Coping with High Complexity: Structure Matters

Reinhard Pichler
Vienna University of Technology
SCCC 2013

Roadmap

I. High complexity everywhere
II. Parameterized Complexity
III. What is a Parameter?
IV. How to Make Use of Parameters?
V. Conclusion and Research Opportunities

A starting point

Part I: High complexity everywhere

Theory of Computation: 1930s
– What can be computed?

Theory of Tractability: 1970s
– What can be computed efficiently?
Computational hardness

NP-completeness:

• small solutions
• easy to verify
• huge search space

thousands of NP-complete problems

NP-complete problems

Combinatorial auctions (e.g. London Transport)
Scheduling (e.g. work schedules)
Graph layout problems (e.g. circuit design)

Satisfiability

Is the following formula \(\varphi \) satisfiable?

\[
\varphi = (a \lor b) \land (b \lor c) \land (\neg a \lor d) \land (\neg b \lor \neg c \lor \neg d)
\]

very expressive NP-complete problem

Is the following formula \(\varphi \) satisfiable?

\[
\varphi = (a \lor b) \land (b \lor c) \land (\neg a \lor d) \land (\neg b \lor \neg c \lor \neg d)
\]

Work(8-9) \land Work(9-10) \land Work(10-11) \rightarrow Break(11-12)
Work(8-9) \land Work(10-11) \rightarrow (Break(9-10) \lor Work(9-10))
The hierarchy of complexity

- PSPACE
- PH
- NP
- P

Intractable

How to deal with intractability

Incomplete methods
- Approximation algorithms
- Heuristics
- Randomized algorithms

Exact methods
- Brute force
- “Islands of tractability”
- ...

Islands of tractability

Easy to solve special cases

For the Satisfiability problem
- Horn formulas:
 \[\text{Work}(8-9) \land \text{Work}(9-10) \land \text{Work}(10-11) \rightarrow \text{Break}(11-12) \]
- Krom formulas:
 \[\neg \text{Work}(8-9) \lor \neg \text{Break}(8-9) \]

However: Such “islands” are not robust!
Summary of Part I

- High complexity is ubiquitous
- There are many methods to tackle intractable problems, ...
- … but can we have a method that is
 - efficient,
 - exact and
 - robust?

Part II: Parameterized Complexity

Parameterized Complexity

Main idea:
Exploit structural properties of problem instances.

- efficient,
- exact and
- robust.

Example: subway emergencies

Problem:
emergency teams for every line segment

For example:
There has to be a team either at Santa Ana or at Los Héroes to cover the line segment in between.
Vertex Cover

- Given a graph G and integer k, is there a set of vertices S of size at most k such that for every edge $\{a,b\}$, S contains a or b?
- NP-complete
- The best known exact algorithms require exponential time

The classical point of view

Classical Complexity Theory

- Measures complexity only in terms of size of an instance
- One-dimensional: $O(f(n))$
- Tractable means polynomial time

Criticism:

We (almost) always know more about the input than its number of bits.
The parameterized point of view

Parameterized Complexity Theory
- takes structural properties of problem instances into account (parameter k)
- multi-dimensional: $O(f(n,k))$
- tractability depends on parameter

Benefit:
Allows a more fine-grained notion of tractability.

Fixed-parameter tractability (FPT)
- ideal outcome of a parameterized complexity analysis
- $O(f(k)^*n^d)$
- example: $2^k * n^2$
- consequence: tractable for parameter of bounded size.

Example: Vertex Cover with bounded treewidth
The class XP

- “second prize”
- \(O(n^{f(k)})\)
- example: \(n^k\)
- consequence: less favorable than FPT but still tractable for parameter of bounded size

Example: Conjunctive query evaluation with queries of bounded hypertree-width

Comparison: FPT and XP

Example: input size 100

\[
\begin{array}{|c|c|}
\hline
\text{FPT} & \text{XP} \\
2^k \times 100^2 & 100^k \\
\hline
\end{array}
\]

classical point of view:
\(2^{100} > 10^{10}\)

Summary of Part II

- Real-world problems often have structure
- Classical complexity only considers the size of a problem instance
- Parameterized complexity takes problem parameters into account
 - Exploit inherent structure of problem instances
Part III:
What is a Parameter?

Boolean Satisfiability Revisited

\[\varphi = (a \lor b) \land (b \lor c) \land (\neg a \lor d) \land (\neg b \lor \neg c \lor \neg d) \]

Parameterized Complexity Analysis

- **Parameter “number of clauses”**
 - \(1.24^k \times \text{poly}(n)\)
- **Parameter “number of variables”**
 - \(1.49^k \times \text{poly}(n)\)
- **Parameter “clause size”**
 - NP-complete for \(k=3\)
 - \(O(2^{\text{f}(n)})\)
Generalization of Special Cases

- **SAT**
 - almost Horn / almost Krom ⇒ backdoors

- **Graph Problems**
 - almost trees ⇒ treewidth

- **CSPs / CQs**
 - almost acyclic ⇒ hypertree-width

Minimal Model Satisfiability (MMSAT)

Instance: CNF formulas φ and \(\pi \).

Question: Is there a subset minimal model of \(\phi \) that also satisfies \(\pi \)?

- Important subtask in non-monotonic reasoning.
- MMSAT captures the complexity of computing a minimal model.

Summary of Part III

- **Any characteristics** of problem instances may serve as parameters.
- **Usefulness** of a parameter depends on:
 - FPT (or at least XP) result
 - Application context

\[\text{[Lackner, Pfandler 2012]} \]
Part IV: How to Make Use of Parameters?

Toolbox of Parameterized Complexity

Hardness Tools
- W[i]-hardness
- Iterative compression
- Exponential Time Hypothesis
- Kernel lower bounds

Logical meta-theorems
- Color coding
- Graph minors

Kernelization

Algorithmic Tools

Toolbox of Parameterized Complexity

Tree Decomposition

- **Tree with a vertex set ("bag") associated with every node.**
- **For every edge (v,w):** there is a bag containing both v and w.
- **For every v:** the nodes that contain v form a connected subtree.
Tree Decomposition

- Tree with a vertex set (= “bag”) associated with every node.
- For every edge (v,w): there is a bag containing both v and w.
- For every v: the nodes that contain v form a connected subtree.

Graph

- Tree with a vertex set (= “bag”) associated with every node.
- For every edge (v,w): there is a bag containing both v and w.
- For every v: the nodes that contain v form a connected subtree.

Structure

- Tree with a set of domain elements (= “bag”) associated with every node.
- For every tuple (a₁,...,aₖ) in any relation Rᵢ: there is a bag containing {a₁,...,aₖ}.
- For every a: the nodes that contain a form a connected subtree.
Treewidth

- The **width** of a tree decomposition is the maximum bag size – 1.
- The **treewidth** of G is the minimum width over all tree decompositions of G.
- For fixed k, it is feasible in linear time to decide / compute tree decomposition of width \(\leq k \). [Bodlaender, 1996]

Treewidth of a CNF Formula

- Represent CNF formula F as finite structure A(F) over signature \(\tau = \{ \text{cl}, \text{var}, \text{pos}, \text{neg} \} \)
 - \(\text{cl}(c), \text{var}(x) \): c is a clause (x is a variable) in F
 - \(\text{pos}(x,c), \text{neg}(x,c) \): x occurs unnegated (negated) in clause c
- Treewidth of F is defined as the treewidth of A(F)

Remark: this corresponds to the incidence graph of F.

Treewidth of CNF: Example

Let F = \((x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor \neg x_3 \lor x_4) \)

- Then A(F) consists of:
 - \(\text{cl}(c_i), \text{cl}(c_j) \)
 - \(\text{var}(x_i), \text{var}(x_j), \text{var}(x_3), \text{var}(x_4) \)
 - \(\text{pos}(x_1,c_1), \text{pos}(x_3,c_1), \text{pos}(x_2,c_2), \text{pos}(x_4, c_2) \)
 - \(\text{neg}(x_2,c_1), \text{neg}(x_3,c_2) \)
Treewidth of CNF: Example

- \(\text{cl}(c_1), \text{cl}(c_2) \)
- \(\text{var}(x_1), \text{var}(x_2), \text{var}(x_3), \text{var}(x_4) \)
- \(\text{pos}(x_1,c_1), \text{pos}(x_3,c_1), \text{pos}(x_2,c_2), \text{pos}(x_4,c_2) \)
- \(\text{neg}(x_2,c_1), \text{neg}(x_3,c_2) \)

F has treewidth = 2.

Monadic Second-Order Logic (MSO)

- MSO extends first-order logic by the use of set variables.
- An MSO formula allows the following atoms:
 - Relational atoms, e.g. \(R(x_1,\ldots, x_n) \).
 - Equational atoms, e.g. \(x=y \).
 - Atoms based on set variables, e.g. \(X(y) \).

Courcelle's Theorem: Any property of finite structures which is definable in MSO can be decided in time \(O(f(k)\times n) \), where \(n \) is the size of the structure and \(k \) is its treewidth.

From MSO to Algorithms

Various (automatic) constructions of FPT-algorithms from MSO-encodings exist:
- Using correspondence between finite tree automata and MSO on trees [Courcelle 1990; Arnborg et al. 1991; Flum et al. 2001]
- Finite model theory (\(k \)-types) [Grohe 1999]
- Datalog [Gottlob, P., Wei 2007]
- Games [Kneis, Langer, Rossmanith, 2011]
- New automata models (Courcelle, Durand 2011)
- Answer-set programming [Bliem, P., Woltran 2013]
Applying Courcelle's Theorem

Theorem (folklore):
SAT is FPT w.r.t. treewidth.

Proof: MSO-encoding.
Let F be a CNF formula and X a set of variables.
Encoding of X |= F:
(∀c)cl(c) → (∃z)[(pos(z,c) ∧ X(z)) ∨ (neg(z,c) ∧ ¬X(z))]
Encoding of SAT:
(∃X) X |= F

Minimal Model Satisfiability

• Instance: CNF formulas F and π
• Question: Is there a subset minimal model of φ that also satisfies π?

Theorem [Gottlob, P., Wei, 2006]:
Minimal Model SAT is FPT w.r.t. treewidth.

Proof: MSO-encoding.
Encoding of Y ⊆ X:
∀x (Y(x) → X(x)) ∧ ∃y (X(y) ∧ ¬Y(y))
Encoding of Minimal Model SAT:
∃X, X |= φ ∧ X |= π ∧ ∀ Y (Y ⊆ X → ¬Y |= φ)

Applying Courcelle's Theorem

Theorem (folklore):
SAT is FPT w.r.t. treewidth.

Minimal Model Satisfiability

• Instance: CNF formulas φ and π
• Question: Is there a subset minimal model of φ that also satisfies π?

Theorem [Gottlob, P., Wei, 2006]:
Minimal Model SAT is FPT w.r.t. treewidth.
Treewidth as a Key to Tractable Reasoning

- Minimal models
- Various forms of closed-world reasoning
- Disjunctive logic programming
- Propositional abduction

[Gottlob, P., Wei, 2006]

Conclusion

Parameterized complexity is a viable way to tackle intractable problems:
- **Real-world** problems often have structure
- **Classical** complexity only considers the size of a problem instance
- **Parameterized** complexity takes problem parameters into account

Part V: Conclusion and Research Opportunities

The Gentle Revolution of Parameterized Complexity

- Bioinformatics, Operations Research, Optimization, Automated Reasoning, etc.
- STOC, FOCS, SODA, IJCAI, …
- 4 Monographs
 - [Downey&Fellows 1999]
 - [Flum&Grohe 2006]
 - [Niedermeier 2006]
 - [Downey&Fellows 2013]
- The Computer Journal (BCS) two special issues in 2008

Papers containing “parameterized complexity” or “fixed-parameter tractable” published per year.

Source: Google Scholar
Research Opportunities

- Parameterized complexity theory:
 - New algorithmic methods
 - Kernelization (formal model of preprocessing)
 - Relationship with other approaches (approximation, heuristics)
- Further applications