A?_; y; = #;(Z,7), where T, § are disjoint lists
of variables, and the last conjunction contains no circular subsets y;, = yi, A
o ANYi;_, = Yi; N Yi; = ¥i,. Maher [14] showed that for infinite signatures (Ax1),
(Az2), (Ax4), and for finite signatures (Az1), (Ax2), (Ax4), (DCA) constitute
complete axiomatizations for rational trees, and proved decidability by quantifier
elimination. The last result is also proved for finite signatures by quantifier
elimination in [5].

Feature Trees introduced and investigated in [1, 19, 3, 20, 11, 2] allow for
non-fixed and variable arities of tree nodes and constitute a convenient formal-
ism for logic and constraint programming, knowledge representation. Intuitively,
saying f() Ay{fr.-- s Fad AJi(y, 21) A A fa(y, 2,) in the language of feature
trees means that y labeled f has exactly the features (or selectors) fi,..., fa,
and accessing the components of y via f;’s one gets elements z;.

Formally, fix two finite or countably infinite recursive sets Lab of labels and
Fea of features. A path is a word in Fea®, ¢ is the empty path. For two paths p
and ¢, pg is a concatenation of paths p, q. A feature tree t is a partial function
from paths to labels Lab, ¢ : Fea®™ — Lab with a nonempty prefiz-closed domain,
i.e., pg € dom(t) = p € dom(t) [1, 20, 4].

For a feature tree and a path p € dom(t), a subtree t/p of t addressed by p
is the feature tree defined by t/p =4 {(¢,A4) | (pg, A) € t} (here we identify
a function with its graph). Define ar(t), the root arity of a feature tree ¢, as
{f € Fea| f € dom(t)}.

A feature tree t is finite iff dom(t) is finite. A feature tree ¢ is rational iff:
1) ¢ has only finitely many different subtrees, and 2) ¢ is finitely branching: for
every p € dom(t), the root arity of t/p, ar(t/p), is finite.

Let F, R, and Z denote the sets of all finite, rational, and arbitrary feature
trees over Lab and Fea; call them the standard models. The first-order theo-
ries of feature trees in the relational signature ¥ (Lab, Fea) contain: 1) a unary
predicate symbol A for every A € Lab; 2) a binary predicate symbol f for ev-
ery [ € Fea; 3) a unary predicate symbol written {f1,..., fn} for every finite
{f1,-.-, fn} C Fea (traditionally, for F C Fea, one writes 2 F instead of F(x)).



These symbols are interpreted in M € { R, F, T} as follows:

-M E A) iff t(e) = A;

SO () i 1/ =t

-MELFiff F =ar(t).

Backofen and Smolka [3] axiomatize the theory of rational feature trees with-
out the arity predicates y{fi,..., fn} and prove its completeness and decidabil-
ity by quantifier elimination. Smolka and Treinen [20] axiomatize the theory
of rational feature trees with arity predicates, and Backofen and Treinen [4]
prove its completeness (hence decidability) by using the classical Ehrenfeucht-
Fraissé games, demonstrating that every two models of the theory are elementar-
ily equivalent. Backofen [2] also proves the completeness of the axiomatization
of the theory of rational feature trees with arity predicates by quantifier elimi-
nation.

Contribution of the Paper. None of the papers cited above suggest any
lower or upper complexity bounds for the theories of trees and the proposed
quantifier elimination procedures. In [12] Kunen conjectured and gave a sketch
of the proof that the decision problem for TA (for infinite signatures) is PSPACE-
complete.

In this paper by applying Compton-Henson’s uniform lower bound techniques
[6] based on encoding of large binary relations we prove that all theories of
finite and rational trees we cited above, as well as all their subtheories, are non-
elementary®. We prove the following

Main Theorem. Let T be either: 1) the theory of finite or rational trees over a
signature with at least one non-unary function symbol, or 2) the theory of finite
or rational feature trees over the signature with at least one label and two features.
Let T' C T be an arbitrary subtheory of T in the same signature, Val(T") and
Sat(T") be the sets of sentences true in all and in some models of T'. Then:

1. The decision problems for Val(T') and Sat(T') are both non-elementary.
2. For some d > 0, both Val(T'") and Sat(T') do not belong to the complexity
class NTIME (exp, (dn)). In other words, both require nondeterministic
non-elementary time exp_ (dn) infinitely often. O

The first and the best known proof of a non-elementary lower bound was
given by A. Meyer [16] for the weak monadic second-order logic of one successor
function (Biichi arithmetic).

Outline of the Paper. After giving a brief account in the next section of
Compton-Henson’s uniform lower bound method, we proceed to informal expla-
nations followed by the proof of the Main Theorem. The whole idea becomes
clear in Sections 3 and 4, where we represent binary relations by trees and ex-
plain how to address concisely very deep occurrences in trees.

2 A problem A is called elementary if and only if A € NTIME(exp,,(n)) for some
fized m € w, and non-elementary otherwise; NTIME(f(n)) is the class of problems
recognizable by non-deterministic Turing machines within time f(n).



2 Compton-Henson’s Lower Bounds Techniques

Compton and Henson in [6] developed a powerful and easy-to-use methods for
establishing lower bounds for the decision complexity of logical theories. Their
technique is based on the ideas of Trakhtenbrot and Vaught dating back to 50—
60, used for proving the recursive inseparability of the sets of valid and finitely
refutable sets of formulas of the first-order predicate calculus [7, 21, 17]. Comp-
ton and Henson refined the idea of recursive inseparability by replacing it with
“inseparable by NTIMFE (t(n))-recognizable sets”.

The lower bounds method of Compton and Henson relies on the ability to
express by short formulas of a theory all models, up to a certain size, of a unique
binary relation. The larger is the size, the higher is the respective lower bound.
Technically, the method of Compton and Henson has a great advantage over
the pioneer methods of Meyer, Stockmeyer, Fisher, Rabin [16, 23, 9, 8], since it
allows one to avoid tedious encodings of Turing machines. To estimate the size
of a binary relation representable by short formulas of a theory is much simpler
than to prove that all Turing machine computations up to a certain length are
encodable in a theory.

One of the (numerous) result in [6] useful to settle the nondeterministic time
lower bounds is the following Theorem 5. To formulate it we need to define the
interpretations of classes of binary relations in a theory.

Definition1 (Binary Relations). A binary relation is a model for the first-
order language with equality and the unique binary predicate symbol P(z,y).
The size of a binary relation is the cardinality of its carrier. a

The interpretations used in [6] are based on a kind of reducibility slightly
different from the standard log-lin reducibility (cf., [23, 22]):

Definition2 (Reset Log-Lin Reducibility, [6], pp. 10—-11). A function is
reset log-lin computable iff it is computable by a deterministic Turing machine
within logarithmic space and linear time, the machine is allowed to reset its
input tape & times to the beginning of the tape (in one step), where k is fixed
for all inputs.

Let £; C A} and £, C A} be two languages over finite alphabets. We write
L1 <rlog-tin L2 and say that £y is reset log-lin reducible to L, if and only if
there exists a reset log-lin computable function f : A7 — A3 such that

r €Ly & f(x) € Ly for every x € A7, O

Obviously, if £1 <p-jog-1in L2, then any corresponding reducing function f is
linearly bounded, i.e., for some constant ¢ € w, |f(z)] < ¢|z| for all # € A}. The
<y-tog-lin relation is transitive [6]. The following is straightforward:

Proposition3. Suppose, L1 <, jog-tin L2 and 1 : w — w is monotone increas-

ing. Then Lo € NTIME(t(n)) = L1 € NTIME(t(dn)+dn) for somed > 0. O



Definition4 (Interpretations of Binary Relations). Let C1,Cs, ... be
classes of binary relations and 7" be a theory in a language L. Suppose that for
each n € w\{0} there are formulas d,, (z, u), 7, (2, y, u) of the language I, reset
log-lin computable from n expressed in unary notation, such that for
every binary relation % € C,, there is a model 8 of T and an element m of ‘B
such that the model

(62 (x,m); w2 (x,y,m))?

is isomorphic to 2. Then the sequence {I, | n € w\{0}} of couples of formulas
I, = {6, m,) is called an interpretation of the classes Cy, in the theory T. O

Theorem 5 (Compton-Henson [6], Theorem 6.2, p. 38). Let t(n) be a
time resource bound such that for some d between 0 and 1 one has t(dn) =
o(t(n)). Let Cy, be the class of binary relations on sets of size at most t(n) and
T be a theory. If there is an interpretation of the classes C,, in T, then T is hard
via reset log-lin reductions for the complexity class

C = |J NTIME(t(cn)).

This lower bound is hereditary in the sense that for each subtheory
T C Val(T), both Sat(T') and Val(T') are hard for the above complerxity class C
via reset log-lin reductions. a

Note that the iterated exponential functions expy, (n), exp., (n) all satisfy the
condition of the theorem. We use Theorem b with the resource bound exp.(n),
which yields the intractability of a theory T as follows:

Proposition6. Suppose, Theorem & applies to a theory T and the time resource
bound t(n) = exp.,(n). Then:

1. T is non-elementary.

2. T ¢ NTIMF (expy, (dn)) for some d > 0, i.e., T requires nondeterministic
non-elementary time infinitely often.

3. 1 and 2 above are true for Val(T') and Sat(T') for every T' C T. O

Proof. 1) Suppose that T is elementary, i.e., T € NTIME (expm,(n)) for some
fized m € w. For every A € C, by C-hardness of T, we have A <, jo5-1sn T.
Hence, by Proposition 3, A € NTIME(exp,,(dn)) for some d > 0. Therefore,
C C Uyso NTIME (exp,, (dn)) € NTIME(exp,,,(n)). A contradiction, since C
properly contains NTIME (exp,, 4 (n)) *

® As usual, this is the model with the carrier consisting of all elements x of B satisfying
B |= §,(x,m) and the binary predicate P(w,y) defined on the elements z, y of the
carrier satisfying B &= it (z,y, m).

* By the following well-known result from [18]: Let ¢1(n) and t2(n) be functions such
that lim, e LUFE = 0. Then there is a problem in NTIME(t2(n))\NTIME(t1(n)).




2) Let A € C belong to NTIME (exp.. (can))\NTIME (exp.,(c1n)) for some
¢y > ¢1 > 0° By Chardness of T, A <p-log-1in 1 via a function f such that
|f(z)] < d|x| for some d > 0. We claim that T & NTIMFE (exp.,(c'n)) for every
¢ < ¢y/d. If not, then by Proposition 3, A € NTIMF (exp,,(c'dn) + dn) C
NTIME (exp,,(c1n)), which contradicts to the choice of A. O

3 Trees Representing Binary Relations

We apply Theorem 5 to the theories of trees with the time resource bound
t(n) = exp,, (n) thus obtaining the hereditarily non-elementary lower bounds.
The model B in which we will interpret classes of binary relations according
to Definition 4 will always be the same and equal to the standard model of
the corresponding theory. For the theory of term algebras TA this is the usual
Herbrand universum over a functional signature.
We can represent an arbitrary binary relation of size up to t(n) by a tree of
height 2 -¢(n) as follows. Suppose, we have means allowing us:

— to say succinctly® that a tree p represents a pointer to an occurrence at depth
t(n) (in some other tree); let the formula Pnt,(p) express this fact;

— to specify concisely that a tree p is a pointer as above addressing an occur-
rence of a tree s in a tree u; let this be expressed by the formula St, (u, p, s).

This is enough for dealing with binary relations of size up to ¢(n). In fact,
every binary relation of size up to ¢(n) can be represented by a tree u of height
at most 2-¢(n) and bounded branching (two is enough) as follows. We represent
elements of a relation as pointers at depth ¢(n), and for every two elements 4, j
represented by pointers p, ¢ respectively we say that ¢ and j are related if and
only if the subtree of u addressed first by p and then by ¢ (which is a subtree of ¢
at depth 2-¢(n)) equals 1 for some distinguished tree denoted 1. So, the formulas
dp (2, u) and m, (z, y, u) from Definition 4 will be simply Pnt, (2) AJsSty (u, z, s)

and Js {Stn (u,z,5) A Sty (s,y,1)| respectively”.
In the next sections we show how to write reset log-lin computable short
formulas Pnt,(p) and St,(u,p,s) for addressing in subtrees down to depth

t(n) = expy, (n).

4 How to Address Deep Occurrences

Informally, we exploit the easy fact that a full binary tree contains exp ., (n+1) =
29%Po(?) subtrees at depth exp.,(n).

5 See the previous footnote.

® By using short formulas, cf., Definition 4.

" Of course, not every such tree represents a binary relation, but every binary relation
of size at most £(n) is represented this way. By Definition 4, this is enough. A tree
representing a binary relation has to have the branching degree at least two, and two
suffices. This corresponds to the assumption that the language contains at least one
k-ary function symbol with k > 2, or two features.



Suppose, we already know how to address succinctly in any tree down to
depth ¢(n). We show that this is enough to succinctly address down to depth
2t(") Let a tree u be given and we would like to address its subtrees at depth
2t(") Since we are able to address down to depth t(n) we can describe a tree p
with the following properties (we later call it a pointer):

1) down to depth t(n) the tree p represents a full binary tree;

2) the subtrees of p at depth ¢(n) form (in some order, no matter which) a
sequence of pairs of trees (s;, v;) for i = 0,...,2t);

3) for every i = 1,.. ., 21(") the tree s; specifies a selector (i.e., an argument
position) in v;_1 such that v; is an immediate subtree of v;_; at that position.

4) the selector sg specifies a position of an immediate subtree vg in u.

Then the tree vyi(n) is a subtree of u at depth 2t(")| as needed. Notice that
to specify a subtree at depth 2¢(") we used only the ability to look at most at
depth ¢(n).

5 Proof Plan, Iterative Definitions

Using the ideas sketched above we proceed to the definition of the formu-
las 6, (2, u) and m,(z,y, u) from Definition 4, reset log-lin computable from n,
needed to interpret binary relations, as requested by Theorem 5.

To define the necessary constructing blocks for 6, (x,u) and m,(x,y, u) like
Pnt,(p) and St, (1, p, s) above, we will proceed by giving simultaneous iterative
definitions of the form

Po(x) =%(x)
{Pn+1(x) =&(x,P,), (1)

defining (vectors of) new auxiliary predicates P for every n € w.

The definition (1) starts from the basic case, where Po(x) are defined for all
x by ¥(x), containing no P. Whenever P, (x) are defined, the next iteration
P,1(x) is defined by @(x, P,,) by using P, (x) from the previous iteration.

The predicates P,, do not form the part of the language, and for every fixed
n € w they can be eliminated by unfolding the iterative definition down to the
basic case. Unfortunately, the straightforward unfolding yields formulas growing
exponentially as n grows®,

However, under very general assumptions on the form of &, @, this iterative
unfolding can be done cleverly, so as P, (x) grow only linearly with n. This
is known as the standard abbreviation trick due to Meyer, Stockmeyer, Fisher,
Rabin, which allows for rewriting a formula with multiple occurrences of the same
subformula (but with different parameters) as an equivalent formula containing
just one occurrence of the subformula, and only fired number of variables. This
standard abbreviation trick is described in full detail by Stockmeyer [22], pp.
189-190, also by Ferrante and Rackoff [8], Chapter 7, pp. 153-161, and further

8 Consider Pni1(2,y) = 32(Pu(x, 2) A Pa(z,y)) growing as 2”.



by Compton and Henson in Section 3 of [6]. This trick allows one for the iterative
definitions as above, to keep the size of P, (x) proportional to n.

In Section 8 we proceed semi-formally by just writing simultaneous itera-
tive definitions of the form (1) above. We justify that such definitions indeed
yield reset log-lin computable formulas in Section 9, where we briefly describe
Compton-Henson’s abbreviation techniques, following Section 3 of [6].

6 Snapshots and Pointers

Here we formalize the ideas presented in Section 4. In this and the following
two sections we speak about terms. It should be clear that the same can be
conducted for feature trees, as we discuss in the end of Section 8.

Definition7 (Snapshots). Fix two arbitrary different terms L and R and call
them the left and the right selectors respectively.

A snapshot is a term of the form f(s,t) where s is a selector L or R, and f
is a binary function symbol®. Define the following relations on selectors:

Sueer (z,y) =q¢ Juovw {x = flu, flv,w)) ANy = f(L, v)} (2)
Succr(x,y) =q Juvw {x = flu, flv,w)) ANy = f(R, w)} (3)
Suce(z,y) =g Sucer(x,y)V Succr(z,y) (4)

So, in Suce(x,y) the second argument of y is determined by its first argu-
ment and the second argument of z. Notice that if f(so,%0) = po,P1,---,Pm =
f(sm,tm) is a sequence of snapshots such that Swucc(p;—1,p;) for 1 < ¢ < m,
then t,, is a subterm of ¢y at depth m, and the word sq...s,, € {L, R}* is the
corresponding path leading from ¢g to %,,.

Definition8 (exp. (n)-pointer). Let n € w. An exp_ (n)-pointer (cf., Sec-
tion 4) is a term p with the following properties:

1. down to depth exp., (n) the term p represents a full binary tree constructed
of the binary function symbol f;

2. the subterms of p at depth exp_, (1), {p1,- -, Pexp_(n+1)} (there are
€XPo, (n + 1) such subterms) are snapshots linearly ordered by the reflexive-
transitive closure of the Succ relation.

Call the first and the last elements in the order mentioned in 2 the initial and
the final snapshots of the pointer p. a

® We could have used any k > 2-ary symbol by filling out its k — 2 extra argument
positions with some term, say L.



7 The Predicates Pnt,, Min,, Max,, Match,, St,

We are going to define inductively the following predicates (cf., Definition 8):

— Pnt,(p) — pis an exp,, (n)-pointer;

— Miny,(t,s) — s is a minimal wrt Succ subterm of ¢ among all subterms of ¢
at depth exp_ (n);

— Mawzy(t,s) — s is a maximal wrt Suce subterm of ¢ among all subterms of
t at depth exp__(n).

Suppose, p is an exp., (n)-pointer. Then Min,(p,s) and Max(p,u) mean
that s and u are the initial and the final snapshots of p.

With the predicates Pnt,, Min,, Maz, defined for every n € w we can
explicitly define the following useful predicate:

Match, (t,p) =4 Pnt,(p) A Elsux{Minn (p, )A

A szf(L,u)/\t:f(u,x)v5:f(R,u)/\t:f(x,u)}}. (5)

Intuitively, Matchy (¢, p) means that the initial snapshot s of the exp_ (n)-
pointer p matches ¢ in the sense that Suce(f(x,1), s).

With the predicates Pnt,, Min,, Maz,, and Match, at hand we can also
explicitly define for all n € w the most important for our purposes predicate

Stn(t,p,s) =4 Pnt,(p) A Match,(t,p) A Juz|Maz,(p,u) Au= f(z,s)|, (6)

which expresses the fact that a exp (n)-pointer p addresses the subterm s at
depth exp ., (n+ 1) in a term ¢.

8 Iterative Definitions of Mn,, Max,, Pnt,

Here are the simultaneous iterative definitions of Min,, Max,, Pnt,. In the
right-hand sides of these definitions all the occurrences of 5t,, and M atch,, should
be understood as abbreviations for the right-hand sides of (5) and (6).

Mino(p, s) = Elxy(p:s: fle,y)Ale=LVe :R]), (7)
Minnii(p,s) = Ja [Pmsn(a) A St (p, a, 5)] A

Vbt [Pmsn(b) A St (p,b,t) = =Suce(t, 5)], 8)

Mazo(p,s) = Elxy(p:s: fle,y)Ale=LVe :R]), 9)

Mazpy1(p,s) = Ja [Pntn(a) A Sty (p, a, 5)} A



Vbt [Pmsn(b) A St (p,b,t) = =Suce(s, t)}, (10)
Pnto(t) = Elx[t: F(Lx) V= f(R, x)}, (11)
Pntpii(t) = Vp{Matchn(t, p) = JuSta (1, p, u)A
{—'Maxn(t,p) =
Igv (Matchn(t, q) A St (L, g, ) A Suce(u, v)) ] } (12)

Finally, we make reference to the Meyer-Stockmeyer-Fisher-Rabin-Compton-
Henson abbreviation trick described in Section 9 to get the final step in our proof:

Lemma 9. For every n € w\{0} the formulas
dpl(z,u) =4 Pntn_1(x) AIsStp_1(u, z,s),

(2, y,u) =g Is|Sta_1(u,z,8) A Sta_1n(s,y, 1)

interpreting binary relations up to size exp_,(n) (cf., Definition ) are reset log-
lin computable from n expressed in unary notation. a

Our Main Theorem is now an immediate corollary to Theorem 5, Proposi-
tion 6, and Lemma 9. To extend the above proof to the case of feature trees it
suffices to replace terms and term equalities by feature trees and feature formu-
las in the definitions of Succr in (2), of Succr in (3), of Match,, in (5), of St,
in (6), of Ming in (7), of Mawzo in (9), and of Pnto in (11). This is relatively
straightforward. For example, for L we select the unique feature tree satisfying
Fle)Ae{fi}Afi(z, z). Instead of term equalities with the binary function symbol
z = f(y, z) we use the feature tree notation f(x) Az{f1, f2} A fi(z, ) A fa(z, 2).

9 Iterative Definitions Yielding Short Formulas

In this section we briefly and semi-formally present results from Section 3 of [6]
necessary for the justification of the claim in Lemma 9. The interested reader
should consult Chapter 7 of [8] for the explanation of the abbreviation trick.

We are going to enrich the usual first-order language with the possibilities to
write explicit and (simultaneous) iterative definitions.

Let L* be a language L extended with new predicate symbols, P be a pred-
icate symbol from the extension. An explicit definition is a figure of the form
[P(x) = 0], where P is a defined predicate, 0 is a defining prenex formula of L*
containing no occurrences of P. For a formula ¢ of L* the figure [P(x) = 0] ¢ is
a formula of L™ that means that P(x) is defined in ¢ as 6. Equivalently, in the

second-order logic this can be interpreted as VP (Vl‘(P(l‘) = 0) = 1/})

An iterative definition [P(x) = 0],,, where 0 is called the operator formula, n
written in unary notation, and P possibly occurring in 6, is inductively defined
as follows:



1) [P(x) = 0o is equivalent to the explicit definition [P(x) = Jz(x # 2)],

2) [P(x) = 0]n41 is equivalent to |P(z) = [P(z) = H]HH}.

Since the index n is written in unary, the length of the iterative definition is
of the same order as the nested explicit definitions it replaces.

Similarly, one can define simultaneous iterative definitions of the form, where
0;’s can contain any of P;’s:

Pl(Xl) = 01

Pk (Xk) = Hk

n

Iterative and explicit definitions are made first-class constructs of the lan-
guage L*. Thus, if ¢ is a formula of L* and D is an explicit or iterative definition
then D ¢ is a formula of L*. But it is required that the iteration number sub-
scripts are written in unary. The explicit and iterative definitions do not really
extend the expressive power of the language, since they can always be elimi-
nated. Theorem 10 below assures that this elimination can be done by giving at
most a linear growth of the length of formulas. This is exactly what is needed in
defining the interpretations of classes of binary relations in a theory.

Let L* be a language L extended with new predicate symbols Py,..., Py,
and [ be a fixed natural number. A prescribed set of formulas over L is a set of
figures of the form

Dyi-Di--Dp 0,

where 9 is a prenex formula of L™ without any explicit or iterative definitions,
every Pp,..., P, defined in some D;, and for each i:

— either D; is an explicit definition with all predicates in its defining formula
appearing as defined predicates in the previous definitions D; (j < i),

— or D; is a (simultaneous) iterative definition with operator formulas of
length <[, possibly containing the defined predicates in the previous definitions
D; (j < i) and in D; itself.

Additionally, every variable in ¢ and in defining formulas is quantified just
once.

Theorem 10 (Compton-Henson, Theorem 3.4, p. 19). Let L be a first-
order language. For each prescribed set of formulas over L there is a reset log-lin
reduction taking each formula in the set to an equivalent formula of L. a

This theorem considerably simplifies proofs, since its provides quite liberal
form of writing explicit and simultaneous iterative definitions.

In practice, it is also very convenient (as we did) to split an iterative defini-
tion into two parts, the (non-false) basic case and the inductive step by writing
iterative definitions D of the form:

D: Po(x)=¥(x) and Phy1(x) = $[x, Py,
and define Doy to be [P = ¥] and D, 41 to be [P = D,, &].



Such iterative definitions with the non-false basic case can be easily trans-
formed (by using boolean connectives) into the canonical form of iterative defi-
nition above. In fact, define 6 to be

[Vu—P(u) = ¥(x)] A[AvP(v) = &(x, P)]

We claim that every iterative definition D,, is equivalent to [P = 6],41. In
fact, for n = 0 we have [P =0]; = [P = [P = Jx(x # 2)]0] = [P = ¥] = Do, as
needed. Let the claim be true for n = ng. We prove it for n + 1:

Dyt =[P =D, bl = [P=[P =010 L [P =[P =0],110] = [P =040,
as needed. The equality (*) is also validated by induction by using the fact that
¥ (z) is not tautologically false.

Returning back to the iterative definitions in Sections 7 and 8, we see that
the prescribed definitions for d,, (#, u) and 7, (%, y, u) given in Lemma 9 have the
form (to be completely accurate, we have to transform all formulas to the prenex
form and be careful about using different variables in quantifications):

8n (x,0)] = [D] (Pnt(x) A JsSt(u, z, 5)),

o (2, y,u)] = [DP] 3s [St(u, z,s) A St(s,y, 1)} ,

Min=...
where [D] is Maz =... {Match:...} {St:...}.
Pnt=...
n—1
So, Theorem 10 applies proving Lemma 9. a

Acknowledgments. I am grateful to an anonymous referee of one of my papers,
who pointed out the connection with the non-elementary theory of a pairing
function (cf., Chapter 8 of [8]). The result we presented here is, however, stronger,
since it gives hereditary non-elementary lower bounds.
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