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Abstract

Many practical hard problems in mathematics and computense may be formulated
as constraint satisfaction problems (CSPs). Tree and giezeat hypertree decomposi-
tions are two important concepts which can be used for ify@émgi and solving tractable
classes of CSPs. Unfortunately the task of finding an optine& or generalized hy-
pertree decomposition is axiP-complete problem. Thus many heuristic methods have
been developed for finding tree decompositions and geredaliypertree decomposi-
tions of small width.

In this master thesis we present new heuristic methodsderand generalized hy-
pertree decompositions. For that purpose we examine gledsting heuristic methods
for tree decompositions and extend them to an A* algorithehagenetic algorithm for
tree decompositions and to a genetic algorithm and a salftae genetic algorithm for
generalized hypertree decompositions. Furthermore weeptitat the set of all elimi-
nation orderings may act as a search space for the gendralpertree width and we
develop a lower bound heuristic for the generalized hypertwidth, which combines
lower bound heuristics for tree decompositions with loweurd heuristics for thé-
set cover problem. Moreover we show how existing reductimh @runing techniques,
for shrinking the search space for the optimal tree decoitiposmay also be used for
generalized hypertree decompositions. Based on thesksresupropose a branch and
bound algorithm and an A* algorithm for generalized hyptdecompositions.

Computational experiments show that the heuristic metipoesented in this the-
sis are able to compete with other heuristic methods fordrekgeneralized hypertree
decompositions. For many benchmark instances the gengtisgtams and the branch
and bound algorithm return improved upper bounds on thevidte and generalized
hypertree width and for some instances the A* algorithms thiedbranch and bound
algorithm are able to fix the exact treewidth and generalizgubriree width.



Kurzfassung

Constraint satisfaction problems (CSPs) bilden eine Broklasse in der Mathematik
und Informatik, die viele praxisrelevante und harte Protdéeinhalt. Tree decomposi-
tions und generalized hypertree decompositions sind zve¢hbtlen, mit denertiizient
ldsbare CSP Instanzen identifiziert und fur solche Irnstargfizient Losungen berech-
net werden konnen. Leider ist das finden der optimalen tree decomposition bzw.
generalized hypertree decomposition einer CSP Instan&/@irvollstandiges Problem.
Aus diesem Grund sind in der Vergangenheit bereits vielésteache Methoden fiir tree
decompositions und generalized hypertree decompositianggestellt worden.

Ziel dieser Magisterarbeit ist es, neue heuristische Mighdur tree und general-
ized hypertree decompositions zu entwickeln. Zu diesemcRvibetrachten wir bere-
its existierende heuristische Verfahren fir tree decaitipns und erweitern diese zu
einem A* Algorithmus und einem genetischen Algorithmus fiiee decompositions
bzw. zu einem genetischen Algorithmus und einem selbsttiedepden genetischen
Algorithmus fiir generalized hypertree decompositionseitévs beweisen wir, dass
elimination orderings einen geeigneten Suchraum fur digecplized hypertree width
darstellen, und wir entwickeln eine lower bound Heurisiik §eneralized hypertree
width, die lower bound Heuristiken fur tree decomposisiamd fir dagk-set cover Prob-
lem kombiniert. Au3erdem zeigen wir, dass existierenddiiigen, um den Suchraum
fur optimale tree decompositions zu verkleinern, auctgineralized hypertree decom-
positions angewendet werden konnen. Basierend auf dRResultaten entwickeln wir
einen branch and bound Algorithmus und einen A* Algorithrfirsgeneralized hyper-
tree decompositions.

Testergebnisse fur Benchmark Instanzen zeigen, dassodiestellten heuristis-
chen Methoden fiir tree und generalized hypertree decdtigrssin der Lage sind, mit
anderen Verfahren zu konkurrieren. Die genetischen Algmen und der branch and
bound Algorithmus finden fiir viele Instanzen verbessdoer® Schranken fur treewidth
und generalized hypertree width und fir einige Instanz@mkn die A* Algorithmen
und der branch und bound Algorithmus treewidth und germgdlhypertree width exakt
bestimmen.
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Chapter 1

Introduction

1.1 Constraint Satisfaction Problems (CSPs)

Many areas of our daily lives arefacted by constraints. Our lifestyle is largely de-
termined by our income. Laws restrict and regulate the distimgether between people
within a state. Available time constrains the quantity andliy of work we are able
to perform. Thus, every day we try to solve problems in suchag that the problem
inherent constraints are satisfied.

Also in science we are often confronted with the task of figdinlutions of prob-
lems which satisfy constraints. As the complexity of thearelgd problems grows we
depend on the help of computers in order to solve thé8tarting with the pioneer-
ing work of Montanari [39] researchers in artificial intefence have investigated a
class of combinatorial problems that became known as caimstsatisfaction problems
(CSPs).[33]

Informally speaking, a CSP consists of variables and theeglvhich may be as-
signed to variables are restricted by one or several contstral solution for a CSP is an
assignment of allowed values to its variables which sasisfleconstraints. Sometimes
we are also interested in all such assignments. In mathesnatid computer science,
especially in the fields of operations research and artifintalligence, many impor-
tant real-world problems can be modeled as CSP. For instdromdean satisfiability
problems, scheduling problems, the n-queens problemehoatonjunctive queries, the
graph k-colorability problem and many other interestinglgdems might be formulated
as CSPs.

The main advantage of CSP is that it represents a very getiass of problems
including many interesting practical problems. By deveigpmethods for solving CSPs
we automatically obtain methods for all problems that pssseformulation as CSP. The

1



CHAPTER 1. INTRODUCTION 2

main drawback with CSP is that CSP contains mAf#-complete problems, implying
that all known algorithms that are able to solve CSPs reqxponential running time
in the worst case.

1.2 Decomposition Methods

In [27] Gottlob et al. write,"researches in the Al and database community have de-
veloped techniques for identifying and solving tractabdsses of CSPs, which can be
divided into two main groups [40]:

e Tractability duetorestricted structure. This includes all tractable classes of CSPs
that are identified solely on the base of the structure of thiestraint scopes,
independently of the actual constraint relations.

e Tractability due to restricted constraint relations. This includes all classes that
are tractable due to particular properties of the consttaielations.”

The structure of a CSP is visualized by its constraint hyjagaig. Decomposition
methods can be used for identifying and solving tractatdesds of CSPs by exploiting
the structure of the constraint hypergraph, thus they digaltractability due to restricted
structure.

Decomposition methods aim at transforming a CSP instartoeaimother instance
which can be solvedficiently. Informally, this is done by decomposing a given CSP
into a tree of subproblems. If each of the subproblems isifgggntly smaller in size
than the original CSP we are able to solve the subproblems efidciently than the
original problem. Finally we derive a solution for the origl CSP from this tree of
subproblems, which again can be doffiecently.

In this master thesis we will considéee decompositionandgeneralized hyper-
tree decompositionamong the various decomposition methods that have beeit deve
oped during the last decades. The notion of tree decompusitivas introduced by
Robertson and Seymour in [42]. Gottlob, Leone and Scaretipgsed a new decompo-
sitions method calletlypertree decompositions [29] and they showed that hypertree
decompositions were able to generalize and beat any otlemngmsition method in
[27]. Generalized hypertree decompositions are deriveth fiypertree decompositions
by dropping one condition of hypertree decompositions.[28]

Usually, decomposition methods use a measure calidth in order to denote the
size of the greatest subproblem. The smallest, thus optiwidth of all tree decom-
positions of a graph is denotértewidthwhereas the smallest width of all generalized
hypertree decompositions of a hypergraph is dengestkralized hypertree width
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In order to solve a CSP we aim at finding a tree decompositiageneralized hy-
pertree decomposition of width near or equal to the tredwaditd generalized hypertree
width respectively. Both decisions problems, deciding tlvbethere exists a tree de-
composition of a graph of width at most k as well as decidingtiver there exists a
generalized hypertree decomposition of a hypergraph othwati mostk are known to
be NP-complete, [1] and [26].

1.3 Heuristic Methods

Heuristic methods might help us in order to compute tree mgositions and general-
ized hypertree decompositions of small width within a readbe amount of time.

As mentioned in [45], given a problem in computer scienceeaechers tend to
develop algorithms for that problem and try to prove thas¢halgorithms satisfy the
following two criteria:

1. good (worst case) running time.

2. a close-to-optimal or optimal solution.

A heuristic method finds a solution to a given problem but igtot ensure good
running time or it doesn’'t put a guarantee on the quality ef tbturned solution or
sometimes a heuristic method doesn't satisfy any of the elooiteria. Nevertheless
heuristic methods are applied to many hard problems in ctenjggience because they
often are the only way to achieve good solutions within atstime.

Many heuristic methods have been developed for tree decsitigrms within the
last decades. Bodlaender gives a survey of heuristic metfoodree decompositions in
[7] as well as Hicks et al. in [30]. This master thesis presemw heuristic methods for
tree decompositions and generalized hypertree decorigrasivhich are based on the
following heuristic methods for tree decompositions, gelized hypertree decomposi-
tions and related problems:

e A genetic algorithm for triangulating the moral graph of Ban networks,
a problem strongly related to tree decompositions of graplas proposed by
Larrafiaga et al. in [36].

e Two branch and bound algorithms for tree decompositionpr@gented in [5] and
[24].

e McMahan shows how heuristic methods for tree decompositinay be used in
order to generate generalized hypertree decompositigi3sjn
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Genetic algorithmsre a very popular technique for computing solutions foi-opt
mization problems although they do not put any guarantebequality of the delivered
solution. They imitate the principle of evolution by altagiand selecting individuals of
a population of solutions for a given optimization problem.

Branch and boundlgorithms try to reduce the search space that has to bereglplo
for a given optimization problem. They cuff@egions in the search space which do not
contain solutions that are better than those that havedsiieeen found. A branch and
bound algorithm is an exact method, if it terminates it walider the optimal solution
to a problem.

In [37] McMahan combined a technique callBdicket Eliminationwhich origi-
nated in constraint satisfaction [16], with several veresering heuristics for tree de-
compositions and set cover heuristics. The computati@gllis he achieved with his
approach were quite promising.

All of the three heuristic methods mentioned above are basezlimination order-
ings. An elimination ordering is a permutation of the vastiof a graph or hypergraph.
Itis known that the set of all of its elimination orderingsyr#e used as search space for
the treewidth of graphs. Up to the present it is an open questhether elimination or-
derings can be used as search space for the generalizedrégpeidth of hypergraphs.

1.4 Research Questions for This Thesis

The intension behind this thesis was to examine and exteistrexheuristic methods
for tree decompositions and to explore how those methodseaapplied directly to
generalized hypertree decompositions. Before proceediriger, we will summarize
the main objectives of this thesis:

e Develop an A* (pronounced "A star”) algorithm for tree deqaositions, which
additionally exploits the techniques used in [5] , [8] and][#or shrinking the
search space. The A* should be able to solve the same probkethe branch and
bound algorithms in [5] and [24].

e Develop a genetic algorithm for tree decompositions basethe work that has
been carried out in [36] and examine if the genetic algorithable to return new
upper bounds for known benchmark instances.

e Develop genetic algorithms for generalized hypertree agsitions and exam-
ine their performance on known benchmark instances.

e Develop a branch and bound algorithm for generalized hyggedecompositions
which is able to compute the generalized hypertree widthgi¥en hypergraph.
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1.5

Develop an A* algorithm for generalized hypertree decontfurss.

Main Results

At this point we summarize the main results of this thesis:

We implement a genetic algorithm for computing treewidtipempbounds based
on the genetic algorithm in [36]. Our computational restdigeal that the genetic
algorithm was able to return improved upper bounds for thewidth of many
graphs of the Dimacs graph coloring benchmark instancds [18

We propose an A* algorithm for computing the treewidth ofgdra which addi-
tionally applies reduction and pruning methods presentd®]i [8] and [24] in

order to narrow the search space which has to be exploredp@ational results
show that the algorithm is able to solve nearly all instarafethe Dimacs graph
coloring benchmarks [18] which have been solved by the dlguos in [5] and

[24]. For an additional instance the treewidth could be fixed

We prove that the set of all elimination orderings may be wsesearch space for
the generalized hypertree width of a hypergraph.

We implement a genetic algorithm for computing upper bowrdhe generalized
hypertree width of hypergraphs. Computational resultsvelabthat the genetic
algorithm was able to return improved upper bounds on thergdined hypertree
width for many benchmark instances [22].

We implement a self-adaptive island genetic algorithm femayalized hypertree
width upper bounds based on [19]. This algorithm is able jasadts control pa-

rameters itself and doesn't require time-consuming erpanis in order to obtain
suitable values for those control parameters.

We develop a general technique which combines lower bouwnrdsdewidth and
lower bounds for thé&-set cover problem to get a lower bound for the generalized
hypertree width of hypergraphs and we propose a concreter lbaund heuristic
for generalized hypertree width.

We propose a branch and bound algorithm for generalizedrtrgpewidth of hy-
pergraphs which is based on elimination orderings and theldged lower bound
heuristic. The branch and bound algorithm will return thaagalized hypertree
width of a given hypergraph, if it is given enough time. Tharwh and bound
algorithm was able to compute the generalized hypertre¢hvim some bench-
mark hypergraphs [22]. Furthermore it returned improvegengounds for some
benchmark instances.
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e We propose an A* algorithm for generalized hypertree widthicl is based on
the same results as the branch and bound algorithm. The Atitdg was able
to compute the generalized hypertree width for some bendhhypergraphs [22]
and for some instances it returned improved lower bounds@generalized hy-
pertree width.

1.6 Further Organization

This thesis comprises 10 chapters. In chapter 2 we givenpiredry information about
CSPs, decomposition methods, tree and generalized hgpel®icompositions. In chap-
ter 3 we show that we may obtain a generalized hypertree deusition of smallest
width from at least one elimination ordering. As a consegeghe set of all elimination
orderings represents a search space for the generalizedttegowidth of hypergraphs.
In chapter 4 we give an overview of those heuristic methoesl ugthin this thesis. In
the following chapters we present new heuristic methodgrém and generalized hy-
pertree decompositions. In chapter 5 we propose an A* d@hgorfor computing the
treewidth of graphs, in chapter 6 a genetic algorithm for potimg treewidth upper
bounds, in chapter 7 we introduce two genetic algorithmsénputing upper bounds
on the generalized hypertree width of hypergraphs, in eiaptwe present a branch
and bound algorithm for computing the generalized hypenviglith and in chapter 9 an
A* algorithm for computing the generalized hypertree widithapter 10 concludes and
describes work that remains to be done.



Chapter 2

Preliminaries

2.1 Graphs and Hypergraphs

Definition 1 (Graph [15]) A graph G= (V, E) is a structure that consists of a finite set
of vertices V= {vy, ..., vy}, and a set oédgesE = {ey, ..., &n}. Each edgeis incident to
an unordered pair of verticgs, v}.

Definition 2 (Hypergraph [15]) A hypergraphis a structure/ = (V, H) that consists of
verticesV = {v1, ..., vy} and a set of subsets of these vertitks= {hy,...,hn}, hi € V,
called hyperedges. The hyperedge$atdifrom regular edges in that they may "connect”
(or are defined over) more than one or two variables. Notedhaty graph may be
regarded as hypergraph whose hyperedges connect twcegertic

Definition 3 (Gaifman graph, primal graph [15]Let H = (V, H) be a hypergraph. The
Gaifman graphor primal graphof H, denotedG*(#H), is a graph obtained from{ as
follows:

1. G*(H) owns the same set of verticesHs

2. Two verticesv; andv; are connected by an edge @i(#) iff v andv; appear
together within a hyperedge @{.

Definition 4 (Dual graph [15]) A hypergraphH = (V,H) can be mapped to a regular
graph called aual graph 92 The vertices of the dual graph are the hyperedges of
H, and two vertices are connected#f'? if their corresponding hyperedges share a
vertex inH. Each vertex of the dual graph is labeled by the verticesettresponding
hyperedge ir.

Definition 1, 2 and 4 were taken almost verbatim from [15]. tdes to distinguish
graphs from hypergraphs we will often denote graphs asaeguaphs.

7



CHAPTER 2. PRELIMINARIES 8
2.2 Constraint Satisfaction Problems

2.2.1 Basic Definitions

Definition 5 (Constraint Satisfaction Problem [15], [45 constraint satisfaction prob-
lem (or CSP) is a tripléX, D, C) consisting ofvariables domainsandconstraints The
setX = {Xy,..., Xq} contains thevariablesof the CSP. The collectio® = {Dy, ..., Dn}
contains the finitelomainsfor each variable. The domain of a variable lists the allowed
values for that variable. Eadonstraint G in C = {C;, ...,C} is defined over a subset
S; of variables,S; € X, denoted thecopeof constraintC;. A constraintC; specifies the
allowed combinations of values for the variables in its &8p Thus, a constraint;
may also be written as a pdl; = (S;, R), whereR, is a relation defined of; whose
tuples represent the allowed values.

Definition 6 (Solution of CSP) A solution of a CSP is @omplete consistent assign-
mentfrom the values of the domains to the corresponding varsabBy complete we
mean that we assign a value to each variable of the CSP and@eterassignment is
consistent if it satisfies all constraints. The problem afidieg whether a CSP instance
has a solution is calledonstraint satisfiability (CS)Sometimes we are also interested
in finding all complete consistent assignments

Many interesting real world problems possess a represamizs CSP. For instance,
map and graph coloring problems, boolean satisfiablity [prab, boolean conjunctive
gueries, the n-queens problem and many more may be forrddat€SPs.

Example 1(Map 3-Coloring of Australia from [45]) The problem of coloring the states
and territories of Australia in such a way that neighboriagions have distinct colors
may be modeled as CSP. Figure 2.1 shows the map of Australia qnossible valid
3-coloring.
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Variables:

Domains:

Constraints:

Solution:

PRELIMINARIES

X={WANT,Q,SANSWV, TAS}
the federal states and territories of Australia

D = {Dwa, DnT, Dq, Ds A Dnsw Dy, Dt as}
¥Die D:Dj=1{rg,b}
each state may be colored red, @reen ¢) or blue {)

C ={C41,C3,C3,C4,Cs, Cg, C7, Cg, Co}
C1=((NT,WA,Ry)

C2 = ({SAWA,Ry)

Cs3 = ({NT, Q}, Rs)

Cs =({NT,SA,Ry)

Cs = ({Q,SA,Rs)

Ceé = (INSWQ}, Re)

C7 = ({INSWV},Ry)

Cs = (INSWS A, Re)

Co = ({SAV}, Ro)

VRt R ={(r,g).(r,b).(g.r), (9, b), (b,r), (b, 9)}
neighboring regions must have distinct colors

WA=r,NT=09,SA=b,Q=r,NSW=qg,V=r,TAS=g

_

Figure 2.1: Map of Australia and a valid 3-coloring [45].
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Example 2 (Boolean Satisfiability (SAT)) Given the boolean formula = (X; vV X vV
X3) A (X1 VXg) A (X3 V X5) in conjunctive normal form, the boolean satisfiability Ipiem
for ¢ asks whether we can assign the values true or false to thablesiofy such that
evaluates to true.

Variables: X = {Xq, X2, X3, X4, X5}
the variables i

Domains: D = {Dy,, Dx,, Dy, Dx,, Dy}
VD; e D: Dj = {t, f}
each variable may be set to trugdr false ()

Constraints: C = {Cy,C»,C3}
C1 = ({X1, X2, X3}, Ry)
Cz = ({X3, Xs}, Ro)
Cs = ({X1, X4}, R3)
Ry = {(f, f, f),(f, f,0), (f,t, f), (f,t,0), (t, f, 1), (t,t, f), (., t,0)}
Ro = {(f, f), (f. 1), (t, f)}
Rs ={(f, f), (t. f), (t. )}
there is a constraint on each clause
containing the value combinations that will make the clause

Solution: X1=tLxo=txg=Ff,xg=t,xg=f

2.2.2 Complexity of CSPs

Given a CSP the number of possible complete variable assigtsnisO(d"), whered
denotes the maximum domain size. For instance, in example had to color seven
states or territories with one out of three allowed colonsl ia example 2 we had to solve
a SAT instance with five variables over the two boolean vatugsand false This re-
sults in 3 possible complete assignments for example 1 and ooghplete assignments
for example 2 respectively. Checking whether a completigiasgent is consistent with
the CSP’s constraints can be done in polynomial time, thuB 8% member oNP.
NP-hardness of CSP follows from the fact that maxy-complete problems can be
transformed into a CSP formulation and this transformatimm be done in time polyno-
mial in the size of the original problem. It follows that CSPanN#-complete problem
itself.

If we build the natural join over all constraint relationsaofjiven CSP we will get a
relation consisting of all complete consistent assignséstthat CSP. The natural join
of mconstraint relations of size at masts feasible inO(N™ logn) time. O(N™ logn)
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is an upper bound for both constraint satisfiability and cotimg all complete consistent
assignments of a CSP [10].

2.2.3 Constraint Hypergraphs, Join Trees and Acyclic CSPs

Definition 7 (Constraint Hypergraphs)A CSP can be visualized by itonstraint hy-
pergraph Given a CSP we can derive its constraint hypergraph bydoting a vertex
for each variable of the CSP. For each constraint we intredulbyperedge connecting
those vertices that correspond to the variables within ¢bpes of the constraint.

Example 3. Figure 2.2 shows the constraint hypergraphs for the (a) mbpiog prob-
lem in example 1 and for the (b) satisfiability problem in exéar2. In the map coloring
problem we introduced only binary constraints on each gaieahboring regions thus
the resulting constraint hypergraph is a regular graph.

(a) (b)

Figure 2.2: Constraint hypergraphs for the problems in Exerth and 2.

Definition 8 (Join Tree [15]) Given a CSP, its constraint hypergraghand the dual
graph94@ ajoin treefor the CSP is a subgraph 8942 which

1. is a tree consisting of the same set of vertice®4$" .

2. which satisfies the connectedness condition for joirstrébae connectedness con-
dition for join trees requires that for each variablef the CSP the vertices in the
join tree containingr form a subtree of the join tree.

Note that there is a one-to-one correspondence betweemtiséraints of the CSP and
the vertices of the join tree.
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Example 4. Figure 2.3 [15] shows (a) a hypergraph, (b) its the dual geaph(c) a join
tree.

Definition 9 (Acyclic CSP [15]) A CSP which has a join tree is called aayclic CSP.

(@)

xl’xZ’x3 xl’x2=x3
Xy, Xy, Xg X1y X3, %5 Xy, Xy Xg | | | %1y Xy Xy
X,, X3, X, Xy, X, X,
) ©

Figure 2.3: A hypergraph (a), its dual graph (b) and a joie {® [15].

It is well known that acyclic CSPs can be solvetiaently [14]. Given an acyclic
CSP and a join tree we are able to derive a solution from thretjee by applying the
algorithmAcyclic SolvingFigure 2.4) as presented in [15].

Algorithm Acyclic Solving determines whether there is ausioin for an acyclic
CSP by processing the join tree in bottom-up fashion. In esdep those tuples are
deleted from the constraint relation of a parent vestgxhat do not match any tuple
in the constraint relation of the current vertgx If the CSP has no solution the empty
relation will be created eventually at some vertex.

For computing a complete consistent assignment of the A§&itam Acyclic
Solving processes the join tree of reduced constraintoaekin top-down fashion. Start-
ing at the root it selects a tuple which is consistent withvileies that have already been
found and assigns new values according to the selected tejglere 2.5 visualizes the
effect of algorithm Acyclic Solving when applied to a CSP anddtis tree. Crossed out
tuples are eliminated by the semi-joins in the bottom-upsph&ray tuples are selected
in the top-down phase.
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Algorithm: Acyclic Solving

Input: a constraint satisfaction problep, D, C), C = {C4, ..., Cy} and a join treel
Output: a solution to the problem if existing

1. Letd = (v1,...,Vim) be an ordering of the vertices h such thatv; is T's root and each
vertex precedes all of its children éh

2. Associate each constraldt = (S;, R)) with its corresponding vertex in T.

3. /* BOTTOM-UP PHASE - eliminate not matching tuplgs *

for i = mto 2do
Letv; be the parent vertex af in T

Ri =R/ xR /* update relation R associated parentjt/
if R; is the empty relatiothen exit / the CSP has no solutiory*

4. /* TOP-DOWN PHASE - find a complete consistent assignnient *
Select a tuple iRy
for i = 2to mdo
Select a tuple ifR; that is consistent with all previous assignments.

Figure 2.4: Algorithm Acyclic Solving [15].

Algorithm Acyclic Solving can be implemented in such a wagttits running time
is in O(mnlogr), wherem is the number of constraints amdis the size of the largest
constraint relation, thus acyclic CSPs can be sol¥gdently. Furthermore, recognizing
whether a CSP is acyclic and computing the join tree of anlec@&P can also be done
efficiently [15].

e
m DU E x17'x2=x3
X X X
Xps Xy X | | Xgs Xgy Xy || X, X5, X

Figure 2.5: Acyclic Solving applied to a CSP and its join tree
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2.3 Decomposition Methods

We have seen that acyclic CSPs can be solficiently but we are still confronted with
a worst case running time @(n™ *logn) for solving CSPs in general.

Decomposition methods may be used for identifying and sgltriactable classes of
CSPs by exploiting the structure of the constraint hypgigr&iven an CSP instantea
decomposition method transforrhinto a solution-equivalent and acyclic CSP instance
I”. If I” can be found in time polynomial inl | and if the size of the largest relation in
I” is polynomial in| | | we will be able to solvé’ in polynomial time sincd’ is acyclic
[27]. Decomposition methods use a measure callielth in order bound the size of the
largest relation irl’.

2.3.1 Tree Decompositions
Basic Definitions

Definition 10 (Tree [29]) Let H = (V,H) be a hypergraph. Aree for a hypergraph
H is a pair(T, y) whereT = (N, E) is a rooted tree, angd is a labeling function which
associates to each vertpxe N the sety(p) C V.

Definition 11 (Tree Decomposition, width, treewidth [29]A tree decompositionf a
hypergraphH is a treeT D = (T, y) for H which satisfies the following two conditions.

1. for each hyperedgec H, there existp € verticegT) such thah € y(p).

2. for each variably € V , the se{p € verticegT) | Y € x(p)} induces a (connected)
subtree oflT (connectedness condition).

Thewidthof a tree decompositiofll, x) is MaXeverticest) Y (P) — 1. Thetreewidth
of H is the minimum width over all its tree decompositions.

Given a CSP, a tree decomposition of its constraint hypplgnaay be regarded as a
join tree of a solution-equivalent acyclic CSP. Thus a weofdghe the tree decomposition
represents a subproblem of the new acyclic CSP and the widthree decomposition
acts as an upper bound on the size of the greatest subprofdlamireewidth of the
constraint hypergraph is the minimal width which can be exdd by one of its tree
decompositions. When solving a CSP from one of its tree deositions, the first
condition for tree decompositions ensures that all coimdsraf the original CSP must
appear in at leat one subproblem of the new acyclic CSP. Tdendecondition for tree
decompositions guarantees that any variable must be aslsthe same value in each
subproblem in which it appears.
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Example 5. Figure 2.6 shows (a) a constraint hypergraph and (b) a tre@nalgosition of
width = 2 for the CSP presented below. Each tree vertex containsatieglegvertices
which are associated to it by the labeling functjan

Variables: X = {Xq1, X2, X3, X4, X5, X6}

DomaInS D = {DXl’ DXZ’ D)Q, DX4’ DXS’ DXG}
DX1 = {ae b}! DX2 = DX3 = e = DX5 = {b’ C}

Constraints: C = {C1,Cy, C3}
C1 = ({X1, X2, X3}, Ry)
C2 = ({X1, X5, X6}, R2)
C3 = ({X3, X4, X5}, Ra)
Ry ={(&b,c),(ac,b), (b, b,c)}
R> = {(a b,c),(a c,b)}
Rz = {(c, b, ¢),(c,c, b)}

The concept of tree decompositions was introduced by Redrednd Seymour in
[42] and was originally defined only for regular graphs. 8iewvery graph may be re-
garded as hypergraph with two vertices in each of its hygggdDefinition 11 covers
the definition for tree decompositions of graphs and extéimeleoncept of tree decom-
positions onto arbitrary hypergraphs. Yet another conmedietween tree decomposi-
tions of graphs and tree decompositions of hypergraphséndiy Lemma 1, taken from
[33].

Lemma 1 ([33]). (T, x) is a tree decomposition of hypergrag iff it is a tree decom-
position of G(#), the primal graph or Gaifman graph &f.

Computational Results for Tree Decompositions

Given a CSP instanck its constraint hypergraph and a corresponding tree dessimp
tion of width = k, a solution for CSP can be computed in tid@gd<1), wheren denotes

the number of variables of the CSP aththe maximum domain size [15]. Thus we are
interested in finding a tree decomposition whose width isesttm or equal the treewidth.
Unfortunately computing the treewidth of a graph iss®-hard problem. The formal
decision problem of treewidth asks if there exists a tre@uhgosition of width at most

k, for some integek. Arnborg et al. provedv®-completeness for that problem kf

is part of the input [1]. If we regar as a constant Bodlaender [6] presented a linear
time algorithm which decides whether there exists a treemposition of width at most

k. Moreover this linear time algorithm is also able to compateee decomposition of
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[x, %5, %, | |20, %5, X4 |[ %5, %4, X |

(a) (b)

Figure 2.6: Constraint hypergraph (a) and a possible treerdposition ofwidth=2 (b).

width at mostk. In practice this linear time algorithm performs very slgvelven for
small values fok due to a huge constant factor.

2.3.2 Generalized Hypertree Decompositions

In [29] Gottlob et al. proposed a new decomposition methoitkvtiney calledhypertree
decompositionsHypertree decompositions were originally introduced atathase the-
ory as a decomposition method for identifying and solvirggtable classes of boolean
conjunctive queries. In [27] Gottlob et al. showed that i{nee decompositions may be
applied to CSP as well and gave a comparison of structural d@8&mpositions meth-
ods which revealed that hypertree decompositions straygyheralize all other observed
decomposition methods. This means that whenever anotbengmsition method guar-
antees polynomial runtime for classes of CSPs then alsortigpedecompositions are
able to solve these classes in polynomial time but there lasses of CSPs that can
be solved in polynomial time by hypertree decompositionsdamnnot be solvedfi-
ciently by any other decomposition method explored in [ZHe quality of a hypertree
decomposition is again measured byidth, and the smallest width a hypertree decom-
position can achieve for a hypergragtiis denotechypertree widthhw(#). For fixed

k, the problem of checking whether the hypertree width of aehggaph is at modt is
feasible in polynomial time, as well as computing a hyperttecomposition of width at
mostk [29].

Generalized hypertree decompositiopresent a variation of hypertree decom-
positions. They are obtained by dropping one condition endbfinition of hypertree
decompositions, thus they generalize the concept of hygeedecompositions as indi-
cated by their name.
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Basic Definitions

Definition 12 (Hypertree [29]) Let H = (V,H) be a hypergraph. Aypertree for a
hypergraph® is a triple(T, y, 4), whereT = (N, E) is a rooted tree, ang and 1 are
labeling functions which associate to each vepiexN two setse(p) € V andA(p) € H.

Definition 13 (Generalized Hypertree Decomposition [288 generalized hypertree
decompositiorof a hypergraphH is a hypertre€&sHD = (T, y, A) for H which satisfies
the following three conditions:

1. for each edgé € H, there existp € verticegT) such thah C y(p).

2. for each variabley € V, the sefp € verticegT) | Y € x(p)} induces a (connected)
subtree off (connectedness condition).

3. for eachp € verticegT), x(p) < var(A(p)).

The width of a generalized hypertree decompositidn y, ) is MaXseverticegT)IA(P)I-
Thegeneralized hypertree-widtihghw(#H), of H is the minimum width over all its gen-
eralized hypertree decompositions.

The first and the second condition for generalized hypedemmpositions are
identical with the conditions for tree decompositions,stlaugeneralized hypertree de-
composition of a hypergrapf is a tree decomposition off at the same time. The
third condition says that for each vertex of the generaltzggkertree decomposition the
variables within the/-set of the vertex must be contained by at least one hyperiaedge
the A-set of the vertex.

Note that the above definition does not require that evenelggge has to be
associated with at least one vertex. This is necessary ier dodguarantee problem-
equivalence between a constraint hypergraph and its demetrdnypertree decomposi-
tion. Lemma 2 shows that each generalized hypertree deitigmocan be changed
efficiently in order to satisfy this additional requirement.

Definition 14 (from Definition 4.2 in [29]) A generalized hypertree decomposition
(T, x, Ay of hypergraphH is acomplete generalized hypertree decompositbr if,
for eachh € H, there existg € verticegT) such that C y(p) andh € A(p).

Lemma 2 (from Lemma 4.4 in [29]) Given a hypergrapt¥{, every k-width general-
ized hypertree decomposition GHD#&f can be transformed in logspace into a k-width
complete generalized hypertree decomposition GHD’, wkizeis Q|| +|GHD)).

Like a tree decomposition, also a complete generalized ringgedecomposition
may be regarded as a join tree of a solution-equivalent @c@3P. Again, a vertex of
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the complete generalized hypertree decomposition repiesesubproblem of the new
acyclic CSP. Each subproblem is defined by the vertices nvitliy-set and by the

hyperedges within itd-set. In contrary to the width of tree decompositions thetkvid
of a generalized hypertree decomposition is the maximumbeurof hyperedges or
constraints associated with a vertex, which measures tigleaity of the subproblem

more accurately. A subproblem consisting of many variableish are restricted by few
constraints is easily solvable.

The generalized hypertree width of a constraint hypergoiiotes the width of an
optimal generalized hypertree decomposition.

Example 6. Figure 2.7 shows a (complete) generalized hypertree deusitign for the
constraint hypergraph of the CSP in example 5. The varialgdgces which appear in
each tree vertex are those which are associated to it bylkeérg functiony. The con-
straintghyperedges within each tree vertex are those which areiagsdby the labeling
function A. It might be that a constraifityperedge associated with a tree vertex contains
a variablgvertex which does not belong to the varialplestices associated with the tree
vertex. Such variabl@gertices are marked with a™in the contraintghyperedges.

Gy 5%), Clx, %)

|C'1(x1,x2,x3)| | Cy (%, %y, %) | |C3(x3,x4,x5)|

Figure 2.7: Generalized hypertree decompositiowiofth=2.

Computational Results for Generalized Hypertree Decompadtons

Given a CSP instandeits constraint hypergraph and a corresponding compleaterge
ized hypertree decomposition width = k, a solution for CSP can be computed in time
O(lI|**Xlog1]), which is polynomial in the size of the CSP instance [27]mPating all
complete consistent assignments is feasible in outpytipahial time [27].

The generalized hypertree width of a hypergraph doesn’'t exceed both its
treewidth and its hypertree widtghw(H) < hw(H) < tw(H), thus problems may be
solved more fliciently from generalized hypertree decompositions. Unfwately, de-
ciding whetherghw(H) < k is an NP-complete problem [26] and moreover deciding
whetherghw(H) < k remainsN®-complete even for fixel [47].
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2.4 Solving CSPs from Tree Decompositions and Generalized
Hypertree Decompositions

Figure 2.8 shows a tree decomposition for the CSP in exampledSvisualizes how a
solution for the CSP is derived from it. For solving the CS#trirthe tree decomposition
we use steps 4. and 5. of algorithlnin Tree Clusteringn [15]. Given the CSP and a
tree decomposition Join Tree Clustering applies the fatigvstrategy:

1. Each constraint is placed in one vertex of the tree deceitipio containing its
scope. Afterwards each vertex represents the subprobldimdaig all complete
assignments for the variables of the vertex which are ctamtisvith the associated

constraints.

2. Each subproblem is solved independently. The solutioredah subproblem is
shown within the relation associated with the vertices guFe 2.8. Now we have
obtained a join tree of the solution equivalent acyclic peob

3. Apply algorithm Acyclic Solving for finding a complete csiatent assignment.

C1~|x1,x2,x3 | C3-|x1,x5,xﬁ | | 353,.1&74,355|—C‘2

C B C
A C B

Figure 2.8: Solving example 5 from a tree decomposition.

Figure 2.9 shows a complete generalized hypertree decatiopofor the CSP in
example 5 and visualizes how a solution for the CSP is deffinad it. Given a CSP
and a generalized hypertree decomposition we are able iieedesolution for the CSP
as follows:
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1. Compute a complete generalized hypertree decompasition

2. For each vertexp compute a new constraint relatid®, which is the projec-
tion on the variables in/(p) of the join of the constraint relations ia(p),
Rp = my(p) ™heap) h. AssociateR, with vertex p. Figure 2.8 shows the result-
ing relations. Now we have obtained a join tree of the sotugquivalent acyclic
problem.

3. Apply algorithm Acyclic Solving for finding a complete csiatent assignment.

Cl(xp s xg)a Cz(xp > xs)

|C1(x1,x2,x3)| | C, (x5 X5, X5) | |C3(x3,x4,x5)|

A B €
c Cc B

Figure 2.9: Solving example 5 from a (complete) generaltaguertree decomposition.

2.5 Bucket Elimination

In [37] McMahan showed how a method nantratket eliminatiof15] may be used for
the creation of tree decompositions and generalized hygeedecompositions. Bucket
elimination itself originates from constraint satisfacti Informally speaking, bucket
elimination algorithms tend to solve CSP by creating a tresochposition and solving
the problem on that tree decomposition. An example for adiuekmination algorithm

is algorithmAdaptive Consistendg [15]. In order to obtain a tree decomposition bucket
eliminations requires an elimination ordering, which isesrmputation of the vertices of
the constraint hypergraph.

2.5.1 Creating Tree Decompositions via Bucket Elimination

Definition 15 (Elimination Ordering) Given a hypergraptH = (V, H), anelimination
orderingfor # is an orderingr = (v1, ..., V) Of the vertices irV.
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Given a constraint hypergrapif = (V,H) and an elimination ordering- =
(v1, ..., V) Of the hypergraph’s vertices algorithBucket Eliminatior{37] (Figure 2.10)
returns a tree decomposition f&f.

Initially, the algorithm creates a bucket for each verteihef constraint hypergraph
and puts the vertices of each hyperedge into the bucket ahthémum vertex within
this hyperedge. The maximum vertex\¢f C V is the vertex with the highest index
according tar.

Afterwards the buckets are processed in order givesr.byhen processing bucket
By, we look at the sef := y(By,) — {vi}. Intuitively, A contains only vertices that will
be processed aftd,,. The setA is copied to the buck@vj of its maximum vertew;.
Additionally B,, andBy, are connected by an edge.

Finally we get a tree decomposition, where the buckets anphttoduced edges act
as a tree and the contents of the buckets represents theegastithin they-sets. Figure
2.11 shows a hypergraph (a) and the tree decompositiont(lpesl by algorithm Bucket
Elimination using the elimination ordering = (Xg, X5, X4, X3, X2, X1).

Fortunately, there exists at least one elimination ordevitmich forces algorithm
Bucket Elimination to return a tree decomposition of optimath (treewidth) [12],
[34], [43]. The set of all elimination orderings of a hypeagh H may act as search
space for the optimal tree decomposition. As a consequdrjt&fmding an elimination
ordering resulting in an optimal tree decomposition is\gR-complete problem.

2.5.2 Bucket Elimination for Generalized Hypertree Decompsitions

In [37] McMahan showed how bucket elimination can be extenideorder to obtain
generalized hypertree decompositions. The main idea Bédtignapproach is that every
generalized hypertree decompositidn y, 1) may be considered as a tree decomposi-
tion which satisfies an additional property.

o for eachp € verticegT), y(p) € var(A(p)).

This property requires that the hyperedges inttsets contain the variables in the
correspondingy-sets. Thus each tree decomposition can be transformed igemer-
alized hypertree decomposition by attaching hyperedgésetalecomposition vertices
which contain their variables.
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Algorithm: Bucket Elimination

Input:  a (constraint) hypergrapH = (V, H)
an elimination orderingr = (va, ..., V) of the vertices iV
Output:  atree decompositidf, y) for H

1. Initially B=0,E=0
for eachvertexv; introduce an empty bucké&,, x(By,) := 0

2. Fill the bucketsB,,, ..., By, as follows:
for each hyperedgén € H
Letv € h be the maximum vertex d¢f according tar
x(By) := x(By) U verticegh)
3. fori=nto2do
Let A= x(By) — {vi}
Letv; € A be the next vertex irh following v; in o
x(By,) :=x(By,) UA /¥ add vertices in A to bucket,B*/
E:=EuU(By.By) /¥ connect buckets 8 By, */

4. return ((B, E), ), whereB = {B,,, ..., By, }

Figure 2.10: Algorithm Bucket Elimination [37].
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In order to ensure that the width of the resulting generdlizgpertree decomposi-
tion is small we have to attach as few hyperedges as poseitdach tree decomposition
vertex. This optimization problem for each tree decompmsit vertexp is formalized
as set cover problem [32] in the following way:

Given V ={vq,...,Vp} a set of vertices
H={hy,...hp},Vi:h €V asetof hyperedges

For each tree decomposition vertgfind C ¢ H
such thajy(p) c verticegC) and|C| is minimal.

Also the set cover problem is asi"-complete problem [32] but minimal set cover
can be formulated as an IP-program [46] and so we are ablagdamaixact solutions for
small and middle instances for the set cover problem by thedfean IP-solver within
a reasonable amount of time. Moreover there is a greedyitidgof11] for the set cover
problem which in practice returns a close-to-optimal sotufor many instances.

In [37] McMahan used amongst others the greedy set covernugidtic [11] in
order to solve the set cover problems which arise duringdtuelkmination. The greedy
set covering heuristic [11] successively chooses the legger which covers most of
the uncovered vertices. Figure 2.11 shows a generalizeertigp decomposition for a
hypergraph obtained via "covering” the vertices of one stiee decompositions.

If the set cover problems that arise during the eliminatioocpss are solved ex-
actly, e.g. by using an IP-solver the quality of the resgltiree decompaosition is again
determined by the underlying elimination ordering. Unlike tree decompositions it
has not been shown whether there exists an elimination ingdérat produces an op-
timal generalized hypertree decomposition for bucket ielition combined with exact
set covering. In the next chapter we will prove that at least elimination ordering will
result in a generalized hypertree decomposition of optimdih.

2.5.3 \Vertex Elimination

Given a hypergraphH and an elimination ordering, the tree decomposition returned
by algorithm Bucket Elimination may also be constructed aiimethod calledrertex
elimination[44]. Algorithm Vertex Elimination(Figure 2.12) describes this technique
in pseudo code. Vertex elimination acts on the primal grdpd given hypergraph and
eliminates the vertices in order given by an eliminationeoirty. We say that a vertex
is eliminated from a graph when all its neighbors within tmapdy are connected with
each other and the vertex is removed from the graph. The ndmmation ordering
originates from this process which is also used in order tainlriangulations of graphs
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Figure 2.11: A hypergraph (a), a tree decomposition (b) angewmeralized hy-

pertree decomposition (c) obtained via bucket eliminaticom the orderingo =
(X6, X5, Xa, X3, X2, X1)-

[44], [25]. Many heuristic methods for tree decompositiagh as [5] and [24] use

vertex elimination and also the heuristic methods preseintéhis thesis will apply this
method.

Algorithm: Vertex Elimination

Input:  a (constraint) hypergrapH = (V, H)

an elimination orderingr = (va, ..., V) of the vertices iV
a tree decompositidft, y) for H

1. Initially B=0,E=0

Output:

for eachvertexv; introduce an empty bucké&,, x(By) :=0
2. Computes = G*(H) the primal graph ofH.

3. fori=ntoldo
/¥ eliminate vertex y*/
Xx(By) = {vi} UN(V)
Introduce an edge between each pair of non adjacent neigbbarin G
Letv; be the next vertex itN(v;) following v; in o
E:=EU(By,B))
Removev; from G

4. return ((B, E), x), whereB = {By,, ..., By,}

Figure 2.12: Algorithm Vertex Elimination [44].



Chapter 3

Elimination Orderings -
Generalized Hypertree Width

In section 2.5.2 we described how to build a generalized tiygedecomposition for a
hypergraphH from an elimination ordering. In this chapter we prove thgeaeralized
hypertree decomposition fot whose width equalghw(#{) can be obtained from at
least one elimination ordering. This result is particylamhportant for heuristic methods,
because it implies that the set of all elimination orderifgsa hypergraphH is an
appropriate search space for generalized hypertree width.

In [3] F. Bacchus proves that the elimination width of a hgpaeph equals its
treewidth, which implies that a tree decomposition of wigtjual to the treewidth can be
obtained from an elimination ordering. Our proof is in faghadification of the proof
provided by F. Bacchus, thus during the rest of the chaptewielarify in detail which
ideas have been adopted from [2] and [3], how we have modifideatended them and
which work has been done by us.

3.1 Problem Description

Definition 16. Let H = (V, H) be a hypergraph and let= (v, ..., vy) be an ordering of
the vertices irV, wherey; is thei — th element in the ordering. This induces a sequence
of hypergraphsH,,Hn_1, ...,H1 whereH,, = H andH_1 is obtained fromH; as fol-
lows: all hyperedges if{; containingv; are merged into one hyperedge and theis
removed. Thus the underlying verticesHf_, arevy, ...,Vvi_1. The setclique(vi, o, H)
denotes the set containing and all vertices that are adjacentvioin H; and the col-
lectioncliquego, H) := {cliquevi, o, H) |v; € V} contains all sets that are produced by

25
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removing the vertices off in the order given byr. (Parts of this definition were taken
almost verbatim from [3].)

Definition 17. The width ofC C V in H, width(C, ), is the size of the smallest subset
of hyperedges ir{ such that each vertex i@ is contained in at least one hyperedge of
the subset. The width off undero is the maximum width of a set inliquego, H),

width(o, H) := Cecliqmugszfr,ﬂ)vvldth(c’ H).

The elimination process in definition 16 produces the safeldaas bucket elim-
ination. As a consequence thedth(o, H) is the width of the generalized hypertree
decomposition produced by bucket elimination if the setecqroblem for each vertex
is solved exactly. Note that the labels obtained via thegssi definition 16 are also the
same labels as returned from vertex elimination (sectidr3®. because the adjacency
relations in the hypergraphs produced by the process initiefirl6 are equivalent to
the adjacency relations within the regular graphs in edafimtion step of vertex elim-
ination.

Now the question arises whether there is an elimination rorgesuch that
width(o, H) = ghw(H). If the answer for that question is yes we might obtain the
generalized hypertree decomposition of smallest wigtivf via bucket elimination or
vertex elimination if the arising set cover problems areadlexactly.

3.2 The Leaf Normal Form for Tree Decompositions

Definition 18 (Leaf Normal Form [2]) A tree decomposition TD= (T, y) for a hy-
pergraph{ = (V, H) is in leaf normal formif the following two conditions hold on
TD =(T,x).

1. there is a one-to-one mappiteaf : H — leave$T) between the hyperedges of
hypergraphH{ and the leaf vertices of tree decompositibb = (T, y) such that
for each hyperedgk € H it holds thaty(leaf(h)) = h.

2. each internal vertep € verticegT) has variableY in its label if p lies on a path
between two leaves witi in their labels.

The definition of tree decompositions in leaf normal form waleen almost ver-
batim from definition for tree decompositions for hyperdrayin [2]. This definition in
[2] requires additionally that a tree decomposition hasa@lbinary tree. This require-
ment has been dropped in definition 18 because for our pupdsee decomposition
in leaf normal form need not be a binary tree. FurthermoredecBus proposes two
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rules for transforming arbitrary tree decompositions tné@ decompositions satisfying
his definition. The first rule is used for transforming an @dvy tree decomposition
into a binary one and has no impact on our considerations. s€ébend rule describes
how to introduce leaf vertices, corresponding to hypersdgéich are needed for the
one-to-one mapping between the leaves of the tree decotioposind the hyperedges of
the hypergraph. Algorithnfransform Leaf Normal FornfFigure 3.1) uses this second
transformation rule in step 2.

We claim that the following algorithm is able to transformraet decomposition
TD = (T, ) into a tree decomposition in leaf normal fofhD’ = (T’, y’) such that for
each vertexy € verticegT’) there is a vertey € verticegT) with x’(p) € x(p).

Algorithm: Transform Leaf Normal Form

Input: hypergrapiH = (V, H), tree decompositioii D = (T, y) for H
Output: atree decomposition in leaf normal fofr®’ = (T’, y’)

of hypergraphH satisfying:

Vp' € verticegT’) dp € verticegT) : x’(p’) S x(p)

1. Initially TD' :=TD, T’ := T, Vp € verticegT) : x'(p) := x(p).

2. For each hypereddec H we introduce a new ledf and connect it to a vertethat has
already been i with h C ¥’(p) = x(p). The introduced leaf is labeled with the variables
of the corresponding hyperedgé(l,) := h, and we map hypereddeto the new leafy,
leaf(h) :=Ip.

3. While there is a ledfe leave $T’) that is not reached by the mappitleg f we deletd.

4. For each inner verte € verticegT’) and for each variabl¥ € y'(p’) we deleteY from
X' (p') if p’ is not on a path between two leaves witlin their labels.

Figure 3.1: Algorithm Transform Leaf Normal Form.
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Example 7. Figure 3.2 shows a hypergraph (a) and its tree decompoghionFigure
3.3 visualizes the leaves attached to the tree decompodiyiostep 2. of algorithm
Transform Leaf Normal Form as dashed boxes. The crosseeafuivhs deleted during
step 3. Figure 3.4 shows the tree decomposition obtainecekeying variables in step
4. This tree decomposition is already in leaf normal formossed out variables were

deleted in step 4.

P [CF

AB,C| |D,E,F|

h~ B h,

o

(a) (b)

Figure 3.2: Hypergraph (a) and its tree decomposition (b)

Figure 3.3: Tree Decomposition after step 3. of algorithmnsform Normal Leaf Form
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Figure 3.4: Tree Decomposition in leaf normal form aftepste

29
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3.2.1 Correctness Proof for Algorithm Transform Leaf Normal Form

Within this section we intend to prove that algorithm Tramef Leaf Normal Form
transforms an arbitrary tree decompositibD = (T, y) into a tree decomposition

TD = (T’,x’) in leaf normal form such that for each vertpk € verticegT’) there is

a vertexp € verticegT) with x’(p’) € x(p). The lemmas and the theorem within this
subsection as well as their proofs have been developealgrity ourselves.

Definition 19. Let H be a hypergraph angT, y) be a tree decomposition fé. For
each variabley in H the setTy consists of the vertices af which containY in their
associateg-set.

Lemma 3. After step 1. for each verteX p verticegT)’ there is a vertex
p € verticegT) with y’(p") < x(p).

Proof. Obviously, after step IT D’ andT D are the same tree decompositions-ofind
thus the lemma holds. O

Lemma 4. After step 3. T Dis a tree decomposition of hypergrag = (V, H).

Proof. In step 2. and step 3. we add and delete leaves from thd tréehus after step
3. T’ is still a tree.

Furthermore we have to show that first and the second condiiatree decompo-
sitions of hypergraphs are satisfied D)’ after step 3.

In step 2. for each hypereddree H we introduce a leaf verteby with y/(Iy) = h
and connect it to a vertem, with h C y/(p), which has already been D . Note thatp
must exist sincd D is a tree decomposition of hypergraghsatisfying the first condi-
tion for tree decompositions of hypergraphs. These leaneea@ deleted during step 3.
Thus after step 3. for eadhe H the vertedeaf(h) € vertice4T’) satisfies
h = y’(leaf(h)) c y/(leaf(h)). We conclude that the first condition for tree decomposi-
tions of hypergraphs is satisfied ByD’ after step 3.

Assume that the connectedness condition for tree decotigros satisfied byl D’
before but violated after a new lelafand a new edgéy, p) have been introduced in step
2. We know thatp is chosen such thdt = y’(In) € x’(p). When connecting the ledf
to p we connect also the legf to subtreel?, for each variablér € y(In), andTy, is still
a tree afterwards. Thus the connectedness condition caenablated after any action
taken in step 2.

Therefore it must be that the connectedness condition éer decompositions is
satisfied byT D’ before but violated after a lebhas been deleted in step 3. Then after
the deletion ofl there must be a variabM such that all vertices containing in their
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labels don't form a connected subtreeTdf We know that all vertices that contaiin
their labels form the subtreg, before the deletion df

If Y ¢ x'(I) then the deletion of doesn't changdy, and Ty, is still a tree after the
deletion ofl.

If Y € x/(I) then by deleting the ledffrom T’ we are also deleting the lekfrom
the subtre€l, and thus all vertices that contaiin their labels must form a subtree
after the deletion of.

We conclude that after step 3D’ is a valid tree decomposition of hypergraph
H. m]

Lemma 5. After step 3. the mapping leafH — leave$T’) is a one-to-one mapping
such that for each hyperedgecH it holds thaty’(leaf(h)) = h.

Proof. In step 2. we define a one-to-one mapping between the hypesedgl and the
introduced leaves such that for each hyperedgeH it holds thaty’(leaf(h)) = h. In

step 3. we delete only those leavesTiD’ that are not reached by the mappileg f.
Thus after step 3. the leavesDfare those that have been introduced during step 2. We
conclude that after step af is a one-to-one mapping between the hyperedged of
andleaves$T’). O

Lemma 6. After step 3 for each vertexX g verticegT’) there is a vertex g verticegT)
with x"(p’) < x(p).

Proof. We know from Lemma 3 that after step 1. for egtthe verticegT’) there is a
p € verticegT) with x’(p’) € x(p).

In step 2. for each hypereddrec edge$H) we introduce a lealf, with x’(Ip) = h
and connecl, to a vertexp that has already been inwith h € y’(p) = x(p). Thus for
each newly introduced le&f there is a vertexy € verticegT) such that
h=y'(In) € ¥'(p) = x(p)- Therefore the condition holds also for the newly introelilic
leaves inT’.

In step 3. we only delete vertices and the remaining versitisatisfy the property
since their labels are not changed.

We conclude that after step 3. for egghe verticegT’) there is ap € verticegT)
with x'(p') € x(p). o

Lemma 7. After step 4. the mapping leafH — leaveg¢T’) is a one-to-one mapping
such that for each hyperedgestH it holds thaty’ (leaf(h)) = h.
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Proof. From Lemma 5 we know that after stepl8af is a one-to-one mapping between
the hyperedges of hypergrap and leaves off’. Step 4. alters the labels of the
inner vertices ofl” but the number of leaves as well as the labels of the leaveagimem
unchanged. Thus after step 4. the mappeaf : H — leavegT’) is still a one-to-one
mapping such that for each hyperedge H it holds thaty’(leaf(h)) = h. O

Lemma 8. After step 4. T Dis a tree decomposition of hypergrag.

Proof. From Lemma 4 we know thatD’ is a tree decomposition after step 3.

In step 4. the labels of the vertices Df are altered but the structure Bf remains
unchanged. Thu¥’ is also a tree after step 4.

Additionally we have to show that the first condition and teeand condition for
tree decompositions of hypergraphs are satisfied Dyafter step 4.

From Lemma 7 we know that after step 4. the mappesf : H — leave$T’) is
a one-to-one mapping such that for each hyperddgeH it holds thaty’(leaf(h)) = h.
We conclude that the first condition for tree decompaositiohbypergraphs is satisfied
after step 4. since for each hyperedyge H there is a verteleaf(h) € verticegT’) with
h C x(leaf(h)).

Assume that the connectedness condition for tree decotigmssis satisfied by
TD’ after step 3. but violated after step 4. Then after step 4ethist be a variabl¥
such that the vertices containingin their labels don't form a subtree df. Thus the
vertices containing in their labels can be partitioned into two non-empty s€tsand
C,, such that each vertex @ is not adjacent to any vertex @y.

If there isn’t any leaf inC; thenC; contains only inner vertices df'. Letp’ € C;
be such an inner vertex. We know théte y’(p’) sincep’ € C;. Thusp’ must lie on
a unique pathP between two leaves$; andl,, containingY in their labels, otherwis¥
would have been deleted fropi(p’) in step 4. Note that in step ¥. hasn't been deleted
from the label of any vertex i sinceP is a path between two leaves containivigl,
andl, must lie inC,, according to our assumption that there is no le&4in

If all vertices in pathP containY in their labels then each of the verticesHreither
is in C; or C, and there must be at least one edge between a vertéxarid a vertex of
C,, a contradiction to our assumption that such an edge doesstt

Therefore it must be that there is at least one vertex on ttielgween; and p’
which does not contailY in its label and that there is at least one vertex on the path
betweenl, and p” which does not contailY in its label. SinceY hasn't been deleted
from the label of any vertex iR in step 4. and there isn’t any other patlfeient fromP
betweenr; andl, in treeT’ the connectedness condition for varialfl@as already been
violated before step 4. which contradicts Lemma 4.
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Thus it must be that there is at least one lgaih C; and by applying the same

argumentation as above @ we get that there is at least one léafn C,. SinceT’ is

a tree there must be a unique p&tibetweer; andl,. Again, in step 4.Y hasn't been
deleted from the label of any vertex i If each vertex irP containsY in its label there
must be at least one edge between a vertéjiand a vertex irC,, a contradiction to
our assumption that such an edge doesn'’t exist. If there extaxwinP that does not
containY in its label then it must be that the connectedness conditiomariableY has
already been violated before step 4. which contradicts Lam

We conclude that after step #D is a tree decomposition of hypergraph

O

Lemma 9. After step 4. each internal verteX p verticegT’) has Y in its labelff p/
lies on a path between two leaves with Y in their labels.

Proof. Necessity follows directly from step 4. Assume there is seygy’ in verticegT’)
with Y € y/(p’) and p’ does not lie on a path between two leaves Witim their labels
thenY must have been deleted froph in step 4. This contradicts our assumption that
Y € ¥'(p’) after step 4.

Suficiency. Assume thagt’ lies on a path between two leaves witlin their labels
andY ¢ x/(p’). SinceT’ is a tree there is a unique path between two of its leapés.
lies on a unique path between the two leaves contai¥iimgtheir labels andy doesn't
containY. ThenTD’ = (T’, ') doesn't satisfy the connectedness condition after step 4.
which has been proven to hold in Lemma 8 . O

Lemma 10. After step 4. for each’pe verticegT’) there is a pe verticegT) with
X' (P') € x(p).

Proof. We know from Lemma 6 that after step 3. for egtthe verticegT’) there is a

p € verticegT) with y/(p’) € x(p). Since in step 4. variables are only deleted and not
added to labels of vertices @f we conclude that after step 4. for egehe verticegT’)
there is ap € verticegT) with ¥’ (p’)  x(p). |

Theorem 1. For every tree decomposition TH(T, y) of hypergraphH there is a tree
decomposition T D= (T’, y’) of hypergraphH in leaf normal form such that for each
p’ € verticegT’) there is a pe verticegT) such thaty’(p’) < x(p). Moreover algorithm
Transform Leaf Normal Form returns such a tree decompasitio

Proof. Follows directly from Lemma 7, Lemma 8, Lemma 9 and Lemma 10. O
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3.3 From Leaf Normal Forms to Elimination Orderings

In this section we will show that we can derive an eliminat@deringo from a tree
decompositionT D = (T, y) in leaf normal form such that each set witlilique o, )
is contained within a vertex df D (see lemma 13).

This result is needed in section 3.4 in order to prove thatreeigdized hypertree
decomposition ofvidth = ghw can be obtained from at least one elimination ordering.
The definitions, lemmas and their proofs presented withis gbction are already im-
plicetly given within the proof for lemma 1 in [3]. Lemma 1 iB][says that for each tree
decomposition for a hypergrapl of width w there is an elimination ordering such
that the induced width of H underis at mostw. This result implies that an optimal tree
decomposition may be obtained from at least one eliminaiioiering. We partitioned
the proof for Lemma 1 in [3] into several definitions and lensraad modified the proof
of lemma 1 in [3] in order to ensure a better understandinghfereader. Nevertheless,
the results presented within this section have already peered by F. Bacchus in [3].

Definition 20. Let H = (V,H) be a hypergraph and let = v, ..., v, be an ordering of
the vertices irV. We use the notatior <, y in order to indicate that precedey in the
ordering. (Note that ik <, y theny will be removed fromH beforex.)

Definition 21. Let TD = (T, y) be a tree decomposition of hypergraph= (V,H) in
leaf normal form.

For an arbitrary vertey € verticegT) let

e T, denote the subtree af rooted atp
¢ vargp) denote the union of the labels of the leave3 jn

e depth{p) denote the distance fromto the root inT
For an arbitrary vertex € V of hypergraphH let

¢ leavegv) denote the set of leaves Thwhich containv in their labels
e dcaV) denote the deepest common ancestor of all the leaveawe $v)
o depthv) be the depth of the deepest common ancestor of all leaveaiciomg v,

depthv) := deptidcaV))

This definition was taken almost verbatim from Lemma 1 in [3].
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Lemma 11. Let TD = (T, ) be a tree decomposition of hypergragh= (V, H) in leaf
normal form. Thervv e V ¥p € verticegT)

1. ve y(dcaV))

2. leave$v) c verticegTgcqv))

3. Ve x(p) = vevargp)

4. v does not appear in any label of any vertex outside theesaiGlcqy)
Proof. We know that

1. dcaVv), the deepest common ancestor of the leaves containimgst lie on a path
between two leaves within their labels. Sincd D is in leaf normal form it must
be thatv € y(dcaVv)).

2. dca\v) is the deepest common ancestor of the leaveEk obfntainingv. Thus the
subtree rooted atcav) obviously contains all such leaves.

3. TD s in leaf normal form. Thus iff € y(p) there must be a path between two
leaves containiny and at least one of those two leaves must be in sulifree
rooted atp.

4. dcav) is the deepest common ancestor of all leaves withtheir labels. If any
vertex p outsideT, containsv thenp must lie on a path between two leaves with
v in their labels. If both leaves are iRy, then eitherp is in Ty or dca(v) isn't a
common ancestor of all leaves containig contradiction. If at least one leaf is
outsideT, then agairdca(v) isn’t a common ancestor of all leaves containing
contradiction.

O

Lemma 12. LetH = (V, H) be a hypergraph, T - (T, y) a tree decomposition of H in
leaf normal form and let- be any ordering of the vertices in V such that if
depthv) < depthw) then v<, w. If y € vargdcax)) and y<, x then ye y(dcax))

Proof. Assume by way of contradiction that there is a tree decortipasi D = (T, )
of a hypergraphH in leaf normal form, an ordering such that ifde pti{v) < depth{w)
thenv <, w and two verticesx andy such thaty € varddcax)) andy <, X but
y ¢ x(dca(x)). Fromy e vargdca(x)) we know that there is a ledin Tqcqx) coOntaining
y and fromy <, x we know thatde pti{dca(y)) < depth{dcax)). Thus it must be that
eitherdcaly) = dca(x) or dcay) ¢ verticegTgcax))-
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If decaly) = dcaxX) we know thaty ¢ y(dcay)) = y(dcax)), a contradiction to
Lemma 11.

If dcaly) ¢ verticegTqcax) thendca(x) lies on the unique patP between the
leaf | in Tycax) anddcaly). Sincey € y(dcay)) andy ¢ y(dcax)), P violates the
connectedness condition for tree decompositions of hygphg, a contradiction to our
assumption thaf D = (T, y) is a tree decomposition of hypergrat O

Lemma 13. LetH = (V, H) be a hypergraph, TG:= (T, y) a tree decomposition off
in leaf normal form and letr be any ordering of the vertices in V such that if
depthy) < depti(x) then y<, x. Then for each ¥ V it holds that

cliquelv, o, H) € x(dcav)).

Proof. By induction:

Basis: vy, is removed.

When v, is eliminatedclique(vy, o, H) containsv, and all vertices that are ini-
tially adjacent tov,. From Lemma 11 we know that, € y(dcav,)) and since
leavegv,) C vertice{Tgcav,)) We know thatTcqy,) contains all leaves withy, in their
labels. According to the one-to-one mapplagf between the hyperedges®f and the
leaves ofT, all hyperedges in whictt, appears irfH can be found ineave $vy).

Thus for each vertey initially adjacent tov, we havey € vargdcav,)) and since
Y < Vp it must be thay € y(dcavy)) (Lemma 12). We conclude thatique(v,, o, H)

< x(dca(vn)).

Induction step: We assume thatlique(v, o, H) C y(dcaV)) for v € {Vi;1, ..., Vn}. Vi IS
removed.

Whenvy; is eliminatedclique(v;, o, H) consists of;, of vertices that were initially
adjacent tos; and of vertices that are adjacentafter one of the vertices .1, ..., Vi
has been eliminated.

We know that; € y(dcav;)) (Lemma 11).

For each vertey that was originally adjacent tq it must be thaly andv; appear
together within an hyperedge &f and thus they are also together within a leafTof
Sinceleavegv;) C verticegTqycay)) (Lemma 11) it must be that € vargdcavi)). We
know thaty € vargdcaVv;)) andy <. Vi thus we conclude thate y’(dcav;)) (Lemma
12).

For each vertey that is adjacent due to the elimination of a vergxvith
Vi <s Vj, we know thaty, vi,v; € clique(vj, o, H) < x(dcalv;)) according to our induc-
tion assumption.
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If dca(v;) ¢ verticegTqacav)) theny; ¢ x(dcalv))), since there is no vertex outside
the subtree rooted ifigcqy) that containgy in its label (Lemma 11), a contradiction to
Vi E/\/(dCE(Vj)) .

Thus it must be thaticalv;) € vertice§Tqcqv)). Sincey € y(dcav;)) we know
thaty € vargdcavj)) (Lemma 11). Sincelcav;) € verticeTycqy)) it must be that
vargdcavj)) < vargdcav;)) and thusy € vargdcayv;)). Fromy € vargdcay;)) and
y <o Vi we conclude thay € y(dcav;)) (Lemma 12). ]

Example 8. Figure 3.5 shows a tree decompositions in leaf normal fordtlae deepest
common ancestors (dca) for each variable. For the variablg® elimination ordering
o it holds that ifde ptiy) < depth{x) theny <, x. Figure 3.6 shows a tree decompaosition
(a) derived fromo via bucket eliminatiofvertex elimination. The variables in each
vertex are contained by at least one vertex of the origie& tiecomposition (b).

dea:C F

o=(C,F,A,B,D,E)

Figure 3.5: Elimination ordering derived from deepest common ancestors (dca).
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o=(C,F,A,8,D,E)

(a) (b)

Figure 3.6: Tree decomposition (a) derived frenand original tree decomposition (b).
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3.4 Obtaining an Optimal Generalized Hypertree Decompo-
sition from Elimination Orderings

In this section we prove that for each hypergrafhthere is at least one elimination
orderingo such that the width of{ undero equals the generalized hypertree width,
width(o, H) = ghw(H). As a consequence of this result our approach to createaene
ized hypertree decompositions via bucket elimingtiertex elimination is able to create
a generalized hypertree decomposition of minimal widthe $at of all possible elimi-
nation orderings for a hypergraph may be regarded as sepacie $or the generalized
hypertree width.

Theorem 2. Let H = (V,H) be a hypergraph, GHDG= (T, x, 1) be a generalized hy-
pertree decomposition of hypergrapti and let k be the width of GHD. Then there
is an orderingo of the vertices in V such that the width Bf under o is at most k,
width(c-, H) < k.

Proof. As generalized hypertree decompositi@hiD is also a tree decomposition of
hypergraphH. From Theorem 1 we know that there is a tree decompos@ibiD’ =
(T, x’y of H in leaf normal form such that for eaghi € verticegT’) there is ap €
verticegT) satisfyingy’(p’) € x(p).

According to Lemma 13 there must be an orderingf the vertices irV such that
for eachC € cliqueqo, H) there is ap’ € verticegT’) with C € y/(p’). Then for each
C e cliquego, H) there must also be jp e verticegT) with C C y(p) andwidth(C, H)
< |A(p)l. width(C, H) was defined to be the size of the smallest subset of hypesédge
9H such that each vertex @f is contained in at least one hyperedge of the subset. Since
the hyperedges in(p) contain all vertices op, thus also all vertices @, the cardinality
of A(p) may exceeavidth(C, H), thuswidth(C, H) < |A(p)|.

The width of GHD is the maximum number of hyperedges associated with a vertex
in T and the width ofGHD is supposed to bk. Since for each se&f € cliquego, H)
there is ap € verticegT) with C C x(p) andwidth(C, H) < |A(p)| we conclude that the
width of H undero- does not exceed the width &HD, width(c, H) < k. O

Theorem 3. LetH = (V,H) be a hypergraph. Then there must be an orderingf the
vertices in V such that widtbr, H) = ghw(H).

Proof. The generalized hypertree width of a hypergraithghw(H), is defined to be the
minimum width over all generalized hypertree decompasgiof#{. Thus there must be
a generalized hypertree decomposit®H D of H such thawidth(#H) = ghw(#). From
Theorem 2 we know that there must be an ordesirgich thawidth(c-, H) < ghw(H).
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In [37] it is shown that given an ordering of the vertices ofygpdrgraph a gen-
eralized hypertree decompaosition consisting only of the peoduced by that ordering
can be constructed. Width(o, H) < ghw(H) there would be a generalized hyper-
tree decomposition of width smaller thghw(#), which contradicts the minimality of
ghw(H). Thus it must be thawidth(co, H) = ghw(H). m]



Chapter 4

An Overview of Heuristic Methods
used in This Thesis

In this chapter we give a short description of the heuristethnds which are applied
within this master thesis. These heuristic method$eaxach and bound algorithm#*
algorithmsandgenetic algorithmsFurthermore we are going to review already available
heuristic methods for tree decompositions and relatediqmud

4.1 Branch and Bound Algorithms

A simple but indficient method for finding the optimal solution for an optirina
problem isexhaustive searchExhaustive search checks each solution for a given op-
timization problem and returns the optimal solution aftez tvhole search space has
been visited. Since the search space for an optimizatioolgmrois usually very large,
exhaustive search may not return the optimal solution withireasonable amount of
time.

A branch and bound algorithrtries to overcome this problem by identifying and
omitting regions within the search space which don’t cansolutions that are better
than the best solution we have already found during the Beakcbranch and bound
algorithm "shrinks” the search space by the help of the failhg two techniques:

1. Branching The overall search space is partitioned into several smalib re-
gions. This process is recursively applied on the subragionil we end up in
single solutions for the optimization problem. The produsebregions may be
visualized as a tree, th®anch and bound treer thesearch tree

41
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2. Bounding For each subregion a lower (minimization problem) or ananimund
(maximization problem) on the value of the best solutiorhimitthe subregion is
computed which is used for narrowing the search space.

In order to discard those regions from the search space fillatowlead to better
solutions a branch and bound algorithms applies a stratagdgruning For mini-
mization problems this is done by maintaining a global \@daipper bound containing
the value of the best solution found so far. The upper boung Ineainitialized with
the value of a randomly or heuristically created solutiorhéiever a solution of better
quality is explored the upper bound will be updated. For eadiregion we compute
a lower bound on its optimal solution. If the lower bound fosubregion exceeds the
current upper bound we may discard this subregion.

Example 9. Figure 4.1 shows a search tree representing all possiligneliion order-
ings for three vertices and visualizes an imaginary exenutif a branch and bound
algorithm on this tree. The value in a tree node is the lowembddor the subregion
represented by the tree rooted at this node. Initially= 20, then a solution of value
14 is found, thusib = 14. Whenever the lower bound of a node is greater or equal to
the current value foub the solutions below this node are excluded from the brandh an
bound search (dashed nodes).

initial upper bound ub = 20 @

new upper bound ub=14

Figure 4.1: Branch and bound search.

Branch and bound algorithms are exact methods. If they semginough time they
will return an optimal solution of the problem they are desid for. A branch and bound
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algorithm may also be used as approximation for the bestisoluFor instance, if we

restrict the running time of a branch and bound algorithmm tthee branch and bound
algorithm will return the value of the best solution whictshmeen found until the time
limit was exceeded. The pruning power of a branch and bouyarigim depends on
the quality of the upper and lower bound heuristics whichegma@ied within the branch
and bound algorithm. A key issue for developing branch anthdalgorithms for min-

imization problems, such as finding the treewidth and gdizechhypertree width of a
hypergraph, is the design of good lower bounds.

4.2 A* Algorithms

A* algorithms (pronounced A star) are graph search algorithms which findpgimal
path from a start vertex to a goal. Like branch and bound lgos also A* algorithms
are exact methods. In the previous section we mentionedatheanch and bound al-
gorithm partitions the search space successively into sgioms and this partitioning
process is visualized as branch and bound tree. We maydramsf branch and bound
tree into a graph search problem as shown in Figure 4.2. Hnefet our search is the
root of the tree. The costs for getting from vertices to tlsgiccessors are associated
with the edges. Finally we introduce a goal vertex coverihgaves of the tree.

i

Figure 4.2: Graph search problem derived from branch anddtee in Figure 4.1.

A* algorithms arebest-first searchmethods. A best-first search algorithm selects
the next vertex that will be visited within the search acawgdo an evaluation function
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f(n), which is an estimate for the costs of a path from the stathé¢ogoal containing
the vertexn. The vertex with the lowest value fdi(n) is chosen to be visited next
and its children will be evaluated according f¢n) (Figure 4.3). In practice, the
unvisited vertices are stored within a priority queue oedeby their values forf (n).
The evaluation functiorf (n) for A* algorithms is an lower bound for the lowest costs
of a path from the start to the goal containing the verteR* algorithms computef (n)

in the following way:

f(n) = g(n) + h(n)

g(n) denotes the costs for reachingand h(n) is an estimate for the lowest costs
for getting fromn to the goal. In order to find the optimal solution it is readudaa
to continue the search at the vertex with the lowest valuef foy = g(n) + h(n) [45].
Moreover it turns out that if the search graph is a tree, ssdhlaranch and bound tree,
and if h(n) is anadmissible heuristicwhich means thali(n) never overestimates the
lowest costs for reaching the goal framthe path returned by an A* algorithm will be
the optimal solution. The main drawback with A* algorithnsstihat there may be an
exponential number of vertices within its priority queuelsthat an A* algorithm may
run out of memory before it has completed its search.

If we have a branch and bound algorithm for an optimizatioobfgm we may
obtain an A* algorithm for that problem:
e Our search graph is the modified branch and bound tree (Fgye
e Forg(n) we use the costs of the partial solution represented bexart

e For h(n) we use a lower bound on the value of the partial solution&iwithe
subtree rooted at.
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Figure 4.3: Best-first search.
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4.3 Genetic Algorithms

Genetic algorithmgGAs) were developed by Holland [31] in the 1970s. They repné
a class ofevolutionary algorithmqEAs). Evolutionary algorithms try to find a good
solution for an optimization problem by imitating the piiiple of evolution. They alter
and select individuals from a population of solutions foe thptimization problem.
In the following we introduce and describe frequently usemins within evolutionary
algorithms:

population ... set of candidate solutions

individual ... a single candidate solution

chromosome ... set of parameters that determine the properties of éiGolu
gene ... single parameter

allele ... concrete value for a parameter

genotype ... all concrete parameter values of a chromosome
phenotype ... all properties of a candidate solution

Figure 4.4 shows the structure of a genetic algorithm [38]gehetic algorithms
tends to optimize the value of an objective function of anrofation problem, in terms
of genetic algorithms also calldidness function At the beginning a genetic algorithm
creates an initial population containing randomly or h&tigally created individuals.
These individuals are evaluated and assignéithassvalue, which is the value of the
fithess function for the solution represented by the indigld The population is evolved
over a number of generations until a halting criterion isséatd. In each generation the
population undergoeselection recombination also denotedrossovey andmutation

During the process of selection the genetic algorithm decidhich individuals
from the current population are allowed to enter the nextutaipn. This decision
is based on the fithess value of the individuals and indivglo&better fithess should
enter the next population with higher probability than indiials of lower fitness. Not
selected individuals are discarded and won't be evolvetthéur

The process of recombination or crossover combinégrént properties of sev-
eral parent solutions within one or more children solutjadso denotedyfsprings If
only good or the best properties of the parents are combimedesulting child may
be fitter than any of its parents. Recombination is the cheriatic operator of genetic
algorithms. Within the other class of evolutionary algamits,evolution strategie$ES),
recombination isn’t applied.

During the process of mutation the individuals are slighttgered. Mutation is used
to introduce new genetic material into the population.
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Genetic Algorithm
t=0

initialize populationt)
evaluatepopulatiort)

while —terminateddo
t=t+1
selectpopulatior(t) from populatior{t — 1)
recombinepopulatior(t)
mutatepopulatior{t)
evaluatepo pulatiort)

Figure 4.4: The structure of a genetic algorithm [38].

In practice parameters are used in order to control the li@haf’a genetic algo-
rithm. Typicalcontrol parametersre mutation rate, crossover rate, population size and
parameter for selection techniques. The crossover ratafigsehow many individuals
undergo crossover during an iteration, the mutation rageifips the probability that a
individual is mutated during an iteration whereas the patoh size determines how
many individuals appear together within the populationtaReeters for selection tech-
niques are used to control the degree how much individudigbkr fithess are preferred
to individuals of small fithess. The choice of the controlgraeters has a cruciaffect
on the behavior of the algorithm.

4.3.1 Problem Representation

When designing a genetic algorithm for a given optimizafiooblem we have to think
about how a solution for the problem may be represented mitté genetic algorithm.
Popular problem representations are bit-strings, pertoos finite state machines and
symbolic expressions [38]. We intend to develop genetioritlyms for tree and general-
ized hypertree decompositions. In chapter 3 we have seeththaet of all elimination
orderings, which is the set of all permutations of the vegiof a hypergraph, repre-
sents a suitable search space for the optimal tree or gereetéilypertree decomposition.
Therefore we will describe standard crossover and mutajmarators for permutations
in the following two sections.



CHAPTER 4. AN OVERVIEW OF HEURISTIC METHODS USED IN THIS. .. 48

4.3.2 Crossover Operators for Permutations

The crossover operators described within this sectionakentfrom [36]. Figure 4.5
gives an overview of the presented crossover operators.

Partially-Mapped Crossover (PMX)

The partially-mapped crossover operator determines aaves area within the parent
solutions by randomly selecting two positions within thempetations. The genes in the
crossover areas define a mapping. The crossover areas hemnggd. If a gene outside
the crossover area appears in the exchanged area it isedgigche value defined by
the mapping.

Cycle Crossover (CX)

The cycle crossover operator can be described as followthe Ifirst parent is written

above the second parent we can consider the ordering asla pargutation. Then we
have to determine the first cycle of that permutation. Withia afspring the elements
of the cycle have the same position as in the first parent. Ter @lements have the
same positions as in the second parent.

Order Crossover (OX1)

The order crossover operator determines a crossover attaa thie parents by randomly
selecting two positions within the permutation. The gemethé crossover area of the
parent are copied to theffepring. Starting at the end of the crossover area all genes
outside the area are inserted in the same order in which ttwy @ the other parent.

Order-Based Crossover (OX2)

The order-based crossover operator selects at randomak@asitions in the parent
string by tossing a coin for each position. The genes of omernpaat these positions
are deleted in the other parent. Afterwards they are raién the order of the other
parent.

Position-Based Crossover (POS)

The position-based crossover operator also starts witlotaed) a random set of positions
in the parent strings by tossing a coin for each position. @leenents at the selected
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positions are exchanged between the parents in order te ¢headisprings. The genes
missing after the exchange are reinserted in the order afttier parent.

Alternating-Position Crossover (AP)

The alternating-position crossover operator createdi@pring by selecting alternately
the next element of the first parent and the next element as¢hend parent, omitting
the elements already present in tHEspring.

parents offsprings
PMX [i]2]s]e]s]6]7]s] >< [+]2]s]1]els]7]s]
7 [sia]a]a]d] [3]7 [s]a]s]6]a]s]
CX  [z2slels]s[7]s] >< [ [2]ala]7]s]a]¢]
I I S
(2] [s]e]7[s[a]t] [2]a [s]s]s]e]7]1]
OX1 [1]z2]s]s]s]s[7]s] >< []7 [s[4]5]1]2]e]
(2[4 sl ]s][s]1] [¢]5 [s]e[7[1]2]5]
OX2 [a[GTels el 5] >< [12]s]afs]s]7]s]
(2] [s]s]7]s]a]1] [2]e[s]efv]s]e]1]
POS [i]2]s]4]s]6]7]s] >< [1]els]a]z]s]7]s]
[2]efefe]7]s]a]1] [+]2]s]s]7]6]s]1]
AP [i]afs[e[s[e]7]s] >< [1]2]e]e o e]s [7]
[2]«]s[s]7[s]s]1] [2]1[«]e[s e[ [5]

Figure 4.5: Crossover operators for permutations.
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4.3.3 Mutation Operators for Permutations

The mutation operators described within this section akertdrom [36]. Figure 4.6
gives an overview of the presented mutation operators.

Displacement Mutation Operator (DM)

The displacement operator selects a random substring abthidon. This substring is
moved to a random position of the solution.

Exchange Mutation Operator (EM)

The exchange mutation operator randomly selects two elsnirethe solution and ex-
changes them.

Insertion Mutation Operator (ISM)

The insertion mutation operator randomly chooses an eleiméime solution and moves
it to a randomly selected position.

Simple-Inversion Mutation operator (SIM)

The simple-inversion mutation operator selects randomdydutpoints in the string that
represents the individual and reverses the substring ketitese two cutpoints.

Inversion Mutation Operator (IVM)

The inversion mutation operator selects a substring, resxavfrom the string and ran-
domly inserts it at a randomly selected position in reverxsekr.

Scramble Mutation Operator (SM)

The scramble mutation operator selects a random substithgearders the elements in
it at random.
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B
DM [1]z[s[4[s[s[78] —— [1[2[¢[7[3][4]5]s]

EM

[1]2[3[4[5]6]7]8] ——
SIM
IVM [1]2]3]4]5]6][7]8] ——

SM [1]z]sfafs]e]7 /8] —— [1]2]c[a[5]5]7]s]

ISM

Figure 4.6: Mutation operators for permutations.
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4.4 A Review of Existing Branch and Bound Algorithms for
Tree Decompositions

Within this section we give a description of two branch andrmbalgorithms for com-
puting the treewidth of regular graphs, algoritiBB-tw introduced by Bachoore and
Bodlaender in [5] and algorithruickBBintroduced by Gogate and Dechter in [24].
Our review will concentrate only on those ideas in [5] and][24hich will be adopted
for the development of new heuristic methods for tree deasitipns and generalized
hypertree decompositions in this thesis later.

4.4.1 The Basic Branch and Bound Algorithm

Both branch and bound algorithms BB-tw [5] and QuickBB [2dirpute the treewidth
of a regular graph based on elimination orderings. Figutesdows a branch and bound
tree representing all possible elimination orderings fiwe¢ vertices which is searched
by the branch and bound algorithms. At the beginning thedbramd bound algorithms
create a solution heuristically. The width of that solutamts as the first upper bound on
the treewidth and is stored within the variable Starting at the root the tree is searched
in depth-first-search fashion. If the search visits a newckeaode a vertex is eliminated
from the graph. In each node of the branch and bound tree tlwsviiog values are
computed:

¢ the degree of the vertex that is eliminated in the branchieg, slenoted.

e the maximum degree of all eliminated vertices along the fatim the root to
the current node in the tree, denotgdg is the width of the partial elimination
ordering consisting of the vertices on the path from the totte current node and
is computed ag = maxd, g'), whereg’ denotes the width of the partial solution
represented by the parent node of the current search node.

¢ a lower boundh on the treewidth of the graph obtained after eliminatingvatt
tices of the path from the root to the current node in the tree.

¢ a lower bound on the width of the tree decomposition of thgioal graph which
may be reached when continuing the search in the subtreedrabtthe current
search nodef = maxg, h).

If f > ubthen the subtree rooted at the current node will be discafmbed the
search. The search continues at the parent node of the taeanmth node. If the search
ends in a leaf of the branch and bound tree and the width ofdiuéian represented by

that leaf is smaller thanb, thenub s set to this new upper bound on the treewidth.
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The above description refers to the branch and bound setadtpasithm QuickBB
[24], but also algorithm BB-tw [5] applies the same searchgiple as algorithm
QuickBB.

4.4.2 Upper and Lower Bound Heuristics

For computing a first upper bound algorithm QuickBB uses thefitt heuristic. BB-
tw uses heuristics introduced in [4] for getting the first eppound. The following
description of the min-mill heuristic is taken almost veilvafrom [24].

min-fill heuristic: Order the vertices from 1 to as follows. First select a vertex
v which adds the least number of edges when eliminated frorgréqeh and place it at
positionn. Eliminatev from the graph and introduce an edge between each pair of not
adjacent neighbors of Now select any vertex that adds the least number of edges whe
eliminated and place it at the next position in the orderiRgpeat the process breaking
ties arbitrarily.

For computing a lower bound on the treewidth of a graph GogateDechter pro-
pose a new heuristic named minor-min-width [24] which is liempented in QuickBB.
Bodlaender et al. developed the same heuristic indepdgdienf9] and named it
MMD +(least-c). Algorithmminor-min-width in Figure 4.7 was taken from [24] and
presents the the lower bound heuristic in pseudo code optati

Algorithm: minor-min-width

Input: a graplc

Output: a lower bound on the treewidth Gf
1.Ib=0
2. repeat

(a) Contract the edge between a minimum degree vertardu € N(v) such that
the degree ofi is minimum inN(v) to form a new graph il5’. Ties are broken
randomly.

(b) Ib = maxlb, degreg(V)).
(c) SetGtoG'.

3. until no vertices remain i.
4. return Ib
Figure 4.7: Algorithm minor-min-width [24].

Bachoore and Bodlaender use the degeneracy heuristic §dhanRamachandra-
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murthiy parameter of the graph [41] for a getting lower bound in BB-te present
another heuristic taken from [35] which we will use as loweubd heuristic for the
treewidth of graphs. The heuristic is denot@éhor-yr within this thesis and is pre-
sented below in Figure 4.8.

Algorithm: minor- yr

Input: a graphG

Output:  alower bound on the treewidth Gf
1.Ib=0
2. repeat

(a) Sortthe vertices i according to their degrees in ascending order.

(b) Determine the first vertexin this sequence that is not adjacent to all its predeces-
sors.

(c) yr = degreg(v)
(d) Contract the edge betwegrandu € N(v) such that the degree afis minimum in
N(v) to form a new graph i®’. Ties are broken randomly.

(e) Ib = maxlb, ygr).
(f) SetGtoG'.

3. until no vertices remain i.

4, return b

Figure 4.8: Algorithm minoryg [35].

4.4.3 Reduction Techniques for Graphs

In [8] Bodlaender et al. present techniques for removingiees from graphs without
changing their treewidth. Both algorithms BB-tw [5] and GkBB [24] apply these
rules in order to reduce the search space for the branch amditsgarch.

Simplicial Vertices

Definition 22 (Simplicial vertex [24]) A vertex v of graphG is simplicial if all its
neighbors induce a clique &.

In [8] it is shown that when removing a simplicial vertex frangraph the treewidth
of the resulting graph doesn’t exceed the treewidth of tigéral graph. Thus whenever
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a simplicial vertex appears in the graph during the brandrbanind search the simplicial
vertex is removed in the next step.

Strongly Almost Simplicial Vertices

Definition 23 (Almost simplicial vertex [24]) A vertexv of graphG is almost simplicial
if all but one of its neighbors induce a clique.

Definition 24 (Strongly Almost Simplicial vertex [5]) An almost simplicial vertex of
graphG is strongly almost simplicialf the degree o¥ in G doesn’t exceed any lower
bound on the treewidth @.

In [8] it is shown that when removing a strongly almost siroali vertex from a
graph the treewidth of the resulting graph doesn't exceedriewidth of the original
graph. Thus whenever a strongly almost simplicial vertgxeaps in the graph during
the branch and bound search the strongly almost simplieiéx is removed in the next
step.

4.4.4 Reducing the Search Space

In [24] Gogate and Dechter define a subset of the set of alllgesdimination orderings
of a graph, denotetteewidth elimination seds follows:

Definition 25 (Treewidth elimination set [24])Let P be the set of all possible orderings
o = (v, ..., V) Of vertices of a grapks constructed in the following manner. Select an
arbitrary vertex and place it at position Fori = n—1to 1, if there exists a vertaxsuch
thatv ¢ N(vi;1), make it simplicial and remove it froi®. Otherwise, select an arbitrary
vertexv and remove it fronG. Placev at positioni. P is called theéreewidth elimination
setof G.

Moreover in [24] they present a lemma implying that it isisient to consider only
elimination orderings within the treewidth eliminatiort seorder to get the treewidth of
a graph. Therefore algorithm QuickBB [24] uses only the &lation orderings in the
treewidth elimination set for the branch and bound search.

4.4.5 Pruning Rules

Suppose that we are in a node of the branch and bound tregpkethe width of the
partial solution represented by that node andhieienote the number of vertices that
haven't been eliminated yet. We know that the width of a sofutvithin the subtree
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rooted at the current search node may be at mestmaxg, n’ — 1). If wis smaller than
the width of the best solution found so far,< ub, we know that we will find a better
solution within the subtree rooted at the current searctenddere are two cases. If
n — 1 < gthen we don't have to continue the search within the subtifee. — 1 > g
then at least one solution within the subtree will lead tow npper bound of at most
n’ — 1 but we have to continue the search within the subtree foinfinits best solution.
This observation was made in [5] and leads to the followingnprg rule for each node
of the branch and bound search.

Pruning Rule 1 (PR 1)[5]
computew := maxg,n’ — 1)
if w< ubthenub=w
if " — 1 < gthen exclude the subtree rooted at the current node fronmetirets

In [24] Gogate and Dechter present several pruning rulesefducing the search
space of algorithm QuickBB. Bachoore and Bodlaender foatedl another pruning rule
in [5] and claimed that this rule will have similar pruningvper.

Pruning Rule 2 (PR 2)[5]

Supposev andw are successive vertices in an elimination orderdngndv andw are
not adjacent ov andw are adjacent and each vertex has a neighbor precednm o
that is not a neighbor of the other in the graph obtained byipkting the vertices i
until v. Then the ordering”’, obtained by swappingandw in o, has the same width as
o. Thus, we prune the search tree as follows: for such a paienicesv, w, when we
have looked at a branch representing the elimination argemending wittw, v, X;, ..., X
we prune the branch representing the orderings endingwwithx;, ..., X,.

Pruning Rule 2 was taken almost verbatim from [5]. Figurga).$hows a part
of a branch and bound tredfected by this pruning rule. From Figure 4.9(b) we see
why this pruning technique may be applied to the branch amddsearch. The graph
obtained by eliminatinyy andw is always the same no matter in which ordesandw
were eliminated. I andw are not adjacent the same sets are created when eliminating
beforew and when eliminatingv beforev. If they are adjacent the maximum cardinality
of the sets created when eliminatingand w is independent from the order of their
elimination.
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(@) b)

Figure 4.9: Pruning rule 2 may be applied to the verticendw in (b) [5]. As a
consequence a subtree of the search tree may be excludethiaearch (a).

4.5 A Genetic Algorithm for Triangulating the Moral Graph
of Bayesian Networks

In [36] Larrafiaga et al. introduced a genetic algorithm decomposing Bayesian
networks. A Bayesian network consists of vertices repitaggstochastic variables and
directed arcs representing dependencies between théleariand may be visualized
as directed acyclic graph. The variables of a Bayesian n&tlvave a finite set of
states, which are comparable with the domains of a CSP, and fariablev; the
number of possible states for that variable is denate&rom the directed acyclic graph
representing the Bayesian network we are able to derive alalanoral graph, which
is a regular graph. The genetic algorithm presented in [B6% @t computing a "good”
triangulation of that moral graph by the help of eliminatamderings which is equivalent
to finding a "good” tree decomposition for the moral graph. e&png in terms of
tree decompositions the genetic algorithm doesn't tenchtb di tree decomposition of
smallest width but it assigns a weight to a tree decompaosiiD = (T, y) according to
the following formula:

w(TD) = Iogzz n n;

UET viex(u)
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The genetic algorithm presented in [36] uses amongst othersrossover oper-
ators described in section 4.3.2 and the mutation operateisented in section 4.3.3.
Larrafiaga et al. tested the genetic algorithm with two bherark graphs trying several
combinations of crossover and mutation operators in coatioin with diferent popu-
lation sizes, mutation rates and selection biases. For raampinations the returned
results were better than for other triangulation methodsly @he results returned by

simulated annealing for the benchmarks were equivalet thé best results of the ge-
netic algorithm.



Chapter 5

An A* Algorithm for Treewidth

Within this chapter we present an A* algorithm which is aldecompute the treewidth
of a regular graph. This algorithm will also compute thewrieith of a hypergraph if it
is applied on the primal graph of the hypergraph.

5.1 Algorithm A*-tw

In order to compute the treewidth of a graph the A* algorithearshes the search tree
representing the elimination orderings in the treewidtmiglation set (Definition 25).
Additionally it uses the second pruning rule (PR 2 from sst#.4.5) and the reduction
rules for simplicial and strongly almost simplicial vedg&for narrowing the search space
(section 4.4.3). As upper bound heuristic for the treewigithuse the min-fill-heuristic
and as a lower bound we take the maximum of the values retloydkde minor-min-
width heuristic and the minoyg heuristic (section 4.4.2). The resulting algorithm is
namedA*-tw and is described in Figure 5.1.

The algorithm uses a single priority queue, denafeeue for storing search states,
representing the nodes of the search tree. A search statnthe variableg, h, f,
whereg is the width of the partial solution represented by the deatate,h is the
lower bound on treewidth of the graph obtained by elimirgatime vertices of the partial
solution andf is a lower bound on the width of all elimination orderings iexgdwith
the partial solution. Furthermore a state contains linkisstohildren within the search
tree. Such a link is represented by the vertex which will limiebted next in the child
state. We say that we visit a state if we remove the state fraptiority queue and
by evaluating a state we mean that we assign to it the valueg ipof and its children
before inserting it into the priority queue. The queue csdbe states after their valide
in ascending order.
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First of all an upper and a lower bound on the treewidth of ttagly are computed.
If the upper bound on the instance equals the lower boundstisned as the treewidth.
Otherwise we evaluate the initial state representing tbeabthe search tree by setting
g = 0, and assigning the value for the lower boundhtend f. If there is a simplicial or
strongly almost simplicial vertex this vertex is the onlyldtof the root state. If there is
no such vertex there is a child for each vertex within the lgrdginally the initial state
is inserted into the priority queue and the A* search begins.

During an iteration of the A* search the statat top of the priority queue, having
the lowest value forf, is visited. We create a grapgh® representing the graph that is
obtained by eliminating the vertices of the partial solntrepresented bg. If sg >
|G — 1 we have visited a state representing a solution and thustuenrs.g as the
treewidth of the graph. Otherwise the childrensadre evaluated and inserted into the
priority queue.

For each child stateand its associated vertexwve compute its children according
to the treewidth elimination set and pruning rule 2. Afterdg|we determinal, the
degree of vertex in G5, and obtain a grapB; by eliminatingv from G*. The width of
the partial solution represented bis the maximum of the width of the partial solution
represented by andd, thust.g = maxs.g,d). t.his assigned a lower bound on the
treewidth of graphG§. Botht.g as well ast.h represent a lower bound on the width
of all elimination orderings ending with the partial sobriirepresented by as well
as any lower bound of a search state on the path from the rdothas we set.f =
maxt.g,t.h, s.f). If there is a simplicial vertex or a strongly almost sinefdi vertex
within G this vertex is the only child of state

Finally we insertt into the priority queue it.f is less than the upper boumdb on
the treewidth of the original graph. States with > ubwon't lead to solutions which
are better than the upper bound solution we have already weahpherefore they are
excluded from the search in order to decrease the memonrgddmdthe A* algorithm.

If all search states with < ub have been visited but none of them represented a
solution it must be thatib is the treewidth of the graph and thub is returned by the
algorithm in that case.
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Algorithm: A*-tw

Input:  agraptG = (V,E)
Output: the treewidth of the graph

Ib = lower_boundG)
ub = upperboundG)
if Ib = ubthen return ub/* treewidth already found/

/¥ evaluate the root of the search treg *
r = new Stat@
rh=1Ib,rg=0,r.f =1b

if 3 a simplicial vertexw in G or an almost simplicial vertew of degree< t.f then

r.children= {w}

r.reduced= true
elser.children=V
queuepusHr)

/¥ A* search - visit next state in queug *
while queuds not emptydo

s = queuepop()
createG®

/¥ new lower bound is found/*
if s.f >Ibthenlb=sf

/% optimal solution is found *
if sg>|G% - 1thenreturn sg

/¥ evaluate the children of current search staje *
for eachv € s.childrendo

t = new Statf

t.children = children ofv according to treewidth elimination set

if nots.reducedthen prunet.childrenaccording to PR 2

d = degrees(v)

G; = eliminatdyv, G%)
t.g = maxs.g,d)

t.h = lower_boundG)
t.f = maxt.g,t.h,s.f)

if 3 a simplicial vertexw or an almost simplicial vertew of degree< t.f in G5 then

t.children= {w}
t.reduced= true

if t.f < ubthen queuensert)

return ub

Figure 5.1: Algorithm A*-tw.
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5.2 Implementation Details

5.2.1 Graph Representation

When visiting a statsin the A* algorithm we have to create a gra@frepresenting the
graph that is obtained by eliminating the vertices of theiglesolution represented by

In the next iteration we visit a flierent stateé and we have to consider its corresponding
graphG. It would be useful if we could transfor@® into G' and this transformation
process took as few steps as possible.

Within our implementation of the A* algorithm we use a singtaph object which
may be transformed into the graph that is needed within theegtisearch state. This
transformation is done by eliminating vertices from thepjrand by restoring elim-
inated vertices. The graph object consists of the followdlaga structures, requiring
O(IV|?) memory:

e an integer matrix, denoted. Thei-th row of the matrix,A[i] is a list for the
vertexi initially containing the vertices adjacent to verteix G. If an edge , j]
is inserted to the graph, when eliminating a vertgis appended to the lig[i]
andi is appended té\[ j].

e an integer matrix, denotel. E[i][ j] contains the length of thieth adjacency list
A[i] after j vertices have been eliminated.

e a boolean matrix , denotell. T is an adjacency matrixXT[i][ j] = 1 if vertexi is
adjacent to vertey, otherwiseT[i][ j] = O.

e aboolean arragliminated eliminatedi] = 1 iff vertexi has been eliminated from
the graph.

By the help of these data structures we are able to eliminatrtax and also to
restore the last eliminated vertex.

When eliminating a vertex we are able to compute the filled in edges. For each
new edge we update the entriesTirand append the according verticesAin The new
lengths of the lists irA are saved withirE. Finally we delete entries indicating edges
containingvin T and sekliminatedv] = 1.

Assume that we restore the last eliminated vewtard thatv is the j-th vertex that
has been eliminated. For each vertexe look at the list elements that were inserted
within the last step, these elements &e|[E[] — 1]]...., Ali][E[]]]. In that way we
are able to compute the edges which were inserted due to ithenation ofv. We
delete the entries corresponding to those edgeg. ifFfrom the listA[v] we are able



CHAPTER 5. AN A* ALGORITHM FOR TREEWIDTH 63

to determine the vertices to whichwas adjacent before its elimination, these are the
elements iMA[V][0], .., A[V][E[ ] — 1]] which have not been eliminated yet. We update the
corresponding entries if and finally we setliminatedv] =

Example 10. Figure 5.2 shows a graph with 6 vertices (a) and the graplaraat by
eliminating vertex 6 and 2 (b) and (c). Vertices adjacenttdusdges resulting from the
elimination process are inserted into the listAiid). The length of the lists i\ are
stored withinE (e). T (f) is the adjacency matrix of the graph in (c).
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Figure 5.2: Graph sequence obtained by eliminating vertard2 and the data struc-
turesA, E andT after the elimination of those vertices.

Now, if we want to transform our graph represent®ginto G' we restore the ver-
tices which have been eliminated to obt&@hin reverse order. Afterwards we eliminate
the vertices needed for obtaini®j. If the partial elimination orderings associated with
GS into G! have some postfix in common we need not restore and eliminateettices
of that common postfix.

5.2.2 Partial Solutions

In order to obtain the partial solution associated with adeatates a state has two
additional variables. A variableertexstoring the vertex which was eliminated when
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that s is evaluated and a variableredecessorcontaining its predecessor state in the
search tree. By the help of the predecessor variable we brecatberive the path from a
states to the root and the vertices associated with the states®©ptith are the vertices
in the partial elimination ordering represented by seatates.

5.2.3 Memory Saving Measures

From the pseudo code notation of the A* search algorithmiwigkection 5.1 we know
that states withf > ubwill not be inserted into the priority queue because they'wead
to solutions of width smaller than the upper bowddve have already found. Within our
implementation of the algorithm we delete states with ub and the memory required
by those states is not allocated any more.

Note that after a state has been visited and removed fromribety queue it is
not removed from the memory. The state is still needed fazinbitg partial elimination
orderings as described in the previous subsection. Buttiegs stored withichildren
associated with a visited state are not needed any more. Wéwsll free the memory
which was allocated for thehildrenin order to reduce the memory demand of the A*
search algorithm.

5.3 Computing Lower Bounds with the A* Algorithm

Recall that thef-value for a search stateés computed by. f = maxt.g,t.h, s.f) where
s.f is the f-value oft’s predecessor in the search tree The valuef of a state is a
lower bound on the width of all elimination orderings endinigh the partial solution
represented by that state. Sirtde a child ofsin the search tree all elimination order-
ings ending with the partial elimination ordering reprdasenbyt are also elimination
orderings ending with the partial elimination orderingnegented bys, thuss.f is also

a lower bound on the width of all elimination orderings assted witht and therefore
s.f is also regarded when computitdg = maxt.g, t.h, s.f).

As a consequence tHevalues along a path in the search tree are nondecreasing and
also thef-values along the sequence of visited search states arecreading. Thus
whenever we visit a search state whdsealue is greater than afl-values considered
before we obtain a new lower bound on the treewidth of thergrdpwe restrict the
running time of the A* algorithm by a time limit then thievalue of the last state visited
before the limit was exceeded may act as a lower bound ondbeidth of a graph.

As already mentioned the states within the priority queweardered by theirf -
values. Among states with the same value fowe prioritize those which lie deeper
in the search tree in the hope that we will reach a goal statereaOnce the search
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has reached the states whdsealues equal the treewidth a solution might be obtained
earlier if we favor states with higher depth.

5.4 Computational Results

Within this section we present the results that our A* aldyon achieved for graphs
from the Second Dimacs graph coloring challenge [18] anddémne grid graphs. The
A* algorithm A*-tw was implemented using &+ and STL. All experiments were run
on a machine with an Intel(R) Pentium(R)-4 3.40 GHz procebswing 1 GB RAM.
The min-fill heuristic for getting an upper bound as well as thinor-min-width and
minor-yr lower bound heuristics use random numbers for breaking Wesperformed
ten runs for each graph instance. Each run was given a tiniiedfrane hour and if the
time limited was exceeded the algorithm returned thealue of the last visited state,
which is a lower bound on the treewidth of the instance. Fohaastance we report the
highest value returned from the ten runs.

The tables use the following terminology. The colun@m&ph V andE show the
instance name of a graph, the number of its vertices and ed¢escolumndb andub
give the lower and upper bounds on the instance which werguatad at the beginning
of the algorithm. The colum*-tw shows the value that was returned by algorithm
A*-tw, bold entries indicate that the treewidth for that ginawas found. The column
time gives the time in seconds that was needed for computing ¢eevidth, a ™" entry
indicates that the algorithm exceeded the one hour timé &md returned only a lower
bound on the graph instance.

5.4.1 Dimacs Graph Coloring Instances

The results returned by algorithm A*-tw applied on seled@macs graphs are shown in
table 5.1. The columnQuickBBandBB — tw contain the results returned by the branch
and bound algorithms QuickBB [24] and BB-tw [5] after thremirs on an Intel(R) Pen-
tium(R) 4 2.4 GHz 2GB machine and after one hour on an InteR&)tium(R) 4 2.8
GHz respectively. ™" entries indicate that the algorithnad dot return the treewidth of
the graph, "-" entries indicate that an algorithm was notliggpto an instance. Only
for the instances myciel5 and queen7A*-tw did not return the treewidth whereas
QuickBB and BB-tw could. For the instance miles1000 A*-twsaable to compute the
treewidth which hasn’t been fixed before. For the instancd@25.5 A*-tw returned a
significantly improved lower bound of 82.
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Graph | Vv E[] b ub  A-tw | time | QuickBB| BB-tw
anna 138 986 11 12 12 0.02 12 12
david 87 12 12 13 13 1.31 13 13
huck 74 602 10 10 10 0 10 -
jean 80 508 9 9 9 0 9 -
queens5 25 320 12 18 18 1.35 18 18
queeng6 36 580 16 26 25| 115.21 25 25
queentZ7 49 952 20 37 31 * 35 -
fpsol2.i.1 496 11654| 66 66 66 3.78 66 -
fpsol2.i.2 451 8691 31 31 31 2.32 31 -
fpsol2.i.3 425 8688 31 31 31 2.1 31 -
inithx.i.1 864 18707 | 56 56 56 12.97 56 -
inithx.i.2 645 13979 31 31 31 5.89 31 31
inithx.i.3 621 13969 31 31 31 55 31 31
mulsol.i.1 197 3925 50 50 50 0.21 50 -
mulsol.i.2 188 3885 32 32 32 0.17 32 -
mulsol.i.3 184 3916 32 32 32 0.16 32 -
mulsol.i.4 185 3946 32 32 32 0.17 32 -
mulsol.i.5 186 3973 31 32 31 1.18 31 -
miles1000 128 6432 48 50 49 4.02 * -
miles1500 128 10396 77 77 77 0.14 77 -
miles250 128 774 9 9 9 0 9 -
miles500 128 2340 22 23 22 0.61 22 -
miles750 128 4226 34 40 34 * * -
myciel3 11 20 4 5 5 0 5 -
myciel4 23 71 8 11 10 0.7 10 10
myciel5 47 236 14 21 16 * 19 19
DSJC125.1 125 736 23 66 24 * * *
DSJC125.5 125 3891 58 111 82 * * *
DSJC125.9 | 125 6961 | 105 119 119| 38.39 119 -
DSJR500.1c| 500 121275| 475 485 485| 547.98 485 -
le4505a 450 5714| 62 315 63 * * *
le450.15a 450 8168 75 290 75 * * -
le450.25a 450 8260 75 258 77 * * -
zeroin.i.1 211 4100| 50 50 50| 0.530 - -
zeroin.i.2 211 3541 32 33 32 0.410 - -
zeroin.i.3 206 3540| 32 33 32 0.390 - -

Table 5.1: Dimacs graph coloring benchmarks.
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5.4.2 Grid Graphs

Table 5.2 presents the results returned by algorithm A*gpliad on several grid graphs.
It is folklore that the treewidth of @& x n-grid is n. A*-tw was able to compute the
treewidth up to the & 6-grid if it was given a one hour time limit.

[ Graph | V E[lb u A-tw] time]
grid2 4 4 2 2 2 0
grid3 9 12| 3 3 3 0
grid4 16 24| 4 4 4 0
grids 25 40| 4 5 5 0
gridé 36 60| 4 6 6 | 150.46
grid7 49 84| 4 8 5 *
grid8 64 112 4 10 5 *

Table 5.2: Grid graphs.
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Chapter 6

A Genetic Algorithm for Treewidth
Upper Bounds

In this chapter we present a genetic algorithm which congpufger bounds on the
treewidth of graphs. This algorithm will also compute aneippound on the treewidth
of a hypergraph if it is applied on the primal graph of the hgpaph.

6.1 Algorithm GA-tw

The genetic algorithm for computing upper bounds on theniidtd of graphs is named
GA-tw. Figure 6.1 presents algorithm GA-tw in pseudo code naiatio

The algorithm takes as input a regular graph for which an uppesund
on the treewidth should be computed and the control paraseten, pc, S and
maxiterations The population size specifies the number of individuals within the
population of the genetic algorithmpy, specifies the mutation ratpg the crossover rate
As selection technique we useurnament selectiowhich requires a parametsy the
group size.maxiterationsgives the number of generations over which the population
is evolved.

An individual solution is an elimination ordering and is repented as permutation
of the vertices of the graph. The initial population corssistn randomly created indi-
viduals. Each individual is evaluated and is assigned asfitnalue. The fitness is the
width of the tree decomposition which may be created via duok vertex elimination
from the elimination ordering. The best fitness of an indiadof the initial population
is recorded by the genetic algorithm. The population iswalovermaxiterations
iterations.
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Whithin each iteration we select the individuals which wiliter the next popula-
tion via tournament selection. Tournament selection selec individual by choosing
randomly a group o$individuals from the former population and the individu&hagh-
est fitness (smallest width) within this group is selectegitothe next population. This
process is applied until individuals have been selected.

For recombining the individuals of the solution we apply oféhe crossover oper-
ators presented in section 4.3.2. The crossovemgadetermines the number of individ-
uals which undergo recombination, e.g.pif = 0.8 then 80% of the individuals within
the population are recombined with each other whereas 26%ineunchanged.

As mutation operator we apply one of the mutation operatdreduced in section
4.3.3. The mutation ratp, determines the probability that an individual is mutateor. F
each individual of the population we compute a uniformiytritisited random number
x € [0, 1] and if X < pm we mutate the corresponding individual.

At the end of each iteration the individuals are evaluateadragVhenever an indi-
vidual's fitness is better than the best fitness found soddititess value is recorded as
the best fitness (smallest width). Finally the best fitnessalest width) found by the
genetic algorithm is returned as an upper bound on the tdtewf the graph.

Note that since every tree decomposition of a hypergraplsisaatree decomposi-
tion of the hypergraph’s primal graph and vice versa (Lemniz3)) algorithm GA-tw
may also be used in order to compute upper bounds on the theofia hypergraph if
it is applied to the primal graph of the hypergraph.

Algorithm:; GA-tw

Input:  agraptG = (V,E)
control paramters for the GA pm, pc, Sandmax.iterations
Output: an upper bound on the treewidth of the graph
t=0
initialize (populatior(t), n)
evaluatepopulatiort)

while t < maxiterationsdo
t=t+1
populatior(t) = tournamenselectionpo pulatior{t — 1), 9)
recombine populatior(t), pc)
mutate population(t), pm)
evaluatepopulation(t)

return the smallest width found during the search

Figure 6.1: Algorithm GA-tw.
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6.2 Implementation Details

We implemented algorithm GA-tw usingtG and STL.

6.2.1 Graph Representation

For the representation of the input graph of algorithm GAatevchose the same repre-
sentation as in section 5.2.1 for the A* algorithm A*-tw.

6.2.2 Evaluating Individuals

In order to evaluate individual solutions, which are in fatitnination orderings, we
modified the algorithm for deciding if an elimination ordegiis a perfect elimination
ordering presented in [25]. AlgorithiBvaluate Individualin Figure 6.2 produces the
same sets of vertices as bucket or vertex elimination. Withgoaph representation the
modified algorithm in Figure 6.2 has running tird¢|V| + |E’|) [25], where|E’| is the
set containing the original edges of the graph and the edgéshvare filled in when
eliminating the vertices of the graph.

Algorithm: Evaluate Individual
Input: a list of adjacency lists, denotéd representing grapB = (V, E)
an elimination ordering- = (v1, ..., V)
Output: the width of the tree decomposition according-to

width=0,i =n
while width < i do
X ={xeAv] | X< vi}
width = max(|X|, width)
Let u be the vertex irK which is eliminated next i
Alu] = Alu] U (X = {u})
i=i—-1

return width

Figure 6.2: Evaluation function used in GA-tw.



CHAPTER 6. A GENETIC ALGORITHM FOR TREEWIDTH UPPER BOUNDS?2
6.3 Computational Results

First of all we tried to find good values for the control paraeng of algorithm GA-tw
in order to obtain small upper bounds on the treewidth of lggap our computational
experiments. Afterwards we applied algorithm GA-tw usihg bbtained parameter
values on many graphs of the Second Dimacs graph coloririenba [18]. For many
instances our genetic algorithm was able to return uppend®aon the treewidth of the
graph which are better than the upper bounds obtained if5K¥]13] and [24].

6.3.1 Comparison of Crossover Operators

We compared the crossover operators of section 4.3.2 with ether by applying
them to selected graphs of the Second Dimacs graph coloniaieage [18]. For each
crossover operator and each graph we ran our algorithm Givéwimes with popula-
tion sizen = 50 and group size = 2 for tournament selection. Each single run lasted
exactly 1000 iterations. Table 6.1 shows the average, tidmaim and the maximum
width achieved by the crossover operators during the five with 100% crossover rate
and with 0% mutation rate. Since position-based crossd®@S)) achieved the best
average width for all instances we chose it as the cross@grator for our further tests.

6.3.2 Comparison of Mutation Operators

In order to compare the mutation operators of section 4.8.3pplied algorithm GA-tw

to several graphs of the Second Dimacs graph coloring cig®lgL8]. For each mutation
operator and each graph we ran our algorithm GA-tw five timik population size

n = 50 and group sizes = 2 for tournament selection. Each single run lasted exactly
1000 iterations. Table 6.2 shows the average, the minimuintize maximum width
achieved during the five runs with 0% crossover rate and vii@®d mutation rate. Since
the insertion mutation operator (ISM) achieved the bestamewidth in most cases we
chose it as mutation operator for our further experiments.

6.3.3 Determining Suitable Mutation and Crossover Rates

In order to obtain good values for the mutation and crossoaer we considered dif-
ferent combinations of mutations rates, = 1%, 10% 30%, and recombination rates,
pc = 80% 90% 100%, and applied algorithm GA-tw using those combinatitnse-
lected instances of the Second Dimacs graph coloring cluml¢18]. For each com-
bination and each graph we ran our algorithm GA-tw five timéth wopulation size

n = 200 and group size = 2 for tournament selection. As crossover operator we



CHAPTER 6. AGENETICALGORITHM FOR TREEWIDTH UPPER BOUNDS3

used position-based crossover (POS), as mutation opd¢h&témsertion mutation oper-
ator (ISM). Each single run lasted exactly 1000 iteratiohbe average, the minimum
and maximum width achieved during the five runs are shown bieTé.3. The com-
bination of a recombination rate of 100% and a mutation r&t808 achieved good
average results with all instances and performed best htltetrge instances le45bd
and queenld6, thus we chose this combination for our further experisien

6.3.4 Population Size and Tournament Selection Group Size

We considered populations of 100, 200, 1000, and 2000 ihaials. Table 6.4 shows the
average, minimum and maximum width for Dimacs graphs [18]rred by algorithm
GA-tw after five runs of 1000 iterations. A population of size 2000 achieves the best
results in three out of four instances. For such populatiotmirnament selection group
size ofs = 3 or s = 4 seems to be the best choice as it can be seen in Table 6.5.

6.3.5 Final Results for Dimacs Benchmarks Graphs

Finally we applied algorithm GA-tw on 62 graphs of the SecBbiithacs graph coloring
challenge [18]. We ran GA-tw with the control parametersaoisd in the previous
subsections, which are a population sizenoE 2000, a crossover rate ¢f. = 1.0

or 100%, a mutation ratp,, = 0.3 or 30%, and a tournament selection group size of
s = 3. We performed ten runs for each graph instance. A singleofu®A-tw lasted
2000 iterations, thus each run of algorithm GA-tw carried four million evaluations

of individual solutions. As crossover and mutation opamatwe used position-based
crossover (POS) and the insertion mutation opertor (IS gach graph we performed
ten runs on machine with an Intel(R) Pentium(R)- 4 3.40GHxessor having 1GB
RAM.

Table 6.6 shows the results for the considered graphs. ThmosGraph V andE
present the graph name and the number of vertices and edtes gfaph.ub contains
the value of the smallest upper bound for a graph reported]in[$], [13] and [24].
min, maxandavg present the best, worst and average width returned by t#igofGA-
tw for an instance whereastd dev contains the standard deviation of the ten results
returned by algorithm GA-tw. Colummin-time presents the time which was needed
by algorithm GA-tw for the run which returned the width in aoin min, avgtime the
average running time of the ten runs.

Compared with the best upper bounds for the consideredchiressan [4], [5], [13]
and [24], algorithm GA-tw found an improved upper bound oe tteewidth for 22
graphs, GA-tw was able to return the same upper bound for &ihgr and for only 9
graphs the results delivered by GA-tw were worse.
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Instance Crossover Operator| avg | min | max
games120 | POS 37 35 40
games120 | OX2 46.6 40 49
games120 | PMX 50.2 | 45 53
games120 | OX1 56.2 56 57
games120 | CX 59.2 56 62
games120 | AP 60.8 59 62
homer POS 42.2 37 50
homer OX2 53.8 45 60
homer PMX 72.8 65 85
homer CX 98 91 | 105
homer Oox1 118.4 | 114 | 121
homer AP 143.8 | 135 | 151
inithx.i.3 POS 129.8| 50 | 184
inithx.i.3 Oox2 204.4 | 190 | 220
inithx.i.3 Oox1 321.6 | 278 | 338
inithx.i.3 PMX 331.8 | 283 | 387
inithx.i.3 CX 368 | 351 | 394
inithx.i.3 AP 370.2 | 322 | 384
le450.25d POS 370 | 364 | 376
le45Q.25d OoXx2 375.8 | 370 | 379
le450.25d PMX 391.8 | 388 | 399
le45Q25d CX 394.2 | 392 | 396
le450.25d Oox1 396.2 | 394 | 398
le45Q25d AP 401.6 | 399 | 403
myciel7 POS 75 70 83
myciel7 Oox2 86.8 80 97
myciel7 PMX 108.2 | 101 | 115
myciel7 CX 113.4 | 109 | 116
myciel7 Oox1 119 | 116 | 121
myciel7 AP 128.8 | 124 | 133
gqueenl616 | POS 207 | 202 | 211
queenl6l6 | OX2 213 | 209 | 219
queenl6l6 | PMX 217.6 | 214 | 221
queenl6l6 | OX1 2242 | 222 | 225
gqueenl6l6 | CX 224.6 | 223 | 227
queenl6l6 | AP 227.4 | 225 | 229
zeroin.i.3 POS 40.2 33 45
zeroin.i.3 OoXx2 51.4 45 60
zeroin.i.3 OX1 93 85 99
zeroin.i.3 PMX 98 94 | 106
zeroin.i.3 CX 99.4 86 | 112
zeroin.i.3 AP 101.4 | 74| 123

Table 6.1: Comparison of crossover operators.
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Instance Mutation Operator avg | min | max
games120 | ISM 37.4 35 43
games120 | EM 38.2 38 39
games120 | SM 48.8 | 47 50
games120 | SIM 49.8 48 52
games120 | DM 54 52 56
games120 | IVM 56.4 55 58
homer EM 42.8 39 47
homer ISM 43.6 41 49
homer SM 81.4 78 85
homer SIM 91.6 79 | 100
homer DM 101.2| 94 | 105
homer IVM 102.4 | 96 | 107
inithx.i.3 ISM 65.8 56 74
inithx.i.3 EM 121.2| 93| 156
inithx.i.3 SM 208.2 | 184 | 265
inithx.i.3 SIM 230.6 | 205 | 271
inithx.i.3 DM 243.8 | 228 | 275
inithx.i.3 IVM 274.8 | 264 | 289
le45Q0.25d ISM 359.2 | 349 | 364
le45Q25d EM 367.2 | 361 | 372
le450.25d DM 384.2 | 381 | 388
le45Q25d SM 388.8 | 385 | 395
le450.25d SIM 390.4 | 388 | 392
le45Q25d IVM 393.2 | 391 | 397
myciel7 ISM 70.4 68 77
myciel7 EM 78.4 71 87
myciel7 SM 99.6 98 | 101
myciel7 SIM 106.2 | 106 | 107
myciel7 DM 110.8 | 110 | 112
myciel7 IVM 113.4 | 112 | 116
queenl6l6 | ISM 202.4 | 197 | 209
queenl6l6 | EM 209 | 204 | 215
gqueenl6l6 | DM 217.6 | 214 | 220
queenl616 | IVM 220.2 | 217 | 223
gueenl6l6 | SM 220.2 | 217 | 224
queenl616 | SIM 222.6 | 222 | 224
zeroin.i.3 ISM 34.8 33 37
zeroin.i.3 EM 41.2 40 43
zeroin.i.3 SM 63.6 56 70
zeroin.i.3 SIM 64.8 61 69
zeroin.i.3 DM 81.2 80 84
zeroin.i.3 IVM 85 80 91

Table 6.2: Comparison of mutation operators.
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Instace Pc Pm avg | min | max
games120 | 0.8 | 0.1 33| 32 34
games120 | 0.9 | 0.01 33| 32 34
games120 1 0.1 33| 32 34
games120 | 0.9 | 03| 33.2| 33 34
games120 1|001| 334| 33 34
games120 | 0.9 | 0.1 | 336 | 32 36
games120 | 0.8 | 03| 33.8| 32 38
games120 | 0.8 | 0.01 34| 34 34
games120 1 0.3 344 | 33 39

homer 1] 0.01 31.2 31 32
homer 1 0.3 31.2 31 32
homer 0.9 0.3 31.4 31 32
homer 0.8 0.3 31.6 31 32
homer 0.9 | 0.01 31.6 31 32
homer 0.9 0.1 31.6 30 34
homer 1 0.1 31.6 31 32
homer 0.8 | 0.01 32 31 33
homer 0.8 0.1 32 31 34

inithx.i.3 0.8 0.1 35 35 35
inithx.i.3 0.8 0.3 35 35 35
inithx.i.3 0.9 | 0.01 35 35 35
inithx.i.3 0.9 0.1 35 35 35
inithx.i.3 0.9 0.3 35 35 35

inithx.i.3 1| 0.01 35 35 35
inithx.i.3 1 0.1 35 35 35
inithx.i.3 1 0.3 35 35 35

inithx.i.3 08| 001| 354 35 36
le450.25d 1 0.3 | 3356 | 333 | 338
le450.25d 0.9 0.3 | 339.2| 334 | 345
le450.25d 1 0.1 | 339.8| 336 | 344
le450.25d 0.8 0.3 | 340.8 | 336 | 346
le450.25d 09| 0.01 | 341.4| 335 | 349
le450.25d 0.8 0.1 | 341.8| 337 | 345
le450.25d 1| 0.01| 342.2| 339 | 344
le450.25d 0.8 | 0.01 | 344.2| 341 | 346
1e450.25d 0.9 0.1 | 344.4| 336 | 351

myciel7 0.8 | 0.01 66 66 66
myciel7 08| 0.1 66 66 66
myciel7 08| 03 66 66 66
myciel7 0.9 | 0.01 66 66 66
myciel7 09| 01 66 66 66
myciel7 09| 03 66 66 66
myciel7 1| 0.01 66 66 66
myciel7 1 0.1 66 66 66
myciel7 1 0.3 66 66 66

queenl616 1 0.3 | 190.6 | 187 | 193
queenl6l6 | 0.9 | 0.01 | 191.4 | 189 | 194
queenl616 1001 191.6| 189 | 195
queenl6l6 | 0.9 0.3 | 191.8| 190 | 193
queenl616 1 0.1 191.8| 190 | 195
queenl6l6 | 0.9 0.1 192 | 190 | 195
queenl6l6 | 0.8 0.1 192.8| 189 | 198
queenl6l6 | 0.8 0.3 | 193.2| 190 | 195
queenl6l6 | 0.8 | 0.01 | 194.2 | 187 | 197
zeroin.i.3 0.9 | 0.01 32.4 32 33
zeroin.i.3 0.8 0.1 32.8 32 33
zeroin.i.3 0.9 0.3 32.8 32 33
zeroin.i.3 1 0.1 32.8 32 33
zeroin.i.3 0.8 | 0.01 33 33 33
zeroin.i.3 0.8 0.3 33 33 33
zeroin.i.3 0.9 0.1 33 33 33
zeroin.i.3 1| 0.01 33 33 33
zeroin.i.3 1 0.3 33 33 33

Table 6.3: Comparison of fierent combinations of mutation rate and crossover rate.
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Instance n | Average| min | max
1e450.25d 2000 334.8 | 334 | 337
le45Q.25d 1000 335 | 332 | 338
le450.25d 200 339.66 | 336 | 342
1e450.25d 100 342.4| 335 | 349

LE4505B.col | 2000 264.6 | 258 | 282
LE4505B.col | 1000 266.2 | 256 | 280
LE45Q0.5B.col 200 266.33 | 254 | 281
LE4505B.col 100 273.6 | 264 | 293
queenl616 2000 189.2 | 187 | 191
queenl616 1000 190.8 | 188 | 193

queenl616 200 191 | 188 | 194
queenl616 100 194.4| 194 | 195
zeroin.i.3 200 32.66 32 33
zeroin.i.3 100 33 33 33
zeroin.i.3 1000 33 33 33
zeroin.i.3 2000 33 33 33

Table 6.4: Comparison of filerent population sizes.

Instance s avg | min | max
le45Q25d 4 | 331.8| 328 | 336
le45Q.25d 3| 332.2| 329 | 335
le45Q25d 2 | 334.8| 334 | 337
LE4505B.col | 3 | 257.4 | 250 | 267
LE4505B.col | 4 | 264.4 | 251 | 283
LE4505B.col | 2 | 264.6 | 258 | 282
queen1616 4| 187.6| 184 | 194
queenl616 3] 188.2| 185 | 191
queen1616 2| 189.2| 187 | 191
zeroin.i.3 2 33 33 33
zeroin.i.3 3 33 33 33
zeroin.i.3 4 33 33 33

Table 6.5: Comparison of fierent group sizes for tournament selection.
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[ Graph | Vv E] ub| mn max] avg stddev | mintime avgtime |
anna 138 986 12 12 12 12 0.00 | 00:03:33 00:03:32
david 87 812 | 13 13 13 13 0.00 | 00:02:34 00:02:32
huck 74 602 10 10 10 10 0.00 | 00:02:.00 00:01:59
homer 561 3258 | 31 31 31 31 0.00 | 00:18:38 00:18:36
jean 80 508 9 9 9 9 0.00 | 00:02:00 00:01:59
games120 120 1276 33 32 32 32 0.00 | 00:07:42 00:07:32
queens5 25 320 | 18 18 18 18 0.00 | 00:00:33  00:00:33
queene6oé 36 580 25 26 26 26 0.00 | 00:00:51 00:00:51
queent7 49 952 | 35 35 36| 35.2 0.42| 00:01:32 00:01:34
queen88 64 1456 46 45 47 46 0.47 | 00:02:47 00:02:30
queen9 81 2112 | 58 58 60| 58.5 0.71| 00:03:50 00:03:50
queen1010 | 100 2940 72 72 73 72.4 0.52| 00:05:39 00:05:35
queenllll | 121 3960 | 88 87 90 | 88.2 1.14| 00:08:17 00:07:55
queenl212 | 144 5192 | 104 | 104 108 | 105.7 1.34| 00:10:33 00:10:52
queenl3l3 | 169 6656 | 122 | 121 125 123.1 1.29| 00:15:.06 00:14:50
queenl4l4 | 196 8372 | 141 | 141 148 144 2.16| 00:19:41 00:19:24
queenl515 | 225 10360| 163 | 162 168 | 164.8 1.87| 00:25:44 00:25:17
queenl6l6 | 256 12640| 186 | 186 191 | 188.5 1.90| 00:34:53 00:31:41
fpsol2.i.1 496 11654| 66 66 66 66 0.00 | 00:33:02 00:32:29
fpsol2.i.2 451 8691 | 31 32 33| 326 0.52| 00:24:.05 00:23:45
fpsol2.i.3 425 8688 31 31 33 32.3 0.67 | 00:24:22 00:22:49
inithx.i.1 864 18707| 56 56 56 56 0.00 | 00:56:18 00:55:42
inithx.i.2 645 13979| 31 35 35 35 0.00 | 00:38:37 00:38:24
inithx.i.3 621 13969| 31 35 35 35 0.00 | 00:37:41 00:37:17
miles1000 128 6432 | 49 50 50 50 0.00 | 00:09:19 00:09:24
miles1500 128 10396 | 77 77 77 77 0.00 | 00:07:37 00:07:33
miles250 128 774 9 10 10 10 0.00 | 00:04:02 00:04:01
miles500 128 2340 22 24 25 24.1 0.32| 00:07:22 00:07:16
miles750 128 4226| 36 37 37 37 0.00 | 00:08:56  00:08:50
mulsol.i.1 197 3925| 50 50 50 50 0.00 | 00:11:11 00:11:05
mulsol.i.2 188 3885 32 32 32 32 0.00 | 00:09:44 00:09:48
mulsol.i.3 184 3916 | 32 32 32 32 0.00 | 00:09:39 00:09:32
mulsol.i.4 185 3946 32 32 32 32 0.00 | 00:09:38 00:09:33
mulsol.i.5 186 3973| 31 31 31 31 0.00 | 00:09:44 00:09:31
myciel3 11 20 5 5 5 5 0.00 | 00:00:14 00:00:14
myciel4 23 71 10 10 10 10 0.00 | 00:00:34 00:00:34
myciel5 47 236 19 19 19 19 0.00 | 00:01:20 00:01:18
myciel6 95 755 35 35 35 35 0.00 | 00:03:52 00:03:48
myciel7 191 2360 | 54 66 66 66 0.00 | 00:12:37 00:12:24
schooll 385 19095| 188 | 185 199 | 1925 5.66| 01:18:04 01:21:35
schoollnsh | 352 14612 162 | 157 170 | 163.1 5.40| 01:10:39 01:09:05
zeroin.i.1 211 4100 50 50 50 50 0.00 | 00:10:41 00:10:30
zeroin.i.2 211 3541 | 32 32 33 32.7 0.48| 00:09:54 00:09:46
zeroin.i.3 206 3540 32 32 33 32.9 0.32| 00:09:45 00:09:38
le4505a 450 5714 | 256 | 243 263 | 248.3 7.12| 01:47:13 01:51:24
le45Q5b 450 5734 | 254 | 248 253 | 249.9 1.60| 01:52:12 01:49:50
le4505¢c 450 9803 | 272 | 265 272 | 267.1 2.28| 01:38:37 01:35:37
le450.5d 450 9757 | 278 | 265 268 | 265.6 1.07| 01:30:02 01:25:08
le450.15a 450 8168 | 272 | 265 275 | 268.7 3.71| 01:54:36 01:42:21
le45Q.15b 450 8169 | 270 | 265 271 269 1.63| 01:47:03 01:39:08
le450.15c 450 16680| 359 | 351 359 | 352.8 2.44| 01:23:17 01:22:05
le45Q.15d 450 16750| 360 | 353 361 | 356.9 2.56| 01:21:04 01:17:57
le45Q25a 450 8260 | 234 | 225 232 | 228.2 2.10| 01:40:25 01:41:05
le450.25b 450 8263 | 233 | 227 239 | 234.5 3.47| 01:40:45 01:46:06
le450.25¢ 450 17343 327 | 320 331| 327.1 3.78| 01:43:09 01:34:08
le450.25d 450 17425| 336 | 327 335| 330.1 2.33| 01:51:52 01:35:06
DSJC125.1 | 125 736 64 61 63 61.9 0.74| 00:08:21 00:07:47
DSJC125.5 | 125 3891 | 109 | 109 110 | 109.2 0.42| 00:04:21 00:04:19
DSJC125.9 | 125 6961 119 | 119 119 119 0.00| 00:01:50 00:01:54
DSJC250.1 | 250 3218 | 173 | 169 171 | 169.7 0.82| 00:31:18 00:27:02
DSJC250.5 | 250 15668| 232 | 230 233 | 231.4 0.84| 00:10:48 00:09:57
DSJC250.9 | 250 27897 | 243 | 243 244 | 243.1 0.32| 00:03:58 00:04:01

Table 6.6: Final results for Dimacs graphs.



Chapter 7

Genetic Algorithms for Generalized
Hypertree Width Upper Bounds

In this chapter we present a genetic algorithm for computipger bounds on the gen-
eralized hypertree width of hypergraphs. Furthermore wepropose an extension of
that algorithm which will be able to adapt its control pardeng itself without external
specification.

7.1 The Genetic Algorithm GA-ghw

7.1.1 Algorithm GA-ghw

The genetic algorithm for computing upper bounds on the gdimed hypertree width
of hypergraphs is namedA-ghw GA-ghw is basically the same algorithm as algorithm
GA-tw (Figure 6.1) presented in the previous chapter. THyg differences between
GA-tw and GA-ghw are that

1. GA-ghw takes a hypergraph as input whereas GA-tw expeetgudar graph.

2. GA-ghw evaluates individual solutions in &fdrent way. The fitness of an indi-
vidual is its width in terms of generalized hypertree decosifons.
7.1.2 Implementation Details

We implemented algorithm GA-ghw using#@ and STL.

79
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Graph Representation

Algorithm GA-ghw takes a hypergrapi = (V,H) as input and computes its primal
graphG*(H). The primal graph, which is a regular graph, is represeasedescribed in
section 5.2.1. Furthermore GA-ghw stores the hyperedyetthe hypergraph and the
information which hyperedges contain which vertices.

Evaluating Individuals

When evaluating an individual solution, which is an elintioa ordering, algorithm
GA-ghw computes the sets of vertices produced by bucketrtexelimination for the
primal graph. The width of a generalized hypertree decoitipnsis the maximum
number of hyperedges associated to a decomposition veFtaxs, for each vertex set
the evaluation function of algorithm GA-ghw (Figure 7.1)ngoutes an upper bound
on the minimum number of hyperedges needed for covering ¢nex set. For that
purpose a heuristic nam&teedy Set Covdi1] (Figure 7.2) is used. Greedy Set Cover
successively takes the hyperedge containing most unabwemtices until all vertices
are covered. Ties are broken at random. The maximum numbsmpeiredges that was
needed in order to cover a vertex set is returned as the fitradse of the evaluated
elimination ordering.

Algorithm: Evaluate Individual
Input:  alist of adjacency lists, denotéd representing the primal gra@i (H) = (V, E)
the set of hyperedgedd from the original hypergraptt = (V, H)
an elimination ordering- = (v1, ..., V)
Output: the width of the generalized hypertree decompmsiiccording tar

width=0,i =n
while width < i do
X ={xeAv] | X< vi}
x(vi) ={vjuX
k = Greedy Set Covéyp(vi), H)
width = maxk, width)
Let u be the vertex irX which is eliminated next i
Alu] = Alu] U (X = {u})
i=i—-1

return width

Figure 7.1: Evaluation function used in GA-ghw.
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Algorithm: Greedy Set Cover
Input:  a set of vertices to covefv;)
a set of hyperedgdd
Output:  an upper bound on the minimum number of hyperedges
needed to cover the verticesyv;)

C=0

while y(v;) ¢ C do
Select an hypereddees H containing the maximum number of uncovered vertices.
Ties are broken randomly.
C=Cuh

return |C]

Figure 7.2: Greedy set cover algorithm [11] .

7.1.3 Computational Results

Due to time restrictions, we tested algorithm GA-ghw only ¥hhypergraphs of the
CSP hypergraph library from [22]. GA-ghw was executed wiith tontrol parameters
which were obtained for algorithm GA-tw within the previotlsapter, a population size
of n = 2000, a crossover rate pf = 1.0 or 100%, a mutation ratg, = 0.3 or 30%, and

a tournament selection group sizessf 3. For each hypergraph we performed ten runs
of GA-ghw. A single run of GA-gwh lasted, ROO iterations thus each run of algorithm
GA-ghw carried out four million evaluations of individuablstions. As crossover and
mutation operators we used position-based crossover (B@Sthe insertion mutation
operator (ISM).

We tested the ten runs for each hypergraph either on a ma@@)jimgth an Intel(R)
Pentium(R)-4 3.40GHz processor having 1GB RAM or on a macf#hwith an Intel(R)
Xeon(TM) 3.20GHz processor having 4GB RAM. We convertedtiimes of machine
(1) into the times machine of machine (2). On both machineappiied GA-ghw to four
different instances using the same random seed. For each angitarran at machine (2)
took 79% of the computation time of the run at machine (1).

Table 7.1 enlists the results of GA-ghw for the considere@engraphs. The
columnsGraph V andH present the graph nhame and the number of vertices and hyper-
edges of that graphub contains the value of the smallest upper bound on the géredtal
hypertree width for a hypergraph reported in [1#in, maxandavg present the best,
worst and average width returned by algorithm GA-ghw forrestdnce whereagddev
contains the standard deviation of the ten results retuogedgorithm GA-ghw. Within
the columnmin-time we present the time which was needed by algorithm GA-ghw for
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Hypergraph | 'V H]ub[ mn max]| avg stddev [ mintime avgtime |

adder75 526 376| 2 3 3 3 0.00 | 05:02:54 05:02:51
adder99 694 494| 2 3 3 3 0.00 | 08:33:10 08:33:53
b06 50 48| 5 4 4 4 0.00 | 00:09:39 00:09:44
b08 179 170 10 9 9 9 0.00 | 01:04:39 01:04:44
b09 169 168 10 7 7 7 0.00 | 01:14:43 01:14:54
b10 200 189 14 11 12| 11.8 0.42| 01:51:47 01:51:39
bridge.50 452 452| 2 6 6 6 0.00 | 06:33:56 06:33:25
c499 243 202 13 11 12 | 11.7 0.48| 02:13:10 02:13:13
c880 443 383 19 17 18 | 17.2 0.42| 06:54:25 06:55:26
clique.20 190 20| 10 11 12 | 11.2 0.42| 01:30:19 01:30:43
grid2d.20 200 200| 11 10 10 10 0.00 | 01:36:00 01:35:32
grid3d.8 256 256 | 20 21 22| 21.3 0.48| 04:53:40 04:49:49
grid4d 4 128 128 | 17 15 16 | 15.3 0.48| 01:24:17 01:24:42
grid5d.3 122 121 18 16 18 | 16.7 0.82| 01:25:32 01:24:51
nasa 579 680 21 19 22| 19.9 0.74| 17:13:13  17:19:44
NewSystem1| 142 84| 3 3 4 3.1 0.32| 00:36:45 00:36:59
NewSystem2| 345 200 4 4 4 4 0.00 | 03:01:16 03:01:36
s444 205 202| 6 5 5 5 0.00 | 01:46:54 01:47:07
s510 236 217 23 17 17 17 0.00 | 02:40:09 02:41:52

Table 7.1: GA-ghw results for selected benchmark hypetgrap

the run which returned the width in colunmmin, columnavgtime presents the average
time of the ten runs.

Compared with the best upper bounds known for the considestahces algorithm
GA-ghw found an improved upper bound on the generalized ingee width for 12
graphs , GA-ghw was able to return the same upper bound faghgr and for 5 graphs
the width returned by GA-ghw was worse than the best uppend&aown so far.

7.2 Extending GA-ghw to a Self-Adaptive Island GA

As already mentioned in section 4.3 the behavior of a gemdgiarithm depends on the
values chosen for its control parameters. Adjusting tharpaters of a genetic algorithm
takes a lot of time and the optimal parameter values of a geakgorithm may difer
for several problem instances or genetic operators. It éghn be that the optimal
parameter values vary atffirent stages of the search performed by a genetic algorithm.
In order to overcome these problems several genetic ahgasithave been introduced,
which can automatically adjust their parameter values.a&sification and an overview
of such algorithms is given by Eiben et al. in [20]. In [19] &akima et al. propose a
genetic algorithm, named SAIGA (self-adaptive island gieredgorithm), which adapts
the population size, the crossover rate, the mutation radettze group size for tourna-
ment selection. Since these are also the control paramatalgorithm GA-ghw we
will extend algorithm GA-ghw by the help of the ideas propmbge[19].
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7.2.1 Algorithm SAIGA-ghw

Algorithm: SAIGA-ghw

Input: a hypergraph = (V, H)
Output: an upper bound on the treewidth of the graph

fori =1tol do/ 1 ... the number of islands/*
initialize param
initialize island with param
while evaluations< maxevaluationgdo
/¥ evolution ¥
fori=1tol do
evolveisland with param
/¥ migration */
fori=1tol do
migrateisland

/* neighbor orientation ?
fori=1tol do
orientateparam at its neighbors

/¥ mutation ¥
fori=1tol do
mutateparam

return the smallest width found during the search

Figure 7.3: Algorithm SAIGA-ghw.

The genetic algorithm for computing upper bounds on the igdized hypertree
width of hypergraphs which adapts control parameters isete8AIGA-ghw Figure 7.3
shows algorithm SAIGA-ghw in pseudo code notation.

SAIGA-ghw is an island GA [48], it evolves several genetigalthms in parallel
and each single genetic algorithm is regarded as an islangin Eme to time some
solutions migrate between the islands and ensure thadslginare some information
among each other and thus perform some kind of cooperatarelseWithin SAIGA-
ghw we place the islands in a ring topology.

A single islandisland is controlled by the parameter vectoaram = (n, pc, Pm, S)
which contains values for the control parametgréhe population sizep, the recombi-
nation rate pm, the mutation rate, angl the group size for tournament selection. Initially
the parameter vector is created randomly for each island.

During an iteration of SAIGA-ghw each islaridland is evolved like algorithm
GA-ghw (selection, recombination, mutation and evalugtigsing the parameters spec-



CHAPTER 7. GENETIC ALGORITHMS FOR GENERALIZED HYPERTREE..84

ified in param. If a certain number of evaluations occurred within an idléme evolu-
tion process is halted. If the population size of an islandgtmcrease due to an altered
parameter vector new randomly created individuals will teeal to the island.

After evolving the islands some of the individuals of eadarid migrate to their
neighbors within the ring topology. The migrating indivads as well as their migration
destination (left or right neighbor in the ring) are chose¢rmramdom. Islands which
receive migrating individuals replace randomly selectetividuals within their current
population with the immigrated individuals.

After the migration phase, each parameter veptmam is assigned the best fitness
of an individual of the current population tfland as its own fitness value. Afterwards
the fithness of each parameter vegtaram is compared with the fitness of its neighbors
in the ring topology. If the fitness of the neighbors isn’ttbethanparam’s own fitness
param remains unchanged. Otherwise the parameter values vatniam are shifted
into the direction of the parameter values of the fittest niedy. This phase is denoted
"neighbor orientation”. Finally the parameter vectors mmétated themselves.

The main diference between algorithm SAIGA [19] and algorithm SAIGAagh
is that SAIGA also applies selection and recombination & ghrameter vectors and
the parameter vectors swapped between tterdnt islands. We omit the selection,
recombination and swapping of parameter vectors. Instesiditnoduced the process of
neighbor orientation. With the mutation of parameter vectind neighbor orientation
we would like to achieve the followingfkects:

1. Due to the mutation of parameter vectors the genetic ithgoralso explores the
space of possible parameter settings during the search.

2. By neighbor orientation the information on good parame&tztors should be
propagated through the ring of islands.

7.2.2 Parameter Representation

Like in [19] we distinguish between the phenotypes of theapaaters’ population size

n, crossover ratg:, mutation ratep,, and tournament selection group sizand their
genotypes, pt, P, ands’. Each genotype is represented by a floating point number
whithin range 0 and 1. The corresponding phenotypes are uieah@s follows:

Phenotype Range
(1) n =20+|ex[8-n -log(2))] [21, 276]
(2) pc =r [0,1]
(3) pm =0.00005- exdp - l0og(1/0.0001)) [QO00050.5]
4) s =2=|9=x4] [2, 6]
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Note that the phenotypes for population size (1) and fomtannent selection group
size (4) are computedfiierently as in [19].

7.2.3 Initialization of Parameters

The genotype parametep, ands’ are assigned uniformly distributed random numbers
between 0 and Ip;. is assigned a uniformly distributed random number betwegad

1. Then the corresponding phenotypes are computed. Forothdation size we ini-
tialize the phenotype parameter with a normally distridutendom integeN(10Q, 50).
The genotypea’ for nis computed afterwards.

7.2.4 Mutation of Parameter Vectors

Each single parameter is mutated at a probability of 60%. alitut adds a normally
distributed random numb&t(0, 0.1) to the genotype parameter which is chosen for mu-
tation. The corresponding phenotypes are computed aftésw&igure 7.4 presents the
pseudo code of the mutation of a parameter vector.

Algorithm: Mutate Parameter Vector

Input:  a parameter vectgraram
Output: the mutated parameter vector

r = a uniform random number from [Q]
if r <0.6then
n =n"+ N(0,0.1)

r = a uniform random number from [Q]
if r <0.6then
s =5 +N(0,0.1)

r = a uniform random number from J@]
if r <0.6then
e = Pe+ N(0,0.1)

r = a uniform random number from JQ]
if r <0.6then
Pm = P+ N(0,0.1)

repair genotype parameters if they are not 0
compute phenotypes

Figure 7.4: Mutation of parameter vector.
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7.2.5 Neighbor Orientation

As already mentioned, each parameter vegiaram is assigned the best fithess of an
individual of the current population @$land as its own fitness value. If the fitness of
some parameter vector of a neighboring island is better gamam’s fitness, param

will be shifted into the direction of the parameter valueg®fittest neighbor. This shift

is done by reducing the flierence in the values of the genotype parameters between
param and its fittest neighbor by 50%. For instance,deand s;eighborbe the genotype
parameters for tournament selection group sizéstaind and its fitter neighbor. By
settings’ = (S + Sneighbor)/2 We reduce the dierence between the parameter values by
50% and shiftg into the direction of§| ;..

7.2.6 Further Details

Within an iteration of SAIGA-ghw each island executes itiores of GA-ghw until more
than 1000 are evaluated. In each iteration of SAIGA-ghw 5%hefindividuals of an
island migrate.

7.2.7 Computational Results

Due to time restrictions, we tested algorithm SAIGA-ghwyonh four hypergraphs
from [22]. We ran SAIGA-ghw withl = 20 island GAs. As crossover operator
we chose position-based crossover (POS), as mutation topahe insertion muta-
tion operator (ISM). For each hypergraph we performed 18.ruk single run lasted
maxevaluations= 4, 000, 000 total evaluations.

We tested the ten runs for each hypergraph either on a ma@)imgth an Intel(R)
Pentium(R)-4 3.40GHz processor having 1GB RAM or on a mact@hwith an Intel(R)
Xeon(TM) 3.20GHz processor having 4GB RAM. Like in sectioh.3 we converted the
times of machine (1) into the times of machine (2).

Table 7.2 presents the results of algorithm SAIGA-ghw fer ¢tonsidered hyper-
graphs. The column&raph V andH present the graph name and the number of ver-
tices and hyperedges of that graphin, maxandavg present the best, worst and aver-
age width returned by algorithm GA-ghw for an instance whasstddev contains the
standard deviation of the ten results returned by algori@#aghw. Within the column
mintimewe present the time which was needed by algorithm GA-ghwheran which
returned the width in colummin, columnavgtime presents the average time of the ten
runs.

If we compare the results of algorithm SAIGA-ghw on the foypérgraphs with
the results delivered by algorithm GA-ghw (Table 7.1) wearles that SAIGA-ghw was
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Hypergraph| V H ] min max]| avg stddev | mintime avgtime |

adder99 496 694 4 5] 41 0.32| 09:08:48 09:39:13
b06 48 50 4 4 4 0.00 | 00:20:22  00:30:50
b09 168 169 7 7 7 0.00 | 01:27:58 01:41:17
s444 202 205 5 6| 5.6 0.52 | 02:10:09 02:18:24

Table 7.2: SAIGA-ghw results for selected benchmark hyyagigs.

able to obtain the same upper bounds on the generalizedtiggearidth of hypergraph

b06 and b09 in each of the ten runs. For instance s444 SAIGAw#s also able to

return a upper bound of 5 but, unlike algorithm GA-ghw, thigper bound was not
returned in each run. When applied to hypergraph a@d8€8AIGA-ghw was not able to

find the 3-width upper bound which was always returned by @G#g\Note also, that for

each instance the average time needed by algorithm SAIGAexteeds the average
time needed by algorithm GA-ghw.

We conclude that the upper bounds returned by algorithm 3AdGw as well as
its running time are slightly worse that the upper boundiveidd by algorithm GA-ghw
and its time behavior. But we have to bear in mind that theltesfi GA-ghw in Table
7.1 preceded many time-consuming experiments in orderteymee suitable control
parameter values (see section 6.3). Thus algorithm SAI@#&-gay be considered as
an alternative to algorithm GA-ghw if we do not have the tinoe dbtaining control
parameter values in comprehensive experiments.
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Chapter 8

A Branch and Bound Algorithm for
Generalized Hypertree Width

In this chapter we propose a branch and bound algorithm wiki@ble to compute
the generalized hypertree width of a hypergraph. For thgigae we develop a lower
bound heuristic for the generalized hypertree width of hngrhs in section 8.1, and
show how some of the graph reduction and pruning techniquesepted in chapter 4
can be used and extended for our branch and bound algoriteatiion 8.2 and section
8.3. Finally we present the branch and bound algorithm fonpuating the generalized
hypertree width of hypergraphs in section 8.4, its impletaton details in section 8.5
and the results it returned for selected hypergraph bendtsnrasection 8.6.

8.1 A Lower Bound Heuristic for Generalized Hypertree
Width

Within this section we show how lower bound heuristics feetwidth and lower bound
heuristics for thék-set cover problem may be used for obtaining a lower bounddtau
on the generalized hypertree width of hypergraphs. Thust, dirall we give a short
introduction on theék-set cover problem.

89
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8.1.1 Thek-Set Cover Problem

Thek-set problem may be formulated as minimization problem Hevis [21]:

Given T ={t1,...,tn} a set
S={S1,...Sn},Vi:SiCcT acollection of subsets df
k an integer

Find a subcollection of C S such thatC covers at least elements ofl such that
|C| is minimal. Thus, an instance of theset cover problem may be represented as a
triple (T, S, k).

k-Set Cover as Integer Program (IP)

The k-set cover problem is afvP-complete problem. It may be formulated as integer
programm (IP). An integer programming problem consists lofesar objective function
and linear constraint equations and inequations. Thehbiagaof the objective function
and of the constraints are required to be integers. Krbet cover problem may be
formulated as integer program as shown below.

min L1 X
subjectto: i+ Yjges; Xj 21 i=1..n (2)-(n)
Zi”:lyisn—k (n+1)
X, Yi € {0,1} IP - program
(xj,yi =0 LP - relaxation)

This formulation was taken from [21]. We introduce a (binainteger variable
xj for each subset i. xj = 1 iff subsetS; is a member of the the resulting cover.
Moreover we introduce a (binary) integer varialygjefor each element; € T. y; = 1
iff t; is not covered. The constraint inequation+{) says that there may be at most
n — k uncovered elements &. The equations (1)A} specify which elements il are
covered by which subsets $1and ensure that each element must be covered by at least
one subset oy; has to be 1. The solution which satisfies all constraints aimihmzes
the objective function represents the solution forkkset cover problem.

Although integer programming is known to Bé&P-hard many problem instances
formulated as integer program may be solved exactly by thedféP-solvers. If we al-
low that the variables of a given integer program are realbemwe obtain the so-called
LP-relaxation of the integer program. The exact solutiotheLP-relaxation is a lower
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bound for the exact solution of the corresponding integeg@m (for minimization
problems as thé&-set cover problem). The LP-relaxation belongs to the adidimear

programs (LPs) in which all variables are real numbers. iSgla linear program (LP)
is feasible in polynomial time, thus also computing the sofufor the LP-relaxation of
an integer program. For further information on integer anedr programing see [46].

Set Cover as IP-Program

Also the set cover problem (section 2.5.2) may be formulatedP [21]. We will use
the following IP-formulation of the set cover problem in erdo cover the vertex sets
derived from an elimination ordering exactly with an 1Pyl

min X, x;
subject to: Djtes; Xj 21 i=1..,n
xj € {0, 1}

8.1.2 From Treewidth Lower Bounds to Generalized HypertreeWidth
Lower Bounds

Theorem 4. Let Ib be a lower bound for the treewidth of a hypergralih= (V, H). Then
the exact solution or any lower bound of the k-set cover iV, H, Ib + 1) is a lower
bound on the generalized hypertree width fér ghw(FH).

Proof.

1. Letlb be a lower bound for the treewidth of a hypergralh= (V, H). Then we
know that every tree decomposition faf has a vertexp with at leastk = Ib + 1
vertices in its label(p).

2. Every generalized hypertree decomposition for a hypetyH is also a tree de-
composition forH. Thus it must be that every generalized hypertree decomposi
tion, also one having a width @fhw(#), has a verte)p with at leastk = Ib + 1
vertices in its label(p).

3. Thus, the minimum number of hyperedges needed to coveastd = Ib + 1
vertices ofH is a lower bound for the generalized hypertree width-of
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4. The problem of finding the minimum number of hyperedgesleddo cover at
leastk = Ib+ 1 vertices can be formulated as an instance okthet cover problem
with V as basic setH as collection of subsets &f andIb + 1 as the minimum
number of elements that have to be covefdd= V,.S = H,k = Ib + 1).

5. Thus, the exact solution or any lower bound for kkeet cover problem
(T =V,S=H,k=Ib+ 1) represents a lower bound fghw(H).

O

On the basis of Theorem 4 we developed a lower bound heufistibe general-
ized hypertree width of a hypergraptf. We named the heuristigv-ksc-widthbecause
it combines lower bound heuristics for treewidth of hypemrs with a lower bound
heuristic for thek-set cover problem. Figure 8.1 presents the pseudo codavfksd-
width.

From Lemma 1 [33] we obtain that the lower bound of the tredwif a hyper-
graph’s primal graph is also lower bound of the treewidthhaf hypergraph. For that
reason tw-ksc-width applies the mingg-and the minor-min-width heuristics (section
4.4.2) to the primal grapl*(H). A variablek is assigned the maximum of the values
returned by the two heuristics plus one. Afterwards tw-k@dth computes a solution
for the LP-relaxation of th&-set cover probleniV, H, k). The returned solution of that
problem is ceiled because the exact solution flrsat cover problem must be an integer
value. This ceiled value is returned as a lower bound omgkivé 7).

Algorithm: tw-ksc-width
Input: a hypergraphH = (V, H)
Output: a lower bound foghw(7H)
1. k = maxminor-minwidth(G*(H)), minor-yr(G*(H)) +1
2. Ip_relax = the solution for the LP-relaxation of thkeset cover probleniV, H, k)
3. Ib =[lp_relax]

4, return b

Figure 8.1: Algorithm tw-ksc-width.



CHAPTER 8. ABRANCH AND BOUND ALGORITHM FOR GENERALIZED . .93
8.2 Reduction Techniques

Definition 26 (Simplicial Vertex in Hypergraph)A vertexv of a hypergrapty{ is sim-
plicial if each pair of its neighbors appear together witainyperedge.

Lemma 14. Let v be a simplicial vertex of hypergragt and letH —{v} be the hyper-
graph obtained by deleting v frof. Then it holds that gh@¢H—{v}) < ghw(#H) and
that ghwH) = maxk, ghw(H—{v})), where k is the minimum number of hyperedges
needed to cover v and its neighborsff

Proof. Let(T, x, 1) be a generalized hypertree decompositiofHofvhose width equals
ghw(#H). Obviously by deletings from the y-sets of(T, y, 1) we obtain a generalized
hypertree decomposition @ —{v} of width at mostghw(H).

In chapter 3 we proved the a generalized hypertree decotiggosihose width
equalsghw(H) can be obtained from an elimination ordering Whenever the first
vertex of the set consisting af and its neighbors is eliminated accordingaoa -
set will be produced in the resulting generalized hyperttegomposition containing
and its neighbors. At leagthyperedges are needed to cover thaket. It follows that

ghw(H) = maxk, ghw(H—{v})). O

The above lemma implies that whenever a simplicial vertepeaps in a hyper-
graph associated with a subproblem within a branch and bsaacth the simplicial
vertex may be removed in the next step. Note that a veriexa simplicial vertex of a
hypergraph# iff vis a simplicial vertex of the primal grapgs*(7#{) since the adjacency
relations inH and G*(H) are equivalent. This result is important for the branch and
bound algorithm we will propose in this chapter because lithe based on the primal
graphG*(H).

8.3 Pruning Rules

In section 4.4.5 we described two pruning rules from the tiiaend bound algorithm
for treewidth in [5]. Now we examine if and how these rules rbaymodified and used
for a branch and bound algorithm which computes the gezedalypertree width of a
hypergraph. Our branch and bound algorithm will use therepessenting all possible
elimination orderings as search tree. For obtaining theexesets which are produced
by elimination orderings we will eliminate vertices frometprimal graph of the input
hypergraph.
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Suppose that we are in a node of the branch and bound tregbéethe width of
the partial solution represented by that node and’ldenote the number of vertices that
haven't been eliminated yet. We know that the width of a sotutvithin the subtree
rooted at the current search node may be at most maxg, n’) because we need at
mostn’ hyperedges in order to cover thevertices. If we solve the set cover problem
for the n” remaining vertices of the hypergraph exactly or we compuotagper bound
on that set cover problem and it turns out that we rlebgiperedges in order to cover
then’ vertices we conclude that the width of a solution within thetsee rooted at the
current search node may be at mast maxg, k).

If wis smaller then the width of the best solution found soak: ub, we know
that we will find a better solution within the subtree rootedh& current search node.
There are two cases. if < gandk < g respectively, then we don't have to continue
the search within the subtree.nf > g andk > g respectively then at least one solution
within the subtree will lead to a new upper bound of at rmbstndk respectively but we
have to continue the search within the subtree for findingett solution.

We conclude that we are able to derive two pruning rules foraadh and bound
algorithm for generalized hypertree width from PruningdRilin section 4.4.5 [5]. The
two rules are denoted Pruning Rule 1 (PR 1) and Pruning RuleR’1’) and are given
below.

Pruning Rule 1 (PR 1)
computew := maxg, n’)
if w< ubthenub=w
if n” < gthen exclude the subtree rooted at the current node fronmetirels

Pruning Rule 1’ (PR 1")
compute an exact solution or an upper bouridr the set cover problem defined by the
n’ remaining vertices and
computew := maxg, k)
if w< ubthenub=w
if k < g then exclude the subtree rooted at the current node fronetirets

From Pruning Rule 2 in 4.4.5 [5] we are able derive two pruminigs for a branch
and bound algorithm for generalized hypertree width. Treerules are denoted Pruning
Rule 2a (PR 2a) and Pruning Rule 2b (PR 2b) and are given b&l@m Figure 8.2 we
see why Pruning Rule 2a and Pruning Rule 2b are applicabla fmanch and bound
algorithm for generalized hypertree width. No matter if ienenate v beforew or w
beforev we obtain the same graphs after the elimination of the twtoess.
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If vandw are not adjacent the same vertex sets are created when ¢helinainated
and thus the order in whichandw are eliminated doesn't have affext on the width.
These considerations are expressed within Pruning Rule 2a.

If vandw are adjacent then when eliminating the vertdxeforew we obtain the
sets consisting of, Ny, Ny andw, Ny, Ny, Nyw and when eliminating vertew beforev
we havew, Ny, Nyw andv, Ny, Nw, Ny in the created sets (see Figure 8.2). Thus we have
to check whethev, Ny, Nyw andw, Ny, Ny, Nyw or w, Ny, Nyw andv, Ny, Ny, Nyw may
be covered with fewer hyperedges. These considerationsxaressed within Pruning
Rule 2b.

Pruning Rule 2a (PR 2a)

Supposer andw are successive vertices in an elimination orderdngndv andw are
not adjacent in the graph obtained by eliminating the vestimo up tov. Then the
orderingo”’, obtained by swapping andw in o, has the same width as. Thus, we
prune the search tree as follows: for such a pair of verticeswhen we have looked at
a branch representing the elimination orderings ending wjv, x;, ..., X, we prune the
branch representing the orderings ending witl, x;, ..., Xn.

Pruning Rule 2b (PR 2b)

Supposev andw are successive vertices in an elimination orderngvith w <, v
andv andw are adjacent in the graph obtained by eliminating the \estiao up to

v. Let o’ be the ordering obtained by swappimgandw in o. Let covery, be the
minimum number of hyperedges needed to cover one of the ttsacseated when is
eliminated beforev and letcover,,, be the minimum number of hyperedges needed to
cover one of the two sets created wheis eliminated before. If cover,, < cover,y
then the width ofo- doesn't exceed the width af’. Thus, we prune the search tree
as follows: for such a pair of verticesw with cover,, < covey,, we explore the
branch representing the elimination orderings ending with, x, ..., X, and we prune
the branch representing the orderings ending with, x;, ..., X,. If covery,y > cover,y
we explore the branch representing the orderings endifdgwuit, X, ..., X, and we prune
the branch representing the elimination orderings enditly wy v, X;, ..., Xq.
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Figure 8.2: Example graph [5] for pruning rules PR 2a and R2 2b
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8.4 Algorithm BB-ghw

We introduce a branch and bound algorithm which is able toptgenthe generalized
hypertree width of a given hypergragti. The branch and bound algorithm searches the
branch and bound tree representing all elimination ordsriof the vertices iff{. The
algorithm uses the hypergraph’s primal gr&gti{H) in order to create the vertex sets that
are produced according to a specific elimination ordering. WM exploit the pruning
rules 1 (PR 1) and 2a (PR 2a) from section 8.3 as well as thdisialwertex reduction
rule from section 8.2 in order to shrink the search space. réhelting algorithm is
namedBB-ghw Figure 8.3 shows algorithm BB-ghw in pseudo code notation.

Within algorithm BB-ghw we will use an array of search nodésnotedstack
for storing the nodes of the current search path. A searchk nodtains three variables
g,h and f, whereg is the width of the partial solution represented by the deaie,
h is the lower bound on the graph obtained after eliminatirguibrtices of the partial
solution andf is a lower bound on the width of any elimination ordering exgdivith that
partial solution. In addition, each search naie associated a vertex, denoteertex
representing the vertex which is eliminated at the searcle mmd a list of the vertices
representing the vertices which are eliminated at the atoldkes ofs within the search
tree, denotedhildren We say that a node is explored if all its children have besited.

First of all Algorithm BB-ghw computes the primal gra@i (/) for its input hy-
pergraphiH = (V, H). Then a loweitb and an upper bounab on ghw(#H) are computed
from the primal graph. For computing the lower bound we us&ibgc tw-ksc-width
from section 8.1.2. For getting an upper boundgbmy(7{) we compute a tree decom-
position forH by the help of the min-fill heuristic from section 4.4.2 andnpute a
minimum cover for the labels of the tree decomposition eedi[37]. The width of the
resulting generalized hypertree decomposition acts &alinpper bound.

If the upper bound equals the lower bound we returas the generalized hypertree
width. Otherwise we initialize the search nadeepresenting the root node of the search
tree by setting.g = 0,r.h = Ib andr.f = Ib. If there is a simplicial or vertex iG*(H)
this vertex is the only child of the root node. If there is natsuertex there is a child for
each vertex within the hypergraph.

Afterwards the branch and bound search begins and laststhumtivhole search
tree has been explored or we have found an upper bound whiiseopur initial lower
boundlb. In each iteration we regard the last node of our currentbeaeth, denoted.
This node may be either a node representing a solution or@wbath has at least one
unexplored child or an explored node.

If srepresents a solution we examine if the width of that satuttosmaller than
the upper bound we have found so far. If that is the case thitihvg stored irubas new
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upper bound. Finally the vertex that has been eliminatetistiode is restored within
the primal graph.

If shas at least one unexplored child, denoteave will visit that child node.
Let v denote the vertex which will be eliminated at nagléhust.vertex = v. When
eliminating v from G*(H) we get a set of verticeX containingv and its neighbors.
BB-ghw computes the minimum numbleof hyperedges if{ needed for covering the
vertices inX. The width of the partial solution representedthg the maximum of the
width of the partial solution irsandk, thust.g = maxs.g, k). We compute a lower bound
on the generalized hypertree width®f(#) with tw-ksc-width and assign it toh. A
lower bound on the width of any elimination ordering endinighwihe partial solution
represented byis the maximum of the width computed so fag, the lower bound on
the generalized hypertree width of the remaining grapland any lower bound of a
search state on the path from the root,tthust.f = maxs.f,t.g,t.h). If t.f > ubthen
BB-ghw won't find a solution better thamb in the subtree rooted at the current search
node and thus that subtree is pruned. Otherwise the chitdrtesire computed according
to the pruning rules 1 and 2a and the simplicial vertex redaaule.

If shas been explored the vertexertexthat has been eliminated ais restored
in G*(H).

If BB-ghw terminates it will returnub whose value is the generalized hypertree
width of H.

8.5 Implementation Details

We implemented algorithm BB-ghw using+@ and STL. For representing and pro-
cessing the primal graph of the input hypergraph we chosegtagh representation
proposed in section 5.2.1. Since this representation res0{(|V|?) space and also the
space needed by the states witktackis in O(|V|?) the space complexity of BB-ghw is
O(VP).

For computing the solution of the LP-relaxation of theet cover problem of the
lower bound heuristic tw-ksc-width as well as for solving thet cover problems ap-
pearing within the branch and bound search we used GNU LiPegramming Kit 4.9
(GLPK) [23].
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Algorithm: BB-ghw

Input: a hypergraphH = (V, H)
Output: the generalized hypertree width of tHe

computeG*(H)

Ib = lower_boundG*(H))

ub = upperboundG*(H))

if b = ubthen return ub/* ghw(#H) already found-/

/% initialize the root of the search treg/*

depth=0

r = stackdepth

rh=1Ib,r.g=0,r.f =Ib,r.vertex=0

if 3 a simplicial vertexw in G*(#H) then
r.children= {w}

elser.children=V

while (depth> —-1) and (b > Ib) do / branch and bound searcly*

s = stacdeptH
if depth=|V| - 1then/ sis a leaf of the branch and bound tree - solutign *
if s.f <ubthen
ub=sf
restorgs.vertex G*(H))
depth= depth- 1

else ifd v e schildrenthen /#* s has at least one unexplored child - branchipg*
depth= depth+ 1
t = stacfdepth
t.vertex=v

determing.childrenaccording to pruning rule PR 2a
X = eliminatdv, G*(H))
k = exact set coverq, H)

if 3 a simplicial vertexw in G*(H) then /* simplicial vertex reduction rule
r.children= {w}

t.g = maxs.g,k)

t.h = lower_boundG*(H))

t.f = maxs.f,t.g,t.h)

if t.f > ubthent.children= 0/ Bounding ¥

/* Pruning according PR 1/
n’ = |V| — depth/* remaining vertices }
w = maxt.g,n’)
if w< ubthen
ub=w
if n” <tgthen
t.children= 0 / prune search

removev fromt.children

else/* all children of s have been explored - one step back in thecbetizee ¥
restorgs.vertex G*(H))
depth= depth- 1

return ub

Figure 8.3: Algorithm BB-ghw.
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8.6 Computational Results

We tested algorithm BB-ghw on 95 hypergraphs from [22] on &hiree with an In-
tel(R) Xeon(TM) 3.20 GHz processor having 4GB RAM. We impéarted BB-ghw as
randomized algorithm thus we performed ten runs of BB-ghve&zh hypergraph. Each
run was given a one hour time limit. Table 8.1 and Table 8.2gmethe results BB-ghw
returned for the 95 hypergraphs. The colurithgoergraph V andH contain the name,
the number of vertices and hyperedges for each hypergrapium® Ib presents the
maximum lower bound returned by the lower bound heuristiksawidth in ten runs.
Columnub gives the best upper bound on the generalized hypertred widi hyper-
graph which has been reported in [17], ™*"-entries indicttat no result was available.
Columnmin-fill presents the minimum upper bound which was computed by the mi
fill heuristic in ten runs for each instance. ColuBB-ghwgives the best width reported
by algorithm BB-ghw, the columnavg andstddev contain the average width and the
standard deviation for the ten runs. Colutme reports the time of a run which was
able to return an exact solution for an instance, ™*"-erstiiedicate that the time limit of
an hour was exceeded.

Algorithm BB-ghw was able to compute the gen. hypertree lwidt 23 instances.
For other 21 hypergraphs BB-ghw returned an improved uppendb on the generalized
hypertree width, which for 7 hypergraphs was due to an ingalaypper bound returned
by the min-fill heuristic. Anyway for 14 hypergraphs the iraped upper bound was
found within the branch and bound search. For 40 BB-ghw cratlern an upper bound
which was equal to the best upper bound known so far for tlstémce. Only for eight
instances the best known upper bound was not reached.
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| Hypergraph | Vv H]Ib]ub] mnfill BB-ghw [ avg stddev | time |
2bitcomp5 95 310 3| 11 13 13 14 1.41 *
2bitmax.6 192 766 5| 15 13 13| 25.3 6.60 *
adder15 106 76| 2 2 2 2 2 0.00 0.03
adder25 176 126 | 2 2 2 2 2 0.00 0.06
adder50 351 251 | 2 2 2 2 2 0.00 0.19
adder75 526 376 | 2 2 3 2 2 0.00 | 30.31
adder99 694 496 | 2 2 3 2 2 0.00 66.7
aim-50-16-no-3 50 80| 4 9 9 9 9 0.00 *
aim-50-16-yes1-3| 50 80| 4| 10 10 9 9.8 0.42 *
aim-50-20-no-3 50 100 5| 12 12 11| 11.8 0.42 *
aim-50-20-yes1-3| 50 100| 5| 11 11 10 | 10.8 0.42 *
aim-50-34-yes1-3 50 170 7 | 13 12 12 12 0.00 *
ais6 61 581| 5| 10 10 9 9.6 0.70 *
ais8 113 1520| 5| 14 14 12 | 14.2 0.92 *
atv_partiaLsystem | 125 88| 2 3 4 3 3.7 0.48 *
b0l 47 45| 2 5 5 5 5.2 0.42 *
b02 27 26| 2 3 3 3 3 0.00 *
b03 156 152 | 2 7 7 7 7 0.00 *
b06 50 48 | 2 5 5 4 4.7 0.48 *
b08 179 170| 3 | 10 10 10 10 0.00 *
b09 169 168| 3 | 10 10 10 | 10.2 0.63 *
b10 200 189 | 3 | 14 13 13| 14.2 0.79 *
bridge 15 137 137 2 2 3 3 3.2 0.42 *
bridge 25 227 227 2 2 3 3 3.7 0.48 *
c432 196 160 | 2 9 9 9 9 0.00 *
c499 243 202 | 3| 13 13 12 15 2.16 *
clique.10 45 10| 2 5 6 5 5 0.00 *
clique.15 105 15| 2 8 8 8 8 0.00 *
clique.20 190 201 3| 10 12 10 10 0.00 *
dubois100 300 800 | 2 2 2 2 2 0.00 0.34
dubois20 60 160 | 2 2 2 2 2 0.00 0.02
dubois21 63 168 | 2 2 2 2 2 0.00 0.03
dubois22 66 176 | 2 2 2 2 2 0.00 0.02
dubois23 69 184 | 2 2 2 2 2 0.00 0.03
dubois24 72 192 | 2 2 2 2 2 0.00 0.02
dubois25 75 200 | 2 2 2 2 2 0.00 0.03
dubois26 78 208 | 2 2 2 2 2 0.00 0.04
dubois27 81 216 | 2 2 2 2 2 0.00 0.04
dubois28 84 224 | 2 2 2 2 2 0.00 0.04
dubois29 87 232 | 2 2 2 2 2 0.00 0.04
dubois30 90 240 | 2 2 2 2 2 0.00 0.04
dubois50 150 400 | 2 2 2 2 2 0.00 0.1
flat30-1 90 300 5| 10 12 12| 14.4 1.84 *
flat30-50 90 300 5| 11 11 11| 11.4 0.52 *
flat30-99 90 300 5| 11 14 14 | 15.9 1.20 *
grid10 100 180| 3 * 12 9] 10.2 1.03 *
grid15 225 420 3 * 20 16 | 18.1 1.10 *
grid20 400 760 3 * 26 21| 249 2.18 *
grid2d.10 50 50| 3 5 5 5 5 0.00 *
grid2d.15 113 112| 3 8 9 8 9 0.47 *
grid2d.20 200 2001 3| 11 12 12 | 12.7 0.48 *
grid3d-4 32 32| 2 6 6 5 5 0.00 *
grid3d.5 63 62| 3 8 8 8 8.2 0.42 *
grid3d.6 108 108| 3 | 12 13 12 | 129 0.32 *
grid3d.7 172 171 4 | 16 17 17 | 18.1 0.74 *
grid4d_3 41 40| 3 6 8 6 6.9 0.32 *
grid4d.4 128 128 | 4 | 17 16 15| 16.2 0.63 *
grids 25 40| 3 * 4 3 3.2 0.42 0.02

Table 8.1: BB-ghw results for selected benchmark hypergrap
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Hypergraph| V H]Ib]ub] mnfil BB-ghw | avg stddev | time

hole10 110 561 3| 11 11 11 11 0.00 *
hole6 42 133 3 7 7 7 7 0.00 *
hole7 56 204| 3 8 8 8 8 0.00 *
hole8 72 297| 3 9 9 9 9 0.00 *
hole9 90 415| 3| 10 10 10 10 0.00 *
par8-1-c 64 254 3 7 7 7 7.1 0.32 *
par8-2-c 68 270| 4 6 6 6 6.5 0.53 *
par8-3-c 75 298| 4 8 7 7 7 0.00 *
par8-4-c 67 266| 3 7 7 6 7.1 0.57 *
par8-5-c 75 298| 4 7 7 7 7 0.00 *
pret15Q25 150 400| 2 5 5 5 5 0.00 *
pret15040 150 400| 2 5 5 5 5 0.00 *
pret15Q60 150 400| 2 5 5 5 5 0.00 *
pretl5Q75 150 400| 2 5 5 5 5 0.00 *
pret6Q25 60 160 2 5 5 5 5 0.00 *
pret6Q40 60 160| 2 5 5 5 5 0.00 *
pret6Q60 60 160 | 2 5 5 5 5 0.00 *
pret6Q75 60 160| 2 5 5 5 5 0.00 *
s208 115 104| 2 7 7 7 7.1 0.32 *
s27 17 13| 2 2 2 2 2 0.00 0
s298 136 133| 3 5 5 5 5 0.00 *
s344 184 175| 2 7 7 7 7 0.00 *
s349 185 176| 2 7 7 7 7 0.00 *
s382 182 179| 3 5 5 5 5.4 0.52 *
s386 172 165| 4 8 8 7 7.9 0.32 *
s400 186 183| 3 6 6 5 5.9 0.32 *
s420 231 212| 2 9 9 9 9.8 0.79 *
s444 205 202| 3 6 6 5 5.8 0.42 *
s510 236 217 4 | 23 20 20 | 22.3 1.64 *
s526 217 214| 3 8 8 7 7.9 0.32 *
s641 433 398 3 7 8 8 8.5 0.85 *
s713 447 412 | 3 7 8 7 8.8 1.03 *
s820 312 294| 5| 13 12 12 12 0.00 *
s832 310 292| 5| 12 11 11 11 0.00 *
uf20-01 20 91| 5 6 6 6 6 0.00 | 0.42
uf20-050 20 91| 6 6 6 6 6 0.00 | 0.07
uf20-099 20 91| 5 6 6 6 6 0.00 | 0.79

Table 8.2: BB-ghw results for selected benchmark hypelgap



Chapter 9

An A* Algorithm for Generalized
Hypertree Width

In this chapter we present an A* algorithm for computing tlemeyalized hypertree
width of hypergraphs. The algorithm uses the lower boundisigr the graph reduction
technique and a pruning rule presented in the previous ehapt

9.1 Algorithm A*-ghw

Basically, the A* algorithm for computing the generalizegphrtree width of hyper-
graphs, named*-ghw, has the same structure as algorithm A*-tw in section 5.quifé
9.1 presents algorithm A*-ghw in pseudo code notation.

The A* algorithm explores the search tree representingliafiileation orderings of
the vertices of its input hypergrapd = (V, H). In addition, A*-ghw uses the reduction
rule for simplicial vertices from section 8.2 and pruningera from section 8.3 in order
to shrink the search space. For getting an upper bourghwf{i/{) we compute a tree
decomposition fof{ by the help of the min-fill heuristic from section 4.4.2 andngute
a minimum cover for the labels of the tree decompositionicest[37]. The width of
the resulting generalized hypertree decomposition adtstid upper bound. As lower
bound heuristic we take the tw-ksc-width heuristic fromtieec8.1.

The algorithm uses a single priority queue, denape€elue for storing search states,
representing the nodes of the search tree. A search stat@rothe variableg, h, f,
whereg is the width of the partial solution represented by the deatateh is the lower
bound on the graph obtained by eliminating the vertices efadrtial solution and is
a lower bound on the width of all elimination orderings emgnith the partial solution.
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Furthermore a state contains links todtsldren within the search tree. Such a link is
represented by the vertex which will be eliminated next m ¢hild state. We say that
we visit a state if we remove the state from the priority quané by evaluating a state
we mean that we assign to it the valuesdoh, f and its children before inserting it into
the priority queue. The queue orders the states after thdiev in ascending order.
Among states with the same value fopriority is given to those states which lie deeper
in the search tree in the hope that we will reach the goal staiéer.

First of all the primal grapl*(#) is derived from the input hypergrapi. Then
an upper and a lower bound on the generalized hypertree widte hypergraph are
computed from the primal graph. If the upper bound on theaimst equals the lower
bound it is returned aghw(H). Otherwise we evaluate the initial state representing the
root of the search tree by settigg= 0, and by assigning the value for the lower bound
tohandf. If there is a simplicial vertex this vertex is the only chdtithe root state. If
there is no such vertex there is a child for each vertex witléngraph. Finally the initial
state is inserted into the priority queue and the A* seardirse

During an iteration of the A* search the statat top of the priority queue, having
the lowest value forf, is visited. We create a grapgh® representing the graph that is
obtained by eliminating the vertices of the partial solatiepresented bg. If s.g >
|GS| we have visited a state representing a solution and thus wereg asghw(H).
Otherwise the children of are evaluated and inserted into the priority queue.

For each child stateand its associated vertexwe compute its children according
to pruning rule 2a. Afterwards we determilea set consisting of and its neighbors in
in G%, and compute the minimum numbeof hyperedges it needed for covering the
vertices inX. Then by eliminating/ from G we obtain the grapfss.

The width of the partial solution representedthg the maximum of the width of
the partial solution represented bgndd, thust.g = maxs.g, d). t.his assigned a lower
bound on the treewidth of grapl. Botht.g as well ag.h represent a lower bound on
the width of all elimination orderings ending with the paltsolution represented hy
as well as any lower bound of a search state on the path fromotitidot, thus we set
t.f = maxt.g,t.h,s.f). If there is a simplicial vertex withii] this vertex is the only
child of statet.

Finally we insertt into the priority queue it.f is less than the upper boumdb on
ghw(H). States witht.f > ub won't lead to solutions which are better than the upper
bound solution we have already computed therefore theyxataded from the search
in order to decrease the memory needed by the A* algorithm.

If all search states with < ub have been visited but none of them represented a
solution it must be thatib is the treewidth of the graph and thub is returned by the
algorithm in that case.
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Algorithm: A*-ghw

Input: a hypergraphH = (V, H)
Output: the generalized hypertree width of tHe

computeG = G*(H)

Ib = lower_boundG)

ub = upperboundG)

if b = ubthen return ub/* treewidth already found/

/¥ evaluate the root of the search treg *
r = new Staté
rh=1Ib,rg=0,r.f =1lb

if 3 a simplicial vertexw in G then
r.children= {w}
r.reduced= true
elser.children=V
gueuepusHr)

/¥ A* search - visit next state in queug *
while queuds not emptydo

s = queuepop()
createG®

/¥ new lower bound is found/*
if sf>Ibthenlb=sf

/% optimal solution is found *
if s.g > |G9 then return s.g

/* evaluate the children of current search staje *
for eachv € s.childrendo

t = new Statf
t.children= V(G®) — {v}
if nots.reducedthen prunet.childrenaccording to PR 2a

X = VU Ngs(V)

k = exact set coverq, H)
G; = eliminatdyv, G%)

t.g = maxs.g,k)

t.h = lower_boundG;)
t.f = maxt.g,t.h,sf)

if 3 a simplicial vertexw in G§ then
t.children= {w}
t.reduced= true

if t.f < ubthen queuensert)

return ub

Figure 9.1: Algorithm A*-ghw.
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9.2 Implementation Details

We implemented algorithm A*-ghw using4G- and STL. For representing and process-
ing the primal graph of the input hypergraph we chose thelgrapresentation proposed
in section 5.2.1.

For computing the solution of the LP-relaxion of tkeset cover problem of the
lower bound heuristic tw-ksc-width as well as for solving #et cover problems appear-
ing within the A* search we used GNU Linear Programming K& dGLPK) [23].

If we restrict the running time of the A* algorithm by a timexit then thef-value
of the last state visited before the limit was exceeded magsa lower bound on the
treewidth of a graph for the same reasons as mentioned in 5.3.

9.3 Computational Results

We tested algorithm A*-ghw on 87 hypergraphs from [22]. Atpberiments were run
on a machine with an Intel(R) Pentium(R)-4 3.40 GHz procebkswing 1 GB RAM.
Since the lower and upper bound heuristics of A*-ghw are @m@nted in randomized
fashion we performed ten runs of A*-ghw for each hypergraBhch run was given a
one hour time limit. Table 9.1 and Table 9.2 present the tesutich were returned by
A*-ghw for the 87 hypergraphs.

The columndHypergraph V andH contain the name, the number of vertices and
hyperedges for each hypergraph. Colulorpresents the maximum lower bound re-
turned by the lower bound heuristic tw-ksc-width in ten rfmsthe initial hypergraph.
Column A*-ghw gives the maximum value returned by algorithm A*-ghw in tens.
Columntimereports the time of a run which was able to return an exactisoldor an
instance, "*"-entries indicate that the time limit of an hauas exceeded.

Algorithm A*-ghw was able to compute the generalized hygertwidth for 19
instances whereas for other 9 hypergraphs A*-ghw was alhegoove the initial lower
bound. For the remaining 59 instances A*-ghw was not ablenfrove the quality of
the initial lower bound.
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Hypergraph | Vv Hllb A-ghw time]
2bitcomp5 95 310 4 4 *
2bitmax6 192 766| 5 5 *
adder15 106 76| 2 2 4450
adder25 176 126 | 2 2 0.060
aim-50-16-no-3 50 80| 4 4 *
aim-50-16-yes1-3| 50 80| 4 4 *
aim-50-20-no-3 50 100| 5 6 *
aim-50-20-yes1-3| 50 100| 5 5 *
aim-50-34-yes1-3| 50 170 | 7 8 *
ais6 61 581 5 5 *
ais8 113 1520| 5 6 *
atv_partialsystem | 125 88| 2 2 *
bo1 47 45| 2 2 *
b02 27 26| 2 2 *
b03 156 152 | 2 2 *
b06 50 48 | 2 3 *
b08 179 170| 3 3 *
b09 169 168 | 3 3 *
b10 200 189 | 3 3 *
bridge 15 137 137| 2 2 *
bridge 25 227 227 2 2 *
c432 196 160| 2 2 *
c499 243 202 | 3 3 *
clique.10 45 10| 2 3 *
clique.15 105 15| 2 3 *
clique.20 190 20| 3 3 *
dubois100 300 800 | 2 2 0.330
dubois20 60 160 | 2 2 0.020
dubois21 63 168 | 2 2 0.020
dubois22 66 176 | 2 2 0.020
dubois23 69 184 | 2 2 0.020
dubois24 72 192 | 2 2 0.030
dubois25 75 200 2 2 0.020
dubois26 78 208 | 2 2 0.030
dubois27 81 216 | 2 2 0.030
dubois28 84 224 2 2 0.040
dubois29 87 232 2 2 0.040
dubois30 90 240 2 2 0.040
dubois50 150 400 | 2 2 0.100
flat30-1 90 300 5 5 *
flat30-50 90 300 5 5 *
flat30-99 90 300 5 5 *
grid10 100 180| 3 3 *
grid15 225 420| 3 3 *
grid2d.10 50 50| 3 3 *
grid2d-15 113 112 3 3 *
grid2d.20 200 200| 3 3 *
grid3d-4 32 32| 2 4 *
grid3d.5 63 62| 3 4 *
grid3d.6 108 108 | 3 3 *
grid3d.7 172 171 4 4 *
grid4d.3 41 40| 3 4 *
grid4d.4 128 128 | 4 4 *
grid5 25 40| 3 3 5387

Table 9.1: A*-ghw results for selected benchmark hypergsap
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[ Hypergraph[ V H[Ilb A-ghw time
hole10 110 561| 3 6 *
hole6 42 133 3 4 *
hole7 56 204 | 3 5 *
hole8 72 297 | 3 5 *
hole9 90 415| 3 6 *
par8-1-c 64 254 | 3 3 *
par8-2-c 68 270| 4 4 *
par8-3-c 75 298| 4 4 *
par8-4-c 67 266 | 3 3 *
par8-5-c 75 298| 4 4 *
pret15Q25 150 400| 2 2 *
pret15Q40 150 400| 2 2 *
pret15060 150 400| 2 2 *
pretl5Q75 150 400| 2 2 *
pret6Q25 60 160| 2 2 *
pret6Q40 60 160 | 2 2 *
pret6Q60 60 160| 2 2 *
pret6Q75 60 160 | 2 2 *
s208 115 104| 2 2 *
s27 17 13| 2 2 0.00
$298 136 133| 3 3 *
s344 184 175| 2 2 *
s349 185 176 2 2 *
s382 182 179| 3 3 *
s386 172 165| 4 4 *
s400 186 183| 3 3 *
s420 231 212 2 2 *
s444 205 202( 3 3 *
s510 236 217 4 4 *
s526 217 214 3 3 *
uf20-01 20 91| 5 6 0.380
uf20-050 20 91| 6 6 0.080
uf20-099 20 91| 5 6 0.760

Table 9.2:

A*-ghw results for selected benchmark hypergsap
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Chapter 10

Conclusions

In this master thesis we presented new heuristic methodsderdecompositions and
generalized hypertree decompositions.

In chapter 5 we proposed an A* algorithm, named A*-tw, for aiing the
treewidth of graphs which additionally applies reductioul @runing methods presented
in [5], [8] and [24] in order to narrow the search space whiak to be explored. Com-
putational experiments revealed that A*-tw was able to aaiephe exact treewidth for
all but two benchmark instances [18] for which the branchlamahd bound algorithms
in [5] and [24] could determine the treewidth. A*-tw could fike treewidth for an
additional instance.

In chapter 6 we presented a genetic algorithm, named GAstvedmputing upper
bounds on the treewidth of graphs based on a genetic algofihtriangulations of the
moral graph of Bayesian networks [36]. Computational expents showed that the
position-based crossover operator (POS) and the insertigation operator (ISM) are
suitable operators for achieving small upper bounds onrdewidth of graphs. Com-
pared with the best upper bounds for 62 benchmark graphskfi@&yn from [4], [5],
[13] and [24], GA-tw found an improved upper bound on thewreéh for 22 graphs,
GA-tw was able to return the same upper bound for 31 graplusfaaronly 9 graphs the
results delivered by GA-tw were worse.

In chapter 3 we proved that at least one elimination ordesfraghypergraph corre-
sponds to a generalized hypertree decomposition of optiittth for that hypergraph.
This result implies that the set of elimination orderingsya regarded as a search space
for the generalized hypertree width of hypergraphs andtbatistic methods based on
elimination orderings may find an optimal generalized hirperdecomposition.

In chapter 7 we proposed a genetic algorithm, named GA-ghwmgdmputing up-
per bounds on the generalized hypertree width of hypergrapWhen applied to 19
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benchmark hypergraphs from [22], GA-ghw found an improvegear bound on the
generalized hypertree width for 12 graphs, GA-ghw was ableturn the same upper
bound for 2 graphs, and for 5 graphs the width returned by Gw-gyas worse than the
best upper bound known from [17].

We implemented a self-adaptive island genetic algorithngémeralized hypertree
width upper bounds based on [19]. Although the self-adapgignetic algorithm did
not give so good results as the the previously mentionedtigealgorithm, its main
advantage is that it is able to adjust its control paramétisel and doesn't require time-
consuming experiments in order to obtain suitable valuethfase control parameters.

In chapter 8 we proved that we may obtain a lower bound on thergézed hy-
pertree width of a hypergraph from a lower bound on its trdédwand from an exact
solution or a lower bound for B-set cover problem, arising from the treewidth lower
bound. Based on that results, we proposed a lower boundstieddr generalized hy-
pertree width, named tw-ksc-width. Moreover we showed hoamkn reduction [8] and
pruning techniques [5], for shrinking the search spaceréavidth, may also be applied
for reducing the search space for the generalized hypexidth. We proposed a branch
and bound algorithm, named BB-ghw, in chapter 8 and an A*ritlygm, named A*-ghw,
in chapter 9, which use the lower bound heuristic tw-ksctvethd some of the derived
reduction and pruning techniques.

We tested algorithm BB-ghw with 95 benchmark instances #j fhd compared
the results delivered by BB-ghw with known upper bounds airtheneralized hyper-
tree width from [17]. Algorithm BB-ghw was able to compute tigeneralized hypertree
width for 23 instances. For other 21 hypergraphs BB-ghwrnetd improved upper
bounds on the generalized hypertree width, which for 7 tynag@hs was due to an im-
proved upper bound returned by the min-fill heuristic. Anywar 14 hypergraphs the
improved upper bound was found within the branch and bouactke For 40 BB-ghw
could return an upper bound which was equal to the best upperdofor that instance.
Only for 8 instances the best known upper bound was not reache

Algorithm A*-ghw was applied to 87 benchmark instances i][@nd it was able
to compute the generalized hypertree width for 19 instandeeas for other 9 hyper-
graphs A*-ghw was able to improve the initial lower bound.

One interesting point for future research is the develogroémew lower bound
heuristics for the generalized hypertree width of hypeygsa With improved lower
bounds on the generalized hypertree width of hypergrapdrschrand bound algorithms
would be able to discard more regions from their search spese the behavior of A*
algorithms depends on the quality of their underlying lotweund heuristics.

Another task for future research is the development of neluaon and pruning
rules which again would reduce the search space of A* andhrand bound algorithms.
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