Given two graphs G and A, two players, Red and Green, alternate in coloring the edges of G in their respective color. Aim is to avoid (achieve) to build a monochromatic subgraph isomorphic to A. How difficult are these games?
Overview

- In medias res: Let’s play . . .
- Complexity of the graph Ramsey games
- Ultra-strongly solving Sim and Sim$^+$
- About the unlikeliness of solving Sim$_4$ etc.
- Tractable cases
- Provably intractable cases
- The complexity of games: another view
- Open problems and conjectures
- Further remarks
Sim: $G = K_{\text{Ramsey}(3,3)} = K_6$, $A = K_3$ on $G_{\text{Avoid-Ramsey}}$
Considering that a hands-on session with an interactive system often is worth more than a thousand images:
... with random permutations between moves:

This Java applet plays Sim and a variant, Sim⁺ (players color one or more edges per move). In case you win, you will be allowed to leave your name in our hall-of-fame!
Sim and Sim^+ can never end in a tie:

$$\text{Ramsey}(3,3)=6$$

(visual proof by courtesy of Ranan Banerji)
A winning strategy for the $G_{\text{Achieve-Ramsey}}$ game Sim_A:

[Diagram showing a series of graphs connected by arrows labeled 'w.l.o.g.' and 'forced']
No simple winning strategies are known for Sim and Sim$^+$.

⇒ **Natural question: How “difficult” is a game?**

Translation to complexity theory:

How does the function bounding the computational resources that are needed in the worst case to determine a winning strategy for the first player grow in relation to the size of the game description?

Typical results: Generalizations of well-known games such as Chess, Checkers, and Go to boards of size $n \times n$ have been classified as polynomial space and exponential time complete (Fraenkel & Lichtenstein 1981, Fraenkel & al. 1978, Lichtenstein & Sipser 1980).

Note: $P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$ and $P \subset \subseteq EXPTIME$
How to generalize Sim to game boards of arbitrary size?

⇒ **Graph Ramsey theory**

Definition 1 \(G \rightarrow A \):

We say that a graph \(G \) arrows a graph \(A \) if every edge-coloring of \(G \) with colors red and green contains a monochromatic subgraph isomorphic to \(A \). \(G \) is called a Ramsey graph of \(A \).

Theorem 1 (Chvátal & Harary 1972, Deuber 1975, Erdős & al. 1975, Rödl 1973) *Every graph has Ramsey graphs.*

Theorem 2 (Burr 1976) *Deciding \(G \not
ightarrow A \) when \(G \) and \(A \) are part of the input is \(\text{NP} \)-complete.*

Theorem 3 (M. Schaefer 1999) *Deciding \(G \rightarrow A \) when \(G \) and \(A \) are part of the input is \(\pi_2^P \)-complete.*
Generalizing Sim to graph Ramsey theory leads to:

Definition 2 \(G_{\text{Avoid-Ramsey}}(G, A, E^r, E^g) \):

Given two graphs \(G = (V, E) \) and \(A \) and two non-intersecting sets \(E^r \cup E^g \subseteq E \) that contain edges initially colored in red and green, respectively. Two players, Red and Green, take turns in selecting at each move one so-far uncolored edge from \(E \) and color it in red for player Red respectively in green for player Green. However, both players are forbidden to choose an edge such that \(A \) becomes isomorphic to a subgraph of the red or the green part of \(G \). It is Red’s turn. The first player who cannot move loses.

Similar definitions of \(G_{\text{Avoid’-Ramsey}} \) (a misère variant) and \(G_{\text{Avoid-Ramsey}^+} \) (one or more edges colored per move).
Definition 3 \(G_{\text{Achieve-Ramsey}}(G, A, E^r, E^g) \):

Achievement variant: the first player who builds a monochromatic subgraph isomorphic to \(A \) wins.

Definition 4 A simple strategy-stealing argument tells us that with optimal play on an uncolored board, \(G_{\text{Achieve-Ramsey}} \) must be either a first-player win or a draw, so it is only fair to count a draw as a second-player win. Let us call this variant \(G_{\text{Achieve}'-\text{Ramsey}} \).

Definition 5 Following the terminology of (Beck & Csirmaz 1982), let us call the variant of \(G_{\text{Achieve-Ramsey}} \) where all the second player does is to try to prevent the first player to build \(A \), without winning by building it himself, the “weak” graph Ramsey achievement game \(G_{\text{Achieve}''-\text{Ramsey}} \).
Main complexity results (Slany 1999)

Theorem 4

\[G_{\text{Avoid-Ramsey}} \text{ and } G_{\text{Avoid'-Ramsey}} \text{ are PSPACE-complete.} \]

Theorem 5

\[G_{\text{Avoid-Ramsey}^+} \text{ is PSPACE-complete.} \]

And, surprisingly,

Theorem 6

\[G_{\text{Achieve''-Ramsey}} \text{ and } G_{\text{Achieve'-Ramsey}} \text{ are PSPACE-complete.} \]

Theorem 7

\[G_{\text{Achieve-Ramsey}} \text{ is PSPACE-complete.} \]

Significance: These games thus are as difficult as other well-known difficult games such as Go, and at least as difficult as any \textbf{NP}-complete problem.
Proof sketch of Theorem 4

- Membership in \textbf{PSPACE}: easy.
- Hardness: via a \textbf{LOGSPACE} reduction from the \textbf{PSPACE}-complete game \(G_{\text{Achieve-POS-CNF}}\) (T. Schaefer 1978):

\textbf{Definition 6} \(G_{\text{Achieve-POS-CNF}}(F)\): We are given a positive CNF formula \(F\). A move consists of choosing some variable of \(F\) which has not yet been chosen. Player I starts the game. The game ends after all variables of \(F\) have been chosen. Player I wins iff \(F\) is true when all variables chosen by player I are set to true and all variables chosen by player II are set to false.

Ex.: On \(F = (x_1 \lor x_4) \land (x_2 \lor x_3) \land (x_2 \lor x_4)\) player I wins. \(F\) is reduced to the following \(G_{\text{Avoid-Ramsey}}\) game . . .
\(F = (x_1 \lor x_4) \land (x_2 \lor x_3) \land (x_2 \lor x_4) \)

Abbreviations:

- \(r_0 \)
- \(r_1 \)
- \(r_2 \)
- \(r_3 \)
- \(r_4 \)
- \(y_1 \)
- \(y_2 \)
- \(y_3 \)
- \(y_4 \)
- \(d_1 \)
- \(d_2 \)
- \(d_3 \)
- \(g_1 \)
- \(g_2 \)
- \(g_3 \)
- \(g_4 \)
- \(u_{1,0} \)
- \(u_{1,1} \)
- \(u_{1,2} \)
- \(u_{1,b} \)
- \(g_{1,t} \)
- \(g_{1,0} \)
- \(g_{1,1} \)
- \(g_{1,2} \)
- \(g_{1,b} \)
Proof sketch of Theorem 5

- A careful analysis of the proof of Theorem 4 reveals that we can reuse the reduction of that proof to show the \textbf{PSPACE}-completeness of $G_{\text{Avoid-Ramsey}^+}$.

- Indeed, all arguments go through even when both players are allowed to color more than one edge per move.

- The difficulty here lies in the analysis of the cases when the opponent plays non-optimally.
Proof sketch of Theorem 6

- Membership in **PSPACE**: easy.
- Hardness: via a **LOGSPACE** reduction from the **PSPACE**-complete game \(G_{\text{Achieve-POS-DNF}} \) (T. Schaefer 1978):

Definition 7 \(G_{\text{Achieve-POS-DNF}}(F) \): We are given a positive DNF formula \(F \). A move consists of choosing some variable of \(F \) which has not yet been chosen. Player I starts the game. The game ends after all variables of \(F \) have been chosen. Player I wins iff \(F \) is true when all variables chosen by player I are set to true and all variables chosen by player II are set to false.

Ex.: On \(F = (x_1 \land x_2) \lor (x_3 \land x_4 \land x_5) \lor (x_3 \land x_5 \land x_6) \lor (x_3 \land x_4 \land x_7) \) player II wins. The \(G_{\text{Achieve}} \)-Ramsey game ...
\[F = (x_1 \land x_2) \lor (x_3 \land x_4 \land x_5) \lor (x_3 \land x_5 \land x_6) \lor (x_3 \land x_4 \land x_7) \]

Abbreviation:

\[\langle \rangle = \boxed{\text{large clause}} \]
Proof sketch of Theorem 7

Similar to the proof for $G_{\text{Achieve}''}$-Ramsey, but some changes (A) and one addition (H) in the reduction are necessary:

$$F = (x_1 \land x_2) \lor (x_3 \land x_4 \land x_5) \lor (x_3 \land x_5 \land x_6) \lor (x_3 \land x_4 \land x_7)$$

Abbreviations:

- $r_1, r_2, r_3, r_4, r_5, \ldots$.
- $n \ldots$ number of variables.
Definition 8 (J. Schaeffer & Lake 1996)

A combinatorial game is . . .

- **ultra-weakly solved** if the game-theoretic value for the initial position has been determined,

- **weakly solved** if it is ultra-weakly solved and if a strategy exists for achieving the game-theoretic value from the opening position, assuming reasonable computing resources,

- **strongly solved** if for all possible positions, a strategy is known for determining the game-theoretic value for both players, assuming reasonable computing resources, and

- **ultra-strongly solved** if for all positions in a strongly solved game, a strategy is known that improves the chances of achieving more than the game-theoretic value against a fallible opponent.
Theoretical size of Sim’s game tree: $15! \approx 1.3 \times 10^{12}$. In case of Sim$^+$: $15! \times 2^{15-1} \approx 2.1 \times 10^{16}$.

Practical size of their directed acyclic game graphs:

- Sim: 2,309 non-isomorphic positions
- Sim$^+$: 13,158 non-isomorphic positions

\implies Strong solutions of Sim and Sim$^+$ are easily feasible.

To ultra-strongly solve Sim, we additionally need a strategy for non-winning positions. In our Java applet, we:

- maximize static chance of opponent to make a mistake
- improve this strategy by probabilistically learning the value of moves through playing over the Internet

\implies Sim and Sim$^+$ are ultra-strongly solved.
Definition 9 \(\text{Sim}_n:\)

\[G = K_{\text{Ramsey}(n,n)}, \ A = K_n \text{ played on } G_{\text{Avoid-Ramsey}}. \]

Problem: Despite much effort, only \(\text{Ramsey}(4,4) = 18\) is known so far (conjecture (McKay 1998) \(\text{Ramsey}(5,5) \geq 43\) based on 10 cpu-years of computations . . .).

Let us consider the game \(\text{Sim}_4\) played on a game board \(G\) having \(\binom{18}{2} = 153\) edges, the graph \(A\) to avoid being a tetrahedron. Unfortunately, we found that the number of non-isomorphic game positions in \(\text{Sim}_4\) is around

\[2 \times 10^{54}. \]

\[\Rightarrow \] There is not much hope to even weakly solve any game \(\text{Sim}_n\) and even less so any game \(\text{Sim}_n^+\) for \(n > 3\).
Tractable cases:

Theorem 8 (Harary, Slany, Verbitsky 2000)

\[G_{\text{Avoid-Ramsey}}(K_n, (\{a, b, c\}, \{\{a, b\}, \{b, c\}\}), \{\}, \{\}) \]

for \(n \geq 3 \) is a win for the second player.

Proof sketch:

There is a relatively simple two-phase winning strategy for the second player. The proof uses a counting argument and several lemmas.
Provably intractable cases:

Because of the known exponential lower bounds for classic symmetric binary Ramsey numbers

\[n2^{n/2} \left(\frac{1}{e\sqrt{2}} \right) + o(1) < \text{Ramsey}(n, n) \]

already computing the size of the game graph of a graph Ramsey game played on \((K_{\text{Ramsey}(n,n)}, K_n, \{\}, \{\})\) given only \(n\) for input will require at least doubly exponential time because of the succinctness of the input (Graham et al. 1990).
The complexity of games: another view

Problem: \textbf{PSPACE}-completeness is a very coarse instrument to measure the difficulty of combinatorial games: no statement about particular instances are possible. For example, how does the complexity of the \textit{real} game Go compare to that of Sim$_4$ or Sim$_5$?

\implies \textbf{time-bounded Kolmogorov complexity of combinatorial game instances:}

What is the “size” n of the “smallest program” that, using at most n “time units”, wins game G whenever a winning strategy exists and plays “optimally” otherwise?

Good upper and lower bounds are most likely difficult \ldots
Open Problem 1 Consider $G_{\text{Avoid-Ramsey}}(K_k, K_n, \emptyset, \emptyset)$ where $k = \text{Ramsey}(n, n)$. Is it always true that the first player has a winning strategy in this game iff $\binom{k}{2}$ is even?

Open Problem 2 Consider $G_{\text{Avoid-Ramsey}}(G, A, E^r, E^g)$, where

\[c \overset{\text{def}}{=} \min \left\{ r + g \mid (G, E^r, E^g)^{(r, g)} \rightarrow A \right\}, \]

and where $(G, E^r, E^g)^{(r, g)}$ denotes an (r, g) edge-red-green-coloring of the uncolored edges of the precolored graph (G, E^r, E^g). Is it always true that the first player has a winning strategy in this game iff c is even?
Conjecture 1 Graph Ramsey games played on $(G, A, \emptyset, \emptyset)$ are PSPACE-complete.

Conjecture 2 Graph Ramsey achievement games played on (K_n, A, E^r, E^g) are tractable.

Conjecture 3 Graph Ramsey avoidance games played on (K_k, K_n, E^r, E^g) where $k \geq \text{Ramsey}(n, n)$ are PSPACE-complete.

Conjecture 4 The graph Ramsey avoidance games played on $(K_{\text{Ramsey}(n,n)}, K_n, \emptyset, \emptyset)$ are 2-EXPSPACE-complete.
Open Problem 3 Show that $G_{\text{Achieve-Ramsey}}$ remains \textsc{PSPACE}-complete even if the achievement graph A is restricted to a meaningful subclass of graphs such as fixed, bipartite or degree-restricted graphs.

Open Problem 4 Show that Theorems 4–7 hold even if the game graph G is restricted to a meaningful subclass of graphs such as bipartite or degree-restricted graphs.
Further remarks

- Sim and Sim\(^+\): simple enough to analyze perfectly, yet far from trivial.

- Applications: competitive situations where opposing parties try to achieve or to avoid a certain pattern in the structure of their commitments, e.g., analysis of mobile Internet agent warfare (Thomsen & Thomsen 1998).

- Sim and Sim\(^+\) are to be integrated in a role-playing game ⇒ “cheats” will be made very difficult.

- Please try out our applet that plays Sim and Sim\(^+\) on http://www.dbai.tuwien.ac.at/proj/ramsey/

so that it can continue to become even better.