Comparing the Expressiveness of Argumentation Semantics

COMMA 2012

Wolfgang Dvořák, Christof Spanring

Database and Artificial Intelligence Group
Institut für Informationssysteme
Technische Universität Wien

September 11, 2012

Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028.
Motivation

“Plethora” of Argumentation Semantics

Comparison of semantics still relates to
- basic properties,
- computational aspects,
but do not provide satisfying answers about expressiveness.
“Plethora” of Argumentation Semantics

Comparison of semantics still relates to
- basic properties,
- computational aspects,
but do not provide satisfying answers about expressiveness.

Intertranslatability

A translation function transforms Argumentation Frameworks s.t. one can switch from one semantics to another.
- Intertranslatability w.r.t. efficiency has been studied for several semantics and gives a clear hierarchy [Dvořák and Woltran, 2011].
- Considering expressiveness we no longer care about efficiency.
We consider 9 semantics: conflict-free, naive, grounded, admissible, stable, complete, preferred, semi-stable and stage.

We present consider two kinds of translations (faithful and exact), and provide full hierarchies of expressiveness.

Semi-stable and preferred are of same expressiveness (although they have different complexity).
2. Background

Argumentation Frameworks

Definition

An argumentation framework (AF) is a pair \((A, R)\) where

- \(A\) is a non-empty set of arguments
- \(R \subseteq A \times A\) is a relation representing "attacks" ("defeats")

Example

\[F = (\{a, b, c, d, e\}, \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}) \]
Transitions

Definition
A *Translation* Tr is a function mapping (finite) AFs to (finite) AFs.
Translational Tr is a function mapping (finite) AFs to (finite) AFs.
Translating "Levels of Faithfulness" (for semantics σ, σ')

- exact: for every AF F, $\sigma(F) = \sigma'(\text{Tr}(F))$
- faithful: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(\text{Tr}(F))\}$ and $|\sigma(F)| = |\sigma'(\text{Tr}(F))|$.

Comparing the Expressiveness of Argumentation Semantics
2. Background

Translations

"Levels of Faithfulness" (for semantics σ, σ')

- **exact**: for every AF F, $\sigma(F) = \sigma'(Tr(F))$
- **faithful**: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(Tr(F))\}$ and $|\sigma(F)| = |\sigma'(Tr(F))|$.

Example (An exact translation: $cf \Rightarrow adm$)

$\{b, d\} \in cf(F)$
2. Background

Translations

“Levels of Faithfulness” (for semantics \(\sigma, \sigma' \))

- **exact**: for every AF \(F \), \(\sigma(F) = \sigma'(\text{Tr}(F)) \)
- **faithful**: for every AF \(F \), \(\sigma(F) = \{ E \cap A_F \mid E \in \sigma'(\text{Tr}(F)) \} \) and \(|\sigma(F)| = |\sigma'(\text{Tr}(F))| \).

Example (An exact translation: \(cf \Rightarrow adm \))

\[
\{b, d\} \in cf(\mathcal{F}) \quad \{b, d\} \in adm(\text{Tr}(\mathcal{F}))
\]
Translators

“Levels of Faithfulness” (for semantics σ, σ')

- **exact**: for every AF F, $\sigma(F) = \sigma'(\text{Tr}(F))$
- **faithful**: for every AF F, $\sigma(F) = \{ E \cap A_F \mid E \in \sigma'\left(\text{Tr}(F)\right)\}$ and $|\sigma(F)| = |\sigma'(\text{Tr}(F))|$.
2. Background

Translations

“Levels of Faithfulness” (for semantics σ, σ')

- **exact**: for every AF F, $\sigma(F) = \sigma'(Tr(F))$
- **faithful**: for every AF F, $\sigma(F) = \{ E \cap A_F | E \in \sigma'(Tr(F)) \}$ and $|\sigma(F)| = |\sigma'(Tr(F))|$.

Example (A faithful translation: $comp \Rightarrow stable$)

$$\{a\} \in comp(F)$$
2. Background

Translations

“Levels of Faithfulness” (for semantics σ, σ')

- **exact**: for every AF F, $\sigma(F) = \sigma'(\text{Tr}(F))$
- **faithful**: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(\text{Tr}(F))\}$ and $|\sigma(F)| = |\sigma'(\text{Tr}(F))|$.

Example (A faithful translation: $\text{comp} \Rightarrow \text{stable}$)

$$\{a\} \in \text{comp} (\mathcal{F}) \quad \{a, a^*, c^*, d^*, e^*\} \in \text{stable} (\text{Tr} (\mathcal{F}))$$
2. Background

Translations

“Levels of Faithfulness” (for semantics σ, σ')

- **exact**: for every AF F, $\sigma(F) = \sigma'(\text{Tr}(F))$
- **faithful**: for every AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(\text{Tr}(F))\}$ and $|\sigma(F)| = |\sigma'(\text{Tr}(F))|$
- **weakly exact**: there is a fixed S of sets of arguments, such that for any AF F, $\sigma(F) = \sigma'(\text{Tr}(F)) \setminus S$;
- **weakly faithful**: there is a fixed S of sets of arguments, such that for any AF F, $\sigma(F) = \{E \cap A_F \mid E \in \sigma'(\text{Tr}(F)) \setminus S\}$ and $|\sigma(F)| = |\sigma'(F) \setminus S|$

We further consider translations w.r.t. the properties efficient, covering, embedding, monotone, and modular.
State of the Art

Table: Faithful / exact intertranslatability (efficient).

<table>
<thead>
<tr>
<th></th>
<th>cf</th>
<th>naive</th>
<th>ground</th>
<th>adm</th>
<th>stable</th>
<th>comp</th>
<th>pref</th>
<th>semi</th>
<th>stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>cf</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>naive</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ground</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>adm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>stable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>comp</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>pref</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>semi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>stage</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
State of the Art

Table: Faithful / exact intertranslatability (inefficient).

<table>
<thead>
<tr>
<th></th>
<th>cf</th>
<th>naive</th>
<th>ground</th>
<th>adm</th>
<th>stable</th>
<th>comp</th>
<th>pref</th>
<th>semi</th>
<th>stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>cf</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naive</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ground</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>adm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>stable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>comp</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>pref</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>semi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>stage</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Comparing the Expressiveness of Argumentation Semantics
Summarized Results

Table: Faithful / exact intertranslatability

<table>
<thead>
<tr>
<th></th>
<th>cf</th>
<th>naive</th>
<th>ground</th>
<th>adm</th>
<th>stable</th>
<th>comp</th>
<th>pref</th>
<th>semi</th>
<th>stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>cf</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>naive</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ground</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>adm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>stable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>comp</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>pref</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>semi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>stage</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Main Contributions

The Paper

For the 9 Semantics under our considerations we
- provide exact / faithful translations whenever possible, and
- prove that no such translation exists otherwise.
Main Contributions

The Paper

For the 9 Semantics under our considerations we
- provide exact / faithful translations whenever possible, and
- prove that no such translation exists otherwise.

The Talk

In the following we give examples for both kind of results.
- Translation 8: exact for semi-stable to stage semantics.
- Theorem 3: There is no weakly faithful translation for preferred to naive semantics.
Definition

For $\mathcal{F} = (A, R)$ an Argumentation Framework and a set $S \subseteq A$ we call

$$S^+ = S \cup \{ a \in A \mid \exists b \in A, b \rightarrow a \}$$

the range of S.

Definition

Let $\mathcal{F} = (A, R)$ be an Argumentation Framework. For $S \subseteq A$ it holds that

- $S \in cf(\mathcal{F})$ if there are no $a, b \in S$, such that $(a, b) \in R$;
- $S \in adm(\mathcal{F})$, if each $a \in S$ is defended by S;
- $S \in pref(\mathcal{F})$, if $S \in adm(\mathcal{F})$ and there is no $T \in adm(\mathcal{F})$ with $T \supset S$;
- $S \in semi(\mathcal{F})$, if $S \in adm(\mathcal{F})$ and there is no $T \in adm(\mathcal{F})$ with $T^+_R \supset S^+_R$.
Translation 8, $semi \Rightarrow pref$

Example

- $pref(F) = \{\{a, c\}, \{a, d\}\}$
- $semi(F) = \{\{a, d\}\}$
Translation 8, $\text{semi} \Rightarrow \text{pref}$

Definition

- $\text{Tr}(A, R) = (A', R')$
- $A' = A \cup \{E | E \in \text{pref}(\mathcal{F}) \setminus \text{semi}(\mathcal{F})\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) | a \in A \setminus E, b \in E\}$

Example

- $\text{pref}(\mathcal{F}) = \{\{a, c\}, \{a, d\}\}$
- $\text{semi}(\mathcal{F}) = \{\{a, d\}\}$
Translation 8, \(semi \Rightarrow pref \)

Definition

- \(Tr(A, R) = (A', R') \)
- \(A' = A \cup \{ E \mid E \in pref(F) \setminus semi(F) \} \)
- \(R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E \} \)

Example

- \(pref(F) = \{\{a, c\}, \{a, d\}\} \)
- \(semi(F) = \{\{a, d\}\} \)
Translation 8, $semi \Rightarrow pref$

Definition

- $Tr(A, R) = (A', R')$
- $A' = A \cup \{E \mid E \in pref(F) \setminus semi(F)\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$

![Diagram](a -> b <-> c -> d -> e)

Example

- $pref(F) = \{\{a, c\}, \{a, d\}\}$
- $semi(F) = \{\{a, d\}\}$
Translation 8, $\text{semi} \Rightarrow \text{pref}$

Definition

- $\text{Tr}(A, R) = (A', R')$
- $A' = A \cup \{E \mid E \in \text{pref}(F) \setminus \text{semi}(F)\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$

Example

- $\text{pref}(F) = \{\{a, c\}, \{a, d\}\}$
- $\text{semi}(F) = \{\{a, d\}\}$
Translation 8, $semi \Rightarrow pref$

Definition

- $Tr(A, R) = (A', R')$
- $A' = A \cup \{E \mid E \in pref(F) \setminus semi(F)\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$

Example

- $pref(F) = \{\{a, c\}, \{a, d\}\}$
- $semi(F) = \{\{a, d\}\}$
Translation 8, $semi \Rightarrow pref$

Definition

- $Tr(A, R) = (A', R')$
- $A' = A \cup \{E \mid E \in pref(\mathcal{F}) \setminus semi(\mathcal{F})\}$
- $R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\}$

![Graph showing the transition between states]

Example

- $pref(\mathcal{F}) = \{\{a, c\}, \{a, d\}\}$
- $semi(\mathcal{F}) = \{\{a, d\}\}$
Translation 8, \(\text{semi} \Rightarrow \text{pref} \)

Definition

- \(\text{Tr}(A, R) = (A', R') \)
- \(A' = A \cup \{E \mid E \in \text{pref}(\mathcal{F}) \setminus \text{semi}(\mathcal{F})\} \)
- \(R' = R \cup \{(a, E), (E, E), (E, b) \mid a \in A \setminus E, b \in E\} \)

Example

- \(\text{pref}(\mathcal{F}) = \{\{a, c\}, \{a, d\}\} \)
- \(\text{semi}(\mathcal{F}) = \{\{a, d\}\} \)
- \(\text{pref}(\text{Tr}(\mathcal{F})) = \{\{a, d\}\} \)
Definition

Let $\mathcal{F} = (A, R)$ be an Argumentation Framework. For $S \subseteq A$ it holds that

- $S \in cf(\mathcal{F})$ if there are no $a, b \in S$, such that $(a, b) \in R$;
- $S \in naive(\mathcal{F})$, if there is no $T \in cf(\mathcal{F})$ with $T \supset S$;
- $S \in adm(\mathcal{F})$, if each $a \in S$ is defended by S;
- $S \in pref(\mathcal{F})$, if $S \in adm(\mathcal{F})$ and there is no $T \in adm(\mathcal{F})$ with $T \supset S$;
Theorem 3, $\text{pref} \Rightarrow \text{naive}$

Theorem

There is no weakly faithful translation for $\text{pref} \Rightarrow \text{naive}$.
Theorem 3, $\text{pref} \Rightarrow \text{naive}$

Theorem

There is no weakly faithful translation for $\text{pref} \Rightarrow \text{naive}$.

Counterexample

![Diagram showing a counterexample](image-url)
Theorem 3, $\text{pref} \Rightarrow \text{naive}$

Theorem

*There is no weakly faithful translation for $\text{pref} \Rightarrow \text{naive}$.***

Counterexample

$\text{pref}(\mathcal{F}) = \{\{a_1, b_2, b_3\}, \{b_1, a_2, b_3\}, \{b_1, b_2, a_3\}\}$
Theorem 3, \(\text{pref} \Rightarrow \text{naive} \)

Theorem

There is no weakly faithful translation for \(\text{pref} \Rightarrow \text{naive} \).

Counterexample

\[
\text{pref}(\mathcal{F}) = \{\{a_1, b_2, b_3\}, \\{b_1, a_2, b_3\}, \\{b_1, b_2, a_3\}\}
\]
Theorem 3, \(\text{pref} \Rightarrow \text{naive} \)

Theorem

There is no weakly faithful translation for \(\text{pref} \Rightarrow \text{naive} \).

Counterexample

\[
\text{pref}(\mathcal{F}) = \{\{a_1, b_2, b_3\}, \{b_1, a_2, b_3\}, \{b_1, b_2, a_3\}\}
\]
Theorem 3, $\text{pref} \Rightarrow \text{naive}$

Theorem

*There is no weakly faithful translation for $\text{pref} \Rightarrow \text{naive}$.***

Counterexample

$\text{pref}(\mathcal{F}) = \{\{a_1, b_2, b_3\},$
$\{b_1, a_2, b_3\},$
$\{b_1, b_2, a_3\}\}$

$\subseteq \text{naive}(\text{Tr}(\mathcal{F}))$
3. Contribution

Theorem 3, \(\text{pref} \Rightarrow \text{naive} \)

Theorem

There is no weakly faithful translation for \(\text{pref} \Rightarrow \text{naive} \).

Counterexample

\[
\text{pref}(\mathcal{F}) = \{\{a_1, b_2, b_3\}, \{b_1, a_2, b_3\}, \{b_1, b_2, a_3\}\} \\
\subseteq \text{naive}(\text{Tr}(\mathcal{F}))
\]

\[
\Rightarrow \{b_1, b_2, b_3\} \in \text{cf}(\text{Tr}(\mathcal{F}))
\]
Theorem 3, \(\text{pref} \Rightarrow \text{naive} \)

There is no weakly faithful translation for
\(\{ \text{stage}, \text{stable}, \text{semi}, \text{pref}, \text{comp}, \text{adm} \} \Rightarrow \{ \text{cf}, \text{naive} \} \).

Counterexample

\[
\text{pref} (\mathcal{F}) = \{ \{ a_1, b_2, b_3 \}, \\
\{ b_1, a_2, b_3 \}, \\
\{ b_1, b_2, a_3 \} \} \\
\subseteq \text{naive} (\text{Tr} (\mathcal{F}))
\]

\[
\Rightarrow \{ b_1, b_2, b_3 \} \in \text{cf} (\text{Tr} (\mathcal{F}))
\]
4. Conclusion

Results

(weakly) exact

(comp, adm, cf, stable, ground, semi, pref)

(weakly) faithful

(stage, stable, semi, pref, comp, adm)
Almost finished...

Achievements

- Full hierarchy of expressiveness for the selected semantics.
- Extended existing investigations on intertranslatability
 - to naive extensions and conflict-free sets, and
 - to the case of inefficient translations.
- Improved an existing translation w.r.t. size of transformed Argumentation Frameworks.

Open Questions

- More semantics for investigation
- Labeling-preserving translations
4. Conclusion

Finished.

Achievements

- Full hierarchy of expressiveness for the selected semantics.
- Extended existing investigations on intertranslatability
 - to naive extensions and conflict-free sets, and
 - to the case of inefficient translations.
- Improved an existing translation w.r.t. size of transformed Argumentation Frameworks.

Open Questions

- More semantics for investigation
- Labeling-preserving translations