5. NP-Completeness

5.1 Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

- intractable: SAT, 3-SAT
- tractable: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

- restricted (but still intractable) versions of SAT
- CIRCUIT SAT
- Not-all-equal SAT (NAESAT)
- (MONOTONE) 1-IN-3-SAT
- strongly related problem: HITTING SET

Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by transformations which eliminate certain features of the language but still preserve NP-completeness.

Restricting SAT to formulae in CNF and a further restriction to 3-SAT are typical examples. Generally, k-SAT (i.e., formulae are restricted to CNF with exactly k literals in each clause) is NP-complete for any \(k \geq 3 \).

Here is another example of narrowing an NP-complete language:

Proposition

3-SAT remains NP-complete even if the Boolean expressions \(\varphi \) in 3-CNF are restricted such that

- each variable appears at most three times in \(\varphi \) and
- each literal appears at most twice in \(\varphi \).
Complexity Theory 5. NP-Completeness 5.2. CIRCUIT SAT

Semantics

Let C be a Boolean circuit and let $X(C)$ denote the set of variables appearing in the circuit C. A truth assignment for C is a function $T : X(C) \rightarrow \{\text{true}, \text{false}\}$.

The truth value $T(i)$ for each gate i is defined inductively:

- If $s(i) = \text{true}$, $T(i) = \text{true}$ and if $s(i) = \text{false}$, $T(i) = \text{false}$.
- If $s(i) = x_j \in X(C)$, then $T(i) = T(x_j)$.
- If $s(i) = \neg$, then $T(i) = \text{true}$ if $T(j) = \text{false}$, else $T(i) = \text{false}$ where (j, i) is the unique edge entering i.
- If $s(i) = \land$, then $T(i) = \text{true}$ if $T(j) = T(j') = \text{true}$ else $T(i) = \text{false}$ where (j, i) and (j', i) are the two edges entering i.
- If $s(i) = \lor$, then $T(i) = \text{true}$ if $T(j) = \text{true}$ or $T(j') = \text{true}$ else $T(i) = \text{false}$ where (j, i) and (j', i) are the two edges entering i.
- $T(C) = T(n)$, i.e. the value of the circuit C.

CIRCUIT SAT

INSTANCE: Boolean circuit C with variables $X(C)$

QUESTION: Does there exist a truth assignment $T : X(C) \rightarrow \{\text{true}, \text{false}\}$ such that $T(C) = \text{true}$?

Theorem

CIRCUIT SAT is NP-complete.

Proof of NP-Membership

Consider the following NP-algorithm:

1. Guess a truth assignment $T : X(C) \rightarrow \{\text{true}, \text{false}\}$.
2. Check that $T(C) = \text{true}$ holds.
Proof of NP-Hardness

We prove the NP-hardness by a reduction from SAT: Let an arbitrary instance of SAT be given by a Boolean formula \(\varphi \) over the variables \(X = \{ x_1, \ldots, x_k \} \). We construct the following Boolean circuit \(C(\varphi) \):

- The variables \(X(C) \) in \(C(\varphi) \) are precisely the variables \(X \).
- For every subexpression \(\psi \) of \(\varphi \), \(C(\varphi) \) contains a gate \(g(\psi) \). The output gate of \(C(\varphi) \) is the gate \(g(\varphi) \).
- The sort and the incoming arcs of each gate \(g(\psi) \) in \(C(\varphi) \) are defined inductively:
 - If \(\psi \) is a variable \(x \), then \(g(\psi) \) is an input gate of sort \(s(g(\psi)) = x \).
 - If \(\psi = \neg \psi' \) then \(s(g(\psi')) = \neg \) with an incoming arc from \(g(\psi') \).
 - If \(\psi = \psi_1 \land \psi_2 \) (resp. \(\psi = \psi_1 \lor \psi_2 \)), then \(s(g(\psi)) = \land \) (resp. \(s(g(\psi')) = \lor \)) with incoming arcs from \(g(\psi_1) \) and \(g(\psi_2) \).

Reduction from \(\text{CIRCUIT SAT} \) to \(\text{3-SAT} \)

Let an arbitrary instance of \(\text{CIRCUIT SAT} \) be given by a Boolean circuit \(C \). We construct the following instance \(\varphi(\psi) \) of \(\text{SAT} \) (\(\varphi \) is in CNF with some clauses smaller than 3). The transformation into \(\text{3-CNF} \) is obvious:

The formula \(\varphi(C) \) uses all variables of \(C \). Moreover, for each gate \(g \) of \(C \), \(\varphi(C) \) has a new variable \(g \) and the following clauses.

1. If \(g \) is a variable gate: \((g \lor \neg x), (\neg g \lor x) \).
2. If \(g \) is a true (resp. false) gate: \(g \) (resp. \(\neg g \)).
3. If \(g \) is a NOT gate with a predecessor \(h \): \((\neg g \lor \neg h), (g \lor h) \).
4. If \(g \) is an AND gate with predecessors \(h, h' \): \((\neg g \lor h), (\neg g \lor h'), (g \lor h \land \neg h') \).
5. If \(g \) is an OR gate with predecessors \(h, h' \): \((\neg g \lor h \lor h'), (g \lor \neg h') \).
6. If \(g \) is also the output gate: \(g \).

Motivation

- We have already seen how an arbitrary propositional formula \(\varphi \) can be transformed efficiently into a sat-equivalent formula \(\psi \) in 3-CNF.
- This transformation (first into CNF and then into 3-CNF) is intuitive and clearly works in polynomial time. However, the log-space complexity of this transformation is not immediate.
- We now give an alternative transformation by reducing \(\text{CIRCUIT SAT} \) to \(\text{3-SAT} \). In total, we thus have:

\[\text{SAT} \leq_L \text{CIRCUIT SAT} \leq_L \text{3-SAT} \]

NAESAT

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula \(\varphi \) in 3-CNF

QUESTION: Does there exist a truth assignment \(T \) appropriate to \(\varphi \), such that the 3 literals in each clause do not have the same truth value?

Remark. Clearly \(\text{NAESAT} \subset \text{3-SAT} \).

Theorem

\(\text{NAESAT} \) is NP-complete.
1-IN-3-SAT

INSTANCE: Boolean formula \(\varphi \) in 3-CNF

QUESTION: Does there exist a truth assignment \(T \) appropriate to \(\varphi \), such that in each clause, exactly one literal is true in \(T \)?

MONOTONE 1-IN-3-SAT

INSTANCE: Boolean formula \(\varphi \) in 3-CNF, s.t. the clauses in \(\varphi \) contain only unnegated atoms.

QUESTION: Does there exist a truth assignment \(T \) appropriate to \(\varphi \), such that in each clause, exactly one literal is true in \(T \)?

Theorem

Both 1-IN-3-SAT and MONOTONE 1-IN-3-SAT are NP-complete.

NAESAT

Proof of NP-Hardness

Recall the Boolean formula \(\varphi(C) \) resulting from the reduction of \textsc{Circuit SAT} to \textsc{3-SAT}. For all one- and two-literal clauses in the resulting CNF-formula \(\varphi(C) \), we add the same literal \(z \) (possibly twice) to make them 3-literal clauses.

The resulting formula \(\varphi_z(C) \) fulfills the following equivalence:

\[\varphi_z(C) \in \text{NAESAT} \iff C \in \text{CIRCUIT SAT}. \]

"\(\Rightarrow \)" If a truth assignment \(T \) satisfies \(\varphi_z(C) \) in the sense of \text{NAESAT}, so does the complementary truth assignment \(T' \).

Thus, \(z \) is false in either \(T \) or \(T' \) which implies that \(\varphi(C) \) is satisfied by either \(T \) or \(T' \). Thus \(C \) is satisfiable.

1-IN-3-SAT

** INSTANCE:** Boolean formula \(\varphi \) in 3-CNF

** QUESTION:** Does there exist a truth assignment \(T \) appropriate to \(\varphi \), such that in each clause, exactly one literal is true in \(T \)?

NAESAT

Proof of NP-Hardness (continued)

"\(\Leftarrow \)" If \(C \) is satisfiable, then there is a truth assignment \(T \) satisfying \(\varphi(C) \). Let us then extend \(T \) for \(\varphi_z(C) \) by assigning \(T(z) = \text{false} \).

By assumption, \(T \) is a satisfying truth assignment of \(\varphi(C) \) and, therefore, also of \(\varphi_z(C) \). Hence, in no clause of \(\varphi_z(C) \) all literals are \textbf{false}.

It remains to show that in no clause of \(\varphi_z(C) \) all literals are \textbf{true}:

\(i\) Clauses for \textbf{true/false/NOT/variable} gates contain \(z \) that is \textbf{false}.

\(ii\) For \textsc{AND gates} the clauses are: \((-g \lor h \lor z), \,(g \lor h' \lor z),\) \((g \lor h \lor z)) where in the first two \(z \) is \textbf{false}, and in the third all three cannot be \textbf{true} as then the first two clauses would be \textbf{false}.

\(iii\) For \textsc{OR gates} the clauses are: \((-g \lor h \lor h'),\,(g \lor h' \lor z),\) \((g \lor h \lor z)) where in the last two \(z \) is \textbf{false}, and in the first all three cannot be \textbf{true} as then the last two clauses would be \textbf{false}.

Remarks

- Clearly 1-IN-3-SAT \(\subset\) NAESAT \(\subset\) 3-SAT. The instances of these 3 problems are the same, namely 3-CNF formulae. However, the positive instances of 1-IN-3-SAT are a proper subset of NAESAT, which in turn are a proper subset of the positive instances of 3-SAT.

- Note that the NP-completeness of any of these 3 problems does not immediately imply the NP-completeness of any of the other problems, since it is a priori not clear if further constraining the positive instances makes things easier or harder.

- MONOTONE 1-IN-3-SAT is a special case of 1-IN-3-SAT, i.e., the instances of the former are a proper subset of the latter while the question remains the same. The NP-hardness of the special case immediately implies the NP-hardness of the general case.
Proof of the NP-hardness of 1-IN-3-SAT

We prove the NP-hardness by a reduction from 4-SAT:
Let \(\varphi \) be an arbitrary instance of 4-SAT, i.e., \(\varphi \) is in 4-CNF.

We construct an instance \(\psi \) of 1-IN-3-SAT as follows:
For every clause \(l_1 \lor l_2 \lor l_3 \lor l_4 \) in \(\varphi \), let \(a_1, a_2, a_4, b_1, b_2, c_1, c_2, d \) be 9 fresh propositional variables. Then \(\psi \) contains the following 7 clauses:

1. \(l_1 \lor a_1 \lor b_1 \)
2. \(l_2 \lor a_2 \lor b_1 \)
3. \(l_4 \lor a_4 \lor c_1 \)
4. \(l_3 \lor a_3 \lor b_2 \)
5. \(l_2 \lor a_2 \lor c_2 \)
6. \(l_1 \lor a_1 \lor d \)
7. \(b_1 \lor b_2 \lor d \)

Idea. These seven clauses guarantee that in a legal 1-in-3 assignment of \(\psi \), the clause \(l_1 \lor \cdots \lor l_4 \) must be true.

By (1) – (3): If \(l_1 \) and \(l_2 \) are false, then \(b_1 \) must be true.

By (4) – (6): If \(l_3 \) and \(l_4 \) are false, then \(b_2 \) must be true.

However, by (7), it is not allowed that both \(b_1 \) and \(b_2 \) are true.

Proof of the NP-hardness of MONOTONE 1-IN-3-SAT

We show how an arbitrary instance \(\varphi \) of 1-IN-3-SAT can be transformed into an equivalent instance \(\psi \) of MONOTONE 1-IN-3-SAT:
Let \(X = \{x_1, \ldots, x_n\} \) be the variables in \(\varphi \). Then the variables in \(\psi \) are \(X \cup \{x'_i \mid 1 \leq i \leq n\} \cup \{a, b, c\} \).

In \(\varphi \), we replace every negative literal of the form \(\neg x_i \) (for some \(i \)) by the unnegated atom \(x'_i \).

Moreover, for every \(i \in \{1, \ldots, n\} \), we add the following 3 clauses:

1. \(x_i \lor x'_i \lor a \)
2. \(x_i \lor x'_i \lor b \)
3. \(a \lor b \lor c \)

Idea. These three clauses guarantee that in a legal 1-in-3 assignment of \(\psi \), the variables \(x_i \) and \(x'_i \) have complementary truth values. Hence, \(x'_i \) indeed encodes \(\neg x_i \).

Some Graph Problems

In the “Formal Methods in Computer Science” lecture, we have already proved the NP-completeness of the following graph problems:
- INDEPENDENT SET
- CLIQUE
- VERTEX COVER

We shall now show the following results:
- 3-COLORABILITY is NP-complete.
- HAMILTON-PATH \(\leq_L \) HAMILTON-CYCLE \(\leq_L \) TSP(D)
INDEPENDENT SET

INSTANCE: Undirected graph \(G = (V, E) \) and integer \(K \).

QUESTION: Does there exist an independent set \(I \) of size \(\geq K \)?

i.e., \(I \subseteq V \), s.t. for all \(i, j \in I \) with \(i \neq j \), \([i,j] \notin E\).

CLIQUE

INSTANCE: Undirected graph \(G = (V, E) \) and integer \(K \).

QUESTION: Does there exist a clique \(C \) of size \(\geq K \)?

i.e., \(C \subseteq V \), s.t. for all \(i, j \in C \) with \(i \neq j \), \([i,j] \in E\).

VERTEX COVER

INSTANCE: Undirected graph \(G = (V, E) \) and integer \(K \).

QUESTION: Does there exist a vertex cover \(N \) of size \(\leq K \)?

i.e., \(N \subseteq V \), s.t. for all \([i,j] \in E\), either \(i \in N \) or \(j \in N \).

Decision Problems

3-COLORABILITY

INSTANCE: Undirected graph \(G = (V, E) \)

QUESTION: Does \(G \) have a 3-coloring? i.e., an assignment of one of 3 colors to each of the vertices in \(V \) such that any two vertices \(i, j \) connected by an edge \([i,j] \in E\) do not have the same color?

k-COLORABILITY (for fixed value \(k \))

INSTANCE: Undirected graph \(G = (V, E) \)

QUESTION: Does \(G \) have a \(k \)-coloring? i.e., an assignment of one of \(k \) colors to each of the vertices in \(V \) such that any two vertices \(i, j \) connected by an edge \([i,j] \in E\) do not have the same color?

NP-Hardness Proof of 3-COLORABILITY

By reduction from NAESAT: Let an arbitrary instance of NAESAT be given by a Boolean formula \(\varphi = c_1 \land \ldots \land c_m \) in 3-CNF with variables \(x_1, \ldots, x_n \). We construct the following graph \(G(\varphi) \):

\[V = \{a\} \cup \{x_i, \neg x_i \mid 1 \leq i \leq n\} \cup \{l_1, l_2, l_3 \mid 1 \leq i \leq m\}, \]

i.e., \(|V| = 1 + 2n + 3m\).

For each variable \(x_i \) in \(\varphi \), we introduce a triangle \([a, x_i, \neg x_i]\), i.e. all these triangles share the node \(a \).

For each clause \(c_i \) in \(\varphi \), we introduce a triangle \([l_1, l_2, l_3]\). Moreover, each of these vertices \(l_j \) is further connected to the node corresponding to this literal, i.e.: if the \(j \)-th literal in \(c_i \) is of the form \(x_a \) (resp. \(\neg x_a \)) then we introduce an edge between \(l_j \) and \(x_a \) (resp. \(\neg x_a \)).
Correctness of the Problem Reduction

Proof (continued)

"⇐" Suppose that \(G \) has a 3-coloring with colors \{0, 1, 2\}. W.l.o.g., the node \(a \) has the color 2. This induces a truth assignment \(T \) via the colors of the nodes \(x_i \): if the color is 1, then \(T(x_i) = \text{true} \) else \(T(x_i) = \text{false} \). We claim that \(T \) is a legal \textsc{NAESAT}-assignment. Indeed, if in some clause, all literals had the value \text{false} (resp. \text{true}), then we could not use the color 0 (resp. 1) for coloring the triangle \([l_1, l_2, l_3]\), a contradiction.

"⇒" Suppose that there exists an \textsc{NAESAT}-assignment \(\varphi \) of \(\varphi \).

Then we can extract a 3-coloring for \(G \) from \(T \) as follows:

(i) Node \(a \) is colored with color 2.
(ii) If \(T(x_i) = \text{true} \), then color \(x_i \) with 1 and \(\neg x_i \) with 0 else vice versa.
(iii) From each \([l_1, l_2, l_3]\), color two literals having opposite truth values with 0 (\text{true}) and 1 (\text{false}). Color the third with 2.

HAMILTON-PATH

INSTANCE: (directed or undirected) graph \(G = (V, E) \)

QUESTION: Does \(G \) have a Hamilton path?

i.e., a path visiting all vertices of \(G \) exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph \(G = (V, E) \)

QUESTION: Does \(G \) have a Hamilton cycle?

i.e., a cycle visiting all vertices of \(G \) exactly once.

TSP(D)

INSTANCE: \(n \) cities \(1, \ldots, n \) and a nonnegative integer distance \(d_{ij} \) between any two cities \(i \) and \(j \) (such that \(d_{ij} = d_{ji} \)), and an integer \(B \).

QUESTION: Is there a tour through all cities of length at most \(B \)?

i.e., a permutation \(\pi \) s.t. \(\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B \) with \(\pi(n+1) = \pi(1) \).
Complexity

Theorem

HAMILTON-PATH, HAMILTON-CYCLE, and TSP(D) are NP-complete.

Proof

We shall show the following chain of reductions:

\[
\text{HAMILTON-PATH} \leq_L \text{HAMILTON-CYCLE} \leq_L \text{TSP(D)}
\]

It suffices to show NP-membership for the hardest problem:
1. Guess a tour \(\pi\) through the \(n\) cities.
2. Check that
\[
\sum_{i=1}^{n} d(\pi(i), \pi(i+1)) \leq B \quad \text{with} \quad \pi(n+1) = \pi(1).
\]

Likewise, it suffices to prove the NP-hardness of the easiest problem.

The NP-hardness of HAMILTON-PATH (by a reduction from 3-SAT) is quite involved and is therefore omitted here (see Papadimitriou’s book).

HAMILTON-PATH vs. HAMILTON-CYCLE

HAMILTON-PATH \(\leq_L\) HAMILTON-CYCLE

Let an arbitrary instance of HAMILTON-PATH be given by the graph \(G = (V, E)\). We construct an equivalent instance of TSP(D) as follows:

Let \(V' := V \cup \{z\}\) for some new vertex \(z\) and \(E' := E \cup \{[v, z] \mid v \in V\}\). G has a Hamilton path \(\iff\ G'\ has a Hamilton cycle

“\(\Rightarrow\)” Suppose that \(G\) has a Hamilton path \(\pi\) starting at vertex \(a\) and ending at \(b\). Then \(\pi \cup \{z\}\) is clearly a Hamilton cycle in \(G'\).

“\(\Leftarrow\)” Let \(C\) be a Hamilton cycle in \(G'\). In particular, \(C\) goes through \(z\). Let \(a\) and \(b\) be the two neighboring nodes of \(z\) in this cycle. Then \(C \setminus \{z\}\) is a Hamilton path (starting at vertex \(a\) and ending at \(b\)) in \(G\).

HAMILTON-CYCLE vs. TSP(D)

HAMILTON-CYCLE \(\leq_L\) TSP(D)

Let an arbitrary instance of HAMILTON-CYCLE be given by the graph \(G = (V, E)\). We construct an equivalent instance of TSP(D) as follows:

Let \(V = \{1, \ldots, n\}\). Then our instance of TSP(D) has \(n\) cities. Moreover, for any two cities \(i \neq j\), the distance is defined as
\[
d_{ij} = \begin{cases}
1 & \text{if } [i, j] \in E \\
2 & \text{otherwise}
\end{cases}
\]

Finally, we set \(B = n\).

Clearly, there is no tour through all cities of length \(< B = n\).

Moreover, the Hamilton cycles in \(G\) are precisely the tours of length \(B\). Hence, \(G\) has a Hamilton cycle \(\iff\ there exists a tour of length \(\leq B\).

Summary of Reductions

- SAT
- 4-SAT
- 3-SAT
- CIRCUIT-SAT
- 1-in-3-SAT
- IND-SET
- HAM-P.
- NAESAT
- MON 1-in-3-SAT
- VC
- CLQ
- HAM-C.
- 3-COL
- HITTING SET
- TSP(D)
Learning Objectives

- The concept of NP-completeness and its characterizations in terms of succinct certificates.
- You should now be familiar with the intuition of NP-completeness (and recognize NP-complete problems)
- Basic techniques to prove problems NP-complete
- A basic repertoire of NP-complete problems (in particular, versions of SAT and some graph problems) to be used in further NP-completeness proofs.
- Reductions, reductions, reductions, ...