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1 Introduction
As far as (nonmonotonic) reasoning is concerned the intertranslatability of different approaches
has always been a vivid topic (see, e.g., [12, 22, 23, 24, 25]). Intertranslatability serves as a
common method of motivation and justification and it is also considered to be important in order
to understand the expressiveness of various formalisms. In particular in formal argumentation
we have that generalizations of Dung’s argumentation frameworks are often “flattened” to Dung
argumentation frameworks by certain translations. Prominent examples are bipolar AFs [11],
AFs with recursive attacks [2] and abstract dialectical frameworks [5]. However, the notion of
intertranslatability is not only useful when comparing different kind of AFs, but can also be applied
to different semantics of the same formalism. In [20] translations between different semantics
for Dung’s abstract argument frameworks are studied. We follow these lines and investigate the
intertranslatability of abstract argumentation semantics, i.e., the question whether it is possible to
modify an arbitrary argumentation framework such that the σ-extensions of the original framework
are in a certain correspondence with the σ′-extensions of the modified framework (σ, σ′ being
argumentation semantics).

In his seminal paper Dung [13] already proposed a broad range of argumentation semantics
which since then was further broadened by the community (see, e.g., [1] for an extensive overview).
When dealing with different semantics inevitably the question arises what kind of characteristics
the difference affects. To this end basic properties [3] as well as the computational behavior [18]
of semantics have been studied extensively in the literature. Studies on intertranslatability of
semantics complement the perception of argumentation semantics by relating semantics w.r.t. their
expressiveness. With being able to translate one semantics into another immediately we are also
able to interlock implicit extensions and thus provide some sort of directed logical equivalence.
On the other hand if one semantics cannot be translated into another we conclude that the first
semantics provides certain expressiveness that cannot be simulated by the other semantics. Such
investigations come into play in so called meta-level argumentation (e.g., [26]), where one wants to
express certain semantics within another, for instance for the purpose of merging two frameworks
with different corresponding semantics.

Intertranslatability results also affect more complex argumentation procedures. In this regards,
we think about frameworks being instantiated from some (logical) knowledge-base, where the
aim is to retrieve extensions satisfying specific rationality postulates w.r.t. the original knowledge-
base (see, e.g., [7]). One is thus only interested in semantics ensuring that extensions satisfy the
desired postulates. Given some translation from one semantics σ to another semantics σ′ and an
instantiation such that the conclusions provided by σ satisfy the desired postulates one can build a
similar instantiation for σ′ by concatenating the original instantiation and the translation.

Prior investigations for translating argumentation semantics are to be found in [20], where the
ideas of intertranslatability are transferred to the area of abstract argumentation. Their work is
motivated mainly by computational issues, e.g., generalizing existing solvers for application to
various semantics, and thus focuses on translation functions that are efficiently computable. In
contrast, the goal of our work is to get a better understanding of the expressiveness of argumentation
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semantics and thus we have to go beyond efficient translations. That is, this work also considers
translations making use of arbitrary computational resources.

In this work we will consider the semantics proposed in Dung’s seminal paper [13] as well as
stage [28] and semi-stable [8, 28] semantics. We study two kinds of translations, exact translations,
where the extensions of the original framework and the modified framework are identical, and
faithful translations, where the extensions of the original framework and the translated framework
agree on the original arguments but the extensions of the modified framework may contain addi-
tional arguments introduced by the translation. Depending on the concrete application, additional
arguments in an extension might or might not be appropriate. As will be seen below the different
notions of intertranslatability lead to different hierarchies of expressiveness.

The organization of the remainder of the paper and its main contributions are as follows.

• Section 2 on the one hand is dedicated to the necessary background information. We discuss
abstract argumentation and recall the different notions for translations from [20]. On the
other hand we also give a novel insight on the relation of the property of a translation being
modular and the property of a translation being efficiently computable.

• Section 3 is all about translations. We deal with translations between 9 different semantics,
which are conflict-free, naive, grounded, admissible, stable, complete, preferred, semi-stable,
and stage. We complement existing results from [20] in several ways: (i) We go beyond
efficiency and provide translations for semantics where no efficient translation is possible
under standard complexity assumptions. Observe that throughout this work we assert the
assumptions from [20] and thus consider all of their negative results to be true. (ii) We give
an efficient translation from complete semantics to stage, stable, semi-stable and preferred
semantics which improves over the translations given in [20]. (iii) We also consider conflict-
free and naive semantics and relate them to the other semantics. Finally this will give further
evidence that these two (often neglected) semantics indeed lack expressiveness.

• In Section 4 we present negative results. Namely certain translations are not possible at all.
These results are stronger than those in [20]. In the sense that regardless of the available
computational power it is impossible to give a translation while the typical impossibility result
in [20] just claims that there is no efficiently computable translation function.

• In Section 5 we consider the properties of translations being monotone or embedding. The
latter refers to translations that preserve the given structures in greatest detail. Impossibility
of this property for the cases under consideration turns out to be related to the core differences
between conflict-freeness and admissibility. Furthermore we typically seek for modular
translation but in certain cases this is impossible. In that cases we want to at least maintain
monotonicity. However several of the translations from Section 3 are not monotone. In this
Section we put some extra effort to either make these translations monotone or to show that
monotone translations are impossible.

• In Section 6, we summarize and reflect our results and put them into context. We provide a
discussion of related work, in particular we discuss the relations to the work on so called signa-
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tures of argumentation semantics [16], a different approach for characterizing expressiveness
of argumentation semantics. Finally we discuss a list of open questions on intertranslatability
of argumentation semantics and possible directions of future research.

2 Background
In this section we first present the concept of abstract argumentation frameworks together with the
most prominent semantics and second recall the background on translations from [20]. We also give
a new insight on the relation between two desirable properties for translations, namely modularity
and efficient computability.

2.1 Abstract Argumentation
Abstract argumentation as formally introduced by Phan Minh Dung in [13] consists of structures,
called (abstract) argumentation frameworks, and some form of evaluational meaning for these
structures, called semantics. In the following we present formal definitions covering all the semantics
we make use of in this work (see also [1], for an overview). Notice that for technical reasons in
contrast to Dung’s work we restrict ourselves to non-empty finite argumentation frameworks.1

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A 6= ∅ is a finite
and non-empty set of arguments and R ⊆ A × A represents the attack relation. For a given AF
F = (A,R) we use AF to denote the set A of its arguments and RF to denote its attack relation R.
For the pair (a, b) ∈ R we say that argument a attacks argument b.

We sometimes use the notation a�R b instead of (a, b) ∈ R. For E ⊆ A and a ∈ A, we also
write E �R a (or a�R E) in case there exists an argument b ∈ E, such that b�R a (or a�R b
resp.). In case no ambiguity arises, we use � instead of �R.

An AF can naturally be represented as a directed graph.

Example 1. Consider the AF F = (A,R), with A = {a, b, c, d, e} and R = {(a, b), (c, b), (c, d),
(d, c), (d, e), (e, e)}. The graph representation of F is given as follows.

a b c d e

So called extension-based semantics for argumentation frameworks are given via a mapping
σ which assigns to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. In place of σ we will
consider the mappings cf , naive , stb, adm , prf , com , grd , stage , and sem which stand for conflict-
free, naive, stable, admissible, preferred, complete, grounded, stage, and respectively, semi-stable
semantics. Observe that with the term semantics we might refer to some abstract concept as well as
to a mapping or for specific AFs to a set of sets of arguments. In the latter case we also call the

1We discuss some aspects of translations for infinite AFs in Section 6.
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elements of some semantics, extensions. By convention the elements of some simple semantics σ
are rather just called σ-sets. Before giving the actual definitions for these semantics, we require a
few more, formal concepts.

Definition 2. Given an AF F = (A,R), an argument a ∈ A is defended (in F ) by a set E ⊆ A
where for each b ∈ A, such that b� a, also E � b holds. Moreover, for a set E ⊆ A, we define
the range of E, denoted as E+

R , as the set E ∪ {b | E � b}.

We continue with the definitions of the considered semantics. Observe that their common feature
is the concept of conflict-freeness, i.e., arguments in an extension are not allowed to attack each
other.

Definition 3. Let F = (A,R) be an AF. A set E ⊆ A is conflict-free (in F ), denoted as E ∈ cf (F ),
if there are no a, b ∈ E, such that (a, b) ∈ R.

Another important concept for argumentation semantics is defense. A set of arguments E is said
to defend an argument a if E � b for each argument b with b� a. We are now prepared to define
the remaining semantics under consideration.

• The naive sets are the ⊆-maximal conflict-free sets.

• The stable extensions are the conflict-free sets that attack all arguments not in the set, i.e., the
range is the set of all arguments.

• The admissible sets are those conflict-free sets that defend all their arguments.

• The preferred extensions are the ⊆-maximal admissible sets.

• The complete extensions are those admissible sets that also contain all the arguments they
defend.

• The grounded extension is the unique ⊆-minimal complete extension.

• The stage extensions are the conflict-free sets with ⊆-maximal range.

• The semi-stable extensions are the admissible sets with ⊆-maximal range.

The formal definitions of those semantics are given below.

Definition 4. For E ∈ cf (F ), it holds that

• E ∈ naive(F ), if there is no D ∈ cf (F ) with D ⊃ E;

• E ∈ stb(F ), if for each a ∈ A \ E, E � a, i.e., E+
R = A;

• E ∈ adm(F ), if for each a ∈ A with a� E we have E � a;

• E ∈ prf (F ), if E ∈ adm(F ) and there is no D ∈ adm(F ) with D ⊃ E;
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• E ∈ com(F ), if E ∈ adm(F ) and for each a ∈ A that is defended by E, a ∈ E;

• E ∈ grd(F ), if E ∈ com(F ) and there is no D ∈ com(F ) with D ⊂ E;

• E ∈ stage(F ), if there is no conflict-free set D in F , such that D+
R ⊃ E+

R ;

• E ∈ sem(F ), if E ∈ adm(F ) and there is no D ∈ adm(F ) with D+
R ⊃ E+

R .

We recall some basic properties of these semantics, to be used frequently thereafter. First, for
any AF F , the following chains of subset relations holds:

stb(F ) ⊆ stage(F ) ⊆ naive(F ) ⊆ cf (F )

stb(F ) ⊆ sem(F ) ⊆ prf (F ) ⊆ com(F ) ⊆ adm(F ) ⊆ cf (F )

Furthermore, for any of the considered semantics σ except stable semantics we have that σ(F ) 6= ∅
holds, i.e., these semantics always propose at least one extension. Grounded semantics always
yields exactly one extension, thus we also say that grounded is a unique status semantics. Moreover
if an AF has at least one stable extension then stable, semi-stable, and stage semantics coincide for
this AF. Next we exemplify the semantics of the AF given in Example 1.

Example 2. Consider the AF F = (A,R), from Example 1. We have {a, d} as the
only stable extension and thus also as the only stage and only semi-stable extension of F ,
i.e., stb(F ) = stage(F ) = sem(F ) = {{a, d}}. Further we have the admissible sets
adm(F ) = {{}, {a}, {c}, {d}, {a, c}, {a, d}}, which leads us to the preferred extensions prf (F ) =
{{a, c},{a, d}}. Moreover the conflict-free sets are given by cf (F ) = adm(F )∪{{b}, {b, d}}, and
thus naive(F ) = {{a, c},{a, d}, {b, d}}. Finally the complete extensions of F are {a}, {a, c} and
{a, d}, with {a} being the grounded extension of F . 3

2.2 Translations
The concept of translations between extension-based argumentation semantics was introduced
in [20], following a long history of intertranslatability studies in nonmonotonic reasoning (see,
e.g., [12, 22, 23, 24, 25]). In what follows a translation Tr will be a mapping between AFs,
a function satisfying certain properties. In particular, we seek translations, such that for given
semantics σ, σ′, for any AF F the extensions σ(F ) are somehow interlocked with the extensions
σ′(Tr (F )). Following [20], we consider a few additional properties which are desirable for such
translations. To this end, for AFs F = (A,R), F ′ = (A′, R′), we define the union of AFs as
F ∪ F ′ = (A ∪ A′, R ∪R′), and inclusion as F ⊆ F ′ iff jointly A ⊆ A′ and R ⊆ R′. Furthermore
the size |F | of some AF F is given as the cardinality of its argument set, that is |F | = |AF |.

Definition 5. A translation Tr is called

• efficient if for every AF F , the AF Tr (F ) can be computed using logarithmic space w.r.t. to
|F |;
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• covering if for every AF F , F ⊆ Tr (F );

• embedding if for every AF F , AF ⊆ ATr (F ) and RF = RTr (F ) ∩ (AF × AF );

• monotone if for any AFs F, F ′, F ⊆ F ′ implies Tr (F ) ⊆ Tr (F ′);

• modular if for any AFs F, F ′, Tr (F ) ∪ Tr (F ′) = Tr (F ∪ F ′).

Efficient translations can be useful for practical purposes, as they allow to apply reasoning
systems dedicated to a specific semantics also to other semantics. Consider one has a sophisticated
system for a semantics σ and an efficient translation from a semantics σ′ to σ. To reason with
σ′ one can now also use this translation to transform the AF and then apply the existing system
for σ. Anyway, as we are mainly interested in expressiveness, efficiency will not be our main
concern. The properties covering and embedding deal with truth maintenance. Covering ensures
that the translation does not hide some original arguments or conflicts. Embedding, in addition,
ensures that no additional attacks between the original arguments are pretended. It is easy to see
that each embedding translation is also covering. Monotonicity and modularity are interesting in
case the source AF is extended after the translation. First, monotonicity prevents us from having to
withdraw arguments in the translated AF. Second, when adding new arguments/attacks to a huge
AF modularity allows us to update the translated AF by only considering the new arguments/attacks
and thus might save resources. It is easy to see that a modular translation is also monotone. For
a deeper discussion of these properties and their intuitive meaning the interested reader is kindly
referred to [20].

Next, in accordance with [20], we give different notions of how extensions of the original AF
and the modified AF correspond to each other. We describe the interlocking mechanisms we have
in mind when talking about intertranslatability. First, for exact translations we have that extensions
must be exactly the same. This is the strongest notion of correspondence and is very strict in nature.
Second, a straightforward generalization for more flexibility, is the notion of faithful translations.
Here we only require that the extensions of F coincide with the projection of extensions of Tr (F )
to the original arguments. Finally, certain semantics always have the empty set as an extension
while others do not. To add some flexibility in that direction the notion of weakly exact/faithful
translation was introduced. It allows to exclude certain sets from being extensions. The formal
definitions of these notions are given below.

Definition 6. Let σ, σ′ be semantics. We call a translation Tr

• exact for σ ⇒ σ′ if for every AF F , σ(F ) = σ′(Tr (F ));

• faithful for σ ⇒ σ′ if for every AF F , σ(F ) = {E ∩ AF | E ∈ σ′(Tr (F ))} and |σ(F )| =
|σ′(Tr (F ))|.

• weakly exact for σ ⇒ σ′ if there exists a collection S of sets of arguments, such that for any
AF F , σ(F ) = σ′(Tr (F )) \ S;

• weakly faithful for σ ⇒ σ′ if there exists a collection S of sets of arguments, such that for
any AF F , σ(F ) = {E ∩ AF | E ∈ σ′(Tr (F )) \ S} and |σ(F )| = |σ′(Tr (F )) \ S|.
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Table 1 Results for (weakly) faithful/exact translations (state of the art).

cf naive grd adm stb com prf sem stage
cf
naive
grd / ? / ? / ? / ? / ? / ?
adm – / - / - / - / -
stb –
com – / - / - / - / - / -
prf – ? / -
sem – ? / -
stage –

By definition every (weakly) exact translation is also a (weakly) faithful translation. The notion
of “weakly” exact/faithful is due to the fact that for some semantics some AFs do not possess an
extension, while other semantics always yield at least one extension, and further that for some (but
not all) semantics the empty set is always an extension. We sometimes refer to the elements of S
as remainder sets. Note that S depends only on the translation, but not on the input AF. Thus, by
definition, each S ∈ S contains only arguments which never occur in AFs subject to translation. In
other words, we reserve certain arguments for introduction in weak translations.

All the properties from Definition 5 as well as the properties of being exact, weakly exact
and faithful are transitive, i.e., for two translations satisfying one of these properties, also the
concatenation satisfies the respective property. However, this transitivity is not guaranteed for
weakly faithful translations. Next we present a novel observation on the relation between the
properties efficiency and modularity.

Proposition 1. Any modular translation is already efficient.

Proof. We look at an arbitrary AF F = (A,R) and investigate some modular translation Tr . By the
definition of modularity we have Tr (F ) =

⋃
G⊆F,|G|≤2Tr (G). That is that the Translation is fully

determined by its handling of AFs of size of at most 2, as attack is the only formal AF-relation and
as such two-valued. Notice that naming of arguments is irrelevant and thus a modular translation is
fully determined by its translations of all AFs with at most two arguments. This gives us a finite
number of graph patterns of bounded size.

To translate an AF F , for each of these graph patterns we have to identify isomorphic subgraphs
of F and apply Tr to these subgraphs. As the patterns are fixed searching for isomorphic subgraphs
can be done in logarithmic space and as also the translation of the patterns is fixed also translations
of isomorphic subgraphs can be handled with use of logarithmic space.

In Table 1 we summarize previous results regarding the intertranslatability of semantics taken
from [20] (recall that in contrast to [20] we do not require translations to be efficient). An entry in
row σ and column σ′ of Table 1 is to be read as follows: “ ” there is a (weakly) exact translation
for σ ⇒ σ′; “ /-” there is a (weakly) faithful translation, but there can not be any (weakly) exact
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translation, for σ ⇒ σ′; “ / ?” there is a (weakly) faithful translation, but it is not known whether
there might be some (weakly) exact translation, for σ ⇒ σ′; “ ? / -” there is no (weakly) exact
translation, and it is not known whether there might be some (weakly) faithful translation, for
σ ⇒ σ′; “–” there can not be any (weakly) faithful translation for σ ⇒ σ′.

In the next sections we fill the gaps in Table 1 and provide definite answers to the questions
marks. Finally, we provide a complete picture in Table 2.

3 Translations between Semantics
This Section is all about translations. For the semantics under our consideration we give translations
whenever possible. To this end, we will use the following notational convention. We consider one
specific AF F = (A,R) as given and define a translation Tr as a mapping Tr (F ) = Tr (A,R) =
F ′ = (A′, R′). Furthermore, given the set of arguments A, we write A∗ (or Ā) to denote the set of
new arguments {a∗ | a ∈ A} (or {ā | a ∈ A} resp.). We consider all arguments a∗ (or ā resp.) to be
fresh arguments not contained in the original AF.

In the following we will give several (weakly) exact/faithful translations. As far as notation
is concerned for each translation we first state which semantics are affected, then give the formal
definition, then state what kind of translation it is, and then give a proof. Observe that as far as
the semantics are concerned, for σ ⇒ σ′ both σ and σ′ might consist of more than one semantics;
observe furthermore that for some translations the semantics σ will be part of σ′ and for others not,
i.e., some but not all translations will result in a framework the original semantics still yields the
same or comparable extensions.

3.1 Efficient Translations
We start with a translation mapping complete semantics to stage, stable, semi-stable and preferred
semantics. While the intertranslatability of these semantics was already shown in [20], the given
translation improves existing results in two directions. First, it gives an explicit translation for
com ⇒ prf , whereas the equivalent from [20] relies on transitive concatenation of other translations
and second it provides significantly smaller target frameworks, which might be crucial when
applying translations for the matter of computation.

The intuition behind this translation is to emphasize attacks. Complete semantics is a very
cautious semantics; by definition attacked arguments are not considered unless properly defended,
however if an argument is defended it has to be considered. We elaborate on this observation by
adding attacking arguments to ensure a stable extension, and adding defenses against this arguments
that again follow the principles of the characteristic function. It turns out that it suffices to consider
one argument for each source and target of attacks.

Translation 1 (com ⇒ (stb|prf |stage|sem)). The transformation Tr (A,R) = (A′, R′), with
A′ = A ∪ A∗ and

R′ = R ∪ {(a, b∗), (a∗, b) | (a, b) ∈ R}
is an embedding modular faithful translation for com ⇒ (stb|prf |stage|sem).
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a b c d e

a∗ b∗ c∗ d∗ e∗

Figure 1 Illustration of Translation 1 (com ⇒ (stb|prf |stage|sem)).

Proof. We take an AF F = (A,R) as given and investigate Tr (F ). Observe that for any set
E ⊆ AF we have that E attacks a∗ in Tr (F ) iff E attacks a in F and therefore E defends some
argument a (and a∗) in Tr (F ) iff E defends a in F .

In the following we are going to first show that complete extensions of the original framework F
are linked to stable extensions of the translated framework F ′, and second that preferred extensions
of F ′ are linked to complete extensions of F . We will proceed with remarks on the equal cardinality
of the semantics for F and F ′ and well-known subset relations, concluding the original translational
statement.

From complete to stable semantics, E ∈ com(F )⇒ E ′ = E ∪ {a∗ | E 6�R a} ∈ stb(Tr (F )),
we augment a given complete extension E of F with as many as possible arguments from A∗.
Now observe that A∗ itself and thus by definition E ′ are conflict-free. Furthermore, E ′ contains
the ∗-image of E, we have that {a∗ | a ∈ E} ⊆ {a∗ | E 6�R a} ⊆ E ′, as E is conflict-free by
definition. Thus, we have

{
a, a∗ | a ∈ E+

R

}
⊆ E ′+R′ and it remains to show that also the arguments

a, a∗ with a ∈ AF \ E+
F are in the range of E ′. Now for any argument a ∈ AF \ E+

R we have that,
first a∗ ∈ E ′ by definition, and, second by completeness of E, a is attacked by some undefended
argument b 6∈ E+

R . Hence, b∗ ∈ E ′ and thus E ′+R′ = A′, i.e., E ′ ∈ stb(Tr (F )).
From preferred back to complete semantics, E ′ ∈ prf (Tr (F ))⇒ E = E ′ ∩AF ∈ com(F ), we

strip down a given preferred extension E of F ′ to its projection in F . Due to the embedding property
clearly E is conflict-free. Furthermore E even is admissible. To see this take some endangering
b ∈ AF s.t. b�R E. Obviously b is also endangering in F ′, i.e., b�R′

E ′, and by admissibility of
E ′ in F ′ we thus have E ′ �R′

b. Due to maximality of E ′, and the observation that a∗ can only
be defended in F ′ if a is defended as well, we have that there is some a ∈ AF such that a �R b
and thus E �R b. Similarly for a being defended by E, we have that E ′ defends a and due to
maximality of E ′ thus a ∈ E. Hence E ∈ com(F ).

Furthermore, since the difference between E and E ′ as defined above is to be found among
the arguments A∗ only, and due to maximality of E ′ we have E ′ = E ∪

{
a∗ | E 6�R a

}
, marking

proposed relations as bijections. Using the relations stb(F ) ⊆ sem(F ) ⊆ prf (F ) and equality
of stage and stable semantics where the latter is non-empty we obtain the assertion, the given
translation interlocks complete semantics of the original framework F with stage, stable, semi-
stable and preferred semantics in the translated framework F ′ = Tr (F ).

We observe that grounded semantics is the minimal complete semantics. By modifying the pre-
vious translation such that newly introduced arguments are preferred over their original counterparts,
we can use this property for another translation, from grounded to semi-stable semantics. Observe
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a b c d e

a∗ b∗ c∗ d∗ e∗

ā b̄ c̄ d̄ ē

Figure 2 Illustration of Translation 2 (grd ⇒ sem).

that for various reasons the same trick does not work for the other semantics on the right-hand side
of the previous translation.

Translation 2 (grd ⇒ sem). The transformation Tr (A,R) = (A′, R′), with A′ = A∪A∗ ∪ Ā and

R′ = R ∪ {(a, b∗), (a∗, b) | (a, b) ∈ R}
∪ {(ā, ā), (a∗, ā) | a ∈ A}

is an embedding modular faithful translation for grd ⇒ sem.

Proof. First observe that the difference between this translation Tr and the previous Tr s (Trans-
lation 1: com ⇒ (stage|stb|sem|prf )) is a difference of additional self-attacking arguments that
do not attack anything but themselves. Which means that, by the directionality of preferred se-
mantics [1], prf (Tr (F )) = prf (Tr s(F )) for any AF F , which again means that the projection of
prf (Tr (F )) to F is identical with com(F ).

We recall that the unique status grounded semantics has as only extension the minimal complete
extension, i.e., for any AF F , grd(F ) = {E}, we have that E ∈ com(F ) and also E =

⋂
com(F ).

We conclude that there is one complete extension G of F that is contained in all other complete
extensions of F and therefore has the ⊆-maximal set {a | E 6�R a}.

Furthermore, we know that every E ′ ∈ prf (Tr (F )) is of the form E ′ = E ∪
{
a∗ | E 6�R a

}
for some E ∈ com(F ) and A ∪ A∗ ⊆ E ′+R′ . Thus, as by construction ā ∈ E ′+R′ iff a∗ ∈ E ′, the
range of E is given by E ′+R′ = A ∪ A∗ ∪ {ā | E 6�R a}. Now, as the semi-stable extensions are the
preferred extensions with maximal range, we obtain that EG = G ∪

{
a∗ | G 6�R a

}
is the unique

semi-stable extension of Tr (F ).

Next we consider cf and naive semantics. In the following faithful translation, for each
argument a we introduce a new argument ā, encoding that a is not a member of the extension,
and subsequently a mutual conflict between a and ā. So each naive set of the translated AF either
contains a or ā and thus each conflict-free set of the original AF corresponds to exactly one naive
set of the modified AF.

11
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Figure 3 Illustration of Translation 3 (cf ⇒ naive).

a b c d e

Figure 4 Illustration of Translation 4 (cf ⇒ (cf |adm), naive ⇒ (naive|prf )).

Translation 3 (cf ⇒ naive). The transformation Tr (A,R) = (A′, R′), with A′ = A ∪ Ā and

R′ = R ∪ {(a, ā), (ā, a) | a ∈ A}

is an embedding modular faithful translation for cf ⇒ naive.

Proof. For E ∈ cf (F ) define E ′ = E ∪ {ā | a ∈ AF , a 6∈ E}. Now E ′ is maximal conflict-free in
Tr (F ) and thus E ′ ∈ naive(Tr (F )). On the other hand for E ′ ∈ naive(Tr (F )) we observe that
for each argument a ∈ AF either a ∈ E ′ or ā ∈ E ′, thus the projection E = E ′ ∩ AF is unique.
Due to the embedding property it follows that E ∈ cf (F ).

The next translation weakens the attack relation achieving symmetry such that admissibility and
conflict-freeness coincide. Then also the maximal admissible sets (preferred extensions) coincide
with the maximal conflict-free sets (naive extensions). However, as we introduce new attacks
between the original arguments the translation is not embedding anymore but only covering.

Translation 4 (cf ⇒ (cf |adm), naive ⇒ (naive|prf )). The transformation Tr (A,R) = (A,R′),
with R′ = R ∪ {(b, a) | (a, b) ∈ R}, is a covering modular exact translation for cf ⇒ (cf |adm)
and naive ⇒ (naive|prf ).

Proof. We have that Tr (F ) is a symmetric framework with the same conflicts as F . The results
are immediate by the fact that the notion of admissibility and conflict-freeness coincide on such
AFs.

We now reconsider a translation from [20] and show that it is also a translation for naive ⇒
stage. The idea is that for each a ∈ A we introduce a new argument ā which attacks itself and is
otherwise attacked only by a. Thus, in the translated AF ⊆-incomparable conflict-free sets have
also incomparable ranges.

12
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Figure 5 Illustration of Translation 5 (adm ⇒ (adm|com), naive ⇒ (naive|stage), prf ⇒
(prf |sem)).

Translation 5 (adm ⇒ (adm|com), naive ⇒ (naive|stage), prf ⇒ (prf |sem)). The transforma-
tion Tr (A,R) = (A′, R′), defined as A′ = A ∪ Ā and

R′ = R ∪ {(a, ā), (ā, a), (ā, ā) | a ∈ A}

is an embedding modular exact translation for adm ⇒ (adm|com), naive ⇒ (naive|
stage) and prf ⇒ (prf |sem).

Proof. Observe that by definition Tr equals Tr 1 from [20]. A detailed proof of adm ⇒ (adm|com)
and prf ⇒ (prf |sem) is to be found there. We are left with showing that Tr is an exact translation
for naive ⇒ (naive|stage). In other words for any AF F we have (1) naive(F ) = naive(Tr (F ))
and (2) naive(Tr (F )) = stage(Tr (F )).

1. Since Tr is embedding and any ā ∈ Ā is self-conflicting we have that any E ⊆ ATr (F ) is
conflict-free in F iff it is conflict-free in Tr (F ). Thus naive(F ) = naive(Tr (F )).

2. Recall that any stage extension is also a naive extension. IfE ∈ naive(Tr (F )) thenE+
Tr (F ) =

E+
F ∪ {ā | a ∈ E}. Considering E ′ ∈ naive(Tr (F )) such that E+

Tr (F ) ⊆ E ′+Tr (F ) we receive
E ⊆ E ′ since any ā with a ∈ E is attacked only by a and ā. Thus with maximality of naive
extensions E ′ = E and therefore also naive(Tr (F )) = stage(Tr (F )).

3.2 Not quite efficient translations
We now study combinations of semantics where no efficient translation exists and consider trans-
lations with arbitrary computational power. We start with an obvious translation from grounded
semantics to naive and stage semantics, where we compute the grounded extension and make all
arguments not contained in the grounded extension unacceptable by adding self-attacks.

Translation 6 (grd ⇒ (naive|grd |stage)). The transformation Tr (A,R) = (A,R ∪ {(a, a) | a ∈
A \ grd(F )}) is a covering exact translation for grd ⇒ (naive|grd |stage).

13
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Figure 6 Illustration of Translation 6 (grd ⇒ (naive|grd |stage)).

Proof. Clearly none of the self-attacking arguments a ∈ A \ grd(F ) can be a member of any
naive set (or any stage extension) of Tr (A,R). Now as the grounded extension is by definition
conflict-free we have that grd(F ) is also the only maximal conflict-free set in Tr (A,R).

Notice that although Translation 6 is not efficient in the sense of Definition 5 it can still be
computed in polynomial time (but not when limited to logarithmic space).

We finally turn to translations that cannot be computed in polynomial time. First we give a
generic translation to (stage|stb|sem|prf |com) semantics. Let it be known that this translation
requires to compute all the extensions of the original AF. The basic idea is to introduce a cloud that
represents all the desired extensions with new arguments, a cloud that enforces these extensions
with unidirectional attacks. We introduce new variables ẼF , one for each of the original extensions
E ∈ σ(F ), and make them mutually conflicting such that each extension of F ′ picks at most one of
them. Further one additional argument F̃ attacks all the original arguments and thus ensures that
none of those can be accepted without one of the ẼF arguments, i.e., each non-empty extension
must contain one of the ẼF arguments. Finally, an argument ẼF then attacks all arguments not
member of E and thus defends all arguments belonging to E.

Translation 7 (σ ⇒ (stb|prf |com|stage|sem)). We define Tr (A,R) = (A′, R′) as

A′ = A ∪ {Ẽ | E ∈ σ(F )} ∪ {F̃}
R′ = R ∪ {(F̃ , F̃ ), (F̃ , a) | a ∈ A}

∪ {(Ẽ, F̃ ) | E ∈ σ(F )}
∪ {(Ẽ, b) | E ∈ σ(F ), b ∈ A, b 6∈ E}
∪ {(Ẽ, D̃) | E,D ∈ σ(F ), E 6= D}

For semantics with σ(F ) ⊆ cf (F ) Tr is an embedding translation that is faithful for σ ⇒ stb and
weakly faithful (with remainder set ∅) for σ ⇒ (prf |com|sem).

For strictly non-empty cf -based semantics2 σ, i.e., for any AF F we have σ(F ) ⊆ cf (F ) and
|σ(F )| ≥ 1, Tr is a faithful translation for σ ⇒ (stb|prf |stage|sem).

Proof. For AF F , extension E ∈ σ(F ) and thus E ∈ cf (F ) consider E ′ = E ∪{Ẽ}. E ′ is conflict-
free since Ẽ attacks only (but all) those arguments from AF not being member of E. Furthermore Ẽ

2As far as the semantics introduced in this work are concerned this excludes only stable semantics.
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Ẽ F̃ D̃

Figure 7 Illustration of Translation 7 for prf ⇒ (stb|prf |com|stage|sem), where E = {a, c} and
D = {a, d}.

attacks any D̃ withD ∈ σ(F ), D 6= E, and Ẽ also attacks the argument F̃ . HenceE ′ ∈ stb(Tr (F ))
and thus by the known relations between semantics also E ′ ∈ stage(Tr (F )) = sem(Tr (F )),
E ′ ∈ com(Tr (F )) and E ′ ∈ prf (Tr (F )).

We now consider E ′ ∈ σ(Tr (F )).
(a) If we assume that |σ(F )| ≥ 1 then (by the above observations in the first part of the proof)

there exists a stable extension and hence stable, stage and semi-stable extensions coincide. Thus,
in the following we will not consider stage semantics explicitly, and conclusively can also assume
admissibility. We know that E ′ ∈ com(Tr (F )) and E 6= ∅. Due to the attacks (Ẽ, D̃), at most one
Ẽ is member of E ′. We observe that E ′ ∩ {Ẽ | E ∈ σ(F )} 6= ∅, since all arguments from A are
attacked by the argument F̃ , which in turn is attacked only by arguments of the form Ẽ. We can
thus pick the unique Ẽ ∈ E ′ ∩ {Ẽ | E ∈ σ(F )}. But then Ẽ defends all arguments a ∈ E and it
follows immediately that E ′ ∩ A = E ∈ σ(F ).

(b) If we assume that |σ(F )| = 0, i.e., σ(F ) = ∅, then there are no arguments Ẽ and all
arguments are attacked by the argument F̃ while F̃ is only attacked by itself. Thus in the case of
stable semantics we have stb(Tr (F )) = ∅ = σ(F ). Furthermore we observe that com(Tr (F )) =
prf (Tr (F )) = sem(Tr (F )) = {∅}. As we have remainder set ∅ this returns the empty set of
extensions, i.e., ∅ = σ(F ).

Next we present an embedding exact translation from sem ⇒ prf . We already know that each
semi-stable extension is also a preferred one. This exact translation thus has to make sure that
possible additional preferred extensions are eliminated. The idea behind the following translation
is to eliminate preferred extensions that are not semi-stable by modifying the AF such that these
extensions and their subsets are no longer admissible. That is for each such extension E we
introduce a new argument Ẽ that attacks all arguments in E but is not attacked by any argument
in E. As we do not want to affect other extensions Ẽ must be attacked by all the other preferred
extensions, which is realized by each argument not member of E attacking Ẽ.

Translation 8 (sem ⇒ (prf |sem)). We use P(F ) to denote the set of less welcome preferred
extensions, that is P(F ) = prf (F ) \ sem(F ). The transformation Tr (A,R) = (A′, R′) with

A′ = A ∪ {P̃ | P ∈ P(F )}
R′ = R ∪ {(a, P̃ ), (P̃ , P̃ ), (P̃ , b) | P ∈ P(F ), a ∈ A \ P, b ∈ P}

15
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Figure 8 Illustration of Translation 8 (sem ⇒ (prf |sem)), where P = {a, c}.

is an embedding exact translation for sem ⇒ (prf |sem).

Proof. Observe that additional arguments of Tr (F ) are of the form P̃ with P ∈ P(F ) and thus are
self-attacking by definition. Now due to the embedding property for a set E ⊆ A′ we have that E is
conflict-free in Tr (F ) iff it is conflict-free in F and further if E is admissible in Tr (F ) then it is
admissible in F .

First direction, prf (Tr (F )) ⊆ sem(F ): We look at some P ∈ prf (Tr (F )). We already know
that P ∈ prf (F ). But now immediately also P ∈ sem(F ) for otherwise for P ∈ prf (F ) \ sem(F )

by definition necessarily P̃ �R′
P while P 6�R′

P̃ .
Second direction, sem(F ) ⊆ prf (Tr (F )): Take into account some E ∈ sem(F ), and recall

that for any F we have sem(F ) ⊆ prf (F ). Then for any P ∈ P(F ) we have that E \ P 6= ∅ and
hence by definition E � P̃ . This ensures that admissibility of E in F is preserved in Tr (F ), and
subsequently E ∈ prf (Tr (F )).

Towards a translation for stage ⇒ prf we first have to recall a translation from [20] for
stage ⇒ sem. This translation is based on two ideas. First, all the original attacks are made
symmetric such that conflict-freeness and admissibility coincide. Second, the range of the extensions
in the original AF is mirrored on new arguments a′.

Translation 9 ([20] - stage ⇒ (stage|sem)). The transformation Tr (A,R) = (A′, R′) with
A′ = A ∪ A′ and

R′ = R ∪ {(b, a), (a, b′) | (a, b) ∈ R}
∪ {(a, b) | a ∈ A, (b, b) ∈ R}
∪ {(a, a′), (a′, a′) | a ∈ AF}

is a monotone covering exact translation for stage ⇒ (stage|sem).

Now given an exact translation for stage ⇒ sem and another exact translation for sem ⇒ prf
we can use the transitivity of exact translations to obtain stage ⇒ prf .

Corollary 1 (stage ⇒ prf ). Take into account Translation 8 as Tr 8 and Translation 9 as Tr 9. The
transformation Tr = Tr 8 ◦ Tr 9 is a covering exact translation for stage ⇒ prf .
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Figure 9 Illustration of Translation 9 (stage ⇒ (stage|sem)).

4 Impossibility Results
In the previous section we discussed a broad range of translations between semantics. It will not
have escaped the attentive reader that we did not provide translations for all combinations. In this
section we investigate the missing gaps and ask whether it actually is possible to provide translations
in these cases. That is we provide a couple of results to show that in certain cases exact or even
faithful translations are impossible. This analysis completes our picture of intertranslatability
between the studied semantics.

We start with impossibility results that rely on the incompatibility of very basic properties
of semantics. These are given by the Theorems 1-6. The first of these impossibility results is a
straightforward observation of the unique status property of grounded semantics and can immediately
be extended to other unique status semantics.

Theorem 1. There is no translation which is weakly faithful for

(cf |naive|stb|adm|prf |com|stage|sem)⇒ grd .

Proof. Any semantics of interest but grd can possess more than one extension, for instance for
the AF ({a, b}, {(a, b), (b, a)}). As grounded semantics always proposes a single extension there
cannot be a translation from any of the stated semantics to grd .

The next theorem exploits that stable semantics cannot realize the empty set as an extension.3

Thus all semantics that might have the empty set as an extension cannot be weakly exactly translated
to stable semantics.

Theorem 2. There is no translation which is weakly exact for

(cf |naive|adm|prf |com|grd |stage|sem)⇒ stb.

Proof. Consider the AF ({a}, {(a, a)}) where all the semantics from the left hand side propose the
empty set as being an extension. Recall that we require AFs to be non-empty, thus w.l.o.g. for some
x we have x ∈ ATr (F ). Now by definition of stable semantics the empty set can not be a stable
extension, as x is neither attacked by nor a member of the empty set.

3Notice that we only allow nonempty argumentation frameworks.
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Figure 10 Argumentation framework serving as a counter example for Theorem 4.

Next we use that the empty set is always a conflict-free as well as an admissible set. For more
sophisticated semantics however the extension status of the empty set depends on the actual AF.

Theorem 3. There is no translation which is weakly exact for

(naive|prf |com|grd |stage|sem)⇒ (cf |adm).

Proof. For the semantics on the left hand side it might occur that the empty set is an extension, e.g.,
for the AF ({a}, {(a, a)}). However this is not always the case, e.g., for the AF ({a}, {}). By the
first observation, for any weakly exact translation, we cannot have the empty set as a remainder
set. The second observation together with the fact that the empty set is always admissible and thus
conflict-free yields that, for any weakly exact translation, the empty set needs to be a remainder set.
Hence, there is no weakly exact translation σ ⇒ (cf |adm).

Given an arbitrary AF F the set cf (F ) of conflict-free sets is what is sometimes called downward-
closed, i.e. if a set S is conflict-free than also all subsets of S are conflict-free. This does not hold
for any other semantics under our consideration.

Theorem 4. There is no translation which is weakly faithful for

(naive|stb|adm|prf |com|grd |stage|sem)⇒ cf .

Proof. For cf semantics any subset of any conflict-free set again is a conflict-free set. Now
consider the AF F = (A,R) as depicted in Figure 10 with A = {a, b, c, d} and R =
{(a, c), (c, a), (b, d), (d, b), (d, a), (d, d), (c, b), (c, c)}. We have that for all of the left hand side
semantics the set {a, b} is an extension while {a} is rebutted as an extension (because of not being
admissible and/or because of not being maximal). Now recall that the remainder sets are required to
contain only arguments not occurring in the original AF. Any set containing a can thus not be a
remainder set. As {a} ⊆ {a, b}, there is no AF F such that there is a set S with S ∪ {a, b} ∈ cf (F )
and S ∪ {a} 6∈ cf F . Thus there is no weakly faithful translation σ ⇒ cf .

For some semantics different extensions may be subsets of each other, while for other semantics
this is not possible. This gives further restrictions on exact translations.

Theorem 5. There is no translation which is weakly exact for

(cf |adm|com)⇒ (naive|stb|prf |stage|sem).
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Figure 11 Argumentation framework serving as a counter example for Theorem 7.

Proof. For cf , adm and com it might be the case that an extension forms a proper subset of
another extension. For instance consider the AF F = (A,R) as depicted in Figure 10 with
A = {a, b, c, d} and R = {(a, c), (c, a), (b, d), (d, b), (d, a), (d, d), (c, b), (c, c)}. We have cf (F ) =
{∅, {a}, {b}, {a, b}} and adm(F ) = com(F ) = {∅, {a, b}}. All semantics on the right hand
side, σ′ ∈ {naive, stb, prf , stage, sem}, satisfy that their extensions comprise the ⊆-maximality
property and thus cannot realize ∅ and simultaneously {a, b} as extensions for the same AF.

For complete semantics we have that if there are at least two extensions then there is one
extension, i.e., the grounded, which is a proper subset of all the other extensions. This causes
problems if we want to exactly translate two or more ⊆-maximal extensions to complete semantics.

Theorem 6. There is no weakly exact translation for (naive|prf |stage|sem)⇒ com.

Proof. Towards a contradiction we assume that such a translation Tr exists. Now observe that
for σ ∈ {naive, prf , sem, stage} there are AFs such that ∅ ∈ σ(F ). Thus the empty set is not a
member of the remainder sets of Tr .

Now take into account the AF F = (A,R) with A = {a, b} and R = {(a, b), (b, a)}. Then
σ(F ) = {{a} , {b}}. The grounded extension can be defined as the least complete extension, thus
with {a} , {b} ∈ com(Tr (F )) we need ∅ = grd(Tr (F )) and thus ∅ ∈ com(Tr (F )). Thus for
Tr to be a weakly exact translation we need ∅ to be a remainder set, contradicting our previous
observation.

The next result makes use of a more sophisticated construction. On a high level we use the fact
that often the existence of naive extensions implies that a certain set is conflict-free and thus must
be part of an additional naive extension. The idea follows the lines of the impossibility result for
sem ⇒ stage [20] where an AF F for semi-stable semantics is constructed such that the semi-stable
extensions of F , when translated to stage semantics, enforce another unwanted stage extension.

Theorem 7. There is no weakly faithful translation for

(stb|adm|prf |com|stage|sem)⇒ (cf |naive).
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Table 2 Final results for (weakly) faithful/exact translations.

cf naive grd adm stb com prf sem stage
cf / - – / - / - / - / -
naive – – / - / - / -
grd – / - / -
adm – – – / - / - / - / -
stb – – –
com – – – / - / - / - / - / -
prf – – – / - / - / - / -
sem – – – / - / - / - / -
stage – – – / - / - / -

Proof. To be more specific in the following we show that any weakly faithful translation of the
desired kind would require some remainder set E with E ∩ A 6= ∅, violating our definition of
remainder sets.

Now for σ ∈ {stb, adm, prf , com, stage, sem} and σ′ ∈ {cf , naive} take a weakly faithful
translation Tr : σ ⇒ σ′ as given. Consider the AF F = (A,R) as depicted in Figure 11 with
A = {a, b, c, x, y, z} and R = {(α, β) | α 6= β ∈ {a, b, c}} ∪ {(a, x), (b, y), (c, z)}. Observe
that for Ea = {a, y, z} , Eb = {b, x, z} , Ec = {c, x, y} , X = {x, y, z} we have that Ea, Eb, Ec
are σ-extensions while X 6∈ σ(F ). So for any Eα there has to be some E ′α ∈ σ′(Tr (F )) such
that Eα ⊆ E ′α. Thus immediately X ∈ cf (Tr (F )), since pairwise conflict-freeness of x, y, z is
granted by E ′a, E

′
b and E ′c. For any conflict-free set X in any AF F ′ there has to be some extension

E ∈ naive(F ′) such that X ⊆ E. Subsequently X or E need to be remainder sets.

We summarize all our negative results together with the intertranslatability results from Section 3
in Table 2.

5 Intertranslatability & Monotonicity
In Section 3 we provided translations whenever possible. Most of them have the desired properties
of being covering (or even embedding) and modular. However, Translations 6, 7, 8, and 1 are
not modular and not even monotone. While Proposition 1 gives evidence of the impossibility of
corresponding modular translations (since, due to [20], there is no efficient translation at all) it
might still be possible to make the translations monotone. Following [20], monotonicity is a desired
property in scenarios where it is impossible to withdraw already proposed arguments. For instance
consider a setting with several agents interchanging arguments, but using different semantics. An
agent might not agree to forget arguments already communicated to him and thus the translation of
an augmented AF must respect the already existing translation.

In this section we consider the question of whether we can use above translations to derive
monotone versions. That is, whenever possible we provide monotone translations and otherwise we
show that it is impossible to get monotone translations. When it comes to impossibility results we
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also consider the property of being embedding and show that in all cases where our translations are
not embedding, in fact comparable embedding translations even are impossible.

5.1 Monotone Translations
In the following we give three monotone translations covering a broad range of semantics. We
start with a generalization of Translation 7 that gives a monotone faithful translation for σ ⇒
(stage|stb|sem|prf ) and a monotone weakly faithful translation for σ ⇒ com. The idea is to
encode each subframework and all of its extensions as arguments in the modified AF. Any argument
ẼFi

corresponding to some extension E of some subframework Fi then attacks all arguments
corresponding to subframeworks Fj of Fi, Fj ( Fi, i.e., for E ∈ σ(Fi) we get ẼFi

� F̃j and
ẼFi

� Ẽ ′Fj
for E ′ ∈ σ(Fj). Thus arguments corresponding to proper subframeworks of F are

hindered from building extensions in Tr (F ).

Translation 10 (σ ⇒ (stb|prf |com|stage|sem)). We define Tr (A,R) = (A′, R′) as

A′ = A ∪ {F̃i, ẼFi
| Fi ⊆ F, E ∈ σ(Fi)}

R′ = R ∪ {(ẼFi
, F̃i), (F̃i, F̃i), (F̃i, a) | a ∈ AFi

} (1)

∪ {(ẼFi
, b) | b ∈ AFi

\ E} (2)

∪ {(ẼFi
, Ẽ ′Fi

) | E 6= E ′} (3)

∪ {(ẼFi
, ẼFk

), (ẼFi
, F̃k) | Fk ( Fi} (4)

For strictly non-empty cf -based semantics4 σ (i.e., |σ(F )| ≥ 1 and σ(F ) ⊆ cf (F )) Tr is an
embedding monotone faithful translation for σ ⇒ (stb|prf |stage|sem) and a weakly faithful with
remainder set ∅ translation for σ ⇒ com.

To achieve monotonicity we introduced arguments F̃i (where Fi ⊆ F ) to represent subframe-
works, and arguments ẼFi

(where E ∈ σ(Fi)) to encode extensions of those subframeworks. The
attacks in (1) and (2) ensure that a selected extension defends its arguments. The mutual attacks
in (3) ensure that only one extension is selected while (4) ensures that only extensions of the full
original framework are selected. An illustration of this translation as applied to a simple AF of
merely two arguments and one attack is shown in Figure 12.

Proof. For AF F , extension EF ∈ σ(F ) and thus EF ∈ cf (F ) consider E = EF ∪ {ẼF}. E is
conflict-free since ẼF attacks only (but all) those arguments from AF not being member of EF .
Furthermore ẼF attacks all arguments F̃i for Fi ⊆ F and ẼF attacks all D̃Fi

for DFi
∈ σ(Fi)

where DFi
6= EF (or Fi 6= F , as subframeworks might provide the same extension). Hence

E ∈ stb(Tr (F )) and thus also E ∈ stage(Tr (F )), E ∈ sem(Tr (F )), E ∈ prf (Tr (F )) and
E ∈ com(Tr (F )).

We now consider ∅ 6= E ∈ com(Tr (F )). For any Fi ( F and DFi
∈ σ(Fi) we have that

D̃Fi
is not a member of E since the only arguments defending D̃Fi

against the by requirement
4As far as the semantics introduced in this work are concerned this excludes only stable semantics.
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Figure 12 Illustration of Translation 10 for prf ⇒ (stb|prf |com|stage|sem). With F =
({a, b}, {(a, b)}) and F1 = ({}, {}), F2 = ({a}, {}), F3 = ({b}, {}), F4 =
({a, b}, {}), and F5 = F = ({a, b}, {(a, b)}).

a b

F̃1 F̃2 F̃3 F̃4 F̃5

Figure 13 Illustration of Translation 11 (grd ⇒ (prf |com|grd |sem)). With F = ({a, b}, {(a, b)})
and F1 = ({}, {}), F2 = ({a}, {}), F3 = ({b}, {}), F4 = ({a, b}, {}), and F5 = F =
({a, b}, {(a, b)}).

non-empty set {Ẽ ′F | E ′ ∈ σ(F )} are members of this set and thus also attacking D̃Fi
. Furthermore,

by (3), at most one Ẽ ′F is member of E. We observe that there is no D ∈ adm(Tr (F )) such that
D ∩ {Ẽ ′F | E ′ ∈ σ(F )} = ∅, since all arguments from A are attacked by the argument F̃ , which in
turn is attacked only by arguments Ẽ ′F . We can thus pick the unique ẼF ∈ E ∩ {Ẽ ′F | E ′ ∈ σ(F )}.
But then ẼF defends all arguments a ∈ E and it follows immediately thatE∩A = EF ∈ σ(F ).

Next we give a monotone translation for grd ⇒ (prf |com|sem). Again to ensure monotonicity,
for a given AF F and all Fi ⊆ F we use arguments F̃i to represent subframeworks. For each F̃i
we introduce attacks to ensure that if F̃i is selected then only the arguments from the grounded
extension of Fi remain admissible (attack set (1) below). Further, we add attacks that ensure that
arguments that are corresponding to proper subframeworks of F are disabled (attack set (2) below).
An illustration of the following translation is given in Figure 13.
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Figure 14 Illustration of Translation 12 (sem ⇒ (prf |sem)).

Translation 11 (grd ⇒ (prf |com|grd |semi)). We define the transformation Tr (A,R) = (A′, R′)
as

A′ = A ∪ {F̃i | Fi ⊆ F}
R′ = R ∪ {(F̃i, F̃i), (F̃i, a) | Fi ⊆ (A,R), a ∈ AFi

\ grd(Fi)} (1)

∪ {(a, F̃k) | Fk ( Fi ⊆ F, a ∈ AFi
} (2)

Tr is an embedding monotone exact translation for grd ⇒ (prf |com|grd |sem).

Proof. The argument F̃ is attacked only by itself yet attacks any argument not being member of the
grounded extension of F , thus disabling the arguments AF \ grd(F ) for inclusion in any admissible
extension. If grd(F ) = ∅ we clearly have ∅ as only extension for all the semantics of interest.
Now consider the case where grd(F ) 6= ∅. Then there is an argument a ∈ A that is not attacked
at all in F and therefore in all subframeworks of F . Hence a is in the grounded extension of all
subframeworks containing a and thus in the grounded extension of Tr (F ) (as it is not attacked in
Tr (F )). Now we can ignore all arguments F̃i with Fi ( F since in Tr (F ) they are attacked by a.
It follows that the grounded extension of F is also the grounded extension of Tr (F ). Further as all
the other arguments are unacceptable the semantics of interest collapse.

To achieve a monotone exact translation for sem ⇒ prf we generalize Translation 8. The idea
is to apply the procedure from Translation 8 to each subframework Fi of F and additionally add
attacks from each argument in AFi

to each argument produced for a proper subframework of Fi.

Translation 12 (sem ⇒ (prf |sem)). We use P(Fi) to denote P(Fi) = prf (Fi) \ sem(Fi). The
transformation Tr (A,R) = (A′, R′) with

A′ = A ∪ {P̃Fi
| Fi ⊆ (A,R), P ∈ P(Fi)}

R′ = R ∪ {(a, P̃Fi
), (P̃Fi

, P̃Fi
), (P̃Fi

, b) | a ∈ AFi
\ PFi

, b ∈ PFi
} (1)

∪ {(a, P̃Fk
) | Fk ( Fi ⊆ F, a ∈ AFi

} (2)

is an embedding monotone exact translation for sem ⇒ (prf |sem).
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Proof. Observe that any conflict-free set in Tr (F ) (for F = (A,R)) consists of arguments a ∈ A
only. For Fi ( F we have that additional arguments of the form P̃Fi

for P ∈ P(Fi) are attacked
by all a ∈ A, we can thus restrict ourselves to the set S ⊆ A ∪ {P̃F | P ∈ P(F )}. Now assume
E ∈ sem(A,R). Since E \ P 6= ∅ for all P ∈ P(F ) by definition, we have that E attacks
all P̃F for P ∈ Tr (F ) and thus E ∈ prf (Tr (F )). On the other hand we might look at some
E ∈ prf (Tr (F )) and assume for a contradiction that E 6∈ sem(F ). As admissibility of E in Tr (F )
implies admissibility of E in F there has to be some P ∈ P(F ) such that E ⊆ P . But now E

is attacked by the argument P̃F and defended only by arguments a ∈ A \ P and thus cannot be
admissible.

We can again use the transitivity of exact translations to obtain a monotone translation for
stage ⇒ prf .

Corollary 2 (stage ⇒ prf ). Considering Translation 12 as Tr 12 and Translation 9 as Tr 9, then
the transformation Tr = Tr 12 ◦ Tr 9 is a covering monotone exact translation for stage ⇒ prf .

5.2 Impossibility Results
In the following we give impossibility results for several intertranslatabilities regarding the embed-
ding and monotonicity properties, that is we show that the presented translations are optimal w.r.t.
these two translational properties.

First consider translations from grounded semantics to naive and stage semantics. This impossi-
bility result relies on the fact that an argument that is not self-attacking appears always in at least
one conflict-free set and thus also in at least one naive set.

Theorem 8 (grd ⇒ (naive|stage)). There is no translation which is

1. embedding or monotone weakly faithful for grd ⇒ naive.

2. embedding or monotone weakly exact for grd ⇒ stage.

Proof. For the semantics of interest we observe that for embedding or monotone translations Tr
with a ∈ AF immediately also a ∈ ATr (F ). Furthermore, we can allow (a, a) ∈ RTr (F ) if and only
if (a, a) ∈ RF . For embedding this is right by definition for monotone due to expandability, i.e. by
the fact that we can extend each AF such that argument a becomes part of the grounded extension as
long (a, a) /∈ RF . We refer to these observations by the term inheritance for the realm of this proof.

Take into account the AFs F = (A,R) and F ′ = (A,R′) withA = {a, b, c},R = {(b, c), (c, b)}
and R′ = R ∪ {(a, b)}. Now grd(F ) = {a} and grd(F ′) = {a, c}. For a contradiction we assume
existence of a translation Tr : grd ⇒ σ of the desired kind. For σ = naive due to inheritance we
deduce that (c, c) 6∈ RTr (F ). Hence there exists an extension E ∈ naive(Tr (F )) with c ∈ E the
latter implying that E cannot be a remainder set, a contradiction. For σ = stage we observe that
due to inheritance and exactness there has to be some conflict between a and c in Tr (F ), thus Tr
cannot be embedding. If Tr is monotone then from F ⊆ F ′ we conclude that the conflict between
a and c also occurs in Tr (F ′), a contradiction to {a, c} ∈ stage(Tr (F )).
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Next we consider translations from cf and naive to admissibility based semantics. We show
that there is no translation which is embedding and (weakly) exact.

Theorem 9. There is no translation for (cf |naive)⇒ (stb|adm|prf |com|sem) which is embedding
and weakly exact.

Proof. For a contradiction we assume that such a translation Tr happens to exist. We take
into account the AF F = ({a, b} , {(a, b)}). We have cf (F ) = {{a} , {b} , ∅} and naive(F ) =
{{a} , {b}}. Since b is attacked by a in F and with the premise of embedding in mind for any
admissible set E with b ∈ E we need E to attack a. So either b attacks a and the translation is
not embedding or some from b different argument c ∈ E attacks a and the translation is not exact.
With the observation that stable, semi-stable, preferred and complete semantics are all based on
admissibility we finish this proof.

Remark 1. The AF F = (A,R) with A = {a, b, c} and R = {(a, b), (b, c), (c, c)} is used in [20]
to show impossibility of embedding weakly exact translations stage ⇒ sem. The stage extensions
of F are given by stage(F ) = {{a}, {b}}. For an embedding translation Tr we have that in the AF
Tr (F ) the set {b} is attacked by a but a is not counterattacked by {b}. Hence {b} is not admissible
and thus not semi-stable. Hence, Tr cannot be exact for stage ⇒ sem.

Immediately, by the same argument we get that there is no embedding weakly exact translation
for stage ⇒ prf .

In summary, one can say that in most cases where we have a translation one can also find
one that is embedding and monotone, with some notable exceptions as listed below. Notice, that
embedding seems to be harder to achieve as whenever we have an embedding translation then we
also have a monotone one.

• Concerning monotone translations we have that there is no weakly faithful for grd ⇒ naive
and no weakly exact for grd ⇒ stage.

• For embedding translations further there are no weakly exact translations from cf or naive to
any other semantics under our considerations and no weakly exact translations for stage ⇒
sem and stage ⇒ prf .

6 Discussion
We studied expressiveness of argumentation semantics via the intertranslatability of argumentations
semantics. Driven by the goal of understanding expressiveness, in contrast to previous work on
intertranslatability, we did not restrict ourselves to efficiently computable transformations but all our
translations have access to arbitrary computational resources. In Table 2 we gave a full picture of
intertranslatability between the semantics under our considerations (when neglecting computational
costs). This allows us to draw hierarchies of expressiveness for argumentation semantics. Our
results complement and strengthen results from previous work in the following ways. First it appears
that certain translations remain impossible regardless of the computational effort one is willing to
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Figure 15 Results for inefficient intertranslatability.

put into the translation. Second, in several cases where no efficient translation exists, we showed
that if only we accept high computational costs (time and space) then translations satisfying in fact
still nice properties become possible.

Figure 15 visualizes the hierarchies of expressiveness of the chosen argumentation semantics for
(a) (weakly) exact translations and (b) (weakly) faithful translations. A solid path from a semantics
σ to a semantics σ′ expresses that there is an exact, or faithful respectively, translation for σ ⇒ σ′.
Furthermore, if for two semantics σ, σ′ there is no path from σ to σ′ then it is proven that there is
no such exact, faithful respectively, translation for σ ⇒ σ′. If several semantics are in the same
composite-node they are equivalent w.r.t. the notion of translation, that is each of the semantics in
the node can be translated to all the other semantics in the node. For instance we have that there is a
weakly exact translation for cf → com as there is a path in Figure 15 (a) while there is no weakly
faithful translation for prf → naive as there is no such path in Figure 15 (b).

For a better comparison in Figure 16 we restate the results on efficient intertranslatability
from [20] together with our results on conflict-free and naive semantics. Again a solid path from a
semantics σ to a semantics σ′ expresses that there is an exact, or faithful respectively, translation
for σ ⇒ σ′, and the absence of a path tells us that there is no translation σ ⇒ σ′. Additionally, in
Figure 16, we have dashed lines that correspond to open problems, i.e., the cases where we do not
yet know whether there exists an efficient translation or not.

Let us highlight some differences between the hierarchies for general translations as op-
posed to efficient translations. When neglecting computational costs we have exact transla-
tions for grd ⇒ (com|stage|prf |sem); for efficient translations grd ⇒ com was shown to
be incompatible with common complexity assumptions on the polynomial hierarchy while the
other cases still represent open questions. Concerning (weakly) faithful translations we have that
stage, stb, sem, prf , com, adm can be translated to each other while upon the condition of (weakly)
faithful translations being efficient these semantics form at least three levels of intertranslatabil-
ity. Our interpretation of these results on faithful translations is the following: When allowing
projections to the arguments of interest the mentioned semantics have the same capabilities of
expressing things, however certain constructs can be more succinctly represented for semantics
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Figure 16 Results for efficient intertranslatability. Results from [20] complemented by the results
on cf and naive.

which are higher in the hierarchy of efficient (weakly) faithful translations. For instance preferred
and semi-stable semantics have the same expressiveness when it comes to inefficient translations,
but there is no efficient translation from semi-stable to preferred semantics. This suggests that
certain sets of extensions can be represented easier in terms of semi-stable semantics than in terms
of preferred semantics.

6.1 Related Work
As already mentioned our work builds on previous work on the intertranslatability of argumentation
semantics [20]. The main difference being that [20] focuses on efficient translations, which
mirrors the computational motivation behind it. In this work we are interested in expressiveness
of argumentation semantics and thus also consider translations for the cases where no efficient
translation is possible. We also refer the reader back to Section 2, in particular Table 1, where we
list the results of [20] that also apply to our setting.

Recently, a different approach to characterize expressiveness of argumentation semantics via
so called signatures has been proposed [15, 16]. While driven by a similar motivation there are
significant differences to our approach. The aim there is to characterize the sets of extensions (not
a single extension) that are possible for a certain semantics, i.e., sets of extensions that can be
expressed by a semantics, with so called signatures, while our work is motivated by comparing
the expressiveness of different semantics. Due to the similar motivation there are certain relations
between signatures of semantics and translations between semantics, which we will discuss below
together with the points that distinguish these approaches. Given the signatures of semantics one
can compare them, which also results in an expressiveness hierarchy of semantics. However, as
signatures require that exactly the given extensions are realized in an AF, they are more restrictive
than translations where we allow to exclude extensions and arguments. If we consider translations
that do not allow exclusion of extensions or arguments we end up with exact translations which
are closely related to signatures in the following sense. If for two semantics σ and σ′ there are
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exact translations σ ⇒ σ′ and σ′ ⇒ σ then these two semantics also have the same signature [16].
Also when each set of extensions that are possible for a semantics σ can also be realized by a
semantics σ′ then there is an exact translation. However, this translation might not be efficient or
satisfy any of the desired properties. Summarized one can say that, when it comes to expressiveness,
the strength of the approach with signatures lies in the additional structural information about the
sets of extensions they provide, while the strength of the approach with translations is that one can
study the expressiveness of semantics in a more flexible manner that make different semantics better
comparable.

Dyrkolbotn [21] studies signatures for preferred and semi-stable labellings. But in contrast to
[16] when introducing additional arguments only the projection of the labellings to the original
arguments must coincide with the labellings, while new arguments can have arbitrary labels. This
idea is somehow similar to our notion of faithful translations, although stated for labellings and in
terms of signatures.

The work of Strass [27] compares the expressiveness of several formalisms, i.e., abstract
argumentation, normal logic programs, abstract dialectical frameworks (ADFs) and the satisfiability
problem of propositional logic and gives an expressiveness hierarchy of them. In terms of abstract
argumentation however his analysis is limited to stable semantics.

6.2 Future research directions
Several open research questions arise when it comes to the intertranslatability of argumentation
semantics.

The whole work on intertranslatability considers extension-based semantics, but often one is
more interested in semantics that are characterized by argument labellings (see, e.g., [1, 9]). So
one issue is to find a meaningful notion of translations in the setting of (3-valued) labelling based
semantics and to study how the results of the extension-based setting change when it comes to the
equivalent labelling based semantics.

One limitation of existing work is that only finite AFs are considered. While certain results and
translations will immediately extend when one also allows infinite AFs others do not. For example,
when it comes to semi-stable and stage semantics there are infinite AFs which do not provide any
extension [4, 10], which flaws several of the arguments used for finite AFs. In particular these cases
open a direction for further research.

While this paper covers the most prominent semantics in abstract argumentation there are
several other semantics around. An obvious approach for future research would be to extend the
existing studies to other semantics of interest. In general, translations should be considered as an
additional tool when introducing new semantics or analyzing existing ones. Translations provide a
way of implementing a semantics using existing systems for other semantics, a comparison of the
expressiveness, and also a way to obtain complexity bounds.

Unique status semantics, like grounded, play a special role in the studies of intertranslatability.
As they always provide exactly one extension no multiple status semantics can be translated to
them. So it would be of interest to study the relation between established unique status semantics
like grounded, ideal [14] and eager [6]. Another perspective of these three semantics is not to
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consider them as semantics in their own right but as special reasoning modes of complete, preferred
and semi-stable semantics [17]. Given this perspective it would be interesting to study notions of
intertranslatability that also faithfully maintain these kinds of reasoning.
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