1. Introduction: Relational Query Languages

Reinhard Pichler

Institute of Logic and Computation
DBAI Group
TU Wien

15 October, 2019
Outline

1. Overview
1.1 Databases and Query Languages
1.2 Query Languages: Relational Algebra
1.3 Query Languages: Relational (Domain) Calculus
1.4 Query Languages: SQL
1.5 Query Languages: other Languages
1.6 Some Fundamental Aspects of Query Languages
A short history of databases

- 1970’s:
 - relational model of databases (E. F. Codd)
 - relational query languages (SQL)
- 1980’s:
 - relational query optimization
 - constraints, dependency theory
 - datalog (extend the query language with recursion)
- 1990’s:
 - new models: temporal databases, OO, OR databases
 - data mining, data warehousing
- 2000’s:
 - data integration, data exchange
 - data on the web, managing huge data volumes
 - new data formats: XML, RDF
 - data streams
Database theory

- Cut-crossing many areas in Computer Science and Mathematics
 - *Complexity* → efficiency of query evaluation, optimization
 - *Logics, Finite model theory* → expressiveness
 - *Logic programming, constraint satisfaction (AI)* → Datalog
 - *Graph theory* → (hyper)tree-decompositions
 - *Automata* → XML query model, data stream processing

- Benefit from other fields on the one hand, contribute new results on the other hand
Relational data model

- A **database** is a collection of relations (or tables)
- Each database has a **schema**, i.e., the **vocabulary (or signature)**
 - Each **relation** (table) has a name and a schema;
 - the schema of each relation \(r \) is defined by a list of **attributes** (columns), denoted \(\text{schema}(r) \)
- Each attribute \(A \) has a **domain** (or **universe**), denoted \(\text{dom}(A) \)
 - We define
 \[
 \text{dom}(r) = \bigcup_{A \in \text{schema}(r)} \text{dom}(A)
 \]
- Each relation contains a set of **tuples** (or **rows**)
 - Formally, a tuple in \(r \) is a mapping \(t : \text{schema}(r) \rightarrow \text{dom}(r) \) such that \(t(A) \in \text{dom}(A) \) for all \(A \in \text{schema}(r) \)
Example

- **Schema**
 - `Author (AID integer, name string, age integer)`
 - `Paper (PID string, title string, year integer)`
 - `Write (AID integer, PID string)`

- **Instance**
 - `{⟨142, Knuth, 73⟩, ⟨123, Ullman, 67⟩, . . .}
 - `{⟨181140pods, Querycontainment, 1998⟩, . . .}
 - `{⟨123, 181140pods⟩, ⟨142, 193214algo⟩, . . .}
Relational query languages

- Query languages are formal languages with syntax and semantics:
 - **Syntax**: algebraic or logical formalism or specific query language (like SQL). Uses the vocabulary of the DB schema
 - **Semantics**: $M[Q]$ a mapping that transforms a database (instance) D into a database (instance) $D' = M[Q](D)$, i.e. the database $M[Q](D)$ is the answer of Q over the DB D.

- Usually, $M[Q]$ produces a single table, i.e., $M[Q]: D \rightarrow \text{dom}(D)^k$
 - in general: $k \geq 0$. We say “Q is a k-ary query”.
 - Boolean queries: $k = 0$, i.e.:
 - possible values of $M[Q](D)$ are $\{\}$ (= false) or $\{\langle\rangle\}$ (= true).

- **Expressive power** of a query language: which mappings $M[Q]$ can be defined by queries Q of a given query language?
Relational Algebra (RA)

- $\sigma \rightarrow \text{Selection}$*
- $\pi \rightarrow \text{Projection}$*
- $\times \rightarrow \text{Cross product}$*
- $\bowtie \rightarrow \text{Join}$
- $\rho \rightarrow \text{Rename}$*
- $- \rightarrow \text{Difference}$*
- $\cup \rightarrow \text{Union}$*
- $\cap \rightarrow \text{Intersection}$

*Primitive operations, all others can be obtained from these.

For precise definition of RA see any DB textbook.
Example

- Recall the schema:
 - Author (AID integer, name string, age integer)
 - Paper (PID string, title string, year integer)
 - Write (AID integer, PID string)

- Example query: PIDs of the papers NOT written by Knuth

\[
\pi_{PID}(Paper) - \pi_{PID}(Write \bowtie \sigma_{name=\text{"Knuth"}}(Author))
\]

- Example query: AIDs of authors who wrote exactly one paper

\[
S_2 = Write \bowtie_{AID=AID' \land PID \neq PID'} \rho_{AID' \leftarrow AID, PID' \leftarrow PID}(Write)
\]

\[
S = \pi_{AID}Write - \pi_{AID}S_2
\]
Recall First-order Logic (FO)

Formulas built using:

- Quantifiers: ∀, ∃,
- Boolean connectives: ∧, ∨, ¬
- Parentheses: (,)
- Atoms: R(t₁, ..., tₙ), t₁ = t₂

Example database (i.e. a first-order structure):

- Schema: E(FROM string, TO string)
- Instance: {⟨v, u⟩, ⟨u, w⟩, ⟨w, v⟩}

Example queries in FO:

- {⟨x⟩ | ∃yE(x, y)}
- {⟨x⟩ | ∀y(¬(x = y) → E(x, y))}
- {⟨x, z⟩ | ∃y(E(x, y) ∧ E(y, z))}
- {⟨⟩ | ∃y∃z(¬(y = z) ∧ E(x, y) ∧ E(x, z))}
Relational (Domain) Calculus

If φ is an FO formula with free variables $\{x_1, \ldots, x_k\}$, then

$$\{\langle x_1, \ldots, x_k \rangle \mid \varphi\}$$

is a k-ary query of the domain calculus. On database \mathcal{A} with domain A, it returns the set of all tuples $\langle a_1, \ldots, a_k \rangle \in (A)^k$ such that the sentence $\varphi[a_1, \ldots, a_k]$ obtained from φ by replacing each x_i by a_i evaluates to true in the structure \mathcal{A}.

Notational simplifications.

- We often simply write φ rather than $\{\langle x_1, \ldots, x_k \rangle \mid \varphi\}$ (i.e., the free variables of a formula are considered as the output).
- In particular, we usually write φ rather than $\{\langle \rangle \mid \varphi\}$ for Boolean queries ($k = 0$).
Example

- Recall the schema:
 - Author (AID integer, name string, age integer)
 - Paper (PID string, title string, year integer)
 - Write (AID integer, PID string)

- Example query: “PIDs of the papers NOT written by Knuth”

\[
\{ \text{PID} \mid \exists T \exists Y (\text{Paper}(\text{PID}, T, Y) \land \\
\land \neg (\exists A \exists \text{AID}(\text{Write}(\text{AID}, \text{PID}) \land \text{Author}(\text{AID}, "\text{Knuth}" , A)))) \}
\]

- Example query: “AIDs of authors who wrote exactly one paper”

\[
\{ \text{AID} \mid \exists \text{PID} (\text{Write}(\text{AID}, \text{PID}) \land \neg \exists \text{PID2}(\text{Write}(\text{AID}, \text{PID2}) \land \text{PID} \neq \text{PID2})) \}
\]
SQL (Structured Query Language)

- A standardized language:
 - most database management systems (DBMSs) implement SQL
- SQL is not only a query language:
 - supports constructs to manage the database (create/delete tables/rows)
- Query constructs of SQL (SELECT/FROM/WHERE/JOIN) are based on relational algebra

- Example query: “AIDs of the co-authors of Knuth”

```sql
SELECT W1.AID
FROM Write W1, Write W2, Author
WHERE W1.PID=W2.PID AND W1.AID <> W2.AID
AND W2.AID=Author.AID AND Author.Name="Knuth"
```
Relational Algebra vs. Relational Calculus vs. SQL

Theorem (following Codd 1972)

Relational algebra, relational calculus, and SQL queries essentially have equal expressive power.

- **Restrictions apply:** no “group by” and aggregation in SQL queries, “safety” requirements for relational calculus.
- Languages with this expressive power are “relational complete”.
- All 3 languages have their advantages:
 1. use the flexible syntax of relational calculus to specify the query
 2. use the simplicity of relational algebra for query simplification/optimization
 3. use SQL to implement the query over a DB
- **More expressive query languages:**
 - many interesting queries cannot be formulated in these languages
 - Example: no recursive queries (SQL now offers a recursive construct)
Towards other query languages

Paul Erdös (1913-1996), one of the most prolific writers of mathematical papers, wrote around 1500 mathematical articles in his lifetime, mostly co-authored. He had 509 direct collaborators.
Erdős number

- The Erdős number, is a way of describing the “collaborative distance”, in regard to mathematical papers, between an author and Erdős.

- An author’s Erdős number is defined inductively as follows:
 - *Paul Erdős* has an *Erdős number* of zero.
 - The *Erdős number* of author *M* is one plus the minimum among the *Erdős numbers* of all the authors with whom *M* co-authored a mathematical paper.

- Rothschild B.L. co-authored a paper with Erdős → Rothschild B.L.’s Erdős number is 1.
 - Kolaitis P.G. co-authored a paper with Rothschild B.L. → Kolaitis P.G.’s Erdős number is 2.
 - Pichler R. co-authored a paper with Kolaitis P.G. → Pichler R.’s Erdős number is 3.

- Rowling J.K.’s Erdős number is ∞
Queries about the Erdös number

- Recall the schema:
 - Author (AID integer, name string, age integer)
 - Paper (PID string, title string, year integer)
 - Write (AID integer, PID string)

- Assume that Erdös’s AID is 17

- Query “AIDs of the authors whose Erdös number ≤ 1”

\[
P_1 = \pi_{PID}(\sigma_{AID=17} Write)
\]

\[
A_1 = \pi_{AID}(P_1 \bowtie Write)
\]

- Query “AIDs of the authors whose Erdös number ≤ 2”

\[
P_2 = \pi_{PID}(A_1 \bowtie Write)
\]

\[
A_2 = \pi_{AID}(P_2 \bowtie Write)
\]
Queries about the Erdös number (continued)

- What about $Q_1 = \{\text{AIDs of the authors whose Erdös number } < \infty\}$?
- What about $Q_2 = \{\text{AIDs of the authors whose Erdös number } = \infty\}$?
- Can we express Q_1 and Q_2 in relational calculus (or equivalently in RA)?
 - We cannot!
 - Formal methods to prove this negative result will be presented in the course.
- Are there query languages that allow us to express Q_1 and Q_2?
 - Yes, we can do this in DATALOG (the topic of the next lecture).
Some fundamental aspects of query languages

Questions dealt with in this lecture

- Expressive power of a query language
- Comparison of query languages
- Complexity of query evaluation
- Undecidability of important properties of queries (e.g., redundancy, safety)
- Important special cases (conjunctive queries)
- Inexpressibility results
Learning objectives

- Short recapitulation of
 - the notion of a relational database,
 - the notion of a query language and its semantics,
 - relational algebra,
 - first-order logic,
 - relational calculus,
 - SQL.

- Some fundamental aspects of query languages