Coping with High Complexity: Structure Matters

Reinhard Pichler
Vienna University of Technology

SCCC 2013
Roadmap

I. High complexity everywhere
II. Parameterized Complexity
III. What is a Parameter?
IV. How to Make Use of Parameters?
V. Conclusion and Research Opportunities
Part I:
High complexity everywhere
A starting point

Theory of Computation: 1930s
– What can be computed?

Theory of Tractability: 1970s
– What can be computed efficiently?
Computational hardness

NP-completeness:
- small solutions
- easy to verify
- huge search space

thousands of NP-complete problems
NP-complete problems

Combinatorial auctions (e.g. London Transport)

Scheduling (e.g. work schedules)

Graph layout problems (e.g. circuit design)
Satisfiability

Is the following formula φ satisfiable?

$$\varphi = (a \lor b) \land (b \lor c) \land (\neg a \lor d) \land (\neg b \lor \neg c \lor \neg d)$$
Satisfiability

Is the following formula φ satisfiable?

$$\varphi = (a \lor b) \land (b \lor c) \land (\neg a \lor d) \land (\neg b \lor \neg c \lor \neg d)$$

very expressive NP-completeness problem

$$\text{Work}(8-9) \land \text{Work}(9-10) \land \text{Work}(10-11) \rightarrow \text{Break}(11-12)$$

$$\text{Work}(8-9) \land \text{Work}(10-11) \rightarrow (\text{Break}(9-10) \lor \text{Work}(9-10))$$
The hierarchy of complexity

Intractable

PSPACE

PH

NP

P
How to deal with intractability

Incomplete methods
- Approximation algorithms
- Heuristics
- Randomized algorithms

not exact
How to deal with intractability

Incomplete methods
• Approximation algorithms
• Heuristics
• Randomized algorithms

Exact methods
• Brute force
• “Islands of tractability”
• ...
Islands of tractability

Easy to solve special cases

For the Satisfiability problem

- Horn formulas:
 \[\text{Work}(8-9) \land \text{Work}(9-10) \land \text{Work}(10-11) \rightarrow \text{Break}(11-12) \]

- Krom formulas:
 \[\neg \text{Work}(8-9) \lor \neg \text{Break}(8-9) \]

However: Such “islands” are not robust!
Summary of Part I

• High complexity is ubiquitous

• There are many methods to tackle intractable problems, ...

• … but can we have a method that is
 – efficient,
 – exact and
 – robust?
Part II: Parameterized Complexity
Parameterized Complexity

Main idea:
Exploit structural properties of problem instances.

✓ efficient,
✓ exact and
✓ robust.
Example: subway emergencies

Problem:
emergency teams for every line segment

For example:
There has to be a team either at Santa Ana or at Los Héroes to cover the line segment in between.
Vertex Cover

- Given a graph G and integer k, is there a set of vertices S of size at most k such that for every edge $\{a,b\}$, S contains a or b?
- NP-complete
- the best known exact algorithms require exponential time
Real-world versus random

108 stations, connected

108 nodes, connected
The classical point of view

Classical Complexity Theory

• measures complexity only in terms of size of an instance
• one-dimensional: \(O(f(n)) \)
• tractable means polynomial time
The classical point of view

Classical Complexity Theory

- measures complexity only in terms of size of an instance
- one-dimensional: $O(f(n))$
- tractable means polynomial time

Criticism:

We (almost) always know more about the input than its number of bits.
The parameterized point of view

Parameterized Complexity Theory

- takes structural properties of problem instances into account (parameter \(k \))
- multi-dimensional: \(O(f(n,k)) \)
- tractability depends on parameter
The parameterized point of view

Parameterized Complexity Theory

- takes structural properties of problem instances into account (parameter k)
- multi-dimensional: $O(f(n,k))$
- tractability depends on parameter

Benefit:
Allows a more fine-grained notion of tractability.
Fixed-parameter tractability (FPT)

- ideal outcome of a parameterized complexity analysis
- $O(f(k) \cdot n^d)$
- example: $2^k \cdot n^2$
- consequence: tractable for parameter of bounded size.
Fixed-parameter tractability (FPT)

- ideal outcome of a parameterized complexity analysis
- $O(f(k) \cdot n^d)$
- example: $2^k \cdot n^2$
- consequence: tractable for parameter of bounded size.

Example: Vertex Cover with bounded treewidth
The class XP

- “second prize”
- $O(n^{f(k)})$
- example: n^k
- consequence: less favorable than FPT but still tractable for parameter of bounded size
The class XP

- “second prize”
- $O(n^{f(k)})$
- example: n^k
- consequence: less favorable than FPT but still tractable for parameter of bounded size

Example: Conjunctive query evaluation with queries of bounded hypertree-width
Comparison: FPT and XP

Example: input size 100

<table>
<thead>
<tr>
<th>FPT</th>
<th>XP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^k \times 100^2$</td>
<td>100^k</td>
</tr>
</tbody>
</table>

classical point of view: $2^{100} > 10^{30}$
Summary of Part II

- Real-world problems often have structure
- **Classical** complexity only considers the size of a problem instance
- **Parameterized** complexity takes problem parameters into account
 - Exploit inherent structure of problem instances
Part III:
What is a Parameter?
Boolean Satisfiability Revisited

\[\varphi = (a \vee b) \land (b \vee c) \land (\neg a \vee d) \land (\neg b \vee \neg c \vee \neg d) \]
Boolean Satisfiability Revisited

\[\varphi = (a \lor b) \land (b \lor c) \land (\neg a \lor d) \land (\neg b \lor \neg c \lor \neg d) \]

- Clause size = 3
- Positive clause size = 2
- Negative clause size = 3
- Number of non-Horn clauses = 2
- Number a variable occurs positively = 2
- Number of variables that occur as positive literals = 4
- … as negative literals … = 4
- etc.
Parameterized Complexity Analysis

- **Parameter “number of clauses”**
 - $1.24^k \cdot \text{poly}(n)$

- **Parameter “number of variables”**
 - $1.49^k \cdot \text{poly}(n)$

- **Parameter “clause size”**
 - NP-complete for $k=3$
 - $O(2^{f(n)})$
Generalization of Special Cases

- SAT
 - almost Horn / almost Krom \Rightarrow backdoors
- Graph Problems
 - almost trees \Rightarrow treewidth
- CSPs / CQs
 - almost acyclic \Rightarrow hypertree-width
Minimal Model Satisfiability (MMSAT)

Instance: CNF formulas φ and π.

Question: Is there a subset minimal model of φ that also satisfies π?

- Important subtask in non-monotonic reasoning.
- MMSAT captures the complexity of computing a minimal model.

\[
\begin{align*}
(\varphi, x_1) & \rightarrow (\varphi, x_1 \land x_2) \\
(\varphi, x_1) & \rightarrow (\varphi, x_1 \land \neg x_2 \land x_3) \\
\end{align*}
\]
Minimal Model Satisfiability

k maximum weight of the minimal model

d clause size

d^+, d^- positive/negative clause size

h number of non-Horn clauses

p number a variable occurs positively

v^+, v^- number of variables that occur as positive/negative literals in ϕ or in π

d^+_π positive clause size in π

$||\pi||$ length of π

b size of a strong Horn backdoor set

[Lackner, Pfandler 2012]
Summary of Part III

• **Any characteristics** of problem instances may serve as parameters.

• **Usefulness** of a parameter depends on:
 – FPT (or at least XP) result
 – Application context
Part IV:
How to Make Use of Parameters?
Toolbox of Parameterized Complexity

Hardness Tools
- W[i]-hardness
- Kernel lower bounds
- Exponential Time Hypothesis

Bounded search trees
- Iterative compression
- Logical meta-theorems
- Color coding
- Graph minors

Kernelization

Algorithmic Tools
Toolbox of Parameterized Complexity

Hardness Tools
- W[i]-hardness
- Kernel lower bounds
- Exponential Time Hypothesis

Algorithmic Tools
- Bounded search trees
- Iterative compression
- Logical meta-theorems
- Color coding
- Graph minors
- Kernelization

SCCC 2013 Reinhard Pichler
Tree Decomposition

- Tree with a vertex set (= “bag”) associated with every node.
- For every edge (v, w): there is a bag containing both v and w.
- For every v: the nodes that contain v form a connected subtree.
Tree Decomposition

- Tree with a vertex set (= “bag”) associated with every node.
- For every edge (v,w): there is a bag containing both v and w.
- For every v: the nodes that contain v form a connected subtree.
Tree Decomposition

- Tree with a vertex set (= “bag”) associated with every node.
- For every edge (v,w): there is a bag containing both v and w.
- For every v: the nodes that contain v form a connected subtree.
Tree Decomposition

- Tree with a vertex set (= “bag”) associated with every node.
- For every edge (v,w): there is a bag containing both v and w.
- For every v: the nodes that contain v form a connected subtree.
Tree Decomposition

Graph

- Tree with a vertex set (= “bag”) associated with every node.
- For every edge (v,w): there is a bag containing both v and w.
- For every v: the nodes that contain v form a connected subtree.

Structure

- Tree with a set of domain elements (= “bag”) associated with every node.
- For every tuple \((a_1,\ldots,a_k)\) in any relation \(R_i\): there is a bag containing \(\{a_1,\ldots,a_k\}\).
- For every a: the nodes that contain a form a connected subtree.
Treewidth

- The width of a tree decomposition is the maximum bag size – 1.
- The treewidth of G is the minimum width over all tree decompositions of G.
- For fixed k, it is feasible in linear time to decide / compute tree decomposition of width \(\leq k \). [Bodlaender, 1996]
Treewidth of a CNF Formula

- Represent CNF formula F as finite structure $A(F)$ over signature $\tau = \{\text{cl, var, pos, neg}\}$
 - $\text{cl}(c)$, $\text{var}(x)$: c is a clause (x is a variable) in F
 - $\text{pos}(x,c)$, $\text{neg}(x,c)$: x occurs unnegated (negated) in clause c
- Treewidth of F is defined as the treewidth of $A(F)$
Treewidth of a CNF Formula

• Represent CNF formula F as finite structure $A(F)$ over signature $\tau = \{ \text{cl, var, pos, neg} \}$
 – $\text{cl}(c)$, $\text{var}(x)$: c is a clause (x is a variable) in F
 – $\text{pos}(x,c)$, $\text{neg}(x,c)$: x occurs unnegated (negated) in clause c

• Treewidth of F is defined as the treewidth of $A(F)$

Remark: this corresponds to the incidence graph of F.
Treewidth of CNF: Example

Let $F = (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor \neg x_3 \lor x_4)$

- Then $A(F)$ consists of:
 - $cl(c_1), cl(c_2)$
 - $var(x_1), var(x_2), var(x_3), var(x_4)$
 - $pos(x_1,c_1), pos(x_3,c_1), pos(x_2,c_2), pos(x_4, c_2)$
 - $neg(x_2,c_1), neg(x_3,c_2)$
Treewidth of CNF: Example

- $\text{cl}(c_1), \text{cl}(c_2)$
- $\text{var}(x_1), \text{var}(x_2), \text{var}(x_3), \text{var}(x_4)$
- $\text{pos}(x_1,c_1), \text{pos}(x_3,c_1), \text{pos}(x_2,c_2), \text{pos}(x_4,c_2)$
- $\text{neg}(x_2,c_1), \text{neg}(x_3,c_2)$

F has treewidth $= 2$.
Monadic Second-Order Logic (MSO)

- MSO extends first-order logic by the use of set variables.
- An MSO formula allows the following atoms:
 - Relational atoms, e.g. $R(x_1,\ldots,x_n)$.
 - Equational atoms, e.g. $x=y$.
 - Atoms based on set variables, e.g. $X(y)$.
Monadic Second-Order Logic (MSO)

- MSO extends first-order logic by the use of set variables.
- An MSO formula allows the following atoms:
 - Relational atoms, e.g. $R(x_1,\ldots,x_n)$.
 - Equational atoms, e.g. $x=y$.
 - Atoms based on set variables, e.g. $X(y)$.

Courcelle's Theorem: Any property of finite structures which is definable in MSO can be decided in time $O(f(k)*n)$, where n is the size of the structure and k is its treewidth.
Various (automatic) constructions of FPT-algorithms from MSO-encodings exist:

- Using correspondence between finite tree automata and MSO on trees [Courcelle 1990; Arnborg et al. 1991; Flum et al. 2001]
- Finite model theory (k-types) [Grohe 1999]
- Datalog [Gottlob, P., Wei 2007]
- Games [Kneis, Langer, Rossmanith, 2011]
- New automata models (Courcelle, Durand 2011)
- Answer-set programming [Bliem, P., Woltran 2013]
Applying Courcelle's Theorem

Theorem (folklore):
SAT is FPT w.r.t. treewidth.
Applying Courcelle's Theorem

Theorem (folklore):
SAT is FPT w.r.t. treewidth.

Proof: MSO-encoding.
Let F be a CNF formula and X a set of variables.

Encoding of $X \models F$:
$$(\forall c)cl(c) \rightarrow (\exists z)[(pos(z,c) \land X(z)) \lor (neg(z,c) \land \neg X(z))]$$

Encoding of SAT:
$$(\exists X) X \models F$$
Minimal Model Satisfiability

- Instance: CNF formulas F and π
- Question: Is there a subset minimal model of φ that also satisfies π?

Theorem [Gottlob, P., Wei, 2006]: Minimal Model SAT is FPT w.r.t. treewidth.
Minimal Model Satisfiability

- Instance: CNF formulas φ and π
- Question: Is there a subset minimal model of φ that also satisfies π?

Theorem [Gottlob, P., Wei, 2006]: Minimal Model SAT is FPT w.r.t. treewidth.

Proof: MSO-encoding.

Encoding of $Y \not\subseteq X$:
$$\forall x \ (Y(x) \rightarrow X(x)) \land \exists y \ (X(y) \land \neg Y(y))$$

Encoding of Minimal Model SAT:
$$\exists X, X \models \varphi \land X \models \pi \land \forall Y \ (Y \not\subseteq X \rightarrow \neg Y \models \varphi)$$
Treewidth as a Key to Tractable Reasoning

- Minimal models
- Various forms of closed-world reasoning
- Disjunctive logic programming
- Propositional abduction

[Gottlob, P., Wei, 2006]
Part V:
Conclusion and Research Opportunities
Conclusion

Parameterized complexity is a viable way to tackle intractable problems:

- **Real-world** problems often have structure
- **Classical** complexity only considers the size of a problem instance
- **Parameterized** complexity takes problem parameters into account
The Gentle Revolution of Parameterized Complexity

- Bioinformatics, Operations Research, Optimization, Automated Reasoning, etc.
- STOC, FOCS, SODA, IJCAI, ...
- 4 Monographs
 - [Downey&Fellows 1999]
 - [Flum&Grohe 2006]
 - [Niedermeier 2006]
 - [Downey&Fellows 2013]
- The Computer Journal (BCS) two special issues in 2008

Papers containing “parameterized complexity” or “fixed-parameter tractable” published per year.

Source: Google Scholar
Research Opportunities

• Parameterized complexity theory:
 – New algorithmic methods
 – Kernelization (formal model of preprocessing)
 – Relationship with other approaches (approximation, heuristics)

• Further applications