Motivation

- SQL, relational algebra, relational calculus (both tuple and domain relational calculus) are "relational complete", i.e., they have the full expressive power of relational algebra.
- But: many interesting queries cannot be formulated in these languages
- Example: no recursive queries (SQL now offers a recursive construct)

Example

- Relation parent(PARENT, CHILD), gives information on the parent-child relationship of a certain group of people.
- Problem: look for all ancestors of a certain person.
- Solution: define relation ANCESTOR(X, Y): X is ancestor of Y by generating one generation after the other (one join and one projection each) and finally merge all generations (union):

 \[
 \text{grandparent} \text{(GRANDPARENT, GRANDCHILD)} := \pi_{1,4}(\text{parent}[\text{CHILD} = \text{PARENT}]\text{parent}) \\
 \text{grandgrandparent} \text{(GRANDGRANDPARENT, GRANDGRANDCHILD)} := \pi_{1,4}(\text{parent}[\text{CHILD} = \text{GRANDPARENT}]\text{grandparent}) \\
 \ldots \\
 \text{ancestor} \text{(ANCESTOR, NAME)} := \text{parent} \cup \text{grandparent} \cup \text{grandgrandparent} \cup \ldots
 \]
Possible Solution

- Use of a programming language with an embedded relational complete query language:

```plaintext
begin
    result := {};
    newtuples := parent;
    while newtuples ⊈ result do
        begin
            result := result ∪ newtuples;
            newtuples := π₁,₄(newtuples[2 = 1]parent);
        end;
    ancestor := result
end.
```

- procedural, needs knowledge of a programming language, leaves little room for query optimization.

Better Solution: Datalog

- Prolog-like logical query language,
- allows recursive queries in a declarative way

Example:

- compute all ancestors on the basis of the relation parent
  ```plaintext
  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
  ```

- use the ancestor predicate to compute the ancestors of a certain person (Hans):
  ```plaintext
  hans_ancestor(X) :- ancestor(X,hans).
  ```

- compute the ancestors of a certain person (Hans) directly:
  ```plaintext
  hans_ancestor(X) :- parent(X,hans).
  ```

Datalog - Syntax

```
<datalog_program> ::= <datalog_rule> |
    <datalog_program><datalog_rule>
<datalog_rule> ::= <head> :- <body>
<head> ::= <literal> | <body>, <literal>
<body> ::= <term> | <body>, <term>
<literal> ::= <relation_id>(<list_of_args>)
<list_of_args> ::= <term> | <list_of_args>, <term>
<term> ::= <symb_const> | <symb_var>
<symb_const> ::= <number> | <lcc> | <lcc><string>
<symb_var> ::= <ucc> | <ucc><string>
```

(lcc = lower_case_character; ucc = upper_case_character)

Restrictions on the Datalog Syntax

- name of an existing relation of the database (parent) - can be used only in rule bodies
- name of a new relation defined by the datalog program (ancestor)
- has always the same number of arguments.

comparison predicates:
```
=, <>, <, > are treated like known database relations.
```

variables:
```
each variable that appears in the head of a rule has to be bound in the body
```
variables that appear as arguments of comparison predicates must appear in the same body in literals without comparison predicates

A datalog query is also called datalog program
Logical Semantics of Datalog

We consider a datalog rule of the form $L_0 \leftarrow L_1, L_2, \ldots, L_n$.

L_i is a literal of the form $p_i(t_1, \ldots, t_n)$.

$x_1, x_2, \ldots, x_{\ell}$ are variables in R.

We construct $R^* = \forall x_1 \forall x_2 \ldots \forall x_{\ell}(L_1 \land L_2 \land \cdots \land L_n \Rightarrow L_0)$.

We assign to each datalog program P the (semantically) well-defined formula P^* as follows:

$$P^* = R_1^* \land R_2^* \land \cdots \land R_m^*$$

We have:

- DB^* is a conjunction of ground atoms (i.e., the facts) and P^* is a conjunction of formulas with implication.

Let G be a conjunction of facts and formulas with implication. Then the set $\text{cons}(G)$ of facts that follow from G is uniquely defined.

In other words, we have $\text{cons}(G) = \{ A \mid A \text{ is a fact with } G \models A \}$.

Example

Consider the database DB with relations $\text{woman}(\text{NAME})$, $\text{man}(\text{NAME})$, $\text{parent}(\text{PARENT}, \text{CHILD})$ and the datalog program:

$$\text{grandpa}(X,Y) \leftarrow \text{man}(X), \text{parent}(X,Z), \text{parent}(Z,Y).$$

woman (NAME) man (NAME) parent (PARENT, CHILD)

<table>
<thead>
<tr>
<th>Grete</th>
<th>Hans</th>
<th>Hans</th>
<th>Linda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linda</td>
<td>Karl</td>
<td>Grete</td>
<td>Linda</td>
</tr>
<tr>
<td>Gerti</td>
<td>Michael</td>
<td>Linda</td>
<td>Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Karl</td>
<td>Gerti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linda</td>
<td>Gerti</td>
</tr>
</tbody>
</table>
Let us compute DB^*, P^* and $\text{cons}(P^* \land DB^*)$:

$$DB^* = REL_1^* \land \cdots \land REL_k^*$$

$$P^* = R_1^* \land \cdots \land R_m^*$$

The new facts in $\text{cons}(P^* \land DB^*)$:

- $\text{grandpa}(\text{hans}, \text{michael})$, $\text{grandpa}(\text{hans}, \text{gerti})$.

The datalog program P with

$$P = \text{grandpa}(X,Y) :- \text{man}(X), \text{parent}(X,Z), \text{parent}(Z,Y)$$

defines a new relation grandpa with the following tuples:

- $\text{grandpa}(\text{hans}, \text{michael})$
- $\text{grandpa}(\text{hans}, \text{gerti})$

Operational Semantics of Datalog

- A rule R with variables represents all variable-free rules we get from R by substituting the variables with the constant symbols.
- The constant symbols are taken from the database DB and the program P.
- A variable-free rule resulting from such a substitution is called **ground instance** of R with respect to P and DB.
- We write $\text{Ground}(R, P, DB)$ to denote the set of all ground instances over P and DB of R.

Example:

facts: $\text{parent}(\text{linda}, \text{michael}), \text{parent}(\text{linda}, \text{gerti})$

rule: $\text{siblings}(\text{michael}, \text{gerti}) :-$

- $\text{parent}(\text{linda}, \text{michael}), \text{parent}(\text{linda}, \text{gerti})$.

the following fact can be deduced:

- $\text{siblings}(\text{michael}, \text{gerti})$
Example:

Compute all relations between siblings with the following rule:

\[
\text{siblings}(Y, Z) : = \text{parent}(X, Y), \text{parent}(X, Z), Y < > Z.
\]

All 6\(^3\) ground instances of this rule with respect to \(P\) and \(DB\) from above are (note that there are 6 constant symbols: \{grete, linda, gerti, hans, michael, karl\}):

\[
\begin{align*}
\text{siblings}(\text{grete}, \text{grete}) : & = \text{parent}(\text{grete}, \text{grete}), \text{parent}(\text{grete}, \text{grete}), \\
& \quad \text{grete} < > \text{grete} \quad (X = Y = Z = \text{grete}) \\
\text{siblings}(\text{grete}, \text{linda}) : & = \text{parent}(\text{grete}, \text{grete}), \text{parent}(\text{grete}, \text{linda}), \\
& \quad \text{grete} < > \text{linda} \quad (X = Y = \text{grete}, Z = \text{linda}) \\
\end{align*}
\]

\[
\begin{align*}
\text{siblings}(\text{karl}, \text{karl}) : & = \text{parent}(\text{karl}, \text{karl}), \text{parent}(\text{karl}, \text{karl}), \\
& \quad \text{karl} < > \text{karl} \quad (X = Y = Z = \text{karl})
\end{align*}
\]

Properties of \(T_P(DB)\)

- The set of facts is monotonically increasing i.e.,

\[
T_P(DB) \subseteq T_P(DB)
\]

- The sequence \((T_P(DB))\) converges finitely: there exists \(n\) with \(T_P^n(DB) = T_P(DB)\) for all \(m \geq n\).

- \(T_P(DB)\) is set of facts, to which \((T_P(DB))\) converges is the result of the application of \(P\) to \(DB\).

- The operational semantics of a datalog program \(P\) assigns to each database \(DB\) the set of facts \(T_P(DB)\):

\[
\]

Theorem (Equivalence of semantics)

Assume a program \(P\). Then it holds that \(M[P] = O[P]\). In other words, for any database \(DB\), we have:

\[
\text{cons}(P^* \land DB^*) = T_P(DB)
\]
Proof of Theorem

Let P be a program and DB a database. We show

$$\text{cons}(P^* \land DB^*) = T_P(DB).$$

(1) We first show $T_P(DB) \subseteq \text{cons}(P^* \land DB^*)$. By induction on i, we show that $T_P(DB) \subseteq \text{cons}(P^* \land DB^*)$ for every $i \geq 0$. Note that this includes the case where $i = \omega$.

Base case. Assume $i = 0$. Take a fact $L \in T^0_P(DB)$. Then by definition of $T^0_P(DB), L \in DB$. By definition, DB^* is a conjunction of literals and L occurs in it. Hence, by classical logic, $L \in \text{cons}(P^* \land DB^*)$.

The inductive step. Suppose $T_P(DB) \subseteq \text{cons}(P^* \land DB^*)$ for $i \geq 0$. We show that $T_P(DB) \subseteq \text{cons}(P^* \land DB^*)$. Recall that $T_P(DB) = T_P(T^0_P(DB))$. Thus by the definition of T_P,

$$T^i_P(DB) = T_P(DB) \cup \bigcup_{R \in P} \{L_0 \mid L_0 := L_1, \ldots, L_n \in \text{Ground}(R, P, DB), L_1, \ldots, L_n \in T_P(DB)\}$$

(2) We show $\text{cons}(P^* \land DB^*) \subseteq T_P(DB)$. To this end, we prove that $L \notin T_P(DB)$ implies $L \notin \text{cons}(P^* \land DB^*)$, for any fact L. We thus simply show that $T_P(DB)$ is a model of $P^* \land DB^*$.

This suffices because of the following simple property: if M is a model of a formula F, then any fact $L \notin M$ is not a logical consequence of F (as witnessed by M itself).

By the induction hypothesis, $T^\omega_P(DB) \subseteq \text{cons}(P^* \land DB^*)$. Thus it remains to show that $L_0 \in \text{cons}(P^* \land DB^*)$ for any rule $R \in P$ such that there is $L_0 := L_1, \ldots, L_n \in \text{Ground}(R, P, DB)$ with $L_1, \ldots, L_n \in T^\omega_P(DB)$.

Assume such a rule $R = L_0^0 := L_1^0, \ldots, L_n^0$ in P, and suppose π is the substitution of variables with constants such that applying π to R results in $L_0 := L_1, \ldots, L_n$, i.e. $\pi(L_j^0) = L_j$ for $j \in \{0, \ldots, n\}$.

By construction, in $P^* \land DB^*$ we have the conjunct

$$R^* = \forall x_1 \forall x_2 \ldots \forall x_t(\{L_1^t \land L_2^t \land \cdots \land L_n^t \Rightarrow L_0^t\})$$

Thus, by employing the semantics of classical logic, for any variable substitution π' such that $\{\pi'(L_1^t), \ldots, \pi'(L_n^t)\} \subseteq \text{cons}(P^* \land DB^*)$ we also have $\pi'(L_0^t) \in \text{cons}(P^* \land DB^*)$. Since π is a substitution such that $\{\pi(L_1^t), \ldots, \pi(L_n^t)\} = \{L_1, \ldots, L_n\} \subseteq \text{cons}(P^* \land DB^*)$ by the induction hypothesis, we get $\pi(L_0^t) = L_0 \in \text{cons}(P^* \land DB^*)$.
Algorithm: INFER

INPUT: datalog program \(P \), database \(DB \)
OUTPUT: \(T^\omega_P(DB) \) \((= \text{cons}(P^* \land DB^*)) \)

STEP 1. \(GP := \bigcup_{R \in P} \text{Ground}(R; P, DB), \)
\((* \ GP \ldots \text{set of all ground instances} *) \)
STEP 2. \(OLD := \{\}; NEW := DB; \)
STEP 3. while \(NEW \neq OLD \) do begin
\(OLD := NEW; NEW := \text{ComputeTP}(OLD); \)
end;
STEP 4. output \(OLD \).

Subroutine ComputeTP

INPUT: Set of facts \(OLD \)
OUTPUT: \(T_P(OLD) \)

STEP 1. \(F := OLD; \)
STEP 2. for each rule \(L_0 :- L_1, \ldots, L_n \) in \(GP \) do
if \(L_1, \ldots, L_n \in OLD \)
then \(F := F \cup \{ L_0 \}; \)
STEP 3. return \(F; \)

Example

Apply the following program \(P \) to calculate all ancestors of the above given database \(DB \).

\[
\text{ancestor}(X,Y) :- \text{parent}(X,Y).
\]
\[
\text{ancestor}(X,Z) :- \text{parent}(X,Y), \text{ancestor}(Y,Z).
\]

Step 1. (INFER) build \(GP \)
\[
GP = \{ \text{ancestor}(\text{grete},\text{grete}) :- \text{parent}(\text{grete},\text{grete}), \text{ancestor}(\text{grete},\text{linda}) :- \text{parent}(\text{grete},\text{linda}), \ldots, \text{ancestor}(\text{grete},\text{grete}) :- \text{parent}(\text{grete},\text{grete}), \text{ancestor}(\text{grete},\text{grete}) :- \text{parent}(\text{grete},\text{linda}), \text{ancestor}(\text{linda},\text{grete}), \ldots \}.
\]

(There are \(6^2 + 6^3 = 252 \) ground instances.)
Datalog with negation

Without negation, datalog is not relational complete because set difference \(R - S \) cannot be expressed.

- We introduce the negation \((\text{not})\) in bodies of rules.
- Restriction on the application of the negation:

 A relation \(R \) must not be defined on the basis of its negation.

- Check for this constraint: with graph-theoretic methods.

Graph representation

Let \(P \) be a datalog program with negated literals in the body of rules.

Definition: dependency graph

\(DEP(P) \) is defined as the directed graph, with:

- nodes \(\ldots \) predicates (predicate symbols) \(p \) in \(P \),
- edges \(\ldots p \rightarrow q \), if there exists a rule in \(P \) where \(p \) is the head atom and \(q \) appears in the body (meaning: “\(p \) depends on \(q \)”).

Mark an edge \(p \rightarrow q \) of \(DEP(P) \) with a star “\(*\)”, if \(q \) in the body is negated.

Definition

A datalog program \(P \) with negation is called valid if the graph \(DEP(P) \) has no directed cycle that contains an edge marked with “\(*\)”.

Such programs are called stratified, since they can be divided into strata with respect to the negation.

Example

The following program \(P \) with the rules:

- \(\text{husband}(X) :- \text{man}(X), \text{married}(X) \).
- \(\text{bachelor}(X) :- \text{man}(X), \neg \text{husband}(X) \).

\[
\text{husband} \quad \text{married} \\
\text{bachelor} \quad \text{man} \\
\text{husband} \quad \neg \text{husband}
\]

is stratified.
The program P with the rules:

\[
\begin{align*}
\text{husband}(X) & : \text{man}(X), \text{not bachelor}(X). \\
\text{bachelor}(X) & : \text{man}(X), \text{not husband}(X).
\end{align*}
\]

is not stratified.

Algorithm

INPUT: A set of datalog rules.

OUTPUT: the decision whether the program is stratified and the classification of the predicates into strata.

METHOD:

1. initialize the strata for all predicates with 1.

2. do for all rules R with predicate p in the head:
 - if (i) the body of R contains a negated predicate q,
 (ii) the stratum of p is i, and
 (iii) the stratum of q is i with $i \leq j$, then set $i := j + 1$.
 - if (i) the body of R contains an unnegated predicate q,
 (ii) the stratum of p is i, and
 (iii) the stratum of q is j with $i < j$, then set $i := j$.

 until:
 - status is stable \Rightarrow program is stratified.
 - stratum $n > \#$ predicates \Rightarrow not stratified.

Example

Consider R, S relations of the database DB, P:

\[
\begin{align*}
v(X,Y) & : r(X,X), r(Y,Y). \\
u(X,Y) & : s(X,Y), s(Y,Z), \text{not } v(X,Y). \\
w(X,Y) & : \text{not } u(X,Y), v(Y,X).
\end{align*}
\]

Stratification

Definition

A stratum is composed by the maximal set of predicates for which the following holds:

1. if a predicate p appears in the head of a rule, that contains a negated predicate q in the body, then p is in a higher stratum than q.

2. if a predicate p appears in the head of a rule, that contains an unnegated (positive) predicate q in the body, then p is in a stratum at least as high as q.
Semantics of datalog with negation

Note: when calculating the strata of a datalog program with negation the following holds:

Step 1: computation of all relations of the first stratum.
Step i: computation of all relations that belong to stratum i.
⇒ the relations computed in step i − 1 are known in step i.

Semantics of datalog with negation is therefore uniquely defined.

Computation of P from the last example above:

Step 1: compute V from R
Step 2: compute U from S and V
Step 3: compute W from U and V

Example

Let DB be a database that contains information on graphs, with relations v(X), saying X is a node and e(X,Y) saying there is an edge from X to Y. Write a datalog program that computes all pairs of nodes (X,Y), where X is a source, Y is a sink and X is connected to Y.

\[p(X,Y) :- \text{source}(X), \text{sink}(Y), \text{connection}(X,Y). \]

\[\text{connection}(X,X) :- v(X). \]
\[\text{connection}(X,Y) :- e(X,Z), \text{connection}(Z,Y). \]
\[\text{n_source}(X) :- e(Y,X). \]
\[\text{source}(X) :- v(X), \text{not n_source}(X). \]
\[\text{n_sink}(X) :- e(X,Y). \]
\[\text{sink}(X) :- v(X), \text{not n_sink}(X). \]

Properties of datalog with negation

- Datalog with negation is relational complete:
 - The difference \(D = R - S \) of two (e.g. binary) relations R and S:
 \[d(X,Y) :- r(X,Y), \text{not s}(X,Y). \]

- Syntactical restrictions of datalog with negation:
 - All variables that appear in the body within a negated literal must also appear in a positive (unnegated) literal.
Learning objectives

- Motivation for Datalog (recursive queries)
- Syntax of Datalog
- Semantics of Datalog:
 - logical semantics,
 - operational semantics.
- Datalog with negation:
 - the need for negation,
 - the notions of dependency graph and stratification,
 - semantics of Datalog with negation.