



# Conflicts in Abstract Argumentation<sup>1</sup>

#### **Christof Spanring**

Department of Computer Science, University of Liverpool, UK
Institute of Information Systems, TU Wien, Austria

DBAI research seminar, November 10, 2016





<sup>&</sup>lt;sup>1</sup>This research has been supported by FWF (projects I1102 and I2854).

### **Argumentation**



Natural Language Example, Is Death Penalty Legit?





- Arguments: a, b, c, d
- Attacks: (b, a), (c, b), (d, c), (c, d)

### Definition (Abstract Argumentation, Syntax)

Argumentation Framework (AF): F = (A, R)

A: set of arguments

 $R \subseteq A \times A$ : set of attacks



- Arguments: a, b, c, d
- Attacks: (b, a), (c, b), (d, c), (c, d)
- ullet Conflicts: [a,b],[b,c],[c,d]

### Definition (Syntactic Conflict and Compatibility)

Syntactic Conflict,  $[X,Y]_F$ : X attacks Y or Y attacks X Syntactic Compatibility,  $\{X,Y\}_F$ : otherwise



- Arguments: a, b, c, d
- Attacks: (b, a), (c, b), (d, c), (c, d)
- Extensions:  $\{a, c\}, \{b, d\}$

#### Definition (Argumentation Semantics)

Conflict-freeness,  $S \in \mathit{cf}(F)$ :  $\{S, S\}_F$ 

Stable Extension,  $S \in sb(F) \subseteq cf(F)$ :  $A \setminus S = \{x \in A \mid S \text{ attacks } x\}$ 



- Arguments: a, b, c, d
- Attacks: (b, a), (c, b), (d, c), (c, d)
- Extensions:  $\{a,c\},\{b,d\}$
- Conflicts: [a,b], [b,c], [c,d], [a,d]

### Definition (Semantic Conflict and Compatibility)

Semantic Compatibility,  $\{X,Y\}_{\mathbb{S}}$ : f.a.  $x\in X,y\in Y$  ex.  $S\in \mathbb{S}$ ,  $\{x,y\}\subseteq S$  Semantic Conflict,  $[X,Y]_{\mathbb{S}}$ : otherwise

#### **Framework Modifications**



- Arguments: a, b, c, d
- Attacks: (b, a), (c, b), (d, c), (c, d)
- Extensions:  $\{a, c\}, \{b, d\}$
- Conflicts: [a,b], [b,c], [c,d], [a,d]

#### **Framework Modifications**



- Arguments: a, b, c, d
- Attacks: (b, a), (c, b), (d, c), (c, d), (d, a)
- Extensions:  $\{a, c\}, \{b, d\}$
- $\bullet \ \, \mathsf{Conflicts:} \ [a,b],[b,c],[c,d],[a,d] \\$

#### **Framework Modifications**



- Arguments: a, b, c, d
- Attacks: (b,a), (c,b), (d,c), (c,d), (d,a)
- Extensions:  $\{a,c\},\{b,d\}$
- ullet Conflicts: [a,b],[b,c],[c,d],[a,d]













# Realizability and Conflict

### Definition (Realizability)

- $\mathbb S$  is  $\sigma$ -realizable if ex. AF F with  $\sigma(F)=\mathbb S$
- $\mathbb S$  is  $\sigma_A$ -realizable if ex AF F=(A,R) with  $\sigma(F)=\mathbb S$

#### **Definition (Conflict)**

A semantic conflict  $[a,b]_{\mathbb{S}}$  is

- *pure* (semantic) if there is no realization F with  $[a,b]_F$ ;
- necessary (syntactic) if any realization F has  $[a,b]_F$ ;
- optional otherwise.

#### **Levels of Conflict**



Figure: A Venn-diagram illustrating different levels of conflict.

## **Arbitrary Modifications**



- Arguments: a, b, c, d
- Attacks: (b, a), (c, b), (d, c), (c, d)
- Extensions:  $\{a, c\}, \{b, d\}$
- Conflicts: [a,b], [b,c], [c,d], [a,d]

# **Arbitrary Modifications**



- Arguments: a, b, c, d
- Attacks: (b, a), (c, b), (d, c), (c, d), (a, b)
- Extensions:  $\{a,c\},\{b,d\},\{a,d\}$
- Conflicts: [a,b],[b,c],[c,d],

#### **Conflict Characterizations**

#### Theorem (Stable Conflicts)

 $[a,b]_{\mathbb{S}}$  is necessary attack  $(a,b)_F$  for each sb-realization F of  $\mathbb{S}$  if and only if there is  $S \in \mathbb{S}$ ,  $a \in S$  and  $\{b,S \setminus \{a\}\}_{\mathbb{S}}$ .

All other conflicts for sb are optional.

### **Modifications for Stable Semantics**



Figure: Forcing attacks for stable semantics.



Figure: Purging Attacks for Stable Semantics.

#### **Illustration of Stable Modifications**



Figure : Original AF.



# Realizability and Conflict

### Definition (Realizability)

- $\mathbb S$  is  $\sigma$ -realizable if ex. AF F with  $\sigma(F)=\mathbb S$
- $\mathbb{S}$  is  $\sigma_A$ -realizable if ex AF F = (A, R) with  $\sigma(F) = \mathbb{S}$

#### **Definition (Conflict)**

A semantic conflict  $[a,b]_{\mathbb{S}}$  is

- *pure* (semantic) if there is no realization F with  $[a,b]_F$ ;
- necessary (syntactic) if any realization F has  $[a,b]_F$ ;
- optional otherwise.

# **Realizability and Conflict**

#### Definition (Realizability)

- $\mathbb S$  is  $\sigma$ -realizable if ex. AF F with  $\sigma(F)=\mathbb S$
- $\mathbb S$  is  $\sigma_A$ -realizable if ex AF F=(A,R) with  $\sigma(F)=\mathbb S$

#### **Definition (Conflict)**

A semantic conflict  $[a, b]_{\mathbb{S}}$  is

- *pure* (semantic) if there is no realization F with  $[a,b]_F$ ;
- necessary (syntactic) if any realization F has  $[a,b]_F$ ;
- optional otherwise.

#### **Definition (Conditional Conflicts)**

Extend pure, necessary and optional to A-realizability

# **A-Purity**



Argument set of interest:  $\{a_0, a_1, y_2, u_0, u_1, v_0, v_1\}$ 

### **A-Purity**



Argument set of interest:  $\{a_0, a_1, y_2, u_0, u_1, v_0, v_1\}$ 

#### **Conclusions**

#### For Stable Semantics

- necessary Conflicts can be directed (attacks) or undirected (symmetric attacks);
- in general there are no pure conflicts;
- A-purity however is possible;
- one could allow bigger extensions to get rid of necessary conflicts;
- manipulation only requires compatibilities.

#### **Other Semantics**

- Preferred and Semi-stable semantics have only symmetric necessary attacks [a,b] where there are  $S,T\in\mathbb{S}$  with  $a\in S,b\in T$  and otherwise compatibilities  $\{a,T\setminus\{b\}\}_{\mathbb{S}},\{b,S\setminus\{a\}\}_{\mathbb{S}}.$
- Stage semantics has the same necessary conflicts as Stable, but without directions.
- Cf2 semantics probably has the same necessary conflicts as Stable, no necessary symmetric attacks but allows general pure conflicts.



## **Future Work, Open Questions**

- Conflicts between sets of arguments.
- Conditional Conflicts: exact characterizations for *A*-pure definitions, under what circumstances can *A*-pure conflicts arise?
- Formal definition of attack-minimal AFs
- Other semantics, labellings, ...
- Instantiation-related questions; what does it mean to use such modifications? How can we use this knowledge to manipulate or analyse/detect manipulation?
- Other directions: Given some AF, which arguments necessarily are jointly acceptable? How can we detect semantic conflicts without computing all extensions?
- Syntactic Conflict is a semantics, extend approach to arbitrary pairs of semantics.

#### References

- Baroni, P., Caminada, M., and Giacomin, M. (2011). An introduction to argumentation semantics. Knowledge Eng. Review, 26(4):365–410.
- Dung, P. M. (1995).
  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games.
  Artif. Intell., 77(2):321–358.
- Dunne, P. E., Dvořák, W., Linsbichler, T., and Woltran, S. (2015). Characteristics of multiple viewpoints in abstract argumentation. Artif. Intell., 228:153–178.
- Linsbichler, T., Spanring, C., and Woltran, S. (2015). The Hidden Power of Abstract Argumentation Semantics. The 2015 International Workshop on Theory and Applications of Formal Argument.

### **Preferred Modifications**



Figure: Forcing Attacks for Preferred Semantics.



Figure: Purging Attacks for Preferred Semantics.

#### **Illustration of Preferred Modifications.**



Figure : Analogy to Stable Illustration.



Figure: For an attack-minimal AF.