CHAPTER 2

A Catalog of Complexity Classes

David S. JOHNSON
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

Contents

. Preliminaries L.

. Presumably intractable problems

. Provably intractable problems

. Classes that count

Inside P

. New developments, tables and figures .
References .

N h BN

HANDBOOK OF THEORETICAL COMPUTER SCIENCE
Edited by J. van Leeuwen
€ Elsevier Science Publishers B.V., 1990

69

83
101
106
125
143
152

A CATALOG OF COMPLEXITY CLASSES 69

1. Preliminaries

One of the goals of complexity theory is to classify problems as to their intrinsic
computational difficulty. Given a problem, how much computing power and/or
resources do we need in order to solve it? To date, we have not made much progress
toward finding precise answers to such questions. We have, however, made a great deal
of progress in classifying problems into general “complexity classes”, which characterize,
at least in a rough way, something of their inherent difficulties. This chapter will survey
the most popular such classes, and the types of problems they contain.

This first section contains the preliminary definitions and concepts needed for
defining the complexity classes. Sections 2 through 5 can be viewed as a catalog of
complexity classes, with Section 6 devoted to last-minute developments, and tables and
figures for use as ready-reference material. In addition to providing definitions of the
classes, we will discuss what is known about the relationships between them. We shall
also, where possible, provide examples of typical problems in each class, and describe
something of what is known of the “structure” of the class.

1.1. Problems and instances

We begin by defining our terms. For our purposes, a “problem” is a total relation on
strings, say over the alphabet {0, 1}. More precisely, we have the following definition
(where “{0, 1}*” represents the set of all finite strings made up of Os and 1s).

DEFINITION. A problem is a set X of ordered pairs (I, A) of strings in {0, 1}*, where [is
called the instance. A is called an answer for that instance, and every string in {0, 1}*
occurs as the first component of at least one pair.

This abstract and technical definition is required because the complexity classes we
shall be discussing are all defined in terms of machine models like those covered in
[153, 246]. Such machines are only equipped to handle inputs and outputs that are
strings, rather than the more interesting combinatorial objects that we normally think
of as the subjects of “problems”, such as graphs, equations, or logical expressions.

Note, however, that such combinatorial objects are not all that different from strings,
at least in the ways we use them. As a cogent example, consider the following problem.

GRAPH ISOMORPHISM

Instance: Two undirected graphs G=(V, E) and G’ =(V', E'), where V and V' are
finite sets of vertices, and E and E’ are finite sets of edges (unordered pairs of vertices
from V and V' respectively).

Answer: “Yes” if there is a one-one onto function f:V -V’ such that for all pairs
{u,v} <V, {u,v} € E if and only if {f(u),f(v)} € E'. Otherwise, “no”.

As defined, this problem makes sense only as a question about descriptions of graphs,
asking in effect whether two descriptions describe the same graph. In other words, it is
a question about symbolic representations of the combinatorial objects called graphs,
rather than the graphs themselves. Typically, we will present such symbolic represent-

70 D.S. JoBNsON

ations in a linear fashion, i.e., as strings. It is thus not too much of a jump to think of the
GRAPH ISOMORPHISM problem as a string relation. Let ay and ay be strings chosen to
represent “yes” and “no” respectively. The string relation would then be

{(x, ay): string x consists of two representations of the same graph G}
U{(x, ay): string x does not consist of two representations of the same graph G}.

Similar translations will work for any other problem we might consider solving by
digital computer, since we must have some way to represent instances and answers as
strings if we hope to represent them in computer memory, which itself can be viewed as
a string.

The above definition of the string relation corresponding to the GRAPH ISOMORPHISM
problem is of course incomplete, for we have failed to specify precisely how strings are
to represent graphs. As pointed out in [247], various schemes are available, from
adjacency lists to incidence matrices. And even if we choose one basic scheme, say
adjacency lists, there are still many fine details of punctuation and syntax to be filled in.
Each choice would give a different string relation.

Fortunately, all the “reasonable” representation schemes are relatively interchange-
able. Given one form of representation, one can quickly translate to any other. As we
shall explain more fully in Section 1.5, it is normally safe to describe a problem in
abstract terms, leaving the representational details to be filled in in the standard ways.
The results we quote will hold no matter which string relation would result, assuming
the details are “reasonable”. When representational issues do make a difference, we
shall say so.

We conclude this section with several technical points. First, recall that we require
that a string relation be total if it is to be considered a “problem”. Thus in our
formulation of GRAPH ISOMORPHISM as a string relation, the answer is “no” both when
x consists of representations of different graphs and when x does not represent graphs
at all. Alternatively, one might wish to have a third “answer string” ay (“M” for
“meaningless input”). In cither case, our définition requires that the problem be
completely. specified, even for meaningless input.

Second, note that our definition of problem does not require that the relation be
afunction, i.e., there can be more than one pair in X that have the same first component.
For instance, in the GRAPH ISOMORPHISM problem, each pair (x, ay) could be replaced
by the set of pairs of the form (x, w), where w is the representation of a function f that
provides an isomorphism between the two graph representations included in x (there
can be more than one such f). In this new problem, any w such that (x, w) € X would be
a satisfactory answer for instance x. If one desired all such w, one could define a different
problem X’ where (x, w) € X' if x consists of two graph representations and w is the
(possible empty) list contaning all the possible isomorphisms between the two graphs
represented by x.

As the above example illustrates, our definition of problem is sufficiently general to
meet most needs. To emphasize this generality, string relations are sometimes referred
to as generalized “search problems” [87]. This is in opposition to such important
special cases as functions, decision problems, and counting problems, defined below.

A CATALOG OF COMPLEXITY CLASSES n

DEFINITION. A function is a string relation in which each string x € {0, 1}* is the first
component of precisely one pair.

DEFINITION. A decision probem is a function in which the only possible answers are “yes”
and “no”.

DEFINITION. A counting problem is a function in which all answers are nonnegative
integers.

Decision problems are a particularly important special case. Most of the complexity
classes we shall be considering are restricted to such problems, or, more precisely, to the
languages derived from them.

DEFINITION. A language is any subset of {0, 1}*.
There is a natural correspondence between languages and decision problems:

DerFinTioN. If L is a language, then the decision problem R, corresponding to L is
{(x, yes): x e L}u{(x, no): x¢ L}.

DEFiNITION. Given a decision problem R, the language L(R) corresponding to it is
simply L(R)={x € {0, 1}*:(x, yes) e R}.

Note that there is an asymmetry between “yes” and “no” in this latter definition (i.e.,
“no” does not appear although “yes” does). Interchanging “yes” and “no” would yield
a different and “complementary” language, defined as follows.

DeriniTioN. If L is a language, then its complementary language is co-L={0,1}* — L.

This asymmetry in the definition of L(R) is of substantial theoretical importance. As
we shall see in the next section, many of our models of computation, in particular the
nondeterministic ones, are similarly asymmetrical, and hence I{R) and co-L(R) need
not always belong to the same complexity class. Indeed, a common question we shall
be asking is whether a given complexity class C is “closed under complement”, ie.,
whether Le C implies co-Le C for all languages L.

1.2. How to solve a problem

In everyday speech we often talk about “solving” particular instances of problems, as
in solving a crossword puzzle. Complexity theorists, however, do not consider
a problem X solved unless they have a general method that will work for any instance
(assuming enough time, memory, and other resources are provided). In practice, such
methods may be usable only for a small finite set of instances, given physical bounds on
the resources available. Because the methods are general, however, they will
automatically let us solve larger instances should the amount of available resources

:
H
1
i-
]
4
i

o R o it i i B
)

EREN

72 D.S. JOHNSON

ever increase. The key question about such methods is thus how their resource
requirements increase with instance size. As we shall see, there are many different
notions of what a “method” can be, some rather abstract, but the following definitions
will be relevant to all.

DerintTioN. The size of an instance I, written |1}, is its length, i.e., the number of symbols
it contains. (Recall that formally our problems are string relations and our instances are
strings.)

DerintTION. If M is a method for solving problem X and R is a resource used by that
method, then Ry : Z* —»Z* is the function defined by letting Ry (n) be the maximum,
over all strings x of length n, of the amount of resource R used when M is applied to
input x. .

Note that Ry (n) is a worst-case measure. For a particular instance x with |x|=n, and
even for most such instances, M may use far less than Ry (n) of resource R. However,
Ry (n) provides the best possible overall guarantee, and thus provides a certainty that
an average-case measure cannot. '

For the purpose of defining complexity classes, it is useful to be able to talk about the
resource requirements of problems themselves, rather than just of the particular
mpthods used to solve them. It is difficult to define this notion of “requirement” directly,
however, due to the fact that there may be no “best” method for a given problem X. For
example, it could be the case that there are methods M[«] with Ryq(n)=n'** for all
a >0, but no method M with Ry, (n) = O(n). We shall thus settle for an indirect definition
in terms of upper and lower bounds. Suppose X is a problem, R is a resource, and C is
a class of methods.

DeriNiTION. The requirements of problem X for resource R under methods from C is
upper bounded by T(n) if and only if there is a method M e C for solving X that has
Ry (m)=O(T(n)).

DEeriNITION. The requirement of problem X for resource R under methods from C is
lower bounded by T(n) if and only if all methods MeC for solving X have
Ry (n) =T (n)).

The above definitions are in terms of “classes” of methods. So far the term “method”
has been used to represent the thing that does the “solving”, but has otherwise been left
unspecified. There are many notions of “method” available, each with its own uses and
applicability. The goal of any method that solves problem X is, given an instance x, to
produce an a such that (x,a)e X. How that a is produced, however, can vary
substantially. Depending on the class of methods in use and the type of problem, the
answer a might be represented by anything from the contents of an output tape to the
result of applying some logical or arithmetic function to the structure of an abstract
computation tree.

Our choice of “method class” can also yield very different notions of the resource

Ie
Su

m
w
a

ta
le
in

18

e
in
ol
la

A CATALOG OF COMPLEXITY CLASSES 73

requirements for a problem. This choice, and the bounds we place on the relevant
resource usage functions, are what defines a complexity class. In the next section, we
survey the main classes of methods that we shall consider.

1.3. Machine models

Each class of methods that we discuss is most easily described in terms of a model of
computation. A standard variant on the deterministic Turing machine can serve as
our first model and a natural point of reference.

Deterministic Turning machines (DT Ms)

For a general introduction to Turing machines, see [246]. In our variant, the
machine has three tapes, one semi-infinite read-only tape for input, one semi-infinite
write-only tape for output, and a read-write worktape. Such a machine “solves”
a problem, if, whenever it is started with a string written in the leftmost cells of its input
tape (all other cells blank), it eventually halts with an acceptable answer written in the
leftmost cells of the output tape (all other cells blank). We will be principally interested
in two resources for the basic machine, “time” and “space”. The time for a computation
is simply the number of steps made before the machine halts. The space is the number of
cells of the worktape that ever were visited by the worktape head during the
computation. Note that, for this machine, the space used can be much smaller than the
input size (and we shall see complexity classes defined by placing such a “small” bound
on the space usage allowed). The running time, on the other hand, must be at least as
large as the input size unless answers depend only on some initial substring of the input.

Nondeterministic Turing machines (NDT Ms)

This is a variant in which at each step the Turing machine has several choices as to
its next move. The set of all possible computations can thus be viewed as a tree, with
each reachable configuration of the Turing machine and its tapes having as its
children those configurations that can be reached from it in one legal move. This
machine can only yield the answers “yes” and “no”, and hence is applicable only to
decision problems. It answers “yes” if the tree of reachable configurations contains any
configuration in which the machine is halted and the output tape contains the string
representing yes. The answer is “no” if no such configuration is reachable. For the kinds
of problems and algorithms in which we are interested, we may assume that the
machine is designed in such a way that the tree is finite and all halting configurations
(leaves) are at the same depth in the tree. In this case, the time used is the depth of the
tree, and the space is the maximum, over all configurations in the tree, of the number of
worktape cells in use.

Alternating Turing machines (AT Ms)

This variant, proposed in [52], is again restricted to decision problems. In it, we
again have a finite tree of computations with all halting configurations at the same
level. Now, however, each configuration in the tree is labelled as either universal (V) or
as existential (3). We inductively determine if the answer is “yes” as follows: A halting

74 ~ D.S. JOHNSON

configuration is a yes-configuration if the output tape contains the string representing
yes. A nonhalting 3-configuration is a yes-configuration if at least one of its children is
a yes-configuration. A nonhalting V-configuration is a yes-configuration if all
its children are yes-configurations. The answer is “yes” if and only if the initial
configuration is a yes-configuration.

The resources of time and space are defind as for NDTMs, but now we have an
additional resource, which we call “alternations”. This is the maximum, over all paths
from an initial configuration to a final one, of the number of times a configuration has
a different label from its parent (the root has no parent, but is assumed to contribute the
first alternation). Thus, for instance, NDTMs can be viewed as ATMs with one
alternation (and all configurations labelled by J).

Turing machines with other acceptance criteria

A variety of other output conventions besides those given above are possible for
Turing machines that produce computation trees. A probabilistic Turing machine
yields answer “yes” if and only if more than half the halting configurations are accepting
configurations. A random Turing machine says “yes” if at least half the halting
configurations are yes-configurations, says “no” if none of the halting configurations are
yes-configurations, and otherwise says nothing. (It solves a decision problem only if it
always says something, and that “something” is the correct answer.) A counting Turing
machine yields as answer the number of halting configurations that are yes-configurations
(and hence is applicable only to counting problems). Still other options are possible,
but these will be discussed in the context of the complexity classes they are used to
define (see Section 4).

Oracle Turing machines (OT Ms)

These are Turing machines (DTMs, NDTMs, ATM:s) with an additional semi-infinite
“oracle tape”, which alternates between write-only and read-only modes. Associated
with any oracle machine is a particular problem (string relation) Y which the oracle can
solve for free. While the oracle tape is in write-only mode, the DTM can at any time
enter a query state, in which case at the next step the contents y of the oracle tape will be
automatically replaced by a string b such that (y, b)e Y, and the tape will become
read-only. (Once the result has been read, the machine can in one step erase the oracle
tape and return it to write-only mode.) Querying the oracle is thus like invoking
a subroutine for solving Y, except that we do not count the time required by the
subroutine. ‘

Time and space réquirements are the same as before. There are technical questions
having to do with whether the number of cells used on the oracle tape should be
counted (as with input and output tapes, this number can greatly exceed the number
needed for the worktape). Unless otherwise stated, we shall assume that oracle tape
space is counted in determining total space usage. One additional resource we may
wish to count is oracle queries, the maximum, over all computation paths, of the
number of times the machine enters its query state.

o B i - SRR SRR e R L

A CATALOG OF COMPLEXITY CLASSES 75

Parallel random access machines (PRAMs)

For a general introduction to random access machines and parallel random access
machines, see [153, 246]. We need only consider the parallel version here, first
introduced in [82]. We shall assume that the machine, in addition to having an
arbitrary number of processors, is equipped with three sets of memory registers, one of
read-only cells for input, one of write-only cells for output, and one of read-write
memory cells for work. The input-output requirements are analogous to those for
DTMs. For the sake of specificity, we assume that PRAM programs satisfy the
concurrent-read, exclusive-write (CREW) restriction. (Two processors can read the
contents of the same cell at the same time, but they cannot both write something in the
cell at the same time.)

The space resource is measured in the standard way: the memory cells are indexed in
sequence ¢,,Cs,..., and the space used equals the maximum k such that cell ¢, is
accessed by some processor during the computation. Time is a bit more complicated.
We assume that all the processors work synchronously, one step at a time. The time for
a given step is the maximum, over all processors, of the “semilogarithmic” cost measure
for the operation performed by that processor. (The semilogarithmic cost for an
operation that places a number N in register i when the input is of size n is
1+(log N +logi)lognl). The third resource is the number of processors used. (The
familiar “random access machine” or RAM is simply a PRAM wth only one
processor.) ‘

Families of Boolean circuits :

Again, for a general introduction, see [153]. A family F of Boolean circuits is an
infinite collection of acyclic Boolean circuits {B,, B;, ... }, made up of AND, OR, and
NOT gates. Such families are applicable only to problems X satisfying the property
that for any two pairs (x, a), (y, b) in X, |x}|=|y| implies |a|=|b|. (Decision problems
obey this requirement, and most other search problems can be reformulated as string
relations satisfying that property.) In a family that solves a problem X, circuit B, has an
ordered sequence of n inputs and an ordered sequence of outputs whose number equals

'the length of the answers for instances of size n. Given the bits of a string x of length n as
input, it produces the bits of an answer for x at its outputs.

Families of circuits constitute what is called a “nonuniform” method for solving
a problem. There need be no commonality between the circuits, no way to build circuit
B, given n. A uniform circuit family is one in which B, can be generated automatically,
given n (say by an appropriately resource-bounded DTM).

As with PRAMs, circuit families can be viewed as a model for parallel computation.
For circuit families (uniform or nonuniform), the resource analogous to (parallel) time
is depth, the number of gates in the longest path from an input to an output in a circuit.
The resource analogous to sequential time is size, the total number of gates in the
circuit. The resource most closely analogous to space is width. To define this, we assign
levels to all the gates (with input gates having level 0 and each other gate having a level
one greater than the maximum level among those gates that provide its input). We call
a gate “live at level i” if the level of the gate is i or less, and an output wire from the gate is

- AR

76 D.S. JOHNSON

an input wire for some gate at level greater than i. The width of a circuit is the
maximum, over all i; of the number of gates (other than input gates) that are live at level
i. Two final resources, these having no obvious correlate among the Turing machine
resources, are fan-in, the maximum number of inputs an AND or OR gate can have, and
fan-out, the maximum number of outputs a gate can have.

1.4. Resource bounds

In the previous section, we saw a wide variety of resources. In restricting these

resources, we shall normally choose from a short list of types of bounds:

— Constant: there exists a constant k such that Ry(n)<k for all n=0.

- Logarithmic: Ry(n)=0O(log n).

— Polylogarithmic: there exists a constant k such that Ry(n)=O(log*n).

— Linear: Ry(n)=0(n).

— Polynomial: there exists a constant k such that Ry(n)= O(n*).

— Exponential: there exists a constant k such that Ry(n)= 0™

— Unbounded: no constant at all is imposed on Ry,(n), beyond the fact that only a finite
amount of resource R is used for any particular instance.

Note that these alternatives do not allow us to make as precise distinctions as are
theoretically possible. In particular, the following “hierarchy” theorems show that very
fine distinctions can be made. We state them here since, as a corollary, they also imply
that each of the above restrictions is stronger than its successors, at least as far as DTM
and NDTM space and time are concerned.

H1. TueoreM (Hartmanis and Stearns [113]). If Fi(n) and F,(n) are “time construct-

ible functions” and if

.. Fy(n)log(Fa(n))
h:x—"glf- Fy(n)

then there exists a language L that can be recognized by a DTM in time bounded by F(n),
but not by any DTM with time bounded by F,(n).

=0,

H2. Tueorem (Hartmanis, Lewis and Stearns [112]). If F,(n) and F,(n) are “space
constructible functions” with Fy(n)=log,n for all n>1, and if

Fy(n) —

F(n) ’

then there exists a language L that can be recognized by a DTM in space bounded by
F,(n), but not by any DTM with space bounded by F,(n).

lim inf

H3. Tueorem (Seiferas, Fischer and Meyer [223]). If F (n) and F(n) are “time
constructible functions” and if

Fin)
lim inf s X
new Fa(m)

A CATALOG OF COMPLEXITY CLASSES 77

then there exists a language L that can be recognized by an NDTM with time complexity
bounded by F(n), but not by any NDTM with time complexity bounded by F,(n).

(Separation for NDTM space classes, at least the coarse separation we require,
follows from Theorem H2 and a result of [216] that we shall discuss in more detail in
Section 2.6. More refined separations of NDTM space classes can be found, for
example in [222].)

The reason we settle for coarse distinctions, rather than the fine ones offered by
Theorems H1 through H3, is that, currently, coarse distinctions are the only ones we
know how to make. (And even when we make them, their validity may depend on
unproven conjectures.) Theorems H1 through H3 are proved using diagonalization
arguments that construct problems with the desired properties, but give no insight into
how a natural problem might be shown to have them. Thus such important algorithmic
questions as whether, for example, the bipartite matching problem can be solved in
time O(n?) as well as O(n**) remain out of reach.

Fortunately, there is a theoretical advantage to the consideration of such coarse
bounds: They often free us from concern about the precise details of our models of
computation. Similarly, they allow us much latitude in the way we represent problems
as string relations, as we shall see in the next section. ‘

1.5. A first example: the class P (and the class FP)

As an illustrative example, let us consider the perhaps most famous of all complexity
classes, the class “P” of decision problems solvable (or languages recognizable) by
DTM:s obeying a polynomial bound on running time. Informally, one often sees “P”
used to refer to the class of all search problems solvable in polynomial time, but we shall
use the notation “FP” to denote this more general class. This is not a standard usage
(there is none), but will help clarify the issues in what follows. By the simulation results
reported in [246], we know that the class P (and the class FP) will not be altered if we
add extra worktapes to our machine model, or even if we replace the DTM by a RAM.
Furthermore, on the assumption that any “reasonable” representation of a problem as
a string relation can be translated into any other in polynomial time, P (and FP)can be
viewed as representation-independent. (For example, note that the adjacency list
representation for a graph can be translated into an adjacency matrix representation in
O(n?) time if n is the length of the former representation.)

The significance of P (and FP) was first pointed out in [56, 72]. In particular,
Edmonds was the first to propose polynomial-time solvability as a theoretical
equivalent to the informal notion of “efficiently solvable™, an identification that has
held up over the years, despite its obvious exceptions. (For more on the motivation of
this identification and its drawbacks, see for example [87,135].)

A wide range of problems are known to be in P (and FP), and researchers are
continually attempting to identify more members. Perhaps the most significant
addition to the membership list in the 1980s is LINEAR PROGRAMMING [149, 157]. This is
formulated as a decision problem as follows.

E
i
WX
i
b
i
[{

i

e S i S A S

B R AT

78 D.S. JOHNSON

LINEAR PROGRAMMING

Instance: Integer valued vectors Vi=@[1),...,nln]), L<ism, and D=(d[1],...,
d[m]), and C=(c[1],... ,c[n]), and an integer B.

Answer: “Yes” if and only if there is a vector X =(x[1],...,x[n]) of rational numbers
such that C+X>B and V;* X <d[i] for alli, 1<i<m.

LINEAR PROGRAMMING is of particular significance for P, for, in a sense to be explained
in Section 1.7, it is an example of the hardest kind of problem in the class.

1.6. Reductions

In the main body of this chapter, we shall be defining complexity classes and
illustrating them by giving examples of problems they do and do not contain. To show
that a particular problem is in a given class, we need only exhibit a “method” for
solving the problem that meets the requirements of the class’s definition (as to machine
model and resource bounds). Proofs of non-membership must be more indirect. One
key technique, however, is applicable to both sorts of proof: the “reduction”.

One common programming trick that can be incorporated into most of our models
of computation is the “subroutine”. For instance, an algorithm for solving the network
flow problem (see [247]) might proceed by solving a sequence of shortest path
problems, ie., by using a subroutine for the shortest path problem. If we restrict
ourselves to Turing machine models, the concept of subroutine can be formalized in
terms of oracles. Suppose for example that we have a polynomial-time deterministic
oracle Turing machine that solves problem X under the assumption that the oracle
solves problem Y. In this case, the oracle acts just like a subroutine for solving Y. If it
should turn out that problem Yis in P, one could replace the oracle by an appropriate
version of a DTM program for solving Y (the subroutine), thus obtaining a polynomial-
time oracle-free DTM that solves X. (We use here the fact that if p and q are
polynomials, then so is the composition po g of p and ¢.)

DerFINITION. If X and Y are problems (string relations), a (Turing) reduction from X to
Y is any OTM that solves X given an oracle for Y. '

When restricting attention to decision problems, we often do not need to use the full
power of this definiton, with its ability to ask an unbounded number of queries. Indeed,
the following much restricted version often suffices.

Dermation. If X and Y are decision problems, a transformation from X to Y is
a (DTM-computable) function f: {0, 1}* —{0,1}* such that x has answer “yes” under
X if and only if f(x) has answer “yes” under Y.

Note that this is the same thing as a Turing machine reduction in which the OTM can
ask but one query of its oracle, and must give as is own answer the answer it receives
from the oracle. This type of reduction is also called a “many-one” reduction in the
literature, given that it can conceivably map many x to the same string y.

NS i
cla ises
red uct

DiFIN
we say
thit X

<or
€O 18i¢
no nia
€O mp:
(trans
cliss
trinsf
atle i
tr insf
a pol
ccmp
pr op¢

Cem
awd i

P
ved
tiee
p ed

In
tian

t /pes

i.7.
Re¢
imp«
1 nov
{ th
f “c

Asa

Sup

A CATALOG OF COMPLEXITY CLASSES 79

As indicated above, reductions become useful tools in dealing with complexity
classes when they themselves obey resource bounds. If R is a restricted class of
reduction, let us write “X <g Y” to signify that thereis a reduction in R from X to Y.

DeriniTioN. If Cisa complexity class and R is a clas;; of resource bounded reductions,
we say that R is compatible with Cif for any problems X and Y, X<gYandYeC imply
that X e C.

For the class P, the most general compatible class of reductions that is commonly
considered consists of Turing reductions that obey polynomial time bounds (poly-
nomial-time Turing reductions, sometimes abbreviated as “<1" reductions). Also
compatible, of course, is the more restricted class of polynomial transformations
(transformations f with f e FP, abbreviated as “<,” reductions). Another popular
class of reductions is obtained by a further restriction, this time to log-space
transformations (or iogspace reductions), i.e., those transformations that are comput-
able in logarithmic space. (Note that such transformations are also polynomial
transformations, since the logarithmic bound on workspace means that there are only
a polynomial number of distinct states for the worktape). In addition to being
compatible with P, these three classes of reductions all have one more important
property: they are “transitive”. :

DerNiTION. A class R of reductions is transitive if for all problems 4, B, and C, A<z B
and B <g C together imply A<g C.

(Proving that log-space transformations are transitive is an interesting exercise, as
we do not necessarily have enough space on our logarithmic worktape to write down
the entire output of the first transformation, and so must generate it bit by bit, as
needed.)

In Section 4.4, we shall introduce some additional forms of reduction, more complex
than those given here, such as “y-reductions” and “random” reductions of various
types. In the meantime, however, the ones given here will suffice for our discussions.

1.7. Completeness

Reductions can clearly simplify the job of proving membership in a class. More
importantly, however, they can also be used to prove non-membership. Suppose we
know that problem X is not in class C. Then if we can exhibit a reduction from X to
Y that is compatible with C, we will know that Y cannot bein C either, by the definition
of “compatible”. The difficult task, of course, is finding that first problem X that is not
in C. Reduction can help here too. -

We know by Theorems H! and H3 of Section 1.4 that certain class containments
C’ < C are proper, i€, although every X in C’is inC, thereisan X in C thatisnotin C".
As already pointed out, the diagonalization arguments used to prove H1 through H3
unfortunately do not make examples of problems in C—C' readily available to us.
Suppose, however, that we could show, for some class R of reductions compatible with

80 D.S. JOHNSON

C', that all problems in C were reducible to a given problem X. Then if X were in C’, we
would have C < C’, a contradiction. This motivates the following definition.

DeriniTion. Suppose X is a problem, C is a class of problems, and R is a class of
reductions. If Y <z X forall Y € C, then we say that X is hard for C (under R-reductions),
or simply R-hard for C. If also X € C, then we say that X is complete Jor C (under
R-reductions), or R-complete for C.

Note that if X is R-complete for a class C, it can be viewed as typical of the “hardest™
problems in C (at least from the viewpoint of any class C'=C with which R is
compatible). As an example, consider the LINEAR PROGRAMMING problem introduced in
Section 1.6. When we said there that this was in a sense the “hardest problem™ in P, we
were referring to the fact that LINEAR PROGRAMMING is complete for P under log-space
reductions (*log-space complete for P”) [68]. Log-space reductions are compatible not
only with P, but also with the class L = P of decision problems solvable by DTMs
obeying a logarithmic space bound. Since LINEAR PROGRAMMING is complete for P under
a reduction that is compatible with L, we conclude that it isin L if and only if P=L.

The situation here is somewhat different from that envisioned above, however.
Although we strongly suspect that L is properly contained in P, we do not yet know for
sure that this is the case. Thus we cannot at this point prove that a problemisin P—L
simply by showing that it is log-space complete fof P; all that we can currently conclude
from such a result is that the problem is in P—L unless a widely believed conjecture is
false. Such conditional complexity results abound in the current theory of complexity
classes, as so many of the relations between classes are still unresolved.

There remains the question of how we show a problem X to be hard for a class under
a given type of reduction. Given that the classes of interest are all of infinite size, we
clearly cannot exhibit distinct reductions to X from each member. For many of our
complexity classes, however, there will be one “generic” problem for which all these
reductions follow almost by definition. In the case of the class P and log-space
transformations, that problem is as follows.

DTM ACCEPTANCE
Instance: Description of a DTM M, string x, and an integer n written in unary.
Answer: “Yes” if and only if M, when started with input x, halts with answer “yes” in
n or fewer steps.

Note that if a problem Y is in P, there must be a DTM M that accepts the set of strings
representing its yes-instances, and integers ¢ and k such that M never takes more than
c|y/* steps on any input y. If one has such a ¢, k, and M in mind, one can, given any
instance y of problem Y, construct an instance of DTM ACCEPTANCE that has the same
answer using only logarithmic space. Simply write down the description of M (constant
effort, independent of y), copy y (requires constant workspace), and compute n=c| yi*
(logarithmic space). Thus DTM ACCEPTANCE is trivially log-space hard for P.

In fact, DTM ACCEPTANCE is log-space complete for P, as it is easy to see that it is itself in
P: we can simply simulate the running of the Turing machine M on the input x, and the

A CATALOG OF COMPLEXITY CLASSES 81

number of steps n that we have to simulate is polynomially bounded in the size of the
input. (Note that here our requirement that n be written in unary notation is crucial; if
n were written in the more standard binary notation, the simulation might take
exponential time in the “size” of the input. Representing numbers in unary fashion is
not “reasonable” in any ordinary sense, but it has its technical uses, and we shall see
more of them in Section 2.1 '

Once we have our first R-complete problem Y for a class C, obtaining others is
conceptually much more straightforward, assuming our class of reductions is
transitive. All we need do to show that problem X is complete is prove Y<zX; the
transitivity of R does the rest. In the descriptions of complexity classes that follow, we
shall when possible give examples of complete problems for each that are a bit more
interesting than the generic one. We shall not, however, give the reductions used to
prove completencess. Readers unfamiliar with the techniques involved in constructing
such reductions are referred to [87] or any of the standard textbooks on algorithms

and complexity, such as [5, 192].

1.8. Relativized worlds

We will be discussing many open problems concerning the relationship between
classes in what follows. One common measure of the potential obstacles to resolving
such problems is derived by considering how they “relativize”. If X is a class defined in
a particular way, and A4 is any subset of {0, 1}*, then X is the analogous class defined
using the same resource bounds but augmenting the machine model with a (perhaps
additional) oracle tape for asking questions about membership in 4. For instance, p4
would be the set of all languages that can be recognized in polynomial time by an oracle
Turing machine with oracle 4.

The question of whether class X equals class Y can usually be judged “difficult” if it
relativizes both ways, i.c., if there exists an oracle A such that X4 =Y“ and an oracle
B such that X2+ Y. This is because the standard proof techniques for proving classes
equal or unequal, such as simulation and diagonalization, continue to work even if
relativized. If X is shown to equal Y by one of these techniques, then X will equal Y4
for all A4, and similarly if we can use them to show X # Y, then we will have XA£Y4for
all A. Hence if a question relativizes both ways, the standard techniques cannot be
applied to it. Unfortunately, most of the interesting open questions have this property.

A few closed problems also are known to have the property, but these tend to be of
three well understood basic types, and do not appear relevant to the types of open
questions we shall be discussing:

(1) Questions defined in terms of specially constructed oracles, so that their
«relativized” versions deal with doubly relativized classes (i.e., classes defined in terms of
machines with two separate oracle tapes and two separate oracles). For example, one
can construct languages 4, B, and C such that P4 = NP4, and yet both (P4)? =(NP4)’,
and (P4)° #(NP4)¢ [104, 126].

(2) Problems discussing running time distinctions that are so fine as to be
machine-dependent, such as the resuit of [197] concerning deterministic and non-
deterministic linear time on a particular Turing machine model.

82 D.S. JOHNSON

~ (3) Problems concerning sublinear space bounds, when the oracle tape is not
required to obey the space bound. These last will be discussed further in Section 5.1, but
see also [107].

Sometimes, even though a particular open question relativizes both ways, there is an
additional property that at least hints at what the correct answer might be. Each oracle
set A can be viewed as establishing an “alternate universe”, with its own propertics and
relation between classes. For some questions, even though there are alternate universes
where each possible outcome occurs, one of those outcomes is vastly preferred. More
precisely, if one takes the natural measure over the space of all subsets of {0, 1}*, the set
of all oracles A for which a given outcome occurs has measure 1, i.e., the outcome occurs
for almost all 4. We then say that the given outcome holds “for a random oracle”. There
is unfortunately no a priori reason why this should imply that the outcome occurs for
the particular oracle 4= @, i.e., the one which yields the base case and hence the world
in which we are normally most interested. (A “random oracle hypothesis™, asserting
that if a property holds for a random oracle then it holds for the empty oracle, was
wishfully proposed in [29], but counterexamples, albeit technical ones, were quickly
found [165].) Nevertheless, such results at least add an extra aura of believability to
conjectures to which we already subscribe for other reasons, and we shall mention them
where they are known. (For more on relativization, see Section 6.1.)

19. The organization of the catalog

The next four sections constitute a “catalog” of complexity classes. We have
attempted to be moderately complete, covering all the major and many of the minor
classes. Inevitably, however, some of the more obscure classes had to be omitted for
space reasons. Normally, however, papers that discuss such classes will begin by
relating them to more famous classes, so even in such cases the current survey may help
in putting things in perspective. In discussing each class, we try to summarize some of
the most important and interesting results about its structure and its relation to other
classes. Here our choice of what to present is of necessity somewhat more selective, but
we have attempted to present those results that the non-specialist might find the most
intriguing.

Note that while the presentation must be sequential, the relationships between
classes are not. Thus the presentation will unavoidably contain many pointers back
and forth. If a property of class X does not make sense until we have discussed class Y, it
cannot be fully explained until that later class has been introduced, and hence can only
be alluded to by a forward reference when X is discussed. Our intention is that the
non-expert should be able to read the presentation straight through as a tutorial, and
subsequently be able to use it as a reference, with the aid of the tables and figures in
Section 6 and the pointers in the text.

One additional note about the presentation. It is not our purpose here to present an
historical picture of the development of the field, but rather to survey the current “state
of the art” for complexity classes. We shall, of course, attempt to cite all the
fundamental papers in the field. There will be cases, however, where a paper that was
instrumental in pointing the way to a particular result will be ignored in favor of the

pa
de
de
to

;e

- H M

A CATALOG OF COMPLEXITY CLASSES . 83

paper that actually first presented the result itself. For readers interested in the
development of ideas, the papers we do cite should provide an adequate point of
departure for the needed literature search. Other general surveys and tutorials related
to the subject of complexity classes can be found in [20, 87, 224, 236].

2. Presumably intractable problems

21. The class NP, NP-complete problems, and structural issues

The class “NP” is defined to be the set of all decision problems solvable (languages
recognizable) by NDTMs in polynomial-bounded time. It trivially contains P, since
DTMs are special cases of NDTMs. It would appear to contain much more, however,
as nondeterminism seems to add significant power to time-bounded computations.

To see this, it is perhaps easier to consider a more restricted, though no less powerful
version of the polynomial-time NDTM: the polynomial time “guess-and-check”
procedure for verifying yes-answers (language membership). On input x, such
a procedure first (nondeterministically) guesses a string y such that jy| < p(|x}) for some
fixed polynomial p, and then runs a polynomial-time algorithm on input (x, y). The
answer is “yes” (x isin L) if and only if there is a guessable y such that the algorithm will
answer “yes”. It is easy to see that a decision problem (language) is in NP if and only if
such a scheme exists. ‘

Moreover, it is easy to see that a wide variety of seemingly intractable problems are
susceptible to polynomial-time guess-and-check procedures, with the “guess” offering
a shortcut to what would otherwise seem to be an unavoidably exponential-time
exhaustive search. For instance, consider the following famous problem.

SATISFIABILITY

Instance: List of literals U=(uy, iy, Uz, Uz, Un; ii,), sequence of clauses C=(c1,
C3,...,Cm), Where each clause c; is a subset of U.

Answer: “Yes” if there is a truth assignment for the variables uy, . . ., U that satisfies all
the clauses in C, i.e., a subset U’ < U such that {U' n{u;, ii;}|=1,1<i<n, and such that
U neil 21, 1<ism..

Note that there are 2" possible truth assignments, and at present we know of no
foolproof way to determine in subexponential time whether there exists one that
satisfies all the clauses. A guess-and-check algorithm, however, need only guess
a satisfying truth assignment (if one exists); verifying that all the clauses are satisfied is
then trivial.

A second example is the following problem.

CLIQUE

Instance: Graph G =(V, E), positive integer K.

Answer: “Yes” if G contains a complete subgraph of size K, i.e., if there is a subset
V' <V with |V|=K such that for all u,veV’, u#v, the pair {u, v} is an edge in E.

T R R

84 D.S. JoHNSON

Note that there are roughly |V|¥ possible subsets, and at present we know of no way
to determine if one with the desired property exists in subexponential time.
A guess-and-check algorithm, however, need only guess V' and verify that all the
required edges are present in E.

A third example is the following.

TRAVELLING SALESMAN PROBLEM (TSP)
Instance: List c,, ¢, . .., c, of cities, a positive integer distance d(c;, c;)=d(c}, c;) for
each pair {c;, c;} of distinct cities, and an integer bound B.
Answer: “Yes” if there is a tour through all the cities of total length B or less, ie.,
a permutation = of indices 1,..., n such that
n-1

Y. d(Crgys Cxgi+ 1y) + HCrimys Cx(1y)) < B.
i=1

Note that there are n! =29"°8") possible tours, and again there is no known way of
finding the answer deterministically in subexponential time. A guess-and-check
algorithm, however, need only guess the desired tour and verify its length.

These three examples, and many more like them, have led most theoretical computer
scientists to the belief that P is a strict subclass of NP, i.e., that P#NP. Moreover,
although the question of P versus NP relativizes both ways (there exist oracles 4 and
B such that P4 = NP4 and P2 # NP2 [17]), the two classes are unequal for a “random”
oracle [29).

Given the likelihood that P # NP, there can be considerable practical significance in
identifying a problem as “complete” for NP under an appropriate notion of
reducibility. If the reducibility is compatible with P in the sense described in Section 1.6,
such problems will be polynomial-time solvable if and only if P=NP. Such a result thus
provides strong theoretical support for the belief that a problem is intractable, and can
direct us to more productive approaches to the problem, such as settling for
near-optimal rather than optimal solutions in the case of optimization problems.

Section 1.6 listed three types of reduction that were compatible with P. In order of
apparently decreasing power, they were polynomial-time Turing reductions, polynomial
transformations, and log-space transformations. By tradition, we reserve the unadorned
adjective “NP-complete” for just one of these:

DeriniTION. A problem (language) is NP-complete if it is complete for NP under
polynomial transformations.

If completeness under a different type of reduction is intended, most authors will
normally point this out explicitly, as in “complete for NP under polynomial-time
Turing reductions”. It is not yet clear whether such distinctions are meaningful,
however. Although polynomial-time Turing reductions are known to be more powerful
than polynomial transformations for classes larger than NP [170], this distinction is
not known to hold within NP. Indeed, it can only hold there if P # NP, which remains
to be proved. Similary, polynomial-time transformations cannot be more powerful than

A CATALOG OF COMPLEXITY CLASSES 85

log-space transformations unless P#L, another unproved conjecture. All three
problems introduced above as members of NP are complete for NP under log-space
reductions, the weakest of the three, and there are few, if any, examples of problems that
are complete for NP but are not known to be complete under such reductions.

The first NP-complete problem to be identified (other than the generic problem of
“NDTM ACCEPTANCE”, defined analogously to the DT™M ACCEPTANCE problem of Section
1.8) was SATISFIABILITY. The result that identified it is now called “Cook’s Theorem” in
honor of its author, Steven Cook.

1. TueoreM (Cook [58]). sATISFIABILITY is NP-complete.

In the same paper, Cook also proved that cLiQUE was NP-complete. (At roughly the
same time, Leonid Levin in the Soviet Union independently came up with an idea
equivalent to NP-completeness and proved a version of Theorem 1 in which
SATISFIABILITY was replaced by a variant on the problem of “TILING” that we will cover in
Section 3.2 [174].) Shortly thereafter, the class of known NP-complete problems was
expanded to include the TSP and a wide variety of other problems by Richard Karp in
the landmark paper [150] (see also [151]). By 1979, over 300 problems could be listed
[87]. NP-complete problems are now known to permeate all areas of computer science,
operations research, and mathematics, and are not unknown in such disparate areas as
biology, physics, and political science. Readers are referred to the above book to obtain
a better feel for the variety of results that have been obtained, as well as a much more
thorough treatment of the subject and its history. More recent surveys can be found in the
current author’s “NP-completeness Column”, starting with the first edition in [129].

An interesting observation is that it often takes very little to change a problem from
polynomial-time solvable to NP-complete. Table 1 lists several pairs of such related
problems, one in P and one NP-complete. (All the NP-completeness results in Table
1 are from [150], except the result for QUADRATIC DIOPHANTINE EQUATIONS, which is from
[182].

The distinction illustrated in the last row of Table 1 is worthy of special note. Many
a false proof that P=NP has been based on the mistaken impression that UNARY
PARTITION is NP-complete, whereas in fact it can be solved in polynomial time by
a straightforward dynamic programming algorithm. Such an algorithm requires time
exponential in the input size for BINARY PARTITION, even though it is polynomial in the
perhaps exponentially larger) size for the corresponding UNARY PARTITION. This
distinction is worth formalizing.

DEFINITION. A pseudopolynomial-time algorithm is one whose running time would be
polynomial if all input numbers were expressed in unary notation.

The existence of a pseudopolynomial-time algorithm for a given NP-complete
problem may mean that the problem is not so “intractable” after all. (Pseudopolynomial
time becomes polynomial time if one restricts attention to instances in which the
maximum number obeys a constant or polynomial bound in terms of the input size, and
such restrictions may well hold in practice.) Thus it may be important to determine

86 D.S. JOHNSON

Table .l

Problems on the frontier
POLYNOMIAL TIME NP-COMPLETE
EDGE COVER VERTEX COVER

Instance: Graph G =(V. E). integer k.
Answer: Yes if there is a subset E'S E with
|E’'} <k such that every vertex is the endpoint
of an edge in E'.

FEEDBACK EDGE SET

Instance: Graph G =(V. E) integer k.
Answer: Yes if there is a subset E' < E with
|E’'} <k such that every cycle in G contains an
edge in E'.

EULER CYCLE
Instance: Graph G =(V, E) with m=|E|.
Answer: Yes if there is an ordering
€1,€3,....ey sSuch that e; and e, share an
endpoint, as do all pairs {e.¢,,,}.
t<i<m.

2-SATISFIABILITY (2-SAT)
Instance: Instance of SATISFIABILITY in which
no clause contains more than 2 literals.
Answer: Yes if the clauses are satisfiable.

LINEAR DIOPHANTINE EQUATIONS
Instance: Positive integers a, b, and ¢
Answer: Yes if there are positive integers x
and y such that ax+by=c.

UNARY PARTITION .

Instance: Set A={a,,...,a,} of integers
written in unary notation.

Answer: Yes if there is a subset A’ = A such
that £, 4a=2,c4- 0.

Instance: Graph G =(V, E), integer k.
Answer: Yes if there is a subset V'< V with
{V'|<k such that every edge has an

endpoint in V.

FEEDBACK ARC SET

Instance: Directed graph G=(V, A) integer k.
Answer: Yes if there is a subset 4’ € A with
|A’| <k such that every (directed) cycle in G
contains an arc in E'.

HAMILTONIAN CYCLE)
Instance: Graph G =(V, E) with n=|V|.
Answer: Yes if there is an ordering
Py, Uz,..., 0, such that {v;,v,} forms an
edge, as do all pairs {v,, v, }, 1<i<n

3-SATISFIABILITY (3-SAT)
Instance: Instance of SATISFIABILITY in which

no clause contains more than 3 literals.
Answer: Yes if the clauses are satisfiable.

QUADRATIC DIOPHANTINE EQUATIONS
Instance: Positive integers a, b, and c.
Answer: Yes if there are positive integers x

and y such that ax? + by=c.

BINARY PARTITION

Instance: Set A= {a,,...,an} of integers
written in binary notation.

Answer: Yes if there is a subset A’ = A such

that X,. ca=X,c 4- 40

whether a problem is merely NP-complete in the ordinary sense, or whether it has the

following stronger property.

DEFINITION. A problem is said to be NP-complete in the strong sense if the variant of it in
which all input numbers are written in unary notation is NP-complete.

Note that problems like CLIQUE are trivially NP-complete in the strong sense, since
the only number in the input is by definition bounded by the input size (in this case, the
input bound K is bounded by the number of vertices |V1). A more meaningful example
of a “strongly NP-complete” problem is the following variant of the “PARTITION”

problems of Table 1.

3-F

in
th
wi
th
wi

B O

al|
la)

lai

co
In

sp

Sit
be

un
SA’
Be
pr
of
the

A CATALOG OF COMPLEXITY CLASSES 87

3.PARTITION

Instance: Sequence a;, 1 <i<3n, of positive integers (in binary notation).

Answer: “Yes” if there is a partition of these integers into disjoint 3-element sets
A 1<jsn, such that all n sets A; have exactly the same sum.

This problem is proved NP-complete in the strong sense by exhibiting a polynomial
pand showing that the problem remains NP-complete (in the ordinary sense) even if we
require a; < p(n) for 1 <i< 3n. (See [86] for the proof and a more rigorous development
of these concepts.)

Distinctions like that provided by “strong NP-completeness” are only possible if one
imposes some form of semantics on the language in NP, ie., identifies certain parts of
the input string as “aumbers”, “graphs”, etc. There is much one can say, however,
without at all considering what the languages in NP “mean”, but by simply examining
their structural, set-theoretic properties. A first question along these lines concerns
what are called “sparse” languages, defined as follows.

DermniTiON. A language L is sparse if there is a polynomial p such that L contains no
more than p(n) strings of length n for all n>1.

As simple examples of sparse languages, consider languages over a one-letter
alphabet, i.c., subsets of {1}*. These are sometimes called “tally languages”. For such
languages, there can be at most one string of length n for any n.

A natural “structural” question to ask is whether there can be a sparse NP-complete
language. Unfortunately, this possibility seems ruled out. In [179] it was proved that
a sparse language can be NP-complete under polynomial transformations only if
P = NP. Weaker, but not more believable conclusions follow if a sparse language is
complete for NP under polynomiai-time Turing reductions [146, 179] (see Section 2.4).
Indeed, there are interesting consequences if there is a sparse language anywhere in
NP —P [111] (see Section 3.2). (For more detailed tutorials on results concerning
sparsity, see [105, 180].

Thus, assuming P#NP, all NP-complete sets have a certain gross structural
similarity. Could the similarity actually be much closer? Could they, for instance, all
be isomorphic?

DEFINITION. A polynomial transformation is a polynomial-time isomorphism if it is
a one-one onto function and its inverse is also polynomial-time computable.

In [31] Berman and Hartmanis was conjectured that if a problem is NP-complete
under polynomial-time transformations then it is polynomial-time isomorphic to
SATISFIABILITY (and hence all NP-complete problems are isomorphic in this sense).
Berman and Hartmanis were able to show that this was true for all the NP-complete
problems known to them at the time, although of course this did not constitute a proof
of the conjecture. (Indeed a complete proof would have implied that P#NP:IfP=NP,
then all languages in NP would be NP-complete, including finite and infinite ones, and
no finite language can be isomorphic to an infinite one.)

D.S. JOHNSON

88

A further obstacle to proving this “jsomorphism conjecture” is the fact that it may
well be false even if P #£NP. In particular, a class of specially constructed “k-creative”
languages, introduced in [145, 258], seems to be rich source of candidates for
NP-complete languages not isomorphic to the more normal NP-complete languages or
to each other. In [166] it is shown that the desired nonisomorphic NP-complete
k-creative languages exist sO long as a particular type of polynomial-time “scrambling”

function exists, and that, although no such function has yet been found, they do exist

e. Thus the isomorphism conjecture fails with respect to

with respect to a random oracl
a random oracle (and no oracle is yet known for which the conjecture succeeds; the best

we have is an oracle for which the analogous conjecture succeeds for the larger class P
to be defined in Section 2.5 [120]).
In this light, it is interesting to note that if there exist nonisomorphic NP-complete

languages, then there exist infinitely many distinct isomorphism classes, and these
ent can be made about the

have a rich structure, as shown in [181]. A similar statem
structure of NP — P under polynomial transformations, assuming P £NP.In [167},it
is shown that under this assumption and these reductions, NP — P must consist of an
infinite collection of equivalence classes, of which the NP-complete problems are only
one, albeit the hardest. Two famous problems have long been considered candidates for
membership in such intermediate equivalence classes: GRAPH ISOMORPHISM (as described
in Section 1.1) and COMPOSITE ~NuMBgR (Given an integer n written in binary notation,
are there positive integers p, g, 1<p,q<n,such that n=pq?). We shall have more to say
about these two in later sections (COMPOSITE NUMBER in Sections 2.2 and 4.3, GRAPH
{SOMORPHISM in Sections 2.5 ad 4.1). As we shall see, there are strong arguments why
neither is likely to be NP-complete.

The equivalence class containing GRAPH ISOMORPHISM, in particular, has been so

well-studied that a name for it (or rather its generalization to arbitrary search
problems) has been introduced:

perFmTioN. The class of GR4PH [soMoRPHISM-complete problems consists of all those
search problems X such that X and GRAPH ISOMORPHISM are polynomial-time Turing

reducible to each other.

Included in this class are various special cases of graph isomorphism (€.g., GRAPH
ISOMORPHISM restricted to regular graphs [38]), as well as related problems (¢.g. “Given
G, what is the order of its automorphism group?” [183]) and at first glance unrelated
ones (e.g., a special case of cLiQuE [162]). These are to be contrasted with the many
special cases of GRAPH ISOMORPHISM that are now known to be in P, for surveys of which,
see for instance [87,129].

We conclude this section with a more fundamental issue. So far, in considering the
question of P versus NP, we have assumed that there were only two possible answers:
P=NP and P#NP. There is the possibility, however, that the question is independent
of the standard proof systems on which we rely. This would mean that there exist
models for both possible outcomes, with neither model offering an affront to our
fundamental assumptions. This possibility was first raised explicitly in [109], which
showed that for any formal system F there exists an oracle 4 such that PA=NP4is

independent of F.

A CATALOG OF COMPLEXITY CLASSES 89

The result as proved in [109] was limited, since it held only for a particular
description A. That is, independence was proved only for the statement “PX¥) = NPpLM)»,
where M was a particular DTM and “L(M)” denotes the language accepted by M.
(Moreover, in this case, L(M) was in fact the empty set, and it was only the opaque
choice for its representation that yielded the independence result.) Subsequently,
however, the restriction to a particular representation has been removed. In particular,
given F, there exists a recursive set A such that for any provably total DTM M that
recognizes A, PX¥) = NPLM! js independent of F[103, 204].(A DTM is “total” if it halts
on all inputs.) v

The question thus arises, could this more powerful conclusion hold for the empty

oracle and for a proof system we commonly use, such as Peano Arithmetic? Certain
computer science questions about the termination of programs in particular typed
languages have been proved to be independent of Peano Arithmetic (even of
second-order Peano Arithmetic) in [81]. It does not appear, however, that the
techniques used could be applied to the P versus NP question. So far, the only results
for P=NP have been consistency results for substantially weaker systems, as in [67].
Unfortunately, these systems are so weak that many standard, known results cannot be
proved in them either [141, 142, 143, 173), and so independence of such systems tells us
little. Moreover, it can be argued that even Peano Arithmetic is too weak a theory for
independence of it to be significant, and that at the very least one would want the
question to be independent of full Zermelo—Fraenkel set theory before one would be
willing to give up the quest for an answer. Although such independence is believed
unlikely, it is a possibility that cannot be totally ignored. We will nonetheless ignore it
for the remainder of this chapter. Readers wishing more background on the issue are
referred to [144]. For a detailed discussion of the logical theories mentioned above, see
for instance.[25].

2.2. Co-NP, NPnco-NP, and nondeterministic reducibilities

One aspect of NP and the NP-complete problems that we have failed so far to
empbhasize is their one-sidedness. Consider the complementary problem to SATISFIABILITY,
in which we are asked if it is the case that every truth assignment fails to satisfy at least
one clause. This is simply SATISFIABILITY with the answers “yes” and “no” reversed, and
hence in practical terms is computationally equivalent to SATISFIABILITY. However, it is
not at all clear that this “co-SATISFIABILITY” problem is NP-complete or even in NP.
(What would be a “short proof” that all truth assignments have the desired property?)

In general, if we let “co-NP” denote the set of all languages {0, 1}* — L, where L € NP,
we are left with the open question of whether NP =co-NP, and the suspicion that it is
not. This suspicion is supported by the fact that the two classes are distinct for
a random oracle [29], although there do exist oracles A such that NP4 = co-NP4 even
though P4 # NP4 [17], and so the question seems unlikely to be resolved soon. Note
that the two classes must be identical if P=NP, and indeed that P=NP if and only if
P = co-NP. Note also that NP must equal co-NP if any NP-complete problem, such as
SATISFIABILITY, should prove to be in co-NP, and that if NP #co-NP, then neither set
can contain the other.

Assuming that NP and co-NP are distinct, one wonders if there is any structural,

90 D.S. JOHNSON

rather than computational, way in which they differ. If one takes “structural property”
in a suitably broad sense, there is at least one such difference, albeit a technical one. In
[111]itis shown that there is an oracle for which co-NP — P contains a sparse language
but no tally (i.e., one-symbol) languages, in contrast to the fact that for all oracles, NP —P
contains a sparse language if and only if it contains a tally language.

A more important consequence of the presumed inequality of NP and co-NP is that
it would provide us with yet another potentially interesting class, NPnco-NP. This
class would be a proper subclass of both and would contain P, although not necessarily
properly. The question then becomes, does P=NPnco-NP? This question relativizes
both ways for oracles that yield P#NP [17], although it is not currently known
whether either result is preferred by a random oracle (inequality holds with probability
1 for a “random permutation”) [29]. The one current candidate of importance for -
NP ~co-NP — P is the above-mentioned COMPOSITE NUMBER problem. As remarked in
the previous secton, this is in NP. By a result of [199] that there exist short proofs of
primality, it is also in co-NP. Unfortunately, the status of COMPOSITE NUMBER as
a candidate is somewhat weakened by the fact that many researchers think it is in P,
and that it is only a matter of time before the required polynomial-time algorithm is
discovered. For instance, it is shown in [188] that COMPOSITE NUMBER is in P if the
Extended Riemann Hypothesis is true. A better candidate would be a problem that is
complete for NP co-NP, but unfortunately, no such problem is known. Indeed, it is
strongly expected that none exists, since completeness results proved by known
methods relativize and there exist oracles 4 such that NPA~co-NP4 has no complete
sets under polynomial transformations [228]. Moreover, it will be no easier finding
complete sets under the more general notion of polynomial-time Turing reducibility: it
is shown in [110] that either both types of complete sets exist, or neither.

The class NPnco-NP may still have its uses, however. Consider the concept of
«“y-reducibility,” introduced in [3]. This reducibility, while not necessarily compatible
with P, is compatible with NPAco-NP. Thus, although a problem that is complete for
NP under y-reductions could conceivably bein Pevenif P#NP, it could not bein P (or
even in co-NP) if NP #co-NP. A y-reduction is an example of a “nondeterministic”
reduction, in that it is defined in terms of an NDTM rather than a DTM:

DeriNITION. A language X is y-reducible to a problem Y if there is a polynomial-time
NDTM M such that, on any input string x, M has at least one accepting computation,
and such that, if y is the contents of the tape at the end of any such accepting
computation, then x € X if and only if ye Y.

Several problems are proved to be complete for NP under y-reductions in [3], none
of which has yet been proved NP-complete under the more restrictive reductions of the
previous section. All were of a number-theoretic nature, with a typical one being LINEAR
prvisiBiLITY (Given positive integers a and c in binary representation, is there a positive
integer x such that ax+ 1 divides ch.

This notion of nondeterministic reduction was modified and generalized in [177] to
what is called “strong nondeterministic polynomial-time Turing reducibility”.

R T T MR

A CATALOG OF COMPLEXITY CLASSES 91

DEFINITION. A language X is strongly nondeterministically polynomial-time Turing
reducible to a problem Y if there is a nondeterministic polynomial-time OTM M with
Y as oracle such that '
(i) all computations halt with one of the three outcomes {yes, no, don’t know},
(i) for any string x, M has at least one computation that yields the correct answer,
and
(ii) all computations that do not result in “don’t know” yield the correct answer.

If a problem Y is complete for NP under this more general notion of reducibility, it
can be shown that Y e co-NP ifand only if NP = co-NP, the same conclusion that holds
for y-reducibility. In [55] strong nondeterministic Turing reducibility is used to prove
the (presumed) intractability of a broad class of network testing problems, only a few of
which are currently known to be NP-complete.

If one drops from the above definition the requirement that (i) hold for non-
members of X, one obtains (ordinary) polynomial-time nondeterministic Turing
reductions, as introduced in [187]. Although these do not have the nice sorts of
consequences discussed here, they have their uses, e.g., see [17, 170, 187]. We shall be
introducing still further types of reducibilities and of “completeness” for NP once we
introduce the concept of “randomized” computation in Section 4.

2.3. NP-hard, NP-easy, and N P-equivalent problems (the class FA%)

In the previous section we mentioned that NP was limited as a class because of its
one-sided nature. A second apparent limitation is due to the fact that NP is restricted to
decision problems, whereas in practice the problems that interest us are often function
computations or more general search problems. For instance, the TRAVELLING SALESMAN
(TSP) decision problem defined above is not really the problem one wants to solve in
practice. In practice, one wants to find a tour (permutation) that has the shortest
possible length, not simply to tell whether a tour exists that obeys a given length bound.
The latter problem was simply chosen as a decision problem in NP that could serve as
a “stand-in” for its optimization counterpart, based on the observation that the
optimization problem could be no easier than its stand-in. (Finding an optimal tour
would trivially enable us to tell whether any tour exists whose length obeys the given
bound.) The term “NP-hard” has been introduced for use in this context.

DEFINITION. A search problem X is NP-hard if for some NP-complete problem Y there
is a polynomial-time Turing reduction from Y to X.

Note the obvious consequence that an NP-hard problem cannot be solvable in
polynomial time unless P=NP. ’

The optimization version of the TSP is clearly NP-hard, as are all other search
problems that contain NP-complete problems as special cases. Moreover, the term
“NP-hard” serves a valuable function even in the realm of decision problems, where it
provides a simple way of announcing the presumed intractability of problems that may
not be in NP, but are still no easier than the NP-complete problems. For instance, the

e T e NIRRT BT T T T e SRR

92 D.S. JOHNSON

complement co-X of an NP-complete problem X, although just as intractable as X, will
not be NP-complete unless NP =co-NP. It can be called NP-hard, however, if all we
want to do is emphasize its presumed intractability. (When more precise language is
required, the term “co-NP-complete” is available for this case.)

Unlike the NP-complete problems, the NP-hard problems do not form an
equivalence class. Although no NP-hard problem can be in P unless P=NP, the
converse need not be true. (Even undecidable problems can be NP-hard.) To get an
equivalence class, we need to be able to impose an upper bound on the complexity of
the problems. For this purpose, we introduce the following definition.

DEeFINITION. A search problem X is NP-easy if for some problem Y in NP there is
a polynomiali-time Turing reduction from X to Y.

Note that all NP-easy problems will be solvable in polynomial time if P=NP.

Perhaps surprisingly, the optimization problem version of the TSP is NP-easy as
well as NP-hard. It can be solved by binary search using an oracle for the following
problem in NP: Given a sequence c,,c;,...,c, of cities with specified intercity
distances, a bound B, and an integer k, is there a tour that has length B or less whose first
k cities are c, through c,, in order? Similar arguments apply to many other search
problems.

The set of search problems that are both NP-hard and NP-easy, an equivalence class
under polynomial-time Turing reductions, thus constitutes a natural extension of the
class of NP-complete problems to search problems in general, an extension that is
captured in the following definition (from [87]).

DEFINITION. A search problem is NP-equivalent if it is both NP-hard and NP—easy.
Some additional notation will prove useful in what follows.

DerinTioN. The class FA(AY) consists of the set of all NP-easy search problems
(decision problems).

Commonly used pseudonyms for FA% and A that are perhaps more informative are
“FPNP” and “PNP”. The symbolism of the “A” notation will become clearer when we
discuss the polynomial hierarchy in Section 2.5. Note that the NP-equivalent problems
are simply those that are complete under polynomial-time Turing reductions for FAE.

2.4. Between NP and A%: the class D' and the Boolean hierarchy

For practical purposes there appears to be little point in distinguishing amongst the
NP-equivalent problems. As with NP-complete problems, each can be solved in single
exponential time (O(27™) for some polynomial p), but none can be solved in polynomial
time unless P = NP (in which case they all can). Furthermore, if any problem in NP can
be solved in time O(n°'*") for some c, so can all NP-equivalent problems, and similar
statements hold for time 2¢°¥" and any fixed k. Nevertheless, there are significant

A CATALOG OF COMPLEXITY CLASSES - 93

theoretical distinctions to be made, and interesting classes of decision problems that lie
midway between NP and A%, classes that are seemingly distinct from each other with
respect to polynomial transformations (although not with respect to polynomial-time
Turing reductions).

Of particular interest is the following class, introduced in [194].

DeriniTion. The class DP consists of all those languages that can be expressed in the
form XY, where X e NP and Y € co-NP.

Note that this is far different from the class NPnco-NP. It in fact contains all of
NPuUco-NP, and does not equal that union unless NP =co-NP. Indeed, the three
statements “D* =NPuco-NP”, “AE = NPuUco-NP”, and “NP =co-NP” are all equi-
valent [194]. As we have already seen, oracles exist for which both outcomes occur.
A variety of interesting types of problems appear to be in DF —(NPuco-NP).

A first example is the exact answer problem. For instance, in the exact answer version
of the TSP, we are given a list of cities together with their intercity distances and
a bound B, and are asked whether the optimal tour length is precisely B. This is the
intersection of the TRAVELLING SALESMAN decision problem given in Section 2.1 (in NP)
and the (co-NP) question that asks whether all tours are of length B or more. This
problem is in fact complete for D? under polynomial transformations (or “DP-
complete”) [194] and hence cannot be in either NP or co-NP unless the two classes are
equal. Another example of an exact answer problem that is complete for D’ is EXACT
cLIQUE: Given a graph G and an integer K, is the maximum clique size precisely K?
[194].

A second type of problem in DF is the criticality problem. For instance, consider
CRITICAL SATISFIABILITY: Given an instance of SATISFIABILITY, is it the case that the set of
clauses is unsatisfiable, but deleting any single clause is enough to yield a subset that is
satisfiable? Here the “unsatisfiability” restriction determines a co-NP language, and the
m satisfiability restrictions, where m is the number of clauses, can be combined into
a single instance of SATISFIABILITY, which is in NP. This problem is also DP-complete
[193].

A third type of problem in D¥ is the uniqueness problem, as in UNIQUE SATISFIABILITY:
Given an instance of SATISFIABILITY, is it the case that there is one, and only one, satisfying
truth assignment? This is once again clearly in DP and it is not difficult to show that it is
NP-hard (e.g., see [33]). In this case, however, we do not know whether it is
DF -complete. There are oracles for which it is and for which it is not [33]. (DF properly
contains NPuUco-NP for both oracles.) What we do know is that UNIQUE SATISFIABILITY
cannot be in NP unless NP =co-NP [33]. The possibility that UNIQUE SATISFIABILITY is
in co-NP has yet to be similarly limited. (For a slightly more thorough treatment of D¥,
see [133]) _

Related to the class DP are two intermingled hierarchies of classes within AS: the
Boolean hierarchy and the query hierarchy (e.g., sce [48, 49, 106, 250, 252]).

DerinrTioN. The Boolean hierarchy consists of the classes BH,, k>0, as follows:
(1) BH, =P.

94 ' D.S. JoHNsON

(2) If k>0, BH, is the set of all languages expressible as X — Y, where X € NP and
YeBH,_,.

At present there is no consistently adopted notation for these classes; “BH(k)” is used
for BH, in [53, 147] and “NP(k)” is preferred in [48]. The notation used here is chosen
for its mnemonic value, especially in relation to the following notation, which is
consistently used.

* DeFINITION. The class BH is equal to the union U BH,.

See Fig. 1 (Section 6) for a schematic view of this hierarchy and how it relates to the
other classes we have seen so far. Note that BH,; =NP and BH, =D". There exist
oracles for which this hierarchy is infinite, i.e., for which BH, #BH, , , for all k 20, as
well as oracles for which it collapses, i.e., for which BH = BH, for some k > 0. Indeed, for
any k>0 there is an oracle such that all classes BH;, 0<i <k, are distinct, but for which
BH, =BH = A} (in fact, it will equal PSPACE, but we have not defined PSPACE yet;
see Section 2.6) [48]. Note that it need not be the case that BH = A%. Indeed, there are
oracles that separate the two classes. In particular, there are oracles for which BH does
not have any complete problems under polynomial transformations, even though
A% always has such complete problems [48]. The individual classes BH, also have
complete problems, although for classes above BH, =D" the currently known
complete problems are somewhat contrived. For instance, for each even k>0, the
following problem is complete for BH,: “Given a graph G, is y(G) an odd number lying
in the interval [3k, 4k]?” [48].

Let us now turn to the related query hierarchy. In defining it, we shall make use of the
following formalism:

DerFmITION. For each function f:Z* —Z*, the class PNFU™] is the set of all languages
that can be recognized by an oracle Turing machine with an oracle for SATISFIABILITY
that makes no more than f(n) queries of the oracle, where n is the input size.

(Note that PN* = A7 is the same as PNPU"*"< | || pNPI*H1)

DEerINITION. The query hierarchy consists of the classes QH,, k>0, where for each such
k, QH, =PNP¥_(Here k represents the constant function f(n)=k.)

DeriniTiON. The class QH is equal to the union U,‘f’:o QH,.

It is easy to see that BH, = QH,; QH, can in turn be shown to reside in a class of the
Boolean hierarchy, albeit one that is somewhat higher up [50] (for a proof, see [2507).
Thus QH =BH, and we can conclude that either both hierarchies are infinite, or both
collapse to some finite level [106, 250]. If they do collapse, there are some interesting
consequences for a more famous hierarchy, and we shall discuss these in the next
section.

A CATALOG OF COMPLEXITY CLASSES 95

The above results do not carry over to the analogs of these hierarchies for arbitrary
search problems. Let FPN?/™! be the search problem analog of the class PNPUMI The
hierarchy of classes FPN"™, k >0, cannot collapse unless P = NP, a much stronger result
than is known for the query hierarchy. Indeed, the precise number of queries asked
makes a difference (assuming P #NP) up to at least § log n queries [163].

This raises the question of classes defined using a nonconstant bound on the number
of queries, in particular PNFIO%s "l and FPNPIOUesm) Note that the former contains (and
may properly contain) all of QH = BH. With these more general classes, we once again
can obtain interesting complete problems. The derivation is somewhat more straight-
forward in the case of the search problem classes. For instance, with an appropriate
definition of reduction (the “metric” reduction of [163]), the problem of determining
(rather than merely verifying) the size of the largest clique in a graph G is complete for the
class FPNPOUosn) The Oflog n) here comes from the number of questions that need to
be asked when performing a binary search to find the answer, given that the maximum
clique size is no more than the number of verticesin G. If the optimal value one is asking
to determine can be significantly larger than the input size, one can get much higher
complexities. In particular, determining the length of an optimal travelling salesman
tour is complete for all of FA% [163].

Obtaining problems that are complete for the decision problem classes PPNIOtlogn))
and A% under polynomial transformations is a bit more of a challenge. The natural plan
of attack would be to find appropriate decision versions of the maximum clique search
problem and the TSP, but note that our previous attempts to convert such problems to
decision problems forced the problems to lose complexity. “Is there a tour of length
Bor less?” dropped the TSP from A} to NP, and “Is the optimal tour length exactly BT
dropped it to DF, almost as far. To obtain completeness for PNPIOtogmi and A% it turns
out that one must find ways to provide instances with less in the way of hints as to the
optimal clique size or tour length. Two questions that do the trick for the TSP and
A® are as follows: “Is there exactly one optimal tour?” [191] and “Is the optimal tour
length divisible by k?” (given k as part of the input) [163]. Similarly, the problem of
determining whether the maximum clique size for graph G is divisible by k(given G and
k) is complete for PNPIOGesm) [1637],

A final question to consider is whether PNPIOUesml = AF op FPNFIOtcs] = FA%. Here it
is once again easier to prove separation results for the function classes: It is shown in
[163] that the FA} equality can hold only if P =NP, whereas it is not known whether
the consequences of the A} equality would be so severe. Indeed, oracles exist for
which the A5 equality holds but not the one for FA} [163].

2.5. The polynomial hierarchy

The class Af, gets its name from its membership in a hierarchy that is far more famous
than those of the previous section. The polynomial hierarchy, introduced in [187] as
a computational analog to the Kleene arithmetic hierarchy of recursion theory, consists
of classes A}, ZF, and IT, k>0, defined as follows:

Ab =3P =TI§ =P,

96 D.S. JoHNsON
and, for all i>0,
AR+, =Pz£, I =NPZ:, g, =co-Zf,,.

In other words, A}, , (Z5. 1) is the set of all languages recognizable in polynomial time
(nondeterministic polynomial time) with an oracle to a problem in X and
I} ;| consists of the complements of all languages in X}, , . In particular, A} =P, 3¢ =
NP, and IT{ =co-NP, while, as stated earlier, A5 = PN?, Note that AL S3EAIIE. Itisan
open problem whether the containment is proper, just as it was openforthecaseof k=1
(P<NPnco-NP). Similarly, A, contains ZPUTIE and we do not know whether the
containment is proper for any k>1. Given these containment relationships, we can
capture the set of all languages in the polynomial hierarchy with the following
definition,

DEeFINITION. The class PH is equal to the union Uo Z5.

For a schematic illustration of PH and the classes of the polynomial hierarchy, see
Fig. 2. There is an interesting alternative method for defining the classes X} and IT¢,
based on alternations of quantifiers. Note that we can extend the notion of “string
relation” from the binary relations we discussed in Section 1.1 to k-ary relations for
arbitrary k>2. Z} is then the set of languages that can be expressed in the following
format: ;

{x: @y, with | y,|<p(x]))
(Vyz with |y,| < p(lx]))

(Qeyx With | y,| < p(lx]))
[<}’1a)’z,---,)’k,x>€R]}

where R is a polynomial-time recognizable k-ary relation, pis a polynomial, and Q, is
3if k is odd, ¥ otherwise, and in general the quantifiers alternate [234]. (Note that, in
the terminology of Section 1.3, this is equivalent to saying that X} is the set of languages
recognized by polynomial-time alternating Turing machines where the root of the
computation tree is always labelled by “3” and the number of alternations is bounded
by k.) The definition of IT; is obtained by replacing all 3s by Vs, and vice versa.

Using this formalism, it is easier to identify problems as belonging in particular
classes of the hierarchy. For instance, consider sentences of the form

(lel)(Qsz)---(ijj)[F(xhx2’ cees X))

where each Q; is a quantifier (3 or V) and F is a Boolean expression in the given
variables. Let us say that such a sentence has a “quantifier alternation” for each i> 1
such that 0;#Q; -, and for Q, itself. Then the set QBF, ; of true sentences of this form
with k quantifier alternations and with Q, =3 is a language in =f. In fact, not
surprisingly, it is complete for that class [255] under polynomial transformations.
Similarly, the set QBF, of true sentences with k quantifier alternations and with
Q. =V is complete for ITf.

L S MROR S L v o R R

A CATALOG OF COMPLEXITY CLASSES 97

A more interesting example that is complete for a level of the polynomial hierarchy
above A} is the following problem, which is complete for £% [237].

INTEGER EXPRESSION INEQUIVALENCE

Instance: Two integer expressions g and h, where the syntax and semantics of integer
expressions are defined inductively as follows: the binary representation of a positive
integer nis an integer expression representing the singleton set {n};ifeand f are integer
expressions representing sets E and F, then (eu f) is an expression representing the set
EUF and (e+ f) is an expression representing the set {m+n:meE and ne F}.

Answer: “Yes” if g and h represent different sets.

One level up, we have the following problem, complete for A% [164].

DOUBLE KNAPSACK

Instance: Positive integers Xy, ..., Xpm, ¥1,..., Yns N, k.

Answer: “Yes” if the kth bit of the number M (to be defined below) is 1. To define M,
let Z be the set of integers I such that (a) there exists an S<{1,2,...,m} with
YiesX; =1, and (b) there is no T<{1,2,...,n} such that ¥;.ry;=1. M is the largest
element of Zn{1,2,..., N} (or O, if the set is empty).

For other interesting natural problems that appear to be located above A% in the
hierarchy, see [172]. Note that a problem that is complete for Zf cannot be in a class
that is lower in the hierarchy unless the two classes are equal. This raises the question of
whether the polynomial hierarchy might collapse to some fixed level.

As a first and most important observation along this line, note that if P=NP, then
X}, =Z; =Pfor all k>0, and so the hierarchy collapses to P. In fact P=NP if and
only if P=PH. Observe that this in a sense makes the fine structure of the polynomial
hierarchy about as “academic” as that of A§ — NP. If P # NP, the hardest problems in
PH will be intractable, but no more so than NP-complete problems seem to be (all
problems in PH can be solved straightforwardly in single exponential time). If P=NP,
all problems in PH will be in P. There might be a practical distinction, however, if NP
ended up in some class intermediate between P and single exponential time. For
instance, if the NP-complete problems could be solved in time 2¢°¢*", then although this
would extend to A}, it would not seem to extend to all of PH. The best we can say
a priori is that each problem in PH would be solvable in time 258" for some k, i.c., in
time exponential in “polylog n”. (The proof is by straightforward padding arguments.)

The fact that PH collapses to Pif P=NP, i.e., if £ = X%, generalizes. It is not difficult
to see that for any k>0, X} =Xf, | implies PH = . Similar statements hold for Af and
I}, as well as for I} =TIf [234]. Another interesting and somewhat surprising result,
alluded to in the previous section, links the collapse of the polynomial hierarchy to that
of the Boolean and query hierarchies within A%. In [53, 147] it is shown that if the
Boolean hierarchy (or equivalently the query hierarchy) is finite, i.e. if it collapses to
some fixed level, then PH< AS. A result to which we alluded in Section 2.1 is also
relevant: If there is a sparse language that is complete for NP under Turing reductions,
then PH collapses into A5 [179] (in fact to PNFIOUeem) 55 defined in the previous section

:
i
4
i
}
i
d
H
1
i

98 D.S. JOHNSON

[146]). Finally, it has recently been shown that the polynomial hierarchy will collapse
to I} if GRAPH ISOMORPHISM turns out to be NP-complete [39, 220].

Despite all these intriguing results, the consensus of the experts currently is that the
hierarchy does not collapse. If so, the result is likely to be hard to prove, as each of the
important alternatives for PH is now known to hold in at least one relativized world.
Oracles for which PH is an infinite hierarchy and does not collapse at all are presented
in [257] and Ko has recently shown that for each k>0, there is an oracle for which
I} # X%+ =PH [159]. (With respect to a random oracle, all we currently know is that
PH does not collapse below NPuUco-NP [29].) The story continues in the next section.

2.6. PSPACE and its subclasses

The polynomial hierarchy consists of all those languages recognizable by polynomial-
time bounded alternating Turing machines obeying fixed bounds on the number of
alternations. One might reasonably ask what happens when the number of alternations
is not so bounded. Let “APTIME” denote the class of languages accepted by
polynomial-time alternating Turing machines (with no constraints on the number of
alternations). We are thus asking whether PH = APTIME.

This is an even more interesting question than it might at first seem, for APTIME is
a more interesting class than it might first seem. In fact it equals “PSPACE”, the set of
all languages recognizable by polynomial-space bounded (deterministic) Turing
machines. This is a consequence of a more general result proved by Chandra, Kozen
and Stockmeyer. Before stating that theorem, we introduce some notation that will be
useful both here and later:

DerFINITION. If T(n) is a function from the positive integers to themselves, then
DTIME[T(n)] (NTIME[T(n)], ATIME[T(n}]) is the set of all languages recognized by
DTMs (NDTMs, ATM:s) in time bounded by T(n), where n is the size of the input.

DerFintTiON. If S(n) is a function from the positive integers to themselves, then
DSPACE[S(n)] (NSPACE([S(n)], ASPACE[S(n)]) is the set of all languages recognized
by DTMs (NDTMs, ATMs) in space bounded by S(n), where n is the size of the input.

2. THEorREM (Chandra, Kozen and Stockmeyer [52]). For any function T(n)=n,
ATIME[T(n)]< DSPACE[T(m)]< | J.>oATIME[c* T(n)*].

Taking a union with T(n) ranging over all polynomials yields the claimed result that
APTIME =| J;> o ATIME[n*] =\ Jx> o DSPACE[n*]=PSPACE.

With PSPACE we reach our first complexity class containing P that is not known to
collapse to Pif P=NP. There are oracles such that P=NP and yet P # PSPACE [159]
(as well, of course, as oracles for which P=NP=PSPACE and such that P£NP=
PSPACE) [17]. Indeed, the range of oracular possibilities with respect to the entire
polynomial hierarchy is now quite comprehensive. Among oracles for which PH does
not collapse, there are ones both for PH=PSPACE and for which PH#PSPACE
[114, 115, 257]. Similarly, for any k >0, among those oracles for which PH collapses to

A CATALOG OF COMPLEXITY CLASSES 9

XF, there are also-ones both for PH = PSPACE and for which PH # PSPACE [159].
(With respect to a random oracle, however, PH # PSPACE [47, 13].)

Thus it would seem that APTIME = PSPACE is a new and distinct class, and that
a problem complete for it under polynomial transformations (“PSPACE-complete”) is
not likely to be in PH (much less P). There are interesting PSPACE-complete
languages. An easy first example is the following generalization of the languages QBF, 5
and QBF, , as defined in the previous section.

QUANTIFIED BOOLEAN FORMULAS (QBF)
Instance: A sentence of the form S=(Q,x;)(Q>x3)...(Q;x;)[F(x1,x2,...,%;)]
where each Q; is a quantifier (3 or V) and F is a Boolean expression in the given
variables. (Note that there is no restriction on the number of alternations.)
Answer: “Yes” if § is a true sentence.

Starting with QBF, researchers have identified a wide variety of other PSPACE-
complete problems. First among them are problems about games. Note that the
alternation inherent in the APTIME definition of PSPACE is analogous to the thought
processes one must go through in determining whether on¢ has a forced win in
a two-person game. (“Do I have a move such that for all possible next moves of my
opponent there is a second move for me such that for all second moves of my opponent
there is a third move for me such that. . . ”) Thus it is perhaps not surprising that many
problems about games are PSPACE-complete. Here is a simple one from [219].

GENERALIZED GEOGRAPHY

Instance: Directed graph G =(V, A), specified vertex v,.

Answer: “Yes” if the Player 1 has a forced win in the following game. Players alternate
choosing new arcs from the set 4. Player 1 starts by choosing an arc whose tail is vo, and
thereafter each player must choose an arc whose tail equals the head of the previously
chosen arc. The first player unable to choose a new arc loses.

Note that this generalizes the “geography” game in which players alternate choosing
the names of countries, with the first letter of each name having to agree with the last
letter of its predecessor. Other PSPACE-complete games include a generalization of
the game Hex from the Hex board to an arbitrary graph [74] and the endgame problem
for a generalization of the game GO to arbitrarily large grids [176]. (For surveys of
further recreational examples, see [87, 131].)

There are also many PSPACE-complete problems in which the alternation is more
circumspect, such as FINITE-STATE AUTOMATA EQUIVALENCE (given the state diagrams of
two nondeterministic finite automata, do they recognize the same language? [237]),
REGISTER MINIMIZATION (given a straight-line program P and a bound B, can the output
of P be computed using just B registers if recomputation is allowed? [89]), and the
GENERALIZED MOVER'S PROBLEM (given a collection of three-dimensional “jointed
robots”, represented by polyhedra joined at their vertices, an assignment of locations to
these robots in a 3-dimensional space with fixed polyhedral obstacles, and a set of

100 D.S. JOHNSON

desired final locations for the robots, can they be moved to their desired locations
without ever causing an overlap between separate robots or a robot and an obstacle?
[206]).

With PSPACE, we have reached the top of the tower of classes for which the question
of containment in P remains open. The obvious candidate for a next step, nondeter-
ministic polynomial space or “NPSPACE”, has a rather serious drawback: like
APTIME, it equals PSPACE itself. This follows from “Savitch’s Theorem”, proved
in 1970.

3. THeEOREM (Savitch [216]). For any “space constructible” function T(n)>log,n,
NSPACE[T(n)] < PSPACE[T(n)?].

Thus any dream of an alternating hierarchy above PSPACE in analogy to the
polynomial hierarchy above P collapses back into PSPACE itself.

Savitch’s result does not, however, dispose of the question of nondeterminism for the
interesting subclass of those problems solvable in linear space.

DeriniTioN. The class LIN-SPACE (NLIN-SPACE) equals | J.>oDSPACE(cn]
(Je> o NSPACE[cn]).

These classes are especially interesting since NLIN-SPACE consists precisely of those
languages that can be generated by “context-sensitive grammars” or, equivalently,
recognized by “(nondeterministic) linear bounded automata” or “LBAs” (see
[122, 214]). The question of whether LIN-SPACE = NLIN-SPACE is thus equivalent
to the long open problem of whether deterministic LBAs are as powerful as general
(nondeterministic) ones. Savitch’s Theorem does not resolve the question, since it only
shows that NLIN-SPACE =\ J.» cDSPACE[cn?].

It should be noted that, as complexity classes, LIN-SPACE and NLIN-SPACE
differ somewhat from the ones that we have seen so far. They are machine-independent
in much the same sense that P and PSPACE are, but there is one valuable property of
P and PSPACE that they do not share: they are not closed under polynomial
transformations (as can be shown by padding arguments using Theorem H2 of Section
1.4[35]). One consequence of this is that membership in LIN-SPACE (NLIN-SPACE)
can be strongly dependent on the way in which problem instances are represented.
A graph problem that is in LIN-SPACE if instances are given by adjacency matrices,
might conceivably fail to be in it if instances are given by adjacency lists, even though
both representations are “reasonable” in the sense of Section 1.1. A second
consequence concerns the relationship of the two classes to P and NP.

By Theorem H2 of Section 1.4, LIN-SPACE and NLIN-SPACE are proper
subclasses of PSPACE. Unlike PSPACE, however, they are not known to contain NP,
or even P. Indeed, all we know for certain about their relationships to the latter two
classes is that LIN-SPACE (NLIN-SPACE) does not equal either P or NP.
(LIN-SPACE and NLIN-SPACE are not closed under polynomial transformations
whereas P and NP both are.) The most natural assumption is that LIN-SPACE and
NLIN-SPACE are incomparable to P and NP, aithough strict containment one way or

B R T T

A CATALOG OF COMPLEXITY CLASSES 101

the other is not ruled out. For instance, NLIN-SPACE P if P=PSPACE. This is
actually an “if and only” statement, since there are PSPACE-complete problems in
NLIN-SPACE, for instance, CONTEXT-SENSITIVE LANGUAGE MEMBERSHIP: given a context-
sensitive grammar G and a string s, is s in the language generated by G? Indeed, there is
a fixed context-sensitive language whose membership problem is PSPACE-complete
[37].

Although the question of LIN-SPACE versus NLIN-SPACE remains open,
a related problem of almost equal antiquity has recently been resolved. This one
involves co-NLIN-SPACE, the set of all languages whose complements are in
NLIN-SPACE, and its resolution puts an end to any hopes of building an alternation
hierarchy above LIN-SPACE. The key result here is the following result.

4. TueoreM (Immerman [125] and Szelepcsényi [239]). For any function S(n)=logn,
NSPACE[S(n)} =co-NSPACE[S(n)].

As a consequence, NLIN-SPACE = co-NLIN-SPACE, and the alternation hierarchy
above LIN-SPACE collapses to NLIN-SPACE, even if we assume LIN-SPACE #
NLIN-SPACE.

We shall see further applications of Theorems 3 and 4 later in this catalog.

3. Provably intractable problems

None of the complexity classes considered in the previous section contains a problem
that has been proved to be intractable, no matter how hard some of those problems may
have looked. If P=PSPACE, a possibility that has not yet been ruled out, then all
problems in the classes discussed would be solvable in polynomial time. In this section
we consider complexity classes that are known to contain intractable problems.
A schema of the classes to be covered is given in Fig. 3.

First, it should be noted that for any well-behaved functional bound f that grows
faster than any polynomial (for instance, f(n)=n'"¢"*s"s8") the class DTIME(()) of
decision problems solvable by f(n) time-bounded DTMs must, by Theorem H1 of
Section 1.4, contain problems that are not in P and hence are intractable by our
definition. We shall not be interested in such “subexponential” classes however, as all the
interesting theoretical work has concerned classes with exponential (or worse) resource
bounds, and these are the ones we shall discuss. '

3.1. The class EXPTIME and its variants

There are currently two distinct notions of “exponential time” in use. In what follows,
we shall introduce a terminological distinction between the two notions, but the reader
should be aware that the terminology we use is not completely standard. In perusing
the literature, one should thus take care to ascertain the definition being used. The first
and more natural notion of exponential time gives rise to the following class.

T MR RO T U

102 D.S. JOHNSON

DEeFINITION. The class EXPTIME equals U,,,oDTIME[Z""], i.e., is the set of all
decision problems solvable in time bounded by 27™, where p is a polynomial.

As defined, EXPTIME equals the class APSPACE of all languages recognizable by
alternating Turing machines (ATMs) using polynomial-bounded space. This equivalence
follows from a theorem of Chandra, Kozen and Stockmeyer that complements
Theorem 2 above.

5. TueoreM (Chandra, Kozen and Stockmeyer [52]). For any function S(n)=logn,
ASPACE[S(n)] = Jc> DTIME[275"].

EXPTIME thus contains both PSPACE and NP. (There are oracles that separate
EXPTIME from PSPACE, as well as oracles for which NP =PSPACE = EXPTIME
[66].) '

The second notion of “exponential time” restricts attention to linear exponents and
gives rise to the following class:

DerintTioN. The class ETIME equals UDODTIME[Z"'].

Note that, by Theorem H1, ETIME is properly contained in EXPTIME. Like
EXPTIME, it is independent of machine model (since a function p(2™), p a polynomial,
is simply O(2°") for a possibly larger constant ¢’). ETIME has several theoretical
drawbacks, however. Like LIN-SPACE, it is not closed under polynomial transform-
ations, and so a problem that is in ETIME under one choice of “reasonable” input
representation could conceivably not be in ETIME if another “reasonable” choice was
made. Furthermore, the computational dominance of ET . over P is perhaps not
quite as strong as one would like. In particular, ETIME # B#¥ ie. one can do more
in polynomial time with an oracle for a problem in ETIME {Kan one can do in ETIME
alone. This is bcause PE™™E =EXPTIME, as can be shown by simple padding
arguments (e.g., see [246]). In contrast, note that EXPTIME = PEXFTIME Eipally, unlike
EXPTIME, ETIME is not known to contain NP, although it is known to be unequal to
NP (because it is not closed under polynomial transformations [34, 35]). There exist
oracles yielding each of the three possibilities (ETIME incomparable to NP,
ETIMEc NP, and NP <ETIME) [66].

Because EXPTIME contains problems that require exponential time, any problem
that can be shown to be complete for EXPTIME under polynomial transformations,
ie., “EXPTIME-complete”, is provably intractable. (By padding arguments we can
show that any problem that is ETIME-complete is EXPTIME-complete, so we restrict
ourselves to the latter definition.) Some examples make explicit use of the aternation
implicit in the definition of EXPTIME as APSPACE, such as GENERALIZED CHECKERS
and GENERALIZED CHESs (given an endgame position in one of these games, as
generalized from the standard 8 x 8 board to an N x N one, does white have a forced
win?) [83, 210]. Others are less obvious, such as determining whether a given attribute
grammar has the “circularity” property [128].

32. T}
Tle

DErR NIT
DEF1vIT

It:sn
that F
NEXPT
oracl :s f
NEXPT
NEXPT
NETIM
of NI’—
lang age
ETIME
NETM
PNETIME |

Since’
NP, any
not o1ly
they jrov
comp ete
NEX >T1
highli zht.
Meye - [2

Secticn 2
opera ‘ors

INEQU {VAI

Ins anc
comp siti
sematr tics
1-cha: act:
“euf’ is
{xy:xeE
for th: ex

Answer:

As 1 sec
TILING pro
we ar: gi

A CATALOG OF COMPLEXITY CLASSES 103

3.2. The class NEXPTIME
The nondeterministic analogs of EXPTIME and ETIME are as follows.

Derinition. The class NEXPTIME equals U,OONTIME[Z""].

DerintTioN. The class NETIME equals UC>ONTIME[2"‘].

It is not difficult to see that P =NP implies both that EXPTIME = NEXPTIME and
that ETIME=NETIME, and that ETIME=NETIME implies EXPTIME =
NEXPTIME. None of the three converses is known to hold, however, and there exist
oracles for which each is violated [66]. (There also exist oracles such that EXPTIME #
NEXPTIME, such that PSPACE # EXPTIME, and such that PSPACE =EXPTIME =
NEXPTIME [66].) Although P#NP does not by itself "seem to imply ETIME #
NETIME, we can get that conclusion if we also assume something about the structure
of NP — P. In particular, ETIME #NETIME if and only if NP—P contains a sparse
language [111]. Whether this argues that NP—P contains sparse languages or that
ETIME =NETIME is left to the biases of the reader. A final connection between
NETIME and the P-versus-NP question (also of unclear significance) is the fact that
PNETIME - NPNETIME [1 16] .

Since Theorem H3 of Section 1.4 implies that NEXPTIME must properly contain
NP, any problem that is NEXPTIME-complete (under polynomial transformations) is
not only not in P, it is not even in NP. Thus such results not only prove intractability,
they prove the nonexistence of “short proofs” for yes-answers. (Once again, NETIME-
completeness implies NEXPTIME-completeness and so can be ignored.) Examples of
NEXPTIME-complete problems come from a variety of fields. A first example is worth
highlighting, as we shall see variants on it in later sections. It is due to Stockmeyer and
Meyer [237] and is reminiscent of the INTEGER EXPRESSION INEQUIVALENCE problem of
Section 2.5, although this time we are talking about regular expressions and different

operators.

INEQUIVALENCE OF REGULAR EXPRESSIONS OVER (U,*,?)

Instance: Two regular expressions e; and e; involving only the operations of union,
composition, and squaring, where such an expression has the following syntax and
semantics: A single symbol (O or 1)isan expression representing the set consisting of the
1-character string (0 or 1). If e and f are expressions representing sets E and F, then
“eu f” is an expression representing EUF, “e-f” is an expression representing
{xy:xe Eand ye F},and ¢ is an expression that serves as a shorthand representation
for the expression e-e.

Answer: “Yes” if e, and e, represent different sets.

As a second example of a NEXPTIME-complete problem, consider the following
TILING problem. A tile is an ordered 4-tuple T=(N7,St, ET, W) of integers. Suppose
we are given a finite collection C of tiles, a specific sequence Ty,..., T, of tiles,

104 D.S. JOHNSON

satisfying Eqi=Wr,.,,1 Si<m, and an integer n (written in binary notation). The
question we ask is whether there is a tiling of the nx n square, ie., a mapping f:{1,
2,...,n} % {1,2,...,n}—+C, such that f(1,i)=T; 1<ism, and such that, for all
ij,1<i,jsn,

(a) j<n implies that E ¢.p = Wrai+1» and

(b) i<n implies that Nsan= Sra+1.p
(Note the key fact that n can be exponentially larger than m and |C|. If we restrict
ourselves to instances with m=n, the problem is only NP-complete [174].)

The idea of converting NP-complete problems into NEXPTIME-complete problems
by using succinct representations of instances is also the key to our final example. Let us
say that a Boolean circuit C represents a graph G=(V, E) if, when given as input two
integers i, j, 1 <i<j<| V|, C outputs 1 if the graph contains an edge between vertex i and
vertex j, and outputs 0 otherwise. Not all graphs have exponentially succinct Boolean
circuit representations, but enough of them do that the following problem is
NEXPTIME-complete [195]: given the Boolean circuit representation of a graph
G=(V,E), does G contain a clique of size |V]/2? (Note that for ordinary graph
representations, this problem is “only” NP-complete.) Similar tricks can be pulled with
other graph problems that are NP-complete under the standard representation [195].

Moreover, even if one starts with a problem that is trivial under the standard

representation, conversion to the Boolean circuit representation is often enough at
least to yield NP-completeness [85].

3.3. On beyond NEXPTIME

In this section we complete our climb up the ladder of intractability, with brief stops
along the way to look ata few more interesting classes. A likely choice for the first stop
would be the following. '

periNiTioN. The class EXPSPACE equals U,,>0DSPACE[2""].

There is, however, an intermediate class between NEXPTIME and EXPSPACE that
captures the precise complexity of an interesting problem. This class is defined by
simultaneously bounding both time and alternations, rather than justa single one asin
the definitions of NEXPTIME and EXPSPACE. (Noté that by Theorem 2, EXP-
SPACE= U x> OATIME[Z""].) To facilitate definitions based on simultaneous bounds,
we introduce some additional notation.

Dernimion. The class TALH(n), a(n)] is the set of all problems solvable by ATMs using
at most t(n) time and a(n) alternations on inputs of length n.

Note that we have already seen classes for which this type of notation would have
been appropriate. For example, TP Ul = | Ji>oTA[#*, 2], and the polynomial hierat-
chy PH=|Ji>o0.;> oTA[n*,j]1. An “exponential hierarchy” (EH), including EXPTIME
and NEXPTIME as its first two classes, ‘can be obtained by analogy, simply by
replacing “n*” by wym» in the above formulation for PH. The class of interest here,

e S i S G

© oo MmO

A CATALOG OF COMPLEXITY CLASSES 105

however, is not EH but a class that appears to lie somewhere between EH and
EXPSPACE. Specifically, it is UboTA[Z"", n]. (No less formal name has yet been
proposed.) Note that this class is presumably larger than EH, but (also presumably)
smaller than EXPSPACE (for which a(n) should be 2™ rather than simply n).

The problem whose complexity is captured by | x> o TA[2™, n] is the THEORY OF REAL
ADDITION: given a first-order sentence S involving the logical connectives, the “ <” and
“ =" relational symbols, binary constants for all the integers, and variables (with binary
indices) representing real numbers, is S true? The completeness of this problem for
Us> o TA[2™, n] follows from results in [30, 76]. (Note that, by being complete for this
class, the problem is at least as hard as hard as any problem in NEXPTIME. Thus, for
any axiomatization of the theory of real addition, there must be true theorems whose
proofs are exponentially long.)

Stepping up the rest of the way to EXPSPACE, we can get even stronger
intractability results, as problems complete for this class provably require exponential
space as well as time. To obtain an example of an EXPSPACE-complete problem, all
we need do is generalize the problem highlighted in the previous section, obtaining
INEQUIVALENCE OF REGULAR EXPRESSIONS OVER (U, *, 2, *) [237]. This is the version of the
problem in which the Kleene “*” operator is added, i.e., if e is an expression representing
the set E, we also allow the expression “e*”, which represents the set of all strings of the
form x, X ... X, where n>0 (n=0 means we have the empty string) and x; € E, 1 <i<n.

As might be expected from the alternative definition of EXPSPACE in terms of
alternating exponential time, there are also games that are complete for EXPSPACE.
These are quite complicated however, involving teams of players, incomplete
information, and rules sufficiently convoluted that it is perhaps best simply to refer the
interested reader to the original source [205] and to [131].

Next up the ladder we come to what we shall denote as “2-EXPTIME” and
“2-NEXPTIME”, the classes of decision problems solvable by DTMs (NDTM:s)
operating in time bounded by 22”" for some polynomial p. However, we must go a bit
further (halfway to 2-EXPSPACE) to obtain our next interesting completeness result.
The following problem is complete for the class U,‘>0TA[22"", n}: PRESBURGER
ARITHMETIC (the analog of the theory of real addition in which the variables are to be
interpreted as natural numbers rather than arbitrary reals) [76, 30]. Thus, contrary to
what we learned in school, integers are more difficult than real numbers (for which the
theory of addition was exponentially easier, as mentioned above).

Continuing up the ladder we now have 2-EXPSPACE, and then k-EXPTIME,
k-NEXPTIME, and k-NEXPSPACE, k>3, where k refers to the number of levels of
exponentiation in the appropriate resource bound. The next class of real interest,
however, is the union of this hierarchy: the class of “elementary” decision problems.

DE'FINITION. The class ELEMENTARY = Uk> k-EXPTIME.

Even those unimpressed with the difficulty of problems in 2- or 3-EXPTIME will
have to admit that if a problem is decidable but notin ELEMENTARY, it might as well
not be decidable at all. Examples of such nonelementary problems are the “weak

106 D.S. JOHNSON

theory of successor” [186] and yet another generalization of the
alence problem, this time to INEQUIVALENCE OF REGULAR

monadic second-order

regular expression inequiv .
EXPRESSIONS OVER (U, *) —). Here we replace “squaring” and the Kleene “*” operation

by negation: if e is an expression representing the set E, then “—e” is an expression

representing {0, 1}*—E. Although determining whether two such expressions are

equivalent is decidable, it requires running time that grows with a tower of 2s that is at

least log n levels tall [237]. (The currently best upper bound involves a tower that is
n levels tall [237]) v
One could of course define complexity classes that are even larger than the ones so far
discussed, but at this point it seems best to skip ahead to the class representing the
supreme form of intractability: the undecidable (or nonrecursive) problems. These are
traditionally the domain of recursion theorists, and can themselves be grouped into
more and more complex classes, but we shall leave a detailed discussion of these t0 the
Handbook on Logic [65] and other surveys, such as those contained in [102, 122}
Suffice it to point out that it is almost as easy to change a problem from decidable to
undecidable asitis to change one from polynomial-time solvable to NP-complete. For
example, if in the TILING problem mentioned above one asks that the tiling extend to
all of Z x Z instead of a simple n x n subsquare, the problem becomes undecidable
[251], as does PRESBURGER ARITHMETIC if one augments it to include multiplication

[184].

4. Classes that count

In this section we return to the world of the only presumably intractable, to examine
complexity classes that do not fit in the standard format of the previous sections. The
classes we shall study are defined by variants of the NDTM in which the answer
depends, not just on the existence or absence of computations ending in accept states,

but on the number of such computations. We begin with classes in which the precise
number is significant, and conclude with a whole panoply of “probabilistic” classes
where the important criterion is that the number exceed a given threshold.

4.1. Counting Turing machines and the class #P

The first class_ we consider is restricted to functions f:{0,1}*—~Zg, i.e from
strings to the nonnegative integers. It was introduced by Valiant in [243),and s defined
in terms of what Valiant calls counting Turing machines:

DEFINITION. A counting Turing machine (CTM) is an NDTM whose “output” for
a given input string x is the number of accepting computations for that input.

Dermartion. The class #P is the set of all functions that are computable by
polynomial-time CTMs. :

There is some debate about how “#P” should be pronounced, as the “#”-sign

A CATALOG OF COMPLEXITY CLASSES ' 107

variously abbreviates “sharp”, “pound”, and “number”, depending on context. The
context here would seem to favor the last of the three alternatives, and that was
advocated by [87] although many authors prefer the first.

A typical member of #P is the following HAMILTONIAN CIRCUIT ENUMERATION
problem: given a graph G, how many Hamiltonian circuits does it contain? Note that
this problem is NP-hard in the sense of Section 1.3, since we can use an oracle for it to
solve the NP-complete HAMILTONIAN CIRCUIT problem. (Trivially, G has such a circuit if
and only if the number of such circuits that it has is greater than 0.) Note, however, that
counting the number of Hamiltonian circuits might well be harder than telling if one
exists. To begin with, the decision problem that simply asks, given G and k, whether
G has k or more Hamiltonian circuits, is not known to be in NP. The number of
Hamiltonian circuits that a graph with n vertices can have need not be polynomially
bounded in n, and so the approach of simply guessing the requisite number of circuits
and checking their Hamiltonicity may well take more than polynomial time. No clever
tricks for avoiding this difficulty are known. Indeed, this decision problem is not known
to lie anywhere within the polynomial hierarchy, although it is clearly in PSPACE.

Based on the presumed unlikelihood that #P < FP, Valiant [243] introduced a new
class of (presumably) intractable problems: those that are “#P-complete”.

DEFINITION. A problem X is #P-hard if there are polynomial-time Turing reductions
to it from all problems in #P. If in addition X € #P, we say that X is # P-complete.

Note the corollary that a #P-hard problem can be in FP only if #P<FP. In
practice, it turns out that a more restricted form of reduction, first introduced in [225]
often suffices to prove #P-hardness, especially for enumeration problems whose
underlying existence question is in NP.

DEFINITION. A parsimonious transformation is a polynomial transformation f from
problem X to problem Y such that, if #(X, x) is defined to be the number of solutions
that instance x has in problem X, then #(X,x)= #(Y, J(x).

By appropriately modifying the standard transformations for showing NP-complete-
ness, one can often obtain transformations that are parsimonious, or at least “weakly
parsimonious” (# (X, x) can be computed in polynomial time from x and #(Y,f(x))). In
particular, Cook’s Theorem can be modified to show that “#sa1”, the problem of
counting the number of satisfying truth assignments for an instance of SATISFIABILITY, is
#P-complete. From this it follows that the enumeration versions of most NP-complete
problems, including HAMILTONIAN CIRCUIT ENUMERATION, aré # P-complete.

What is perhaps surprising is that enumeration versions of problems in P can also be
#P-complete. The following is the most famous such #P-complete problem, first
identified in [243].

PERMANENT COMPUTATION
Instance: An nxn 0-1 matrix A.

108 D.S. JOUNSON

Answer: The value perm(A)= T ITi=14100 of the permanent of A, where the
summation is over all n! permutations ¢ of {1,2,..., n}.

Note that the permanent of a matrix is simply the variant on the determinant in
which all summands are given positive signs. The analogous DETERMINANT COMPUTATION
problem appears to be much easier however, since the determinant of a matrix A is
computable in polynomial time, even when the entries of A are allowed to be arbitrary
rationals (e.g., see [5])-

To see that PERMANENT COMPUTATION can be viewed as an enumeration problem,
simply observe that JT7=1A4i, must be either O or 1. Hence perm(A) is simply the
number of permutations ¢ for which this product equals 1. Moreover, note that the
problem of whether there existsa & for which the product equals 1 is in P. Indeed, it is
equivalent to the well-known polynomial-time solvable problem of telling whether
a bipartite graph contains a perfect matching. Recall that for a given graph G, a perfect
matching is a set M of edges such that every vertex of G is an endpoint of precisely one
edge in M. Suppose we consider A to be the adjacency matrix for bipartite graph G on
2n vertices vy, ..., 0pand ty, ..., Un, with (4;, v;) an edge of G ,if and only if 4;;=1. Then
it is easy to verify that [T{=1 Ay =1if and only if M ={(;, v,): 1<i<n}isa perfect
matching for G 4. Thus perm(4) is simply the number of distinct perfect matchings in
G,. Consequently, counting the number of perfect matchings in a bipartite graph is
#P-complete, in direct contrast to such positive results as the fact that, given a graph
G, one can in polynomial time determine both the number of distinct spanning trees it
contains and the number of Euler circuits it contains [101].

For more examples of #P-complete problems, see [70, 200, 244]. One particularly
interesting type of problem covered by these references is the reliability problem. As an
example, consider the following problem.

GRAPH RELIABILITY

Instance: Directed graph G(V, A) with specified source and sink vertices s and t. For
each arc a, a rational number p(a)€ [0, 1].

Answer: The probability that there exists a path in G from s to t consisting entirely of
“nonfailed” arcs, given that an arc a fails with probability p(a), independently for all a.

Although not formally in # P, this problem is essentially the same as the problem of
counting the number of distinct subgraphs of a certain type, and the latter problem can
be shown to be # P-complete. (Technically, we should say that the reliability problems
are # P-equivalent, in analogy with the NP-equivalent problems, as defined in Section
2.3. That is, they are # P-hard, and yet solvable in polynomial time with an oracle to
a problem in #P, ie., they are in the class FP*P. Another interesting # P-equivalent
problem is that of computing the volume of the convex hull of a set of rational
coordinate points in Euclidean n-space [70].) :

One important enumeration problem that appears not to be #P-complete is the
problem, given two graphs G and H, of counting the number of distinct isomorphisms
between G and H. For this problem, the enumeration problem is polynomial-equivalent
to the decision problem, and indeed, verifying the number of isomorphisms is known to

A CATALOG OF COMPLEXITY CLASSES 109

be in NP, even though there may be an exponential number of them [183].

Another interesting set of enumeration problems that are not known to be # P-hard
are such problems as, given an integer n (written in unary so that “polynomial time”
means “polynomial in n”), how many distinct labelled graphs with n vertices contain
Hamiltonian circuits? This is the form for many classical enumeration problems in
combinatorial mathematics. Some such problems are known to be in P; for instance the
much simpler problem, given n, of determining how many distinct labelled graphs with
n vertices exist (there are precisely 2"~ 1/2), Others, like the former, remain open. For
problems like these, a new class becomes relevant.

DerinimioN. The class # P, consists of all those problems in # P whose instances are
restricted to strings over a single-letter alphabet.

The question of whether #P; cFP is addressed in [244]. It is perhaps easier than
#P versus FP, but no less open. Furthermore, there are graph problems, albeit
convoluted ones, that are # P,-complete under parsimonious transformations and
hence in FP if and only if # P, <FP. For detalils, see [244].

Returning to the class #P, let us briefly consider its relationship to some of the
other classes we have been considering, in particular the polynomial hierarchy. In
discussing this relationship, we must first deal with the fact that #P is a class of
functions, while PH and its subclasses are classes of languages. One option here is to
consider a functional analog of PH. Suppose we replace A% =P by FP and, for k>1,
replace A} = PE-1 by FAP = FP%-+, the set of all functions computable in polynomial
time with an oracle for a set in Zf_ ;. We could then ask whether there exists a k such
that #P < FA?, or more generally, whether # P<FPH = U FAR?

This problem remains open, although it is known that there exist oracles for which
#P is not contained in FA5[235]. Indeed, something much stronger can be said:
there are relativized worlds in which there exist problems in # P that cannot even be
well-approximated within FAS, in the sense of being computed to within a constant
factor r for some r. This result does not extend any farther up in the hierarchy however.
For any fixed ¢ and d, and any function f in #P, there is a function in FAS that
approximates f to within a factor of 1+ g|x| ¢, where |x| is the input length [235]. Note,
however, that this is a far cry from saying that #P is actually contained in FA%, and
current betting is that in fact #P is not even contained in FPH.

The other possibility, that #P in a sense dominates the polynomial hierarchy, is
more appealing, and a recent result indicates a precise sense in which it is true. This
result, due to Toda [240] concerns languages rather than functions, and so requires an
approprizate stand -in for #P rather than one for PH. The stand-in chosen is the natural
one of the “#P-easy” languages, i.e., the class P*? of languages recognizable in
polynomial time with an oracle to a problem in #P.

6. TueoreM (Toda [240]). PH=P*P.

Equality between PH and P**® seems unlikely. The two classes are unequal in almost
all relativized worlds, as a technical consequence of the proofs mentioned in Section 2.6

110 D.S. JOHNSON

that PH # PSPACE relative to a random oracle [13, 47]. Furthermore, an immediate
consequence of Theorem 6 is that P*P cannot be contained in PH unless the
polynomial hierarchy collapses. The same statement holds for an apparently much
simpler class than #P, independently introduced by [93] and [196] and defined as
follows.

DEFINITION. A parity Turing machine (@ TM) is an NDTM that accepts a given input
string x if and only if the number of accepting computations for that input is odd.

DeriNiTION. The class @GP (“parity-P”) is the set of all languages accepted by
polynomial-time @TMs.

As one might expect, a typical example of a @P-complete problem is DsAt (given an
instance I of satisfiability, is the number of satisfying truth assignments for I even?).
Superficially, this would seem possibly to be a simpler problem than actually counting
the number of satisfying assignments (#saTt), and so we might assume that &P is a less
powerful class than #P. However, just as determining the parity of the optimal
travelling salesman tour’s length proved to be just as hard as computing that length
(both problems are complete for FAY, as seen in Section 2.4), here too one does not lose
much by settling for the parity of x rather than x itself. In [240], it is shown that there is
a randomized sense in which PH is @P-easy, and that consequently ®P cannot be in
PH unless PH collapses. We shall cover the concept of randomized reduction in Section
4.4, and will have more to say about @©P both there and in Section 4.2.

We conclude this section with a brief discussion of two more classes whose
definitions can be related to that of #P. Suppose our NDTMs are augmented with
output tapes, the contents of which are interpreted as (binary) integers. Such machines
can be interpreted as computing functions in a variety of ways. It is not difficult to see
that #P is simply the set of functions computable by taking the sum of the output
values over all accepting computations of a polynomial-time NDTM. Two other
natural options are to take the maximum value or to take the number of distinct values.
These give rise to the following two classes, defined respectively in [163] and [161).

Derinimion. The class OptP is the set of all functions computable by taking the

maximum of the output values over all accepting computations of a polynomial-time
NDTM.

DeriniTioN. The class span-P is the set of all functions computable as |S|, where S is the

set of output values generated by the accepting computations of a polynomial-time
NDTM. :

It is not difficult to see that OptP = FP** (and indeed that OptP < FPNP=FA?%),
given that the maximum can be determined by binary search. Thus it is likely that OptP
is strictly weaker than #P. It does, however, capture essentially the full power of FAZ.
Although it is a proper subclass, given that it can only contain functions rather than
arbitrary search problems, any problem complete for OptP (under the “metric

A CATALOG OF COMPLEXITY CLASSES 111

reductions” to which we alluded in Section 2.4) is complete for all of FAS [163]. An
example (also mentioned in Section 2.4) is the problem of computing the length of an
optimal travelling salesman tour.

Whereas OptP seems to be less powerful than #P, this is not the case for span-P. Itis
not difficult to show that both #P and OptP are contained in span-P[161]. Moreover,
there is evidence supporting the contention that span-P properly contains #P, but for
that we will need the definitions of the next section.

4.2. Unambiguous Turing machines and the classes FUP and UP

In this section we consider yet another way in which NDTMs with output tapes can
be considered to compute functions. Rather than worry about how to combine the
results of multiple accepting computations, let us require that there be only one! The
following definition is from [242].

DEFINITION. An unambiguous Turing machine (UTM) is an NDTM that, for each
possible input string, has at most one accepting computation.

Such a machine, if allowed an output tape, provides a unique output for every string
it accepts, and hence can be viewed as computing a function over the domain of the
language that it recognizes. '

DeriniTioN. FUP (UP) is the class of all partial functions computable (all languages
recognizable) by polynomial-time UTMs.

(This class is called “UPSV” in {99].) There are a variety of functions that, although
not at present known to be in FP, are known to be in FUP. For a primary example,

consider the discrete logarithm. In its simplest formulation, this problem can be given as
follows.

DISCRETE LOG
Instance: Given a prime p, a primitive root a modulo p, and an integer b, 0<b<p.

Answer: The discrete logarithm of b with respect to p and g, i.e., the (unique) integer c,
0<c<p, such that ¢°=5b mod p.

This problem, as stated, is almost, but not quite, in FUP. The answer is unique, but
unfortunately the domain is not known to be in UP (which is required by definition).
Although one can guess short proofs that substantiate primality and primitivity [199],
no way of guessing unique proofs is known. Fortunately, the following augmented
version of DISCRETE LOG, also not known to be in FP, can be computed by
a polynomial-time UTM: given p, a, and b as before, together with short proofs that p is
prime and a is a primitive root, compute the discrete log of b with respect to p and a.

Functions like (augmented) DISCRETE LOG that potentially lie in FUP—FP have
cryptographic significance. The existence of such functions can be shown to be
equivalent to that holy grail of modern cryptography theory, the “one-way function”.

g ;
i
9
i
1

d

112 D.S. JOHNSON

There are a variety of definitions of this concept, some stronger than others. The
following captures about the minimum one would wish to have.

DEFINITION. A (partial) function f is (weakly) one-way if it satisfies the following three
properties:

(1) f is “honest” (i.e., for all x in the domain of f, the string f(x) can be no more than

polynomially smaller than the string x),
(2) feFP, and
(3) f~'is not in FP.

Note that this definition of “one-way” requires only that the inverse be difficult in
the worst-case. We have introduced the qualifier “weakly” so as to contrast this notion
with the stronger one of [256] that we shall discuss briefly at the end of Section 4.3.

The discrete logarithm (or more precisely, its inverse) is currently one of the more
popular candidates for the role of one-way function (according to both weak and
strong definitions). Many current cryptographic schemes are based on presumed
difficulty of the problem of computing ¢ given p, a, and b (see [209]). At present,
however, the only evidence we have of this difficulty is the fact that no one has as yet
found an efficient algorithm for the problem.

A proof that a one-way function exists would be a major event, of course, as it would
imply P £ NP. The question on one-way function existence, however, can be even more
tightly tied to a simple question about UTMs. Note that by definition Pc UP< NP,
and it is not difficult to see that FUP =FP if and only if UP =P. It has been shown in
[99] that one-way functions exist if and only if P#UP. (One-way functions whose
range is in P exist if and only if P # UPnco-UP.) Thus we might still hope to get strong
candidates for one-way functions if we could identify complete problems for UP.
Unfortunately, this seems unlikely: there are oracles for which UP has no such
complete problems, cither under polynomial transformations [108] or the more
general polynomial-time Turing reductions [117]. The question of whether UP =NP
also has interesting connections to other areas, in this case to the classes of the previous
section. In [161] it is shown that span-P= #P if and only if UP=NP.

As might be expected, there exist oracles for all four possible relations between P, UP
and NP:P=UP=NP,P#UP#NP,P=UP#NP, and P# UP=NP [202, 88]. There
is also an oracle such that P#UPnco-UP [108]. Relative to a random oracle the
containments P< UP< NP are all strict [28, 211].

Reference [28] actually is addressed toward more detailed considerations. It
addresses the interesting question of whether one gets a bigger class of languages every
time one increases the allowable number of accepting computations.

DeriniTION. For each k>0, the class UP, is the set of languages recognizable by
NDTMs that always have k or fewer accepting computations.

Note that UP = UP,. It is not known whether there is any k such that UP, is strictly
contained in UP, . (If there were, then we would have P#NP.) It is shown in [28]
however, that with respect to a random oracle, strict containment holds for all k> 1.

int
pre
pai
thi
(O
ths

int
the

“t

m
CcC

A CATALOG OF COMPLEXITY CLASSES 113

Moreover, for random oracles we also have that Uk>1UPyis strictly contained in the
following natural class, first introduced, under a slightly different name, in [9].

DerFintTioN. The class FewP is the set of all languages recognizable by polynomial-time
NDTM:s for which the number of accepting computations is bounded by a fixed

polynomial in the size of the input.

Note that FewP is contained in NP by definition. A less obvious (and more
interesting) containment is the following. Recall the class ©P introduced in the
previous section, defined in terms of NDTMs whose answers are determined by the
parity of the number of accepting computations. Although there are indications that
this is a very powerful class, at present we do not even know if ®P contains NP.
(Oracles exist for which the two classes are incomparable [241]) In [51] it is proved
that ©P does contain FewP.

See Fig. 4 for a schema of the relations between the classes of decision problems
introduced in this and the previous section. For more on the classes UP and FewP, and
the relation of the former to cryptography, see the above references, and [133, 160].

4.3. Random Turing machines and the classes R, co-R, and ZPP

In the previous section, we considered NDTMs that had either no accepting
computations or exactly one. The restriction that yields the classes highlighted in this
section is somewhat different, but has a similar flavor. In the definitions that follow, we
continue to assume, as in Section 1.3, that our NDTMs are normalized so that all
computations are finite and have the same length. Now, however, we also assume
(without loss of generality) that every internal node in the computation tree has either
one or two successors, and that every computation path has the same number of
“branch points”, i.c., nodes with two successors.

DEFINITION. A random Turing machine (RTM)is an NDTM such that, for each possible
input string, either there are no accepting computations or else at least half of all
computations are accepting.

DeriniTioN. The class R consists of all decision problems solved by polynomial-time
RTMs. '

Here “R” stands for “random polynomial time”, a terminology introduced in [3].
(Some writers use “RP” to denote the same class)) Note that PER<NP. The term
«random” comes from the following observation. Suppose we attempted to simulate
the operation of a given NDTM on a given input as follows: Starting at the initial
configuration we proceed deterministically until we reach a branch point. At each
branch point, we randomly pick one of the two alternatives for the next move, and then
proceed. Given our assumption that all computations of the NDTM contain the same
number of branch points, the probability we will end up in an accept state is simply the
ratio of the number of accepting computations to the total number of computations.

114 D.S. JOHNSON

Thus for a problem in R, the probability that such a simulation will mistakenly answer
“no” (i.e., fail to accept) when the answer is “yes” is 0.5 or less. Note that, as with the
definition of NP, this definition is one-sided; the probability that we will answer “yes”
when the answer is “no” is 0.

A fortunate side-effect of this one-sidedness is that we can arbitrarily increase the
probability of correctness by repeating the experiment. If we perform k independent
random simulations and ever find an accepting computation, we know the answer is
“yes”, otherwise the probability that the answer is “yes” is at most 1/2*. Even for
moderate values of k, say k=50, this can be less than the probability of a machine error
in our computer, and so we will be fairly safe in asserting that the answer is “no”.

Thus, computationally speaking, it is almost as good for a problem to be in Rasforit
to be in P. Moreover, the possibility that R =P has not been ruled out. There are
oracles for which the two classes are distinct and either R # NP or R=UP=NP [202].
There are also oracles for which all of P, UP, R, and NP are all distinct [88]. Relative to
a random oracle however, P=R#NP [29]. .

Several important problems, not known to be in P, are known either to be in R or
co-R (the complements of decision problemsin R, where it is the “yes” answers that may
be false, although only with probability 0.5 or less). For a first example, consider the

following.

PRODUCT POLYNOMIAL INEQUIVALENCE

Instance. Two collections P= {Py,...,P,} and 0={0;,-..,Qm} of multivariate
polynomials over the rationals, each polynomial represented by listing its terms with
non-zero cocfficients.

Answer: “Yes” if [1}=1 P; and I1j=10Q; are different polynomials.

This problem is not known to be in P. We cannot simply multiply together each
collection and compare the results, as such multiplications may result in an exponential
blow-up in the number of terms. Nor can we factor the individual polynomials and
compare the two lists of irreducible factors, since the irreducible factors of a polynomial
can also have exponentially more terms than the original. There is, however, a simple
randomized test for inequivalence of the two products, suggested by Schwartzin [221],
that runs in polynomial time. One merely chooses a set of values for the arguments in an
appropriate random fashion, evaluates each of the P;s and Q;s with these values
substituted in, and then multiplies the two resulting collections of rational numbers
together, thus obtaining the values of the two product polynomials at the given
arguments. Schwartz shows that the evaluated products must differ at least half the
time if the product polynomials are inequivalent. (They of course cannot differ if the
product polynomials are equivalent.) The above “randomized algorithm” thus can
serve as a basis for a polynomial-time RTM that solves PRODUCT POLYNOMIAL
INEQUIVALENCE, which consequently isin R. '

A second, although as we shall see possible weaker, candidate for membership in
R — P is COMPOSITE NUMBER. As has been observed in [201, 233], a positive integer n is
composite if and only if more than half of the integers b, 1 <b<n, are “witnesses” to this
in a technical sense that can be verified in polynomial time given just n and b. The

A CATALOG OF COMPLEXITY CLASSES 115

following “randomized algorithm” can thus serve as the basis for a polynomial-time
RTM that solves coMPOSITE NUMBER: Pick a random integer b between 1 and n and say
yes if and only if b is a witness to the compositeness of n. The total time is O(logn), i.c.,
polynomial in the size of the input number n. Thus COMPOSITE NUMBER is in R (and its
complementary problem, PRIME NUMBER, is in co-R). COMPOSITE NUMBER is a weaker
candidate for membership in R — P than PRODUCT POLYNOMIAL INEQUIVALENCE for two
reasons. The first is the already cited result of [188] that, if the Extended Riemann
Hypothesis holds, then composiTE NUMBER € P. The second is the recent discovery
claimed in [2] (and building strongly on results in [95]) that PRIME NUMBER isalsoin R,
thus placing both the PRIME and COMPOSITE NUMBER problems in the elite class “ZPP”.

DeFnTion. ZPP=Rnco-R.

We refer to ZPP as an “elite class” because it also equals the set of those decision
problems that can be solved by randomized algorithms that always give the correct
answer and run in expected polynomial time. Note that every problem in ZPP is
solvable by such an algorithm: One simply runs both the R and co-R algorithms for the
problem repeatedly until one discovers a witness to the answer. The expected number
of iterations is so small that the expected running time is proportional to that of the
slower of the R and co-R algorithms. (In the case of COMPOSITE NUMBER, this
unfortunately may be as bad as Q(n*°°); the Adleman and Huang result [2] is of mostly
theoretical interest.) Conversely, if a decision problem can be solved by a randomized
algorithm that runs in expected polynomial time and always gives the correct answer,
that problem must be in Rnco-R: Associated with any such expected polynomial-time
algorithm is a polynomial p such that, for any input x, the probability that the
algorithm will halt before p(|x|) steps have been taken exceeds 0.5. The required RTMs
can be constructed by simulating the algorithm for p(|x|) steps.

Another characterization of ZPP is that it consists of all those problems solvable by
polynomial-time “Las Vegas” algorithms. This term, introduced in [262], refers to
randomized algorithms which either give the correct answer or no answer at all (and for
which the latter option occurs less than half the time). This is as opposed to “Monte
Carlo” algorithms, where “Monte Carlo” is typically used as a generic term for
“randomized”. (See [132] for a more extended discussion of these terms, as well as more
on probabilistic classes in general.)

See Fig. S for a schema relating R, co-R, and ZPP to the major nonrandomized
classes presented earlier (as well as to some additional randomized classes that will be
introduced in Section 4.5). There are many who believe that membership in ZPP is
a strong hint of membership in P. Indeed, relative to a random oracle, P=ZPP=R,
with all properly contained in NP [29]. Oracles do exist, however, for which P #ZPP
{123] and ZPP #R [21].

Returning to the question of R versus P, observe that although we have presented
potential examples of problems in R — P, we have provided no evidence that these are
the most likely examples. That is, we have not identified any “R-complete problems™.
The fact is, we do not know of any, and it is unlikely that we shall find any soon. Asis the
case for NPnco-NP, there are oracles such that R contains no problems that are

116 D.S. JOHNSON

complete for it under polynomial transformations [228] or under polynomial-time
Turing reductions [119].

We conclude this section by discussing ways in which R appears to differ from NP. As
we have seen, although there are oracles such that R=NP, the two classes are distinct
for a random oracle. Further evidence in favor of the proper containment of R in NP
comes from the fact, pointed outin [1], that R has “small circuits”. More precisely, R is
contained in the following class, defined in terms of the Boolean circuit families of
Section 1.3.

Deriniion. The class P/poly consists of all those languages recognizable by (not
necessarily uniform) families of polynomial-size circuits.

In other words, for any problem X in P/poly, there is a polynomial py with the
following property: for any instance size n, there is a Boolean circuit B, with n inputs and
O(px(n)) gates that correctly outputs X’s answer for all instances of size n. According to
the definition, there need be no uniform way of generating the circuits B, in time
polynomial in n, and the proof in [1] that RcP/poly takes advantage of this.
That is, it proves that the circuits exist, but does not show how to construct them. Thus
it does not also imply that R=P. It does, however, provide strong evidence that
R # NP. Although nontrivial oracles exist for which NP = P/poly (i.c., ones for which
we also have P#NP) [126], such a containment would imply that the polynomial
hierarchy collapses into £} [152].

As a digression, we should point out that P/poly has an alternative definition, this
one in terms of Turing machines with “advice”.

DEeFINITION. An advice-taking Turing machine is a Turing machine that has associated
with it a special “advice oracle”; one that is a (not necessarily recursive) function
A:Z* —{0,1}*.Oninput x, 2 special “advice tape” is automatically loaded with A(jx])
and from then on the computation proceeds as normal, based on the two inputs, x and

A(Ix1).

DerFiniTioN. An advice-taking TM uses polynomial advice if its advice oracle A satisfies
| A(n)| < p(n) for some fixed polynomial p and all nonnegative integers n.

DeriniTioN. If X is a class of languages defined in terms of resource-bounded TMs,
then X/poly is the class of languages defined by TMs with the same resource bounds
but augmented by polynomial advice.

Since the “advice” for an instance of size ncan be the description of a polynomial size,
n-input Boolean circuit, it is clear that a language in P/poly according to the circuit
family definition is also in it according to the advice definition; the converse is almost as .
immediate.

Other results about polynomial advice from [152] include

(a) PSPACE< P/poly implies PSPACECSEAIE (and hence the polynomial -

hierarchy collapses and equals PSPACE),

|
|
|

A CATALOG OF COMPLEXITY CLASSES 117

(b) EXPTIME = P/poly implies EXPTIME =X} (and hence P#NP); and

(c) EXPTIMES PSPACE/poly implies EXPTIME =PSPACE.

The proof techniques used in these results are elaborated upon in [18, 19].

We conclude this section by alluding to an additional result that can be viewed as
supporting the conjecture that R is strictly contained in NP. Thisis a result of A.C. Yao in
[256] linking the complexity of R to the existence of “strong” one-way functions. We
omit the technical details of the latter definition here, but suffice it to say that, whereas
the “one-way functions” defined in the previous section were only difficult to invert in
a worst-case sense, strong one-way functions are also difficult to invert “on average”
(and even for nonuniform circuits). This is obviously a more useful cryptographic
property, and many theoretical encryption schemes are based on the assumption that
such functions exist (and indeed, that the DISCRETE LOG problem of the previous section
provides one). However, if we assume that such functions exist, and also that
NP-complete problems take exponential time (a slightly stronger assumption than
P £ NP, but a common one), then Yao’s result implies that R is strictly contained in NP.
He shows that, assuming that strong one-way functions exist, we must have

Re(e> oDTIME(2™).

4.4. Randomized reductions and NP

When we discussed the class NP previously in Section 2.1, we mentioned several
different classes of transformations with respect to which problems could be proved
“complete” for NP, and indicated that there would be more in a later section, once the
appropriate groundwork had been laid. The introduction of random Turing machines
in the previous section has laid that groundwork, and in this section we discuss three
new forms of reduction, based on variants of random Turing machines, and the kinds of
“completeness for NP” that they yield. Although other variants are possible, these three
have to date been the most successful.

Each can be viewed as a variant to the y-reduction described in Section 2.2, and all
include polynomial transformations as a special case. With each, we reduce a decision
problem X to decision problem Y by means of a polynomial-time NDTM that yields
an output for each accepting computation and satisfies certain properties. The
property for y-reductions was that there be at least one aceepting computation for each
string x, and for each output y, y had the same answer in Y as x had in X. Here are
properties that our three randomized reductions must satisfy for any given input
string x:

(1) Random reduction (R-reduction) [3]: (a) At least half the computations are
accepting, and (b) for all outputs y, y has the same answer in Y as x has in X. (Note that
every R-reduction is thus also a y-reduction, something that cannot be said for the
following two types of reduction.)

(2) Unfaithful random reduction (UR-reduction) [4]: (a) All computations are
accepting, (b) the outputs must be “faithful” for yes-instances, i.e., if the answer for x in
X is “yes”, then all outputs y have answer “yes” in Y, and (c) correct outputs must be
“abundant” for no-instances, i.e., if the answer for x in X is “no”, then at least 1/p(|x}]) of
the outputs y have answer “no” in Y, where pis a fixed polynomial.

118 D.S. JOHNSON

(This definition is generalized somewhat from that given in [4], for which
“abundant” meant “at least half”. The generalization allows us to include that
UR-reductions, like the other two types, are transitive.)

(3) Reverse unfaithful random reduction (RUR-reduction) [245): Same as for
UR-reductions, except now the outputs must be faithful for no-instances and correct
outputs must be abundant for yes-instances. (This reduction goes unnamed in [245];
the above name was the best we could come up with on short notice.)

The properties that make these reductions useful are as follows:

(1) If X is hard for NP under R-reductions, then X € ZPP implies NP =ZPP and

X eR implies NP=R.

(2) If X is hard for NP under UR-reductions, then X eco-R implies NP =ZPP.

(3) If X is hard for NP under RUR-reductions, then X e R implies NP=R.

Note that in all three cases we have at the very least that if X is in ZPP then NP=R.
Thus, although proving that a problem is complete (or simply hard) for NP under any
of the above three types of reduction is not as strong an argument for intractability as
proving it NP-complete, such a proof still provides believable evidence that the
problem cannot be solved in either polynomial time or polynomial expected time. We
conclude this section with examples of complete problems of each type.

For a problem that is complete for NP under R-reductions, consider the following:
given positive integers a, b, and ¢, where a is a power of 2, are there positive integers
x and y such that axy+by=c?In [3] this problem is shown to be complete for NP
under R-reductions, assuming the Extended Riemann Hypothesis. The latter assump-
tion was used only for certifying primality however, so the new result that PRIME
NUMBER is in R allows us to dispense with that hypothesis. This problem also turns out
to be complete for NP under UR-reductions [4], and so it can be in neither R nor co-R
without dire consequences.

A second, less number-theoretic example of a problem complete for NP under
UR-reductions is the following problem, from [248]: ENCODING BY DTM: Given two
strings x,y over {0, 1} and an integer K, is there 2 DTM with K or fewer states that,
when started with x on its worktape and its read-write head located at the leftmost
symbol of x, writes y on its output tape in just |y| steps?

RUR-reductions were introduced in [245] for the purpose of showing that the
following variant on SATISFIABILITY, called “ypsaT” in [133] is hard: If there are no
satisfying truth assignments, the answer is “no”. If there is e)'(actly one, the answer is
“yes”. If there are more than one satisfying truth assignments, then both “yes” and “no”
are valid answers. (Note that this is not the same as the UNIQUE SATISFIABILITY problem
described in Section 2.4.) Although UPSAT is not a decision problem as defined, it can be
turned into one by specifying a particular answer, “yes” or “no”, for each instance with
more than one satisfying truth assignment. In [245] it was shown that all such
restrictions are RUR-hard for NP. As a consequence (assuming R # NP), SATISFIABILITY
would remain hard even if one could somehow be “promised” that no instances with
more than one satisfying truth assignment would ever arise. (For a fuller discussion of
such “promise” problems and how to reason about them, see [73, 133, 245].)

An important second example of the use of RUR-reductions concerns the @sat
problem of Section 4.1, which is also shown to be RUR-hard for NP in [245]. It was

A CATALOG OF COMPLEXITY CLASSES 119

this result that was generalized in [240] to prove that PH is @©P-easy in a randomized
sense, or equivalently, that @sat is hard for PH under randomized reductions. (The
actual reductions used in [240] are of yet a new type, and might be called
«BPP-reductions”. We will not define them here, but the interested reader should be
able to deduce the definition after reading the next section.)

4.5. Probabilistic Turing machines and the classes PP and BPP

In the previous two sections we were for the most part concerned with “randomized”
computations that used different criteria for the answers “yes” and “no™. In this section
we consider the situation when the two answers are treated symmetrically. For the
definitions we are about to provide, we continue to assume as before that our NDTMs
are normalized so that all branch points have outdegree 2, and all computations
terminate in the same number of steps and contain the same number of branch points.
We also assume that all computations terminate in either a “yes” or a “no” state.

DEFINITION. A probabilistic Turing machine (a PTM) is an NDTM whose output for
a given input string x is “yes” if more than half of the computations terminate in “yes”
states, and is “no” if more than half of the computations terminate in “no” states. (If the
number of yes-computations equals the number of no-computations, the output is
“don’t know”.}

DEerFINITION. A PTM solves a problem X if and only if the PTM outputs the correct
answer for each instance of the problem (and never claims ignorance).

Note that if, as before, we imagine ourselves as simulating such a PTM by making
random choices at each branch point, the probability that we obtain the correct answer
will by definition always exceed 0.5.

The first complexity class to be derived using these definitions is due to Gill [901].

DerINiTION. The class PP is the set of all decision problems that can be solved by
polynomial-time PTMs.

Note that this class does not have the positive practical advantages of R, since
a polynomial number of iterations of a PP algorithm may not be able to increase our
confidence in the answer to worthwhile levels. For instance, it may be that the answer is
correct only with probability 4+(4)", in which case we cannot reduce the error
probability below 4 without an exponential number of iterations. Indeed, it is not
difficult to show that PP contains PNPIOU%em] and hence NP, co-NP, and many
presumably intractable problems [28]. PP is, however, contained in PSPACE.
(Relative to a random oracle, both containments PP < PSPACE and NPUco-NP< PP
are proper [29])

Unlike R, the class PP is known to have complete problems under polynomial
transformations; in the canonical one we are given an instance of SATISFIABILITY and

120 D.S. JOHNSON

asked if more than half of the possible truth assignments satisfy all the clauses [90, 225].
Note the close relationship between this problem and that of actually counting the
number of satisfying truth assignments, the problem that was observed to be complete
for #P in Section 4.1. Indeed, it is easy to show that PP =P*", ie. an oracle for
aproblem in PP is just as good as an oracle for a problem in # P [10]. In light of Toda’s
result, mentioned in Section 4.1, that PH < P** [240], this implies that PH is also
contained in P?*, a corollary of which is that PP cannot lie in the polynomial hierarchy
unless the hierarchy collapses. i

Although PP does not of itself seem to guarantee useful randomized algorithms,
there is an important subclass that maintains its symmetric nature and is capable of
providing such algorithms. This class contains Ruco-R and can be viewed as the most
general class of “efficiently solvable” problems.

DeriNiTION. The class BPP is the set of all decision problems solvable by polynomial-
time PTMs in which the answer always has probability at least £ + 6 of being correct,
for some fixed 6>0.

The “B” in BPP stands for “bounded away from 1”. Note that for randomized
algorithms based on such PTMs, the probability of correctness can be rapidly
increased by iteration; ineed we can simplify the definition without loss of generality by
replacing “4+6” by %.

BPP is an interesting class. By definition we have Ruco-R < BPP < PP, but currently
we know nothing definite about the inclusion relations, if any, between NP and BPP.
What we do know is the following: If NP < BPP, then R =NP and, in addition, the
polynomial hierarchy must collapse to BPP [158, 259]. One might thus conjecture that
BPP < NP, especially since for a random oracle we have P=ZPP=R=BPP<NP,
with the latter containment proper [29]. Moreover, like R (and for much the same
reason, €.g., see [20]), BPP has “small circuits”, i.e., BPP < P/poly as defined in Section
4.3. There are oracles, however, for which BPP is not contained in NP, indeed, is not
even contained in A% [235]. BPP can, however, be shown to lie within the polynomial
hierarchy, in fact in £~I15 [171, 230] (see Fig. 5).

The current consensus seems to be that the two sets NP and BPP are incomparable (as
well as the two sets NPuco-NP and BPP). Current candidates for membership in
NP — BPP include the NP-complete problems. There are also copious candidates for
BPP — NP, since BPP, being symmetric, contains both R and co-R. (The class co-R
does not appear to be contained in NP, although it is contained in co-NP.) Thus we can
get a candidate for BPP — NP simply by choosing a problem in co-R that is not known
to be in NP, such as PRODUCT POLYNOMIAL EQUIVALENCE (the complement of the
inequivalence problem introduced in the previous section). Analogous candidates for
BPP — (NPuco-NP)are harder to come by. Indeed all problems that have to date been
identified as members of BPP are actually members of NPuco-NP, although not
necessarily in Ruco-R. (See [16] for examples of number-theoretic problems in NP
that are candidates for BPP —(Ruco-R).) The hope that complete problems for BPP
might offer candidates for BPP — (NPuUco-NP) is somewhat dim, given that there are

A CATALOG OF COMPLEXITY CLASSES 121

oracles for which BPP has no complete problems (under polynomial transformations
(108] or polynomial-time Turing reductions [117]). For more on BPP, see aso [260,
261], the former reference providing further insights into the classes of Sections 4.3 and
4.6 as well.

As a final class definable by symmetric radomized computations, let us briefly
consider the class PPSPACE of decision problems solvable by polynomial space
bounded PTMs. This clearly contains PSPACE. Surprisingly, as proved in [226], it is
also contained in PSPACE, and hence is identical to it!

4.6. Stochastic Turing machines, interactive proofs, and the classes they define

So far in Section 4 we have seen counting Turing machines (CTMs), unambiguous
Turing machines (UTMs), random Turing machines (RTMs) and probabilistic Turing
machines (PTMs). In this section we introduce one final variant, the stochastic Turing
machine of [190]. This will be a hybrid between a probabilistic Turing machine and an
alternating Turing machine. As usual, we shall define it in terms of an NDTM
computation tree. For simplicity in our definition, we assume that all configurations
(except the leaves) have outdegree 2 in the computation tree, that'all computation
paths are of the same length, and that they all contain the same number of non-leaf
nodes. '

DEFINITION. A stochastic Turing machine (STM)is an NDTM whose output for a given
input string x is specified as follows: As in an ATM, each configuration in the
computation tree is identified as one of two types; this time, however, the types are
“existential” and “random”, rather than “existential” and “universal”. We assume the
types alternate from level to level. An admissible computation for such a tree is a subtree
obtained by deleting one of the two subtrees hanging from each existential node. The
output for input string x is “yes” if and only if the resulting computation tree contains
an admissible subtree in which more than half the leaves are accepting.

As with ATMs we can view the computation of an STM as corresponding to a game,
but here the game will be between a normal player and an “indifferent opponent”, one
who simply makes random moves, choosing with equal probability between the
potential immediate successors. The answer for input x is “yes” if and only if there is
a strategy under which the existential player has a probability greater than 0.5 of
winning against his random opponent. We say that an STM solves a given decision
problem X if the existential player has such a strategy for every yes-instance of X, but
no such strategy for any no-instance of X.

The name “PPSPACE” was recycled in [190] to denote the class of decision
problems solvable by polynomial-time STMs (the “time” in the resource restriction
became “SPACE” in the class name because of the alternation involved in the
machine model). As with the PPSPACE we saw in the previous section however, the
name is not important. This PPSPACE turns out to be identical to ordinary PSPACE,
as did its predecessor. Its main advantage is hence as 2 means for showing interesting
new types of problems to be PSPACE-complete, such as certain scheduling problems

122 D.S. JouNson

where the task lengths vary according to a Poisson process, as well as problems from
control theory [190]. One simple-to-understand example is the following variant on
the #P-equivalent GRAPH RELIABILITY problem of Section 4.1.

DYNAMIC GRAPH RELIABILITY

Instance: Directed graph G(V, A) with specified source and sink vertices s and ¢. For
each pair v, a, where v is a vertex and a an arc, a rational number p(v, a)e [0, 1].

Answer: “Yes” if there is a strategy by which you can, starting at s, reach the
destination ¢ with probability exceeding 4, assuming your travels are subject to the
following rules: Your traversal proceeds in steps, where in each step you leave your
current vertex and travel along a (still-existent) outgoing arc to an adjacent vertex.
Initially all arcs in A exist and are traversable, but the arcs fail (disappear permanently)
according to a random process that occurs while your traversal proceeds, with the
probability that a given arc a disappears during a step that you started at vertex v being

v, a).

Here the “random opponent” is the process generating the arc failures. Note how
much more game-theoretic this problem is than the original GRAPH RELIABILITY
problem, in which one could view the random arc failures as all happening at the
beginning of the process, after which one could count on the remaining arcs to persist,
and thus could easily walk from s to ¢, assuming a path still existed.

Although the above first attempt at using polynomial-time STMs to define a new
complexity class failed, subsequent attempts have been substantially more productive.
These have generated new classes by imposing further restrictions on the STM
computations, just as we restricted PTMs in order to define BPP. A first such class is
the following (its name will be explained below).

DeriniTiON. The clasé AM([poly] consists of all decision problems solvable by
polynomial-time STMs satisfying the restriction that, for any input x, the existential
player’s best strategy yields a winning probability that either exceeds % orisless than §.

This class (and its name) was introduced in [12], which provided an alternative
definition in terms of conversations between an all-knowing wizard “Merlin” and
a skeptical listener “Arthur”, who has polynomial-time bounded computational
resources and the ability to flip unbiased coins. Merlin’s goal is to convince Arthur
“beyond a reasonable doubt” that a given string x is a yes-instance of decision problem
X. When Arthur speaks, he is limited to simply telling Merlin the outcome of some
number of coin flips (polynomial in |x|). When Merlin speaks, his message (also
polynomial in |x[) can depend on x and all the previous messages. The conversation is
allowed to run for a polynomial number of interchanges, after which Arthur inputs
x and a transcript of the conversation to a deterministic polynomial-time algorithm,
which tells him whether or not to believe that x is a yes-instance. Protocols for
conversations of this sort correspond to STMs, and X is in AM[poly] if there is
a protocol such that, for any yes-instance x, Merlin can with probability greater than %
convince Arthur of this fact, and for each no-instance the probability is less than § that

A CATALOG OF COMPLEXITY CLASSES 123

Mertlin can fool Arthur, no matter what Merlin does. (In what follows, we will say such
a protocol “solves” X.) Note that, given this interpretation of AM([poly] in terms of
STMs, we have AM[poly]l< PPSPACE = PSPACE, and Merlin need not in fact have
arbitrary computing power, but can settle for polynomial space.

Of particular interest are the subclasses of AM[poly] in which only a bounded

number of messages are sent.

Derinition. For each k>0, the class MA[K] consists of all those decision problems
solvable by Arthur—Merlin protocols in which Merlin goes first and there are exactly

k messages sent.

DeriniTion. For each k>0, the class AM([k] consists of all those decision problems
solvable by Arthur-Merlin protocols in which Arthur goes first and there are exactly

k messages sent.

Note that MA[1] is simply the set of decision problems solvable by protocols in
which the conversation begins and ends with Merlin’s first transmission. This is the
same as STMs all of whose configurations are existential, and clearly equals NP.
Analogously, the class AMI[1] consists of those decision problems solvable by
protocols in which only Arthur speaks, and hence equals BPP. Things become a bit
more interesting once we begin to allow some true interaction between Arthur and
Merlin. As shorthands, we shall use the following notation, inttoduced in [12], for what
turn out to be the two most important classes:

DeriniTion. MA =MA[2); AM=AM[2].

The class MA, in which both parties speak once with Merlin first, can be viewed as
a randomized version of NP, consisting of those problems for which all answers have
short probabilistic proofs (i.e., proofs for which the validity problem is in BPP). The
class AM, where Arthur speaks and Merlin responds, is also a generalization of NP, in
that it contains precisely those languages that are in NP2 for almost all oracles B [189].
(The analogous result, that BPP consists of precisely those languages that are in P? for
almost all oracles B, was proved in [29].)

In [12], it is shown that NP = MA = AM. An oracle exists for which AM properly
includes MA (and hence NP) [215]. A potential member of AM —NP s given in [12].
This is the problem MATRIX GROUP EXACT ORDER: given a prime power 4= p", integers
k and m, and a collection C of kxk matrices over GF(g), does the matrix group
generated by C have order equal to m, i.e., are there precisely m distinct matrices that
can be obtained by multiplying together sequences of members of C (where repetitions
are allowed and the product of the empty sequence is taken to be the identity matrix)?
Although telling whether the order is divisible by a given integer is in NP [15], the
question for the EXACT ORDER problem remains open, even though it is shownin [12] to
be in AM (indeed, in AM nco-AM).

Turning to the classes MA[k] and AM[K], k>2, we have yet another potential
hierarchy. In this case, however, something unexpected happens: the hierarchy

T e A% 5 ST . S A s 5 B OS2

124 D.S. JoHNsSON

collapses! For all k>2, MA[k]=AM[k]=AM (=AM([2]) [12]. The question of
whether all of AM[poly] collapses to AM remains open, however, and their exist
oracles for which it does not, indeed for which AM{[poly]—-PHis nonempty [6]. As to
AM and MA, it can be shown that AM < IT5 and that MA {5 [12]. A final
question is whether AM, which contains NP, also contains co-NP. This now seems
unlikely, as it is shown in [39] that this would imply that the polynomial hierarchy
collapses into AM. The class co-NP may not be in AM[poly] either: although no one
has yet shown that PH would collapse if this occurred, there does exist an oracle under
which containment fails to hold [80]. AM (and hence AM[poly]) does, however,
contain one interesting problem in co-NP that is not known to be in NP: GrapH
NONISOMORPHISM [91]. (This is the complementary problem to the GRAPH ISOMORPHISM
problem introduced in Section 1.1, with the answer being “yes” only if the two graph
representation are not isomorphic.) (For new developments on AM[poly], see
Section 6.1.)

Another surprising result compares the power of Arthur~Merlin protocols to the
apparently much more general notion of an “interactive proof system” introduced in
[96]. Such a system is also based on two players, one all powerful, one with a source of
random bits and polynomial-time computational power. The distinction is that, while
Merlin (now called “the prover”) continues to be operating under the same constraints,
Arthur (now called “the verifyer” and alwa ys sending the first message), can be cleverer.
He no longer need simply send the random bits he generated. He may send the result of
an arbitrary polynomial-time computation based on the input x, some new random
bits, the transcript of the conversation so far, and the list of all random bits he
previously generated.

The definition of “solving” a decision problem is the same for interactive proof
systems as it was for Arthur—Merlin protocols. Note, however, that the fact that the
verifyer can in effect keep “secrets” from the prover means that interactive proof
systems cannot be modelled directly by STMs, as could Arthur—Merlin protocols. Let
us thus define for interactive proof systems the analogs of the classes we had for
Arthur-Merlin games.

DeriNiTION. The class IP consists of all those decision problems solvable by interactive
proof systems in which the total computation time of the verifyer is polynomiaily
bounded, but there is otherwise no limit on the amount of interaction.

DerINITION. For each k >0, the class IP[k] is the set of all decision problems solvable by
interactive proof systems in which the total computation time of the verifyer is
polynomially bounded and neither the prover nor the verifyer sends more than
k messages.

Note that, by definition, AM[poly] < IP and, for all k> 1, AM[2k]JUMA[2k] <1P[k]
(and so AM<IP[1]). Surprisingly, all the extra power that the verifyer has in an
interactive proof system (and all the work we just went to making the above definitions)
is for naught. As shown in [97], IP=AM([poly] and IP[k] < AM, for all k>1 (so yet
another potential hierarchy collapses to AM).

A CATALOG OF COMPLEXITY CLASSES 125

Also contained in AM (indeed, in AM ~co-AM) is the set of all decision problems
solvable by “perfect zero-knowledge” polynomial-time interactive proof systems, even
when the number of rounds is unbounded [7, 79]. (The concept of a “zero-knowledge”
proof system, which can convince a verifyer of a statement without revealing anything
beyond the fact that the statement is true, was introduced in [96]. It is too involved to
describe here, and so interested readers are directed to [137] and the references therein.)

For a schema of the classes introduced in this section, See Fig. 6.

5. Inside P

In Sections 2 through 4, we have concentrated on complexity classes that contain P,
viewing equality with P as the most desirable possible outcome. It is not the case,
however, that membership in P by itself ensures tractability in any practical sense. Thus
researchers have of late devoted equal, if not more time to investigating classes that are
in various senses “easier” than P (or at least incomparable). These classes are the
subject of this final section. In contrast to the previous sections, our general order of

traversal will be downwards rather than upwards, from larger classes to smaller ones.

5.1. Classes defined by sublinear space bounds: POLYLOG-SPACE, L, NL, and SC

With much of today’s computing being done on personal computers that have
limited main memory (and do not have sophisticated paging systems), the amount of
memory an algorithm requires can often be more crucial than its running time.
Consequently, there has been much interest in algorithms that use significantly less
workspace than the size of their input (which can be read as needed off the floppy disk
or input tape on which it is delivered). This ideal is captured by complexity theorists in

the concept of the “log-space” and, less restrictively, the “polylog-space” DTM.

Derinttion. The class L consists of all decision problems solvable by DTMs with
workspace bounded by O(log|x|) on input x.

DerintTiON. The class POLYLOG-SPACE consists of all decision problems solvable
with workspace bounded by O(logk|x|) for some fixed k.

In the terminology of Section 2.6, L = DSPACE[O(log n)] and POLYLOG-SPACE=
x> 1 DSPACE(log *n] (or DSPACE[log®*'n] for short). It is immediate that
L< POLYLOG-SPACE, with the containment proper because of Theorem H2 of
Section 1.4. What is more interesting are the relations between these two classes and P.
Clearly L = P, since no log-space DTM can have more than a polynomial number of
distinct memory states. (Indeed, for any log-space bounded DTM, there will be
a polynomial p such that for any input x, if the DTM runs longer than time p(|x|) on
input x, it will never halt.) For POLYLOG-SPACE and P, however, the situation is
more complicated. In a result analogous to the one for NP and ETIME in Section 3.1, it
can be shown [36] that POLYLOG-SPACE #P, although we do not know whether

126 D.S. JOHNSON

the two classes are incomparable or one properly contains the other. This inequality
follows from the answer to a question we have previously asked about other classes: can
POLYLOG-SPACE have a complete problem (in this case under log-space transform-
ations)? Surprisingly, the answer is “no”, and not just in special relativized worlds, but
for (unrelativized) POLYLOG-SPACE itself. Essentially, it can be shown that should
such a complete problem exist, we would have POLYLOG-SPACE < LOG*-SPACE
(the set of decision problems solvable by O(log*|x|)-space DTMs) for some fixed k, an
impossibility given Theorem H2. But this means that POLYLOG-SPACE cannot
equal P, since there are problems that are log-space complete for P, as we saw in Section
1.5.

Of the three possibilities for the relationship between POLYLOG-SPACE and P,
most researchers would probably favor incomparability. There exist likely candidates
for P— POLYLOG-SPACE, for instance the problems that are log-space complete for
P, since if any such problem is in POLYLOG-SPACE, then P< POLYLOG-SPACE
and in fact is contained in LOG*-SPACE for some fixed k, an unlikely prospect. We
have already seen two examples of such “P-complete” problems in Section 1.7: pT™
ACCEPTANCE and LINEAR PROGRAMMING. Here are two more well-known examples. The
first, proved P-complete in [168], can be viewed simply as a restatement of pT™
ACCEPTANCE in terms of the Boolean circuit model of computation. The second, proved
P-complete in [57], has an interesting graph-theoretic flavor and has been the setting
for some intriguing lower bound arguments about algorithmic complexity.

CIRCUIT VALUE

Instance: A description of an n-input, 1-output Boolean circuit, together with an
input value (0 or 1) for each of the input gates.

Answer. “Yes”, if the output of the circuit on the given input is 1.

PATH SYSTEM ACCESSIBILITY .

Instance: A finite set X of nodes, a relation RS X x X x X, and two sets S, TS X of
source and terminal nodes.

Answer: “Yes”, if there is an “accessible” terminal node, where all sources are
accessible, and if (x, 4, v) € R and u and v are accessible, then x is accessible. (Note that
this can be viewed as the question of whether a given straight-line program computes its
claimed outputs, and is trivially in P.)

Although no one has yet been able to prove that P-complete problems require more
than polylogarithmic space, there are some partial results in that direction for the latter
problem. In particular, it has been shown to require ((|x|'/*) space under a fairly wide
class of methods [60, 64].

Although POLYLOG-SPACE has no complete problems, one can come up with
plausible candidates for POLYLOG-SPACE —P by considering problems that are
complete for subclasses of POLYLOG-SPACE, such as DSPACE[O(log*n)] for
a fixed k> 1, under log-space transformations. Note that the simple proof that L< P
does not carry over to DSPACE[O(log*n)] for any k>1 since for each such
k a log*|x|-space DTM has a potentially superpolynomial number of memory states.

Complete pr
present we d
relevant an ak
is simply: Ciiv
an accept : ta
Assumin g
properties 01
anatural c as
by algoritl.m
formally, 1t
Section 3.7 t«

DEeFINITIO! .]
at most () 1

DEFINITIO! .
problems : ol
polylogari i

Thenan e
firstdeepr :st
although { C
well be the ca
a second al
simultaneo is
a class of aj
context-frce.
by linear-t m
be recogn z:
source of «a
logZnspacz:
Tobemor:|
problems sc
SC!'=L) T
however, .is

To conclu
of the clas: ex

DEFINITIO V.
that use s)a

Other 1a
interest: ~'h
NPOLYIO
SPACE, :s

A CATALOG OF COMPLEXITY CLASSES 127

Complete problems for DSPACE[O(log“n)], k>1, do exist, but unfortunately, at
present we do not have any “natural” candidates. Instead, we must settle for the
relevant analog of the bTM ACCEPTANCE problem of Section 1.7. In this case, the question
is simply: Given a DTM M, an integer ¢ and a string x, does M, if given input x, halt in
an accept state after a computation that never uses more than ¢ log*n space?
Assuming that both polynomial time and polylogarithmic space are important
properties for an algorithm to have, but that neither appears to guarantee the other,
a natural class to consider is the class “SC” consisting of all decision problems solvable
by algorithms that simultaneously obey both types of bounds. To define this class
formally, let us first introduce a notation analogous to the “TA[t(n), a(n)]” used in
Section 3.3 to capture the notion of simultaneous time and alternation bounds:

DerintTioN. The class TS[t(n), s(n)] is the set of all problems solvable by DTMs that use
at most t(n) time and s(n) space on inputs of size n.

DerFINtTION. The class SC=TS[n®", log®"'n}, ie., it is the class of all decision
probiems solvable by DTMs that simultaneously obey polynomial time bounds and
polylogarithmic space bounds.

The name “SC” stands for “Steve’s Class”, in honor of Steven Cook, who proved the
first deep result about the class [61]. To motivate Cook’s resuit, let us first observe that
although SC= PAPOLYLOG-SPACE, It may not equal that intersection. It might
well be the case that a problem X can be solved by a polynomial-time algorithm and by
a second algorithm that uses only polylog space, but by no algorithm that
simultaneously obeys both resource bounds. Cook’s result, mentioned above, addressed
a class of apparent candidates for PAPOLYLOG-SPACE —SC, the deterministic
context-free languages (“DCFLs”, see [32, 122]). These were known to be recognizable
by linear-time algorithms and by log?n space algorithms, but did not in general seem to
be recognizable by “SC-type” algorithms. Cook effectively dried up this potential
source of candidates, by showing that all DCFLs can be recognized in simultaneous
log?n space and polynomial (albeit not necessarily linear) time. Thus they are all in SC.
To be more precise, they are in the subclass SC? of SC, where SC* is the class of decision
problems solvable in simultaneous log*n space and polynomial time. (Note that
SC!=L.) There are other sources of candidates for PAPOLYLOG-SPACE—-SC
however, as we shall see below.

To conclude this section, let us look briefly at the important nondeterministic analogs
of the classes we have seen in this section. The major candidate here is the following one.

DeriniTion. The class NL consists of all those decision problems solvable by NDTMs
that use space bounded by O(log|x|), given input x.

Other natural possibilities for nondeterministic classes have significantly less
interest: There seems little need for a nondeterministic version of SC; the class
NPOLYLOG-SPACE, defined analogously to NL, simply equals POLYLOG-
SPACE, as a consequence of Theorem 3 of Section 2.6; and the class co-NL simply

(‘ » pue 2 Kue 10§ ‘d2)s auo Ul 2 03 ,2 WO d10W 03 [qIssod os[e st 3 uayj ‘da)s auo ul
,2 uoneInSyuod 0} 2 uoneINSYuods Wolj saour 03 Aqissod st 11 J1) *DLI}OWIAS ST UOTIB[X
sAowr oY) YoM W WLAN Ue ‘sugoew Suun], oujowwAs, oy3 st SIL TeL1]
paonponur ‘ALLAN 2Y3 U0 JUBLIBA SIOW SUO J9K PI2U oM ‘SSB[O SIY) dUYp O "IN PUe]
USaM10q J)BIPIWLIaNLI oq 0) sreadde Jey) ssep e Joj 219]dwod soeds-30[aq 03 UMOYS
5q UED J1 SE 9580 9y} 3q []om KBl STY I ;J91S82 2 JI P[NOD) “ALITIEISSEOOV HAVID (pa30211p)
Jo aseo [ewads e st sty K[ges)) “[8] ul (MarA jo yutod pazrwopuel € WOIj) parpnis osje
‘wajqoId ALITIEISSAOOV HAVED SA0QE 3} JO UOISIAA pajoalrpun 3y Aq paxdsur auo styy
‘FUILOTIUSW (}IOM SSBJD ONSIUTILISISPUOU ISB] AUO SI 312 ‘UONIIS SIY} Suraea) a10Jog

iU .301 p £q papunoq aoeds pasn Zutaey ‘sdojs Joma) JO Lud J9YE ey 4ndur se x usAld
USYM ‘Jy S0P ‘x SULIS € PUE ‘P PUE 2 SIURISHOD ‘W W.LA ® BoAlD :[(u301)0 {wolsL
10J 239]dwiod ooeds-30] SI ey} SUO SI SIYJ -OYNS [[IM FONVLJHOOV Wid JO Sofeue
asreudoidde ue ureSe 20uo Inq “IN — DS 10j SNEPIPULd [EiNjEU Apreqruats ou aIe 919y L,

"1 0) § wolj H ur yyed PIOSIIP B SI JIAYY JI ‘S, LaMSUy
"1 pue s 530019 paywads Yum 9 yded pajoanp y 2ouvisuf
ALITIFISSTOOV HAVED

'300qQe Wa[qoid ALITIGISSAOOV WALSAS HLVd 3y} JO UOISIIA Joidwis ©

Se pamalA aq ued jeyl [L1Z ‘g€1] woly ‘ouo isnf 2A1d [reys oM ‘Lov1] 99s ‘sojdwexo
jo K1aurea € 104 (DS SIN) 1="IN J! Ajuo pue j1 (OS) T Ul 3q ued Koy 19s frdusuou
Kiqewnsaid 1ayjoue “T— TN J0j SIEpIpuEd os[e a1e A3y [, "IN 10§ a91duwion soeds-8of
a1e jey) swojqold ay) a1e a5y, “(saoqe pastwold DS —FOVIS-DOTATOdVd 10}
$3)EPIPUED 9y} OS[E 0USY I YOIM) DS — TN J10J SJepIpUed SNOLaS 31 319y} ‘IA0ION
-souds erwoufjod soxnbor wopemuis jey) se ‘dSIN SMOYS eyl UOHEMUIS
54} WO} MO[[O]J JOU S0P JUSWIUIEIUOD) "OU SI JOMSUE 3} joadsns ap "DSS'IN

194315yM st jse 0) uonsanb snoirqo Y ‘HOVAS-DOTATOdVd SIN 1843 USALD

v oy}

jo azow 10§ [HST ‘€ST ‘81T “SLI ‘St ‘¥¥] 01 pue ‘1aded pajo 2A0qQe 2Y) 0} PAIIYAI B
$)[NSOX YONS UI PI)SIID)UT SSAOYIOUOU I8 OfM SISPESY "A2AINS SIY3 JO JOpUTLIal 3] 10)
$)[nsa1 yons 310uS| [JIM oM 08 pUE ‘Spunoq 2oeds I1B2UTQNS YILM SISSE]O JO SUONBZIALRII
jonxsuod 0} Aem 9jqeUOSEII Aup SI 219y} JBY) JBd[jou st N ‘A[jeunuopun)
“KynoygIp 9y JO 20INOS dY) SB PIMIIA 3q OS[e UBD UOISSIWO SH) pue ‘papunoq
aq 03 2oeds oy Suowre ode) S[OBIO 3Y) JO S[[30 Y} IPN[OUI J0U SIOP ‘I2AIMOY ‘Iopow
suryoew Suun], 3[oeI0 NOY], ‘SHNSI SUIZIANEL[IUOU OM} Y} aa01d jey) suonenuals
a3 Jo arnyeu days-£q-dajs-uou ay3 03 anp 1€ SAINIE] 353Y) 8Y) andre [91] youkT pue
J0upe] (‘9ZIANE[21 0} s[re osTe HOVJS- D015 IN) '[691] d Ul paurejuodjoust TN
1eY) Yons } 9joRIO UE ST 1Y) 1By} 108) oY) st Busdins azow I} SunjeN "[6S1dSIN
aaey ospe om ‘K[Suisudins yeymowog ‘7H Weiody L 4q Jadoad juswrurejuod 3sey Ay yim

‘GOVAS-DOTATOd SAIVAS-:DOTSIN ST A8y oM {912] pue uontuysp £g

(‘€S UONP9S UI WAy} JNOqE KBS 0) IOUWI IABY [[BYS A "I9AIMOY FOUNSIP 3q []oM Kew
dd pue ddg Jo sSoreue ay 1 ‘[g4] "IN renbs 03 osfe 1no uin} 35y} :ddZ PUe Y SSSEP
ansiiqeqoad ayj jo soeds-Jof 10§ sSojeur Juruyop ut jurod ou si 219y} 1BY) ‘A[[eyuapioul
‘sardur OsTe WaI09y} Jey L) '9°7 UONOIS JO { WAI03Y] JO ssusnbasuod & se “IN s[enba

NOSNHOf ‘S'd 8¢l

A CATALOG OF COMPLEXITY CLASSES 129

DeriniTion. The class SL consists of all those decision problems solvable by log-space
bounded symmetric Turing machines.

Another problem complete for SL is the problem, given a graph G, of determining
whether G contains an odd cycle. For more on SL and symmetric space-bounded
computation, see [175]. It should be pointed out that, although the class is based on
one sort of symmetry, it is not known to possess a more standard sort. That is, even
though we now know that NL is closed under complement, no one has yet been able to
prove that SL and co-SL are identical [43].

5.2. Parallel computing and the classes NC and RNC

In the previous section we used the personal computer,a relatively recent computing
phenomenon, asa motivation. In this section we turn to another type of computer that
is just now coming'into its own: the massively parallel computer. Despite our
arguments in the previous section as to why space could be more important than time
for practical computing, there are situations where polynomial time, even linear time,
may be too much, and practitioners would be more than willing to apply more
processors to a task if doing so would substantially reduce the running time.

In addressing this issue from their traditional asymptotic point of view, theoretical
computer scientists have focused on the PRAM model of computation from Section
1.3, and a class defined in terms of simultaneous time and processor bounds:

Derintrion. The class TP[t(n), p(n)] is the set of all problems solvable by PRAMs that
use at most t(n) time and p(n) processors on inputs of size n.

DeriniTioN. The class NC=TP[log®'n,n®"}, ie, it consists of all those decision
problems that are solvable on a PRAM that simultaneously obeys a polylogarithmic
bound on the running time and a polynomial bound on the number of processors used.

More informally, we might say that NC consists of those problems solvable with
a polynomial-bounded amount of hardware in polylog time. As with the sequential
complexity classes of previous sections, this class is substantially model-independent.
There are equivalent definitions in terms of uniform Boolean circuits of polynomial size
and polylog depth, in terms of ATMs obeying simultaneous polylog time and log-space
bounds, and in terms of a variety of other models and variants [62, 198, 213]. The name
«NC” stands for “Nicks’s Class”, in honor of Nicholas Pippenger, the first researcher
to study the class seriously.

A first observation about NC is that it lies in P, since a single processor can simulate
a log/n time PRAM computation that uses n* processors in time O(r*log'n),
a polynomial in n. NC also lies inside POLYLOG-SPACE, since by a result of [41]
POLYLOG-SPACE is contained in the set of decision problems solvable in polylog
time on PRAMs with an unbounded number of processors. Only slightly more difficult
is the result that NL&NC. (There is a straightforward NC algorithm for GRAPH
accessipiLITY which is log-space complete for NL.)

130 D.S. JOHNSON

It is interesting to compare these results with those for the analogously named class
SC. There are superficial reasons why one might thing that NC and SC would be
identical. Both are contained in PNnPOLYLOG-SPACE. Moreover, each class is
defined in terms of two simultaneous resource constraints, and there is a one-to-one
correspondence between these constraints if they are considered individually. To see
this, let us take the definition of NC in terms of polynomial-size, polylog-depth Boolean
circuits that are “log-space uniform”, where this uniformity condition is defined as
follows.

DeFINITION. A family {B,:n>1} of Boolean circuits is log-space uniform if there is
a DTM that, given n, constructs B, using space O(log n).

Note that under this definition, the construction time must be polynomially bounded
and hence so must be the size of the circuits. In what follows, we follow [61] in using
“uniform” to mean log-space uniform unless we specifically say otherwise.

For the claimed individual correspondences, we use two results from [41]. First,
polylog-space DTMs have precisely the same power as polylog-depth uniform Boolean
circuits (if one ignores running time for the DTM and circuit size for the Boolean
circuits). Second, polynomial-time DTMs have the same power as polynomial-size
uniform Boolean circuits (if one ignores the space used by the DTM and the depth of
the circuits).

Unfortunately, as we saw when we compared SC and PAnPOLYLOG-SPACE, the
fact that resource constraints must be obeyed simultaneously can substantially change
their effects, and it appears that in fact SC and NC are incomparable. We have already
noted one difference: NL is contained in NC but is not known be contained in SC. Thus
log-space complete problems for NL, such as graph accessibility, are prime candidates
for NC—SC. In [61] it was proposed that deterministic context-free languages were
prime candidates for membership in SC—NC, but in [213] it was subsequently shown
that all context-free languages are in NC, even nondeterministic ones. In their place, an
alternative candidate for SC — NC was proposed. This candidate is a restricted version
of the P-complete CIRCUIT VALUE problem mentioned in the previous section. The
version of this problem restricted to circuits of polylog “width”, as defined in Section
1.3, is a currently viable candidate for SC—NC (the version restricted to circuits of
polylog depth is likewise a candidate for NC-SC) [213]. (For a alternative discussion of
NC and SC, see [130].)

In considering the above examples, we must not lose sight of the fact that a far
more important class comparison problem has yet to be resolved. This is the
question of whether NC=P, a question widely viewed as the natural analog (for
parallel computing) of the question of P versus NP. As with P versus NP, there has been
little progress toward the resolution of NC versus P, but a flowering of research devoted
to classifying the complexities of problems on the assumption that the two classes differ.
Here the key lower bound technique is, of course, the completeness result, in this case
log-space completeness for P. Since L=NC, a problem that is log-space complete for
P cannot be in NC unless NC =P. We have already seen this to be the case with “NC”
replaced by “POLYLOG-SPACE”, “SC”, “NL”, or “L”, but it was only when the

A CATALOG OF COMPLEXITY CLASSES 131

connection to parallel computing was noticed and such completeness results could be
interpreted as implying the “inherently sequential nature” of a problem, that the
question of log-space completeness for P began to attract widespread attention. In this
survey we shall make do with the four examples of problems log-space complete for
P already exhibited in Sections 1.7 and 5.1, but industrious readers can find many more,
for example in [69, 94, 139, 153], and the extensive, although as yet unpublished survey
f121].

Balancing the above negative results, we also have had a substantial outpouring of
results showing that important problems are in NC, and a rapidly developing body of
expertise in parallel algorithm design, a survey of which appears elsewhere in this
Handbook [153]. Much of this work has been devoted to functions and more general
search problems. According to the above definition of NC as a class of decision
probiems, which corresponds to that given in the original papers that described the
class such as [61], such problems are technically ineligible for membership in NC. This
has not, however, prevented researchers from ascribing membership to them, either by
abusing notation, or simply by redefining NC to be a class of search problems. There
has been little consistency in this. For instance, in a sequence of papers authored by
Cook [61, 63, 43], NC has switched from a class of decision problems to a class of
search problems and back again. Indeed, even this Handbook is not consistent; the
choice made here disagrees with the one made in at least one other chapter [153]. For
consistency with other class definitions, however, it seems more appropriate to leave
NC as a class of decision problems and introduce a new name for the corresponding
search problem class. The new class name is chosen by analogy with the distinction we
have already made between P and FP:

DermaTion. The class FNC consists of all those search problems solvable in polylog
time by PRAMs with a polynomially bounded number of processors.

Note that NC< FNC by definition. Among the more general search problems in
FNC are matrix multiplication (by straightforward techniques), finding minimum
spanning trees and Euler tours [11, 541, and a wide variety of algebraic problems, e.g.,
see [14, 207]. We shall see further examples in the next section.

As was the case for sequential computation, we can often finesse the difference
between NC and FNC by showing that there is a decision problem X that has
essentially the same complexity as the search problem Y that we are really interested in,
ie., X isin NCifand onlyif Yisin FNC. This is the case, for instance, when Yisa function
whose output size is polynomially bounded. In this case X can simply be: “Given an
instance I of Y and an integer k, is the kth bit of Y’s answer for I equal to 177 If X is in
NC, one can simply combine a polynomial number of copies of an NC circuit for X (one
for each output bit of Y) to obtain.an FNC circuit for Y.

When Y is a more general search problem, however, with the possibility of a variety
of answers, the correspondence between search and decision problems becomes much
less clear than it was in the sequential case. As in the sequential case, the answer to the
search problem may be easy to determine given a polynomial number of calls to
a subroutine for the decision problem, but if those calls cannot be made in parallel (as

T A A L AR O S AT O B T . O A . O A 5 R 3-8 R s s 95

132 D.S. JOHNSON

they could when Y was a function), we may be unable to satisfy an overall polylog time
bound even if the subroutine itself does. For more on this issue, see [155]. In light of the
issue, it is often crucial that we perform our complexity analyses on search problems
directly, rather than simply on decision problems that would traditionally have been
their stand-ins.

Let us conclude this section by mentioning two interesting equivalence classes of
problems that so far do not appear to be either in FNC or to be log-space complete for
FP. These classes can be viewed as analogs of the class of “GRAPH-ISOMORPHISM
equivalent” problems mentioned in Section 2.1, and will contain both decision
problems and more general search problems.

For our notion of “equivalence” here, we shall introduce yet another type of
reduction, one presumably more powerful than the log-space reduction, but one that
is still compatible with NC and FNC (in the sense of Section 1.6). In the definition of
this reduction, we assume that the PRAM model is augmented by a special shared
memory for the (parallel) construction of oracle queries and for receiving the oracle’s
answers (which are presumed to arrive one step after the query construction is signalled
to be complete). The oracle may process multiple queries in parallel.

DermNiTION. An NC (Turing) reduction from a search problem X to a search problem
Y is an oracle PRAM program that, given an oracle for Y, solves X in polylog time
using at most a polynomial number of processors.

These reductions are presumed to be more powerful than log-space reductions both
because they allow multiple calls to the oracle, and because NC is presumably more
powerful than L. We shall say two problems X and Y are “NC-equivalent” if there are
NC reductions from X to Y and from Y to X.

The first class we shall describe is a generalization to search problems of the class of
“CC-complete” problems introduced in [185]. Its first member is the “COMPARATOR
CIRCUIT VALUE” problem (CCV), that variant of the cIRcuiT vALUE problem in which all
circuit elements are “comparators”, i.e., two-input gates with two outputs, one yielding
x v y and one yielding x A y, where x and y are the (binary) values of the two inputs.
(This problem is “CC-complete” by definition: CC, as defined in [185], is the class of
decision problems that are log-space reducible to CCV.) Although no NC-style
algorithms are known for CCV, it seems unlikely to be P-complete, given the lack of
“fan-out” in the circuit elements. (In P-completeness reductions, as in NP-completeness
reductions, one seems always to need a method for transmitting information from one
location in the construction to many other locations, and fan-out, in one guise or other,
seems to be what is necessary to do the trick.)

The class of CCV-equivalent search problems has surprising variety. A second
member is LEXICOGRAPHIC MAXIMAL MATCHING, the problem of finding the lexico-
graphically first maximal matching in a graph G, under some given naming of the
graph’s edges, where a matching M is maximal if all edges in G are either in M or share
an endpoint with some edge in M. Note that without the lexicographic restriction, this
problem is in FNC, as follows from the result of [156] that finding a maximal
independent set is in FNC. (Interestingly enough, the lexicographic version of the latter

A CATALOG. OF COMPLEXITY CLASSES 133
problem appears to be harder than LEXICOGRAPHIC MAXIMAL MATCHING: finding the
lexicographically first maximal independent set is known to be log-space complete for
FP [63])

A final example of a CCV-equivalent problem is the STABLE ROOMMATES problem. In
this problem, we are given a set S of 2n people who are to be assigned to n 2-person
rooms, together with a preference list I(p) for each person p (p’s rank-ordering of all the
other people as potential roommates). We ask whether there is a partition of S into
n roommate pairs such that no two non-roommates prefer each other to their current
roommates. (That this problem was even in P was only discovered in 1985 [1271)

By altering the STABLE ROOMMATES problem slightly, one obtains the problem that
forms the basis for our second (and presumably incomparable) class. Suppose that,
instead of preference lists, we specify for each person p a set a(v) of “acceptable”
roommates (with p being acceptable to q only if ¢ is acceptable to p). The question of
whether there is a partition of S into n pairs of mutually acceptable roommates is the
simply the question of whether an undirected graph contains a perfect matching (a
problem whose restriction to bipartite graphs was discussed in Section 4.1). Let us call

this the PERFECT MATCHING problem.

Among the problems NC-equivalent to PERFECT MATCHING are such problems as
computing a maximum weight perfect matching (assuming edge weights are written in
unary), constructing a maximum cardinality matching, and finding the maximum
source-to-sink flow in a directed graph (with unary edge capacities) [154]. (The last of
these problems is log-space complete for P if the edge capacities are written in binary
[94]. It is not yet known whether maximum weight perfect matching with binary
weights shares this property.) ‘

All of these problems are in P ot FP (e.g., see [247]), but none are known to bein NC
(FNC) or to be log-space complete for P (FP). What is known, however, makes it
unlikely that the latter is the case. It has been shown in [154], that PERFECT MATCHING is
in the class “RNC”, which is the randomized counterpart to NC in the same sense that
R is the randomized counterpart to P. RNC could be defined in terms of coin-flipping
PRAM s with certain probabilities of obtaining the correct answer, but it will be quicker

to define it as follows.

DerINiTION. A decision problem X isin RNC if and only if there is a polynomial p and
a problem Y in NC such that for all input strings x the following two properties hold:
‘(A) If x is a yes-instance of X, then for over half of the possible strings y with
iyl =p(ix}), the string xy is a yes-instance of Y.
(B) If xis ano-instance of X, then for all of the possible strings y with | y| =p(|x]), the
string xy is a no-instance of Y.

Note that if one replaces NC by P in the above definition, one obtains a definition of
the class R, as claimed. As with NC, there is confusion in the literature over whether
RNC is allowed to contain arbitrary search problems or not. Once again, we choose to
resolve this confusion by giving the more general class a different name.

DerinTioN. A decision problem X is in FRNC if and only if there is a polynomial p and

e W O W AR AT . R

T e R B R R A 05 1l A MRS RNy 45 30 s N SN O RO O PSSO GA '

134 D.S. JoHNSON

a search problem Y in FNC such that for all input strings x the following two properties
hold:
(A) Ifyis such that|y| = p(|x|), then any answer for xy in problem Y is an answer for
x in problem X.
(B) If x has an answer in X, then for over half the possible strings y with |y| = p(|x|),
the string xy has an answer in Y.

Under this definition, all the search problems mentioned above as reducible to
PERFECT MATCHING are in FRNC [154].

As a final comment on these problems, we note that, due to a result of [148], PERFECT
MATCHING is in fact in RNCnco-RNC, and there is a randomized algorithm for it that
uses a polynomially bounded number of processors, that always gives the right answer,
and that runs in expected polylog time for every instance. (Just as Rnco-R=ZPP,
RNCnco-RNC equals the analogously defined class ZPNC.) We still do not know
whether PERFECT MATCHING is in NC, however. The more general question of whether
NC=RNC is also open. For more on NC and RNC, see [153] elsewhere in this
Handbook.

5.3. Inside NC

In this and the next two sections, we shall briefly consider the structure of NC and
survey the prominent complexity classes inside NC. In doing so, we must make
a fundamental shift. Once inside NC, it is no longer possible to talk about complexity
classes as “model-independent” in the sense we have used before. Precise details of the
model in question often need to be specified if the class is to be well-defined.

For instance, the first classes we shall consider are the classes NC¥, k> 1, of decision
problems solvable with polynomial hardware in time O(log*|x|). (These classes are
analogous to the subclasses SC* of SC mentioned in the previous section.) For the
PRAM definition of NC, the precise nature of the classes NC* can depend heavily on
the assumptions one makes about how algorithms behave when two processors want
to access the same memory location at the same time. For instance, one might allow
concurrent “reads” but disallow concurrent “writes”, as in the “CREW” PRAM
(concurrent-read, exclusive-write), allow both operations to take place concurrently,
as in the “CRCW” PRAM, or allow neither, as in the “EREW” PRAM. In the case of
concurrent writes, there is the additional choice as to which processor actually succeeds
in writing to a cell when many attempt to do so concurrently, with the options being
“random” (one writer will succeed, but you cannot predict which), “priority” (the
processor with lowest index succeeds), or “common” (algorithms are ¢onstrained so that
no two processors ever attempt to write different things to the same memory cell at the
same time). For discussions of the relative power provided by the different choices, see
for instance [77, 78, 153].

To avoid these issues, we shall follow most authors and use a definition in terms of
uniform Boolean circuits, although even here there are choices to be made. In
particular, the class NC' can depend significantly on the precise “uniformity”
condition imposed on the circuits [213]. Here we make the most common choice and

A CATALOG OF COMPLEXITY CLASSES 135

once again use log-space uniformity. We shall also continue our distinction between
classes of decision problems and classes of search problems.

DeriniTioN. For each k> 1, the class NC* (FNC*) consists of all languages recogniz-
able (search problems solvable) by log-space uniform classes of Boolean circuits having
polynomial size and depth O(logkn).

A first observation about the classes NC* is that NC* < LOG*-SPACE for all k> 1
[41]. A second observation concerns the relation of the NC* to another sequence of
classes that stratifies NC. This second sequence is defined in terms of “unbounded
fan-in circuits”, a variant on our standard Boolean circuit model in which AND-gates
and OR-gates are allowed to have arbitrarily large fan-in. Note that something very
much like unbounded fan-in occurs in programmable logic arrays (PLAs) and indeed
any time one uses a bus to distribute data. Thus this concept is not simply a theoretical
construct. Nevertheless, it does offer surprising powers. For instance the decision
problem: “Is the input string made up of all 0s?” can be solved by a depth-1 unbounded
fan-in circuit, whereas in an ordinary circuit this problem would require depth at least
Q(log n), just so all the input bits could be communicated to the output gate. The classes
based on this model are defined analogously to the classes NC*.

DerinimioN. For each k> 1, the class AC* consists of all languéges recognizable by
log-space uniform classes of unbounded fan-in circuits having polynomial size and
depth O(log*n).

It is not difficult to show that for all k>0, AC*< NC**' cAC**', and hence the
union of all the classes AC is simply NC. We shall not have anything more to say about
the AC* for now, but will have a lot to say about the especially interesting class AC® of
bounded-depth circuits in Section 5.4.

So far, not many of the classes NC* have proved individually interesting. Thus there
has, however, been considerable research effort (and complexity class generation) inside
the lowest classes of this hierarchy (NC! and NC?). We shall cover the contents of NC*
in the next section and will conclude this section by examining classes of problems that
appear to lic between NC' and NC?.

Before embarking on this discussion, however, we should admit that there is some
controversy among theoreticians about the significance of the NC* hierarchy. Many
argue that the divison of NC into subclasses based on running times obscures the real
bottleneck for parallel computing, which is the number of processors required. An
algorithm that requires |x| processors and log?|x| running time is likely to be far more
useful than one that requires |x|2 processors and takes log|x| time, but the latter is in
NC!, the more restrictive (and hence presumably better) class. In the real world, where
processors are limited, it is the time x processor product that may be the relevant
complexity measure for parallel computation, as it provides the basis for a time-—
processor trade-off as more processors become available.

For this trade-off to be beneficial with relatively small numbers of processors, we
would ideally like the product to equal the best running time known for a sequential

136 D.S. JOHNSON

algorithm that solves the problem, and indeed, paraliel algorithm designers strive to
meet this goal, at least to within a low-order polylog factor. Note, however, that useful
near-optimal time-processor trade-offs can hold even for problems not in NC.
A P-complete problem that can be solved by a parallel algorithm that runs in time O(n)
using n processors may well be much easier in practice than a problem in NC that can
be solved in time O(logn) using n® processors, given that in the real world even
obtaining n processors may be impossible for realistic values of n. Thus, one should be
careful about taking at face value all claims (such as the one made in the previous
section) that the P-complete problems are “inherently sequential”.

Despite the above limitations, there is still much theoretical interest in determining
where certain important problems lie in the NC* hierarchy. Before we go on to consider
this issue in detail, let us address two final general questions. First, how far up does the
hierarchy extend?Is it infinite, or does it collapse to some level? (As with the polynomial
hierarchy, if for some k, NC*=NC**1, than NC = NC*) A collapse seems unlikely, but
at present we know of no diagonalization argument that precludes it (as Theorem H2
precluded the collapse of the LOG*-SPACE hierarchy). Indeed, at present we cannot
prove even that NC' #NP!

A related question is the following: Can NC have complete problems? We can ask
this question both for log-space transformations (which are in FNC? for the right
choice of machine model) or for NC! reductions. The latter are defined in terms of the
following machine model. '

DEFINITION. An oracle-augmented Boolean circuit is a Boolean circuit with an
additional class of “oracle” gates allowed, where the latter can have any number of
inputs and outputs. The input string for such a gate is the sequence of the values on
its input gates; the output string is the sequence of values on its output gates. Given
a search problem X as oracle, the output string of an oracle gate with input string x is
any y that is an answer for x in X. (If no answer exists, the circuit containing the gate
fails.)

DEerFINITION. An NC! reduction from problem X to problem Y is a log-space uniform
family of oracle-augmented Boolean circuits that

(1) solves X given Y as oracle,

(2) contains at most a polynomial number of gates, and

(3) has O(log n) depth where, for each oracle gate g, the contribution of that gate to
the length of the circuit paths containing it is counted as 10g(gia + gour)» Where g;, and
gou are the number of input and output gates of g respectively (e.g., see [63]).

It is not difficult to see that NC! reductions are compatible with all the classes NC*,
k> 1, and that log-space reductions are compatible with all NC*, k > 2. Consequently, if
NC has complete problems under either log-space or NC! reductions, the NC*
hierarchy will collapse. It would thus be a major result if any such problems were to be
identified, but they are at present not strictly ruled out.

Let us now turn to the promised discussion of classes of problems that are contained
in NC2 and contain NC'. We have already seen three such classes; it can be shown that

A CATALOG OF COMPLEXITY CLASSES 137

NC!cLcSL< NLSNC2 Recall that the GRAPH ACCESSIBILITY problems for directed
and undirected graphs were complete for NL and SL respectively under log-space
transformations. To obtain a complete problem for L (under NC' reductions), we need
only restrict GRAPH ACCESSIBILITY to directed (or undirected) forests [266]. (For other
examples, see [62, 264, 266].) Beyond L, SL, and NL, perhaps the most famous class in
the range from NC* to NC? is the following.

DeriniTioN. The class LOGCFL consists of all those decision problems that are
log-space reducible to a context-free language.

This class has several alternative characterization. We will mention three, but see
also [249]. First, LOGCFL is the set of decision problems solvable by nondeterministic
auxiliary pushdown automata in log space and polynomial time (see [238] for
definitions and proof). This can be shown to imply that NLc LOGCFL. Second,
LOGCFL consists of those decision problems solvable by alternating Turing machines
obeying an O(log n) space bound and a polynomial bound on the total size of the
computation tree [212]. Using this characterization, one can conclude that LOGCFL
—AC! and hence is contained in NC? [212]. Third, LOGCFL consists of precisely
those decision problems solvable by AC! circuits in which no AND-gate has fan-in
exceeding 2 (i.e., the fan-in is “semiunbounded” [43]). A final structural result about
LOGCFL, proved using techniques similar to those used for proving Theorem
4 (Section 2.6),is that LOGCFL is closed under complement [43]. (NC*and AC*, being
deterministic classes, are automatically closed under complement for all k.)

Examples of problems that are complete for LOGCFL include the “hardest
context-free language” of [98] and the CIRCUIT VALUE problem restricted to monotone
circuits having “degree” at most n [63, 265]. (The notion of “degree” used here is
defined inductively: the degree of a constant and of an input variable or its negation is
1, the degree of an OR-gate is the maximum of the degrees of its inputs, and the degree
of an AND-gate is the sum of the degrees of its inputs [231].) An example of a problem
that is in LOGCFL but may not be complete for it is the CIrcuIT VALUE problem for
monotone planar circuits [71], where a circuit is monotone if it contains no
NOT-gates. (If either one of the two restrictions “planar” or “monotone” is applied by
itself, the problem becomes log-space complete for P [92].) Also in LOGCFL are all
decision problems log-space reducible to deterministic context-free languages, a class
we might call “LOGDCFL”, and one that is in NCASC, by the result of [61]
mentioned in the previous section. For more on LOGCFL and the problems in it, see
[43, 63, 212, 213, 238].

A second class that has attracted attention, and appears to be incomparable to
LOGCFL (as well as AC?), although it contains L, SL, and NL [43] is the class “DET",
first introduced in [63]. This is another class that has been defined both as a class of
search problems [63] and as one of decision problems [43]. Since both versions have
their usefulness, we shall once again introduce more precise terminology below.

DeriniTion. The class DET (FDET) consists of all those decision problems (search

138 D.S. JOHNSON

problems) that are log-space reducible to INTEGER DETERMINANT (the problem of
computing the determinant of an n by n matrix of n-bit integers).

INTEGER DETERMINANT can be shown to be in FNC?, and consequently FDET< FNC?
(and DET=NC?) [42]. The interesting complete problems here are all search
problems, and hence technically complete only for FDET. The precise nature of
reductions involved in the completeness results, and indeed in the definitions of DET
and FDET, are not spelled out in [63], but presumably something like log-space
Turing reductions with at most a constant number of calls to the oracle will do.
Examples of complete problems from [63] are, in addition to computing the INTEGER
DETERMINANT, the problems of computing the inverse of an n by n integer matrix as
above (DETERMINANT INVERSE), and of computing the product of n such matrices
(ITERATED MATRIX PRODUCT).

The class DET is also of note because it contains two probabilistic complexity classes
[42, 43]. The most inclusive of these is the “unbounded two-sided error” class PL,
whose relation to L is the same as was that of PP to P in Section 4.5. Both PL and its
subclass BPL (the bounded two-sided error analog of BPP) may well be strictly larger
than NL (unlike the analogs of R and ZPP, which can be shown to equal NL [43].)
As far as we now know, PL and BPL are incomparable to LOGCFL. Further
probabilistic classes, based on requiring simultaneous log-space and expected poly-
nomial time can also be defined and placed inside DET (see [43]). For a schema of the
classes discussed in this and the previous two sections, see Fig. 7.

5.4. Inside NC!

We conclude Section 5 with a brief look inside NC!. Before we can begin, however,
we have to deal with the fact that there are many NCls. As mentioned in Section 5.3,
even when restricting oneself to the uniform Boolean circuit definition of this class, the
precise class defined can depend on the uniformity condition imposed. So far we have
restricted attention to the standard log-space uniformity, but other possibilities exist
and may be more appropriate.

For instance, one might ask why in practice one should require that the circuits be
computable in log-space, rather than allowing full use of the power of polynomial time
(in which case we call the circuits “P.uniform”). If in fact one were going to manufacture
many copies of each circuit, one might well be able to amortize the polynomial design
cost. We did not raise this issue earlier, as we know of no examples higher up in the NC*
hierarchy that suggest that the two types of uniformity differ. There are examples,
however, when one compares (log-space uniform) NC! to P-uniform NC!, or more
precisely, when one compares the corresponding classes of search problem.

For example, consider the ITERATED PRODUCT problem, in which one is given n n-bit
integers and asked simply to compute their product. This problem is in P-uniform
FNC! [26], but the best log-space uniform circuit family known for it has depth
O(log nlog log n) [207], and hence is just slightly too deep to qualify. For further
examples, see [26].

Alternatively, instead of asking for laxer definitions of uniformity, one might argue

A CATALOG OF COMPLEXITY CLASSES 139

the conditions should be more stringent than log-space uniformity. As we saw in the
previous section, L may propetly contain NCV!. Thus in assuming log-space uniformity
in the definition of NC!, we are allowing the machine that constructs the circuits to
have more power than the circuits themselves, a bothersome property when one is
trying to make fine distinctions about the computational power of such circuits. For
this and for other more technical reasons, some researchers feel that the uniformity
condition used in defining NC! should be no stronger than NC!-computability itself.
Advocates of this position, including the authors of [43, 63), now usually suggest that
we use the notion of “U g.-uniformity” originally proposed in [213].

This notion of uniformity is as technical as its name would suggest, and we shall not
describe it in detail here. An essential point, however, is that the machine involved in the
definition does not have to construct the circuits; it merely has to recognize a Janguage
describing the interconnections of their gates. This makes the machine’s task easier, and
thus makes it possible for us to get by with reduced computing power. The “reduced
power” machine chosen for the definition of U g.-uniformity is a specially modified
alternating Turing machine whose running time is O(log n), where n is the length of the
input. The modification replaces the standard input tape with a random access
mechanism: The Turing machine writes the address of an input bit it wishes to obtain
on a length O(log n) indexing tape, and then receives that bit in a special read-only
register on the next step. In this way, although no single Of{log n) computation pathcan
look at all the bits of an n-bit input, the entire computation tree can take all the input
bits into account. (Had we used the standard linear input tape, the computation tree
would have been restricted to the first O(log n) bits of the input.)

It should be pointed out that, in the definition of Ug+ _uniformity, these O(log n) time
«random access” ATMs are given a significant boost. The strings in the “extended
connection language” E* that the ATMs must recognize, although of length n where
n is the number of inputs to the circuit, contain only O(log) relevant bits. (These are
padded out to the required length with additional, meaningless bits.) In comparing the
power of these ATMs to that of NC! machines, however, the relevant question is how
well the ATMs can do without such help. More precisely, if the ATMs are to be no more
powerful, the following class must be contained in Ugs-uniform NC.

Dermation. The class ALOGTIME consists of all those decision problems solvable by
O(log n) time bounded ATM:s, where n is the length of the input.

Surprisingly, not only is ALOGTIME contained in U g.-uniform NC?!, the two
classes are equal [213]! There is currently, however, no proof of equality between
U p-uniform NC' and log-space uniform NC. Thus all we know at present is that

ALOGTIME = U --uniform NC' clog-space uniform NC'.

Note that, as suggested above, the distinctions between these uniformity conditions
disappears for NC*, k> 1. For such k, log-space uniform NC* equals U g--uniform NC*,
and both equal the appropriate generalization of ALOGTIME, i.e., the class of
languages recognized by ATMs with time and space bounded by O(log*n) and O(log n)

respectively [213].

o o et i : T

140 D.S. JOHNSON

Even if ALOGTIME does not equal (log-space uniform) NC!, we can consider it to
be the largest interesting class contained therein. The smallest nontrivial class that we
shall consider is the analog of ALOGTIME for deterministic Turing machines.

Deriniion. The class DLOGTIME consists of all those decision problems solvable by
a “random access” DTM in O(log n) time, where n is the length of the input.

Needless to say, the O(log n) time DTM is a very weak model of computation, as its
answers must ignore all but log n bits of the input (although which O(log n) bits it is
may depend on the values of the bits seen). DLOGTIME will be contained in every
significant class we examine from now on. It contains little in the way of interesting
problems itself, unless one considers such tasks as using binary search to verify the
length of your input as interesting. There are important uses for O(log n) time DTMs,
however.

For one thing, such machines can be used to definc a uniformity condition that is in
no danger of providing hidden power to the “uniform” classes of machines it defines (as
we worried that log-space uniformity might do to NCY). As with U, uniformity, this
new “DLOGTIME-uniformity” condition is defined in terms of recognizing a language
that describes the interconnection patterns of the gates in the “uniform™ circuits. Again
the strings in the language contain only O(log n) significant bits, but are padded out to
length n. (The language itself is slightly different: a “direct” rather than “extended”
connection language.) Adding to the theoretical appeal of DLOGTIME-uniformity is
the fact that it is equivalent to a seemingly very different notion of uniformity proposed
in [124] and based on definability by first-order formulae of mathematical logic [23].
Also appealing is the fact that DLOGTIME-uniform NC! remains equal to
U g-uniform NC.

A second use for O(log n) time DTMs is in reductions. Again the very weakness of
DLOGTIME will ensure that the resulting class of transformations is compatible with
all the classes in which we will be interested. »

DerINITION. A polynomial transformation f from a problem X to a problem y is
a DLOGTIME transformation if the language {(x, i, c): the ith bit of f(x) is c} isin
DLOGTIME.

We shall return to these reductions at the end of this section, where we shall give
some examples of problems complete for ALOGTIME under them. First, however, let
us examine more of the subclasses of ALOGTIME that are presumably proper
subclasses, and hence incapable of containing such ALOGTIME-complete problems.

Perhaps the most studied of these subclasses is AC?, the class of all decision problems
solvable by constant-depth, polynomial-size, unbounded fan-in circuits (as previously
defined in Section 5.3), a class that is easily seen to be a strict superset of DLOGTIME.
What makes constant-depth, unbounded fan-in circuits so interesting is the lower
bound results we can prove for them. First, one can prove that AC® contains
a noncollapsing hierarchy, based on alternation depth (which in this case is simply
depth, since unbounded fan-in means that there is no need for two OR-gates or two

Al
nu
0

(wRw,

pe
hi

ar
Fi
cl
PA
in

st
ci
st
th
(5]

tt
he
1

A CATALOG OF COMPLEXITY CLASSES 141

AND-gates in a row). Let the depth of an unbounded fan-in circuit be the maximum
number of AND- and OR-gates in any path from an input to the output. (Depth
0 would be a circuit that simply hooked some single input gate directly to the output.)

DerINITION. For all k>0, the class (uniform) ACY consists of all problems solvable by
DLOGTIME-uniform, depth-k, polynomial-size, unbounded fan-in circuits.

Note that AC3c DLOGTIME c ACY, while DLOGTIME and ACY{ are incom-
parable. With classes this simple, it is easy to get separations. Higher up in the AC?
hierarchy, things become more interesting (and nontrivial). As shown in [229]
however, there are problems in AC{ —AC_, for each k>0. These problems are
artificial ones designed to make maximal use of the alternation inherent in ACJ.
Finding interesting “natural” problems inside AC? is more of a challenge. Indeed the
class is more interesting for the problems it has been shown not to contain, such as
PARITY (is the total number of 1s in the input 0dd?) and MaJoRITY (are more than half the
input bits 1s?), and a variety of others [40, 75, 84, 232].

Note that in order to prove non-membership in AC®, one must in fact prove
superpolynomial lower bounds on circuit size. Constant-depth, unbounded fan-in
circuits are at present the most powerful model in which we have been able to prove
such results for problems as “easy” as the ones in NP. The model is so weak, however,
that one can prove these bounds for problems that are in NC!, as are all the above
examples. This is not to say that the results do not have any practical implications; they
confirm the popular wisdom among VLSI designers that functions like parity and
majority cannot be computed by reasonably sized fixed-depth PLAs[229]. Moreover,
the results are in a sense “stronger” than necessary for this, as the lower bounds also
hold for nonuniform circuit families. (Indeed, when the class AC° is mentioned in the
literature, it is typically viewed in nonuniform terms, and compared to nonuniform
versions of the NC* classes. One also sees mention of the nonuniform classes AC*, k>0,
which are the unbounded fan-in analogs of the NC*. For our purposes here, we shall
mean the DLOGTIME-uniform version of a class unless we state otherwise.)

As an aside, we note that the above lower bounds have recently been strengthened to
be truly exponential (rather than merely superpolynomial), and this has important
theoretical corollaries, given the formal analogies between AC® and the polynomial
hierarchy of Section 2.4, elaborated in [40, 84, 229]. (Note that the levels of each can be
viewed as offering the opportunity for bounded alternation.) Nonuniform exponential
lower bounds on size in the cases of PARITY, proved in [257] and tightened in [114, 115],
yield the oracle set for which PSPACE # PH. Similarly, exponential lower bounds on
size for depth-(k — 1) nonuniform circuit families solving problems in AC, announced
in [257] and spelled out in [114, 115), yield an oracle for which PH does not collapse.

Given that bounded-depth, unbounded fan-in circuits made up of AND-, OR- and
NOT-gates cannot solve everything in NC?, a natural question to ask is whether the
addition of more powerful gates might help. For example, if you add a “MOD(2)-gate”,
i.e., one that outputs a 1 if and only if an even number of its input gates are non-zero,
then bounded-depth, unbounded fan-in circuits can solve the paRITY problem. They

142 D.S. JOHNSON

cannot, however, solve all problems in NC![203]. More generally, let us consider the
following classes of extensions to AC?, all easily seen to be in NC!.

DerviTion. For any positive integer k>1, let AC%(k) consist of those languages
recognized by polynomial-size, bounded-depth, unbounded fan-in Boolean circuits,
augmented by “MOD(k)-gates”, i.c., unbounded fan-in gates that output “1” if and only
if the number of their non-zero inputs is congruent to 0 MOD(k).

For all primes p, ACO(p) is strictly contained in NC!. In particular, for any primes
p# g, the problem of determining congruence to 0 MOD(q) is not in AC®(p) [232]. This
is as far as this line of research has gone, however: the classes AC°(p), p prime, are the
largest classes known to be properly contained in NC!. So far, no one has been able to
prove even that AC®(6) does not equal NP! [24].

Should the AC®(6) challenge fall, there are two more classes of augmented AC°
circuits waiting in the wings to be the next candidates for proper inclusion in NC!.
They are the following.

DeriniTioN. The class ACC consists of all those languages recognized by polynomial-
size, bounded-depth, unbounded fan-in Boolean circuits in which any MOD(k)-gate,
k> 1, may be used.

Derinimion. The class TC® consists of all those languages recognized by polynomial-
size, bounded-depth, unbounded fan-in Boolean circuits augmented by “threshold”
gates, i.e., unbounded fan-in gates that output “1” if and only if more than half their
inputs are non-zero.

For more on these classes, see [22, 24, 100, 208]. It is conjectured that the latter class
contains a hierarchy of bounded-depth classes TCY analogous to the ACY, although so
far the highest level separation proved is between classes TC9 and TC$ [100]. The
relation between these and our previous classes is summarized as

AC® cACC<TC® €NC!.

We conclude our coverage of the classes inside NC' with a brief discussion of hopes
for an alternative hierarchy, one that would in a sense be perpendicular to the one
provided by AC®. This hierarchy is defined by placing constant bounds on the width of
circuits (as defined in Section 1.3), rather than on their depth. We also restrict ourselves
once more to circuits with bounded fan-in, say, fan-in 2. Define BW} to be the set of all
problems solvable by polynomial-size, bounded fan-in circuits of width k or less, and
BW° =| Ji>; BW}. It is not difficult to show that for all k>0, AC) = BW}. Moreover,
AC? is properly contained in BW?, since PARITY is in BW?. Are there any candidates for
NC' — BW®? Here the answer is, surprisingly, no. Unlike the case with AC®, we have
NC! = BW°. Moreover, the BW{ hierarchy collapses to its fourth level and we in fact
have NC! = BW¢ [22]. As with the above results for ACP° and its variants, these last
results hold in both the uniform and nonuniform case (DLOGTIME-uniformity will
suffice [23].) For a somewhat expanded coverage of AC® and BW?, see [134,136]. For

A CATALOG OF COMPLEXITY CLASSES 143

a summary of the inclusion relations between the classes inside NC* that we have
presented, see Fig. 8.

This last result brings us to the final topic of this section: complete problems for NC*
(or more precisely, ALOGTIME= U p--uniform NC'). Although the NC* hierarchy
would collapse if NC had complete problems, there is no such technical difficulty for
NC!, and indeed problems complete for it under DLOGTIME reductions have
already been identified. (One can also get completeness results using the more powerful
“AC®-reduction”, based on bounded-depth unbounded fan-in circuits with oracle
gates, but so far the extra power seems unnecessary.) '

The proof that BW$ equals NC' follows directly from the observation that the
former contains a problem that is complete for the latter under DLOGTIME-reductions
[23,22]. The problem in question is yet another “product” problem, following in line
with ITERATED MATRIX PRODUCT of Section 5.4 and ITERATED PRODUCT of this section. This
is PERMUTATION GROUP PRODUCT: “Given a sequence of elements from the permutation
group S, does their product equal the identity?” A corollary of this completeness result
that may be of interest to formal language theorists is that, whereas the hardest
context-sensitive languages are complete for PSPACE (see Section 2.6), and the hardest
context-free languages are complete for LOGCFL (see the previous section), the
hardest regular languages are only complete for ALOGTIME [22]. (It is easy to see
that all regular languages are contained in ALOGTIME))

For our final example of an ALOGTIME-complete problem, we have the BOOLEAN
FORMULA VALUE problem, where formulas are strings with syntax and semantics
defined inductively as follows: “1” is a formula with value 1, “0” is a formula of value 0,
and if f and g are formulas with values v(f) and {g) respectively, then “(f Ag)” is
a formula whose value is the logical AND of v(f) and v(g) and “(f v g)” is a formula
whose value is the logical OR of v(f) and v(g). The hard part here is showing that the
BOOLEAN FORMULA VALUE problem is even in ALOGTIME; see [46]. Its presence in
the class indicates that NC! circuits, unlike the classes of circuits determining
DLOGTIME, AC?, ACC, and TC?, can perform tasks that are far from rudimentary.
Thus, although proving that NC! # NP would only be a small first step along the way
to a proof that P# NP, it could be the first important one.

6. New developments, tables and figures

We begin in this section with a brief look at an important new result that was
obtained since the body of the chapter was written and that has cast some doubts on the
comments made in Section 1.8 about the significance of relativized results. We then
conclude with a collection of tables and figures that summarize the material in our
“Catalog of Complexity Classes” and thus can be used for “ready reference”.

6.1. New developments

In Section 4.6 we introduced the concept of “interactive proof system” and the class
IP (also known as AM[poly]) of decision problems solvable by interactive proof
systems with a polynomial number of rounds. We also observed that IP<PSPACE.

144 D.S. JOHNSON

Furthermore, we noted that there is an oracle for which IP does not contain
co-NP [80], thus seeming to imply, by the remarks of Section 1.8 on relativization, that
co-NPcIP (and hence 1P =PSPACE) would be hard to prove.

Surprisingly, both results have now been proved in rapid succession. First came the
result that co-NP < IP and in fact PH <P [267]. Adi Shamir then strengthened this
result to show that all of PSPACE was in IP and hence IP =PSPACE [268]. Not only
does this give us a precise determination of the power of interactive proofs, it also
raises questions about the proper interpretation of relativization results.

In Section 1.8 we indicated that the standard proof techniques for answering
questions about complexity classes were «all” known to relativize. This turns out to
have been incorrect. It remains true that most standard techniques, such as simulation
and diagonalization, do relativize, and so the existence of a relativized world in which
a conjecture does not hold rules out the use of such techniques in proving it. Shamir’s
proof, however, is relatively simple and can itself be viewed as an instance of a
«standard technique”, albeit one that has been remarkable until now only for its
failures. This is the approach commonly taken in the many false “proofs” that P=NP:
show that a complete (or “hard”) problem for the supposedly larger class (for example
HAMILTONIAN CIRCUIT in the case of NP) is a member of the supposedly smaller class
(ie., in the case of P, can be solved in polynomial time). Such a proof would not
relativize, since individual problems do not relativize. (Oracles can be attached to
machines, but there is no natural concept of “relativized HAMILTONIAN circurT”) What
Shamir has done is show that the PSPACE-complete QUANTIFIED BOOLEAN FORMULA
problem of Section 2.6 can be solved by a polynomial round interactive proof system.
(The prablem used to show PHCSIP in [267] was the PERMANENT COMPUTATION
problem of Section 4.1, which is “hard” for PH based on the results of [240, 243], as
discussed in that section.)

It is still not clear why this “specific hard problem” technique should have proved
successful with IP while not elsewhere, but one should note that the interactive nature
of the computation and the fact that information is hidden from one of the parties is
crucial to the details of the proof. Thus it is not clear that this first major success of the
specific hard problem approach will signal further successes in disparate domains. (In
a similar domain, however, another success of the approach has recently been
announced [263]. This time the result is that the class MIP of decision problems
solvable by polynomially bounded interactive proof systems in which there are two
provers is exactly equal to NEXPTIME. See [263] for full definitions and details.)

6.2. Tables and figures

This section is devoted to tables and figures that help summarize the material in this
“Catalog of Complexity Classes”. Tables 2(a) and 2(b) provide an index to the
complexity classes we have defined, from AC, to ZPP. For each class, we indicate the
section in which it is defined, any additional sections in which it is mentioned, and any
figures in which it is represented. The list is intended to provide pointers, at least
indirectly, for all the classes mentioned in the text. (We omit a few relatives of the
included classes, but each of these can be located by following the pointers for the
corresponding included class.) Table 3 provides similar indexing information for the

Table 2(a),

Index to the classes

A CATALOG OF COMPLEXITY CLASSES 145

CLASS NAME DEFINED MENTIONED/ILLUSTRATED
AC® 53 54, Fig. 8

ACOk) 54

ACP 54 Fig. 7

AC 53 Fig. 7

ACC 54 Fig. 8
ALOGTIME 54 Fig. 8

AM 4.6 6.1, Fig. 6
AM([poly] 4.6 Fig. 6

BH 24 Fig. 1

BH, 24 Fig. 1

BPL 53 Fig. 7

BPP 45 46, 5.1, 5.2, Figs. 5,6
BW° 5.4 Fig. 8

BW; 54 Fig. 8

CC 5.2

co-NP 22 2.3-25,43,45, Figs. 1,2,5,6
co-R 43 44,45 Fig. 5

D 24 Fig. 1

DET 5.3 Fig. 7

AY 23 24,25, 45, Figs. 1,2
AY 25 Fig. 2
DLOGTIME 5.4 Fig. 8

EH 33 Fig. 3
ELEMENTARY 33 Fig. 3

ETIME 31 5.1,Fig. 3
EXPSPACE 33 Fig. 3

EXPTIME 3.1 4.3,Fig. 3

FAY 23 24,51

FA} 41

FewP 42 Fig. 4

FDET 53

FNC 52

FNC* 53

FP 1.5 1.6,1.7,24,42,5.2
FPNP 23 24

| 3 24

FPNP[O(Iol nl 24

FPH 4.1

FRNC 5.2

FUP 42

1P 4.6 6.1, Fig. 6

IP[k] 4.6

L 5.1 5.2,5.3,Fig. 7
LIN-SPACE 26

LOG*-SPACE 5.1 5.3,Fig. 7
LOGCFL 53 Fig. 8
LOGDCFL 5.3 Fig. 8

146 D.S. JOHNSON

Table 2(b)
Index to the classes (continued)

CLASS NAME DEFINED MENTIONED/ILLUSTRATED

MA . 4.6 Fig. 6
NC 52 5.3,Fig. 7
NC* 53 Fig. 7
NC! 53 54, Figs. 7,8
NETIME 32 Fig. 3
NEXPTIME 32 6.1, Fig. 3
NLIN-SPACE 2.6
NL 5.1 5.2,5.3,Fig. 7
NP 21 2.1-2.6, 4.1-4.6, 5.1-54, 6.1, Figs. 1,24,5,6
NPnco-NP 22 24,25,Fig. 1
#P 4.1 42,45, Fig. 4
#P, 4.1
OptP 4.1
@P 41 42,44,Fig. 4
P 1.5 17, 21-2.6,4.1-45,5.1, 52, 6.1, Figs. 1,24, 5,6
PNETIME 32)
PH 25 33, 4.1, 43-46, Figs. 2,4, 5
115 25 43,45, 4.6, Figs. 2, 5,6
944 25 Fig. 3
PL 53 Fig. 7
POLYLOG-SPACE 5.1 5.2,Fig. 7
PNP 23 24,25
PN 24
phiriotesm] 24 4.5, Figs. 1,5
P** 4.1 4.5, Figs. 4,5
pr* 45 Fig. 5
PP 45 5.1,5.3,Fig. 5
PPSPACE 45 4.6,Fig. 5
- P/poly 43 45
PSPACE 2.6 24, 3.1,43, 45,46, Figs. 2,3
QH 24 Fig. 1
QH, . 24
R 43 44,435,53,Fig. 5
RNC 5.2
21 25 2.1, 4.3, 4.5, 4.6, Figs. 2, 5, 6
= 25 Fig. 3
SC : 5.1 5.2,5.3,Fig. 7
Sc* 51 - 5.3,Fig. 7
SL 5.1 5.3, Fig. 7
span-P 41 42
Us>oTA[2™, 7] 33 Fig. 3
TC® 5.4 Fig. 8
TC? 54
UP 42 ' 43,Fig. 4
UP, 42 Fig. 4
ZPP 43 44,45,51,53,Fig. 5

st R S A A AT ST AR (9

A CATALOG OF COMPLEXITY CLASSES 147

Table 3
Index to reducibilities and models of computation
REDUCIBILITY DEFINED MENTIONED
ACP-reduction 54
BPP-reduction 44
DLOGTIME transformation 54
y-reduction 22 44
log-space transformation (< jog.space) 1.6 1.7,5.1-53
metric reduction 24 41
NC-reduction 5.2
NC! -reduction 53
nondeterministic

polynomial-time Turing reduction 22
parsimonious transformation 41
polynomial transformation (<) 1.6 2.1,2.2,42,43
polynomial-time isomorphism 21
polynomial-time Turing reduction (<) 1.6 2.2,23,42,43
R-reduction 44
RUR-reduction 4.4
strong nondeterministic

polynomial-time Turing reduction 22
UR-reduction 44
MODEL OF COMPUTATION DEFINED MENTIONED
“advice-taking” Turing machine 43 45
Arthur-Merlin game 46
alternating Turing machine (ATM) 13 26,33,46,54
Boolean circuit family 1.3

nonuniform 1.3 43,54

log-space uniform 5.2 53,54

P-uniform 54

Uge-uniform 54

DLOGTIME-uniform 54
counting Turing machine (CTM) 41
deterministic Turing machine (DTM) 1.3 1.5, 1.6, 2.6, 3.1, 3.3, 5.1, 5.2, 54
interactive proof 46
nondeterministic Turing machine (NDTM) 1.3 2.1,32,33
oracle-augmented Boolean circuit family 53 18,54
oracle Turing machine(OTM) 13 1.8,2.3,24,25,3.2,41,45
parallel random access machine (PRAM) 13 52,53
parity Turing machine (§TM) 4.1
probabilistic Turing machine (PTM) 45
“random access” Turing machine 54
random Turing machine (RTM) 43
stochastic Turing machine (STM) 4.6
symmetric Turing machine 5.1
unambiguous Turing machine (UTM) 42

148 D.S. JOHNSON

- A
A
4 2
PNP(O(Iog)] ()
PSPACE
o N —
BH = QH 4 PH
BH, !

=<}

— -

%
o AN

v\ NS
N/ N\

NP }CO-NP = NP 1P = co-NP
P =,BHO
AP=P
. _J ’
- . y, J - S
_ \— J
Fig. 1. The Boolean hierarchy. Fig. 2. The polynomial hierarchy.

various notions of “reducibility” and for the various models of computation that we
have discussed. For less specialized directories, see the outline at the beginning of the
chapter and the overall index to this Handbook.

We also include in this section the eight figures that have already been mentioned in
the text. In these figures, an arrow from class A to class B indicates that 4 < B, and all
arrows are drawn upwards. All currently known containment relations are indicated,
although some are only present implicitly. (If there is an arrow from A to B and an arrow
from B to C, there will be no arrow from A to C, even though the containment relation
A < C is implied.) The figures do not indicate which of the containments are proper. For
what is known on this account, consult the appropriate sections of the text. (Because of
space constraints, some of the arrows are omitted in Fig. 3. In this case, class A4
contains class B if the name of class A is written immediatey above that of class B.)

149

A CATALOG OF COMPLEXITY CLASSES

'sassep Jununo)) p g

d

{

dn=d4n

y

4an

‘swajqoid sjqerdenul L|qeaosd ¢ Big

-~

(" R
d0vdsd
] dWILLE

anlLaxa “ §

¢ — mE_sz
ANILIXIN

:.x&ﬁ?ﬂ?i =Hd

[u' 2]V 1

V

gOvdsdxd
FNILIXTT
ANILIXAN-T
U, VLN
HOVdSdXd-C
FNILIXE€

AAVINIWITH

419vaioada

~

‘sassepo Ayxapduwion dsanoeiau] 9 ‘314 -sassepd A1xajdwod paziwopury 'S ‘d1g

d d

mZ.N&«Z//MLm d- OQCW =ddZ
N ~g\ /

7 v
wcmm\ z ©
ddd dN- 83&2

u

k

JOVdSsd = dl = [Kied]NV

D.S. JOHNSON

ard = aad

|

ADVdSdd =dDVdSd

150

o
w
7]
%]
<
-
Q
o
E
ted
25
ol
[
=
Q
Q
e
=}
Q
Q
=]
ot
-
<
9]
-«

"(ON 3pisut sasse[) g ‘314

_ gov

mam\\ A_Vw,w/m:\,mhoo.a
?w,ms\

mam;\

o

oL

|

fmd = oMd = (DN utojiun-+an = gWILOOTV

'

DN uwojrun-soeds-gog

‘d apisut sasse|) £ g
1ON
T1=108
18

{

"IN-09 ="IN

HOVdS+D01

FOVdS-D0TATOd

152

D.S. JOHNSON

References

1
[2]
3]
[4]
{s]
{61
n
(8]

[9]
f10]
(1]
12]

[13]
[14]
[15]
{16]
{17]
[18]
[(19]

[20]
[21]

f22]
[23]
[24]
[25]

ADLEMAN, L., Two theorems on random polynomial time, in: Proc. 19th Ann. IEEE Symp on
Foundations of Computer Science (1978) 75-83.

ADLEMAN, L. and M. HUANG, Recognizing primes in random polynomial time, in: Proc. 19th Ann.
ACM Symp. on Theory of Computing (1987) 462-470.

ADLEMAN, L. and K. MANDERS, Reducibility, randomness, and intractability, in: Proc. 9th Ann. ACM
Symp. on Theory of Computing (1977) 151-163.

ADLEMAN, L.M. and K. MANDERS, Reductions that lie, in: Proc. 20th Ann. IEEE Symp. on F ‘oundations
of Computer Science (1979) 397-410.

AHO, AV., 1.E. HoPCROFT and J.D. ULLMAN, The Design and Analysis of Computer Algorithms
(Addison-Wesley, Reading, MA, 1974).

AIELLO, W., S. GOLDWASSER and J. HASTAD, On the power of interaction, in: Proc. 27th Ann. IEEE
Symp. on Foundations of Computer Science (1986) 368-379.

AIELLO, W. and J. HASTAD, Perfect zero-knowledge languages can be recognized in two rounds, in:
Proc. 28th Ann. IEEE Symp. on Foundations of Computer Science (1987) 439-448.

ALELIUNAS, R, RM. Karp, RJ. LipTON, L. LOVASZ and C. RACKOFF, Random walks, traversal
sequences and the complexity of maze problems, in: Proc. 20th. Ann. IEEE Symp. on Foundations of
Computer Science (1979) 218-223.

ALLENDER, E., The complexity of sparse sets in P, in: A.L. Selman, ed., Structure in Complexity Theory,
Lecture Notes in Computer Science, Vol. 223 (Springer, Berlin, 1986) 1-11.

ANGLUIN, D., On counting problems and the polynomial-time hierarchy, Theoret. Comput. Sci. 12
(1980) 161-173.

AWERBUCH, B., A. ISRAELI and Y. SHILOACH, Finding Euler circuits in logarithmic parallel time, in:
Proc. 16th Ann. ACM Symp. on Theory of Computing (1984) 249-257.

BaBaL L., Trading group theory for randomness, in: Proc. 17th Ann. ACM Symp. on Theory of
Computing (1985) 421-429; a subsequent journal paper covering some of this material is: L. Babai and
S. Moran, Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity classes,
J. Comput. System Sci. 36 (1988) 254-276.

Basal, L., Random oracles separate PSPACE from the polynomial-time hierarchy, Inform. Process.
Lett. 26 (1987) 51-53.)

Basal, L., E. LUKS and A. SEREsS, Permutation groups in NC, in: Proc. 19th Ann. ACM Symp. on
Theory of Computing (1987) 409-420.

BaBat, L. and E. SZEMEREDI, On the complexity of matrix group problems, in: Proc. 25th Ann. IEEE
Symp. on Foundations of Computer Science (1984) 229-240.

BAcH, E., G. MILLER and J. SHALLIT, Sums of divisors, perfect numbers and factoring, SIAM J.
Comput. 15 (1986) 1143-1154.

BAKER, T., J. GILL and R. SoLovaY, Relativizations of the P=" NP question, SIAM J. Comput.
4 (1975) 431442,

BALCAZAR, J. L., Logspace self-reducibility, in: Proc. Structure in Complexity Theory (3rd Ann. IEEE
Conf) (1988) 40-46.

BALCAZAR, J.L., Nondeterministic witnesses and nonuniform advice, in: Proc. Structure in Complexity
Theory (4th Ann. IEEE Conf.) (1989) 259-269. .

BALCAZAR, J.L., J. DAz and J. GABARRO, Structural Complexity I (Springer, Berlin, 1988).-
BALCAZAR, JL. and D.A. Russo, Immunity and simplicity in relativizations of probabilistic
complexity classes, Theoret. Inform. Appl. 22 (1988) 227-244.

BARRINGTON, D.A., Bounded-width polynomial-size branching programs can recognize exactly those
languages in NC!, J. Comput. System Sci. 38 (1989) 150-164.

BARRINGTON, D.A.M., N. IMMERMAN and H. STRAUBING, On uniformity conditions within NC', in:
Proc. Structure in Complexity Theory (3rd Ann. IEEE Conf. (1988) 47-59.

BARRINGTON, D.A.M. and D. THERIEN, Finite monoids and the fine structure of NC!, J. Assoc.
Comput. Mach. 35 (1988) 941-952.

BARWISE, J., Handbook of Mathematical Logic (North-Holland, Amsterdam, 1977).

A CATALOG OF COMPLEXITY CLASSES 153

BEAME, P.W,, S.A. Cook and H.J. HOOVER; Log depth circuits for division and related problems,

SIAM J. Comput. 15 (1986) 994-1003.

BEIGEL, R., On the relativized power of additional accepting paths, in: Proc. Structure in Complexity

Theory (4th Ann. IEEE Conf) (1989) 216-224.

BEIGEL, R., L.A. HEMACHANDRA and G. WECHSUNG, On the power of probabilistic polynomial time:

PNMiost - PP, in: Proc. Structure in Complexity Theory (4th Ann. IEEE Conf) (1989) 225-227.

BeNNETT, C.H. and J. GILL, Relative to a random oracle A, P4 % NP4 #co-NP4 with probability 1,

SIAM J. Comput. 10 (1981) 96-113.

BERMAN, L., The complexity of logical theories, Theoret. Comput. Sci. 11 (1980) 71-78.

BERMAN, L. and J. HARTMANIS, On isomorphisms and density of NP and other complete sets, SIAM

J. Comput. 6 (1977) 305-322.

BERSTEL, J. and L. BOASSON, Context-free languages, in: J. van Leeuwen, ed., Handbook of Theoretical

Computer Science, Vol. B (North-Holland, Amsterdam, 1990) Chapter 2.

BLass, A. and Y. GUREVICH, On the unique satisfiability problem, Inform. and Control 55 (1982) 80-88.

Book, R.V., On languages accepted in polynomial time, SIAM J. Comput. 1 (1972) 281-287.

Book, R.V., Comparing complexity classes, J. Comput. System Sci. 9 (1974) 213-229.

Book, R.V., Translational lemmas, polynomial time, and (log ny-space, Theoret. Comput. Sci.

1 (1976) 215-226.

Book, R.V. On the complexity of formal grammars, Acta Inform. 9 (1978) 171-182.

BooTH, K.S., Isomorphism testing for graphs, semigroups, and finite automata are polynomially

equivalent problems, SI AM J. Comput. T (1978) 273-279.

[39] BOPPANA, R.B., J. HasTAD and S. ZACHOS, Does co-NP have short interactive proofs?, Inform.
Process. Lett. 25 (1987) 127-133. .

[{40] BoppANA, R.and M. SIPSER, The complexity of finite functions, in: J. van Leeuwen, ed., Handbook of
Theoretical Computer Science, Vol. A (North-Holland, Amsterdam, 1990) 757-804.

[41] BoRODIN, A., On relating time and space to size and depth, SIAM J. Comput 6 (1977) 733-744.

[42] BoropIN, A, S.A. Cook and N. PIPPENGER, Parallel computations for well-endowed rings and
space-bounded probablistic machines, Inform. and Control. 58 (1983) 113-136.

[43] BoRODIN, A, S.A. Cook, P.W. Dymonp, W.L. Ruzzo and M.L. Tompa, Two applications of
inductive counting for complementation problems, SIAM J. Comput. 18 (1989) 559-578.

[44] Buss,J.F.,A theory of oracle machines, in: Proc. Structure in Complexity Theory (2nd Ann. IEEE Conf)
(1987) 175-181. ’

[45] Buss,LF, Relativized alternation and space bounded computation, J. Comput. System Sci. 36 (1988)
351-378.

{46] Buss,S.R., The Boolean formula value problem is in ALOGTIME, in: Proc. 19th Ann. ACM Symp.on
Theory of Computing (1987) 123-131.

[47] CaL J-Y., With probability one, a random oracle separates PSPACE from the polynomial-time
hierarchy, in: Proc. 18th Ann. ACM Symp. on Theory of Computing (1986) 21-29; journal version in: J.
Comput. System Sci. 38 (1988) 68-85.

[48] Car,J-Y., T. GUNDERMANN, J. HARTMANTS, L.A. HEMACHANDRA, V. SEWELSON, K. WAGNER and G.
WECHSUNG, The Boolean hierarchy L: Structural propetties, SIAM J. Comput. 17 (1988) 1232-1252.

[49] CAL J-Y., T. GUNDERMANN, J. HARTMANIS, L.A. HEMACHANDRA, V. SEwELSON, K. WAGNER and G.
WECHSUNG, The Boolean hierarchy II: Applications, SIAM J. Comput. 18 (1989) 95-111.

[50] Cal, J-Y. and L.A. HEMACHANDRA, The Boolean hicrarchy: Hardware over NP, Report No. TR
85-724, Dept. Computer Science, Cornell Univ., Ithaca, NY, 1985.

(51 CALJ-Y.and L.A. HEMACHANDRA, On the power of parity polynomial time, in: Proc. 6th Ann. Symp.
on Theoretical Aspects of Computing, Lecture Notes in Computer Science, Vol. 349 (Springer, Berlin,
1989) 229-239.

[52] CHanDra,AK.,D.C. KozeN and L.J. STOCKMEYER, Alternation, J. Assoc. Comput. Mach. 28 (1981)
114-133.

[53] CHANG, R.and J. KADIN, The Boolean hierarchy and the polynomial hierarchy: a closer connection,
Report No. TR 89-1008, Dept. Computer Science, Cornelt Univ., Ithaca, NY, 1989.

{54] CHIN, F.-Y.,J. LaM and L-N. CHEN, Efficient parallel algorithms for some graph problems, Comm.

ACM 25 (1982) 659—665.

kR A

154
[55]

{56]

(57
(s8]
[59]

[60]
[61]

[62]

[63]
(64

0651
[66]

(671
[68]

[69]

[70]
(1]

[72]
[73]

[74]
(751
[76]
01
[78]
(791
[80]
[81]

D.S. JOHNSON

CHUNG, M.1. and B. RAVIKUMAR, Strong nondeterministic Turing reduction — a technique for
provingintractability, in: Proc. Structure in Complexity Theory (2nd Ann. IEEE Conf) (1987) 132-
137.

CosHAM, A., The intrinsic computational difficulty of functions, in: Y. Bar-Hillel, ed., Proc. 1964
Internat. Congress for Logic Methodology and Philosophy of Science (North-Holland, Amsterdam,
1964) 24-30. : :

Cook, S.A., Path systems and language recognition, in: Proc. 2nd Ann. ACM Symp. on Theory of
Computing (1970) 70-72.

Cook, S.A,, The complexity of theorem-proving procedures, in: Proc. 3rd Ann. ACM Symp. on Theory
of Computing (1971) 151-158.

Cook, S.A,, Characterizations of pushdown machines in terms of time-bounded computers, J. Assoc.
Comput. Mach. 18 (1971) 4-18.

CooK, 5.A., An observation on time-storage trade-off, J. Comput. System Sci. 9 (1974) 308-316.
Cook, S.A., Deterministic CFL’s are accepted simultaneously in polynomial time and log squared
space, in: Proc. 11th Ann. ACM Symp. on Theory of Computing (1979) 338-345, v

Cook, 8.A., Towards a complexity theory of synchronous parallel computation, Enseign. Math. 27
(1981) 99-124,

Cook, S.A., A taxonomy of problems with fast parallel algorithms, Inform. and Control 64(1985) 2-22.
Cook, S. and R. SETHI, Storage requirements for deterministic polynomial time recognizable
languages, J. Comput. System Sci. 13 (1976) 25-37.

Davis, M., Unsolvable problems, in: J. Barwise, ed., Handbook of Mathematical Logic (North-
Holland, Amsterdam, 1977) 567-594.

DEKHTYAR, ML, On the relativation of deterministic and nondeterministic complexity classes, in:
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 45 (Springer,
Berlin, 1976) 255-259.

DEMILLO, R.A. and R.J. LIPTON, The consistency of “P = NP” and related problems with fragments of
number, theory in: Proc. 12th Ann. ACM Symp. on Theory of Computing (1980) 45-57.

DoBkiN, D., R.J. LIPTON and 8. REIss, Linear programming is log-space hard for P, Inform. Process.
Lett. 8 (1979) 96-97.

Dwork, C., P.C. KANELLAKIS and J.C. MITCHELL, On the sequential nature of unification, J. Logic
Programming 1 (1984) 35-50. :

DYER, M.E. and A.M. FriezE, On the complexity of computing the volume of a polyhedron, SIAM J.
Comput. 80 (1989) 205-226.

DyMoND, P.W. and S.A. Cook, Complexity theory of parallel time and hardward, Inform. and
Comput. 80 (1989) 205-226.

EDMONDS, J., Paths, trees, and flowers, Canad. J. Math. 17 (1965) 449-467.

EVEN, S, A.L. SELMAN and Y. Yacosl, The complexity of promise problems with applications to
cryptography, Inform. and Control 61 (1984) 159-173.

EVEN, 8. and R.E. TARIAN, A combinatorial game which is complete in polynomial space, J. Assoc.
Comput. Mach. 23 (1976) 710-719. .

FaGiN, R, M.M. KLAWE, N.J. PIPPENGER and L. STOCKMEYER, Bounded-depth, polynomial size
circuits for symmetric functions, Theoret. Comput. Sci. 36 (1985) 239-250,

FERRANTE, J. and C. RACKOFF, A decision procedure for the first order theory of real addition with
order, SIAM J. Comput. 4 (1975) 69-76.

FicH, F.E., P. RAGDE and A. WIGDERSON, Relations between concurrent-write models of parallel
computation, SIAM J. Comput. 17 (1988) 606-627.

Fich, F.E, P. RAGDE and A. WIGDERSON, Simulations among concurrent-write PRAMs, Algorithmica
3 (1988) 43-52. :

FoRrTNOW, L., The complexity of perfect zero-knowledge, in: Proc. 19th Ann. ACM S ymp. on Theory of
Computing (1987) 204-209,

FoRTNOW, L. and M. SIPSER, Are there interactive protocols for co-NP languages?, Inform. Process.
Lett. 28 (1988) 249-251.

FORTUNE, S, D. LEIVANT and M. O’DONNELL, The expressiveness of simple and second-order type
structures, J. Assoc. Comput. Mach. 30 (1983) 151-18S.

[
s

9

[9:
[

[10(
(101
(102
"103

‘104
105

106
107
108,

109]

[s2]
(83]
(84]
{8s]
[86]
[87]
(s8]
[89]
[90]

o1

[92]
%3]
f94]
[95]
[96]

97]

(98]
[99]

(100]
[101]
[102]
(103]

{104]
[105]

[106]
[107]
[108]

(109]

A CATALOG OF COMPLEXITY CLASSES 155

FORTUNE, S. and J. WYLLIE, Parallelism in random access machines, in: Proc. 10th Ann. ACM Symp.
on Theory of Computing (1978) 114-118.

FRAENKEL, A.S. and D. LICHTENSTEIN, Computing a perfect strategy for nx n chess requires time
exponential in n, J. Combin. Theory Ser. A. 3111981) 199-213.

FURST, M., J. SAXE and M. SIPSER, Parity, circuits, and the polynomial time hierarchy, M ath. Systems
Theory. 17 (1984) 13-27.

GALPERIN, H. and A. WIGDERSON, Succinct representation of graphs, Inform. and Control 56 (1983)
183-198.

GAREY, M.R. and D.S. JOHNSON, Strong NP-completeness results: motivation, examples, and
implications, J. Assoc. Comput. Mach. 25 (1978) 499-508.

GAReY, M.R. and D.S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness (Freeman, San Francisco, 1979).

GESKE, J. and J. GROLLMAN, Relativizations of unambiguous and random polynomial time classes,
SIAM J. Comput. 15 (1986) 511-519.

GiLBERT, J.R., T. LENGAUER and R.E. TARJAN, The pebbling problem is complete for polynomial
space, SIAM J. Comput. 9 (1980) 513-524.

GILL,], Computational complexity of probabilistic Turing machines, SIAM J. Comput. 6 (1977)
675-695.

GOLDREICH, O., S. MicaLl and A. WIGDERSON, Proofs that yield nothing but their validity and
a methodology of cryptographic protocol design, in: Proc. 27th Ann. IEEE Symp. on Foundations of
Computer Science (1986) 174-187.

GOLDSCHLAGER, L.M., The monotone and planar circuit value problems are log space complete for P,
SIGACT News %2) (1977) 25-29.

GOLDSCHLAGER, L. and I. PARBERRY, On the construction of parallel computers from various bases of
Boolean functions, Theoret. Comput. Sci. 43 (1986) 43-58. '

GOLDSCHLAGER, L., R. SHAW and J. STAPLES, The maximum flow problem is log space complete for P,
Theoret. Comput. Sci. 21 (1982) 105-111. , .

GOLDWASSER, S. and J. KILIAN, Almost all primes can be quickly certified, in: Proc. 18th Ann. ACM
Symp. on Theory of Computing (1986) 316-330. :
GOLDWASSER, S., S. MicaL1 and C. RACKOFF, The knowledge complexity of interactive proof-systems,
in: Proc. 17th Ann. ACM Symp. on Theory of Computing (1985) 291-304; a journal version under the
same title appears in: SIAM J. Comput. 18 (1989) 186-208.)
GOLDWASSER, S. and M. SIiPSER, Private coins versus public coins in interactive proof systems, in:
Proc. 18th Ann. ACM Symp. on Theory of Computing (1986) 59-68.

GREIBACH, S.A., The hardest context-free language, SIAM J. Comput. 2 (1973) 304-310.
GROLLMAN, J. and A.L. SELMAN, Complexity measures for public-key cryptosystems, SIAM J.
Comput. 17 (1988) 309-335.

HAINAL, A., W. Maass, P. PUDLAK, M. SZEGEDY and G. TURAN, Threshold circuits of bounded depth,
in: Proc. 28th Ann. IEEE Symp. on_Foundations of Computer Science (1987) 99-110.

HARARY, F. and EMM. PALMER, Graphical Enumeration (Academic Press, New York, 1973).
HAREL, D., Algorithmics: The Spirit of Computing (Addison-Wesley, Reading, MA, 1987).
HARTMANIS, J., Independence results about context-free languages and lower bounds, Inform.
Process. Lett. 20 (1985) 241-248.

HARTMANIS, J., Solving problems with conflicting relativizations, Bull. EATCS 27 (1985) 40-49.
HARTMANIS, J., Structural complexity column: Sparse complete sets for NP and the optimal collapse
of the polynomial hierarchy, Bull. EATCS 32 (1987) 73-81.

HARTMANIS, J., Structural complexity column: The collapsing hierarchies, Bull. EATCS 33 (1987)
26-39.

HARTMANIS, J., Structural complexity column: Some observations about relativization of space
bounded computations, Bull. EATCS 35 (1988) 82-92.

HARTMANIS, 1. and L. HEMACHANDRA, Complexity classes without machines: On complete languages
for UP, Theoret. Comput. Sci. 58 (1988) 129-142.

HARTMANIS, J. and J.E. HOPCROFT, Independence results in computer science, SIGACT News 8(4)
(1976) 13-24.

156

[110]

[111]
[112)
[113]
[114]

[115]
[116]

(117
[118]
(119]
[120]
[121]
[122]
[123])
[124]
[125]
[126]
[127)
(128]
[129]
{1303
[131]
[132)
[133]
[134]
[135)

[136]

D.S. JOHNSON

HARTMANTS, J. and N. IMMERMAN, On complete problems for NP~co-NP, in: Proc. Internat. Coll. on
Automata, Languages, and Programming, Lecture Notes in Computer Science, Vol. 194 (Springer,
Berlin, 1985) 250-259.

HaArTMANIS, J., N. IMMERMAN and V. SEWELSON, Sparse sets in NP~P: EXPTIME versus
NEXPTIME, Inform. and Control 65 (1985) 159-181.

HARrTMANIS, J,, P.M. LEWIS and R.E. STEARNS, Classification of computations by time and memory
requirements, in: Proc. IFIP Congress 1965 (Spartan, New York, 1965) 31-35.

HARTMANIS, J. and R.E. STEARNS, On the computational complexity of algorithms, Trans. Amer.
Math. Soc. 117 (1965) 285-306.

HASTAD, J,, Improved lower bounds for small depth circuits, in: Proc. 18th Ann. ACM Symp. on
Theory of Computing (1986) 6-20.

HASTAD, 1., Computational Limitations for Small-Depth Circuits (MIT Press, Cambridge, MA, 1987).
HEMACHANDRA, L.A,, The strong exponential hierarchy collapses, in: Proc. 19th Ann. ACM Symp. on
Theory of Computing (1987) 110-122; also: J. Comput. System Sci. 39 (1989) 299-322.
HEMACHANDRA, L.A,, Structure of complexity classes: separations, collapses, and completeness, in:
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 324
(Springer, Berlin, 1988) 59-73.

HEMACHANDRA, L.A., Private communication, 1989.

HEMACHANDRA, L.A. and S. JAIN, On relativization and the existence of Turing complete sets, Report
No. TR-297, Computer Science Dept., Univ. of Rochester, Rochester, NY, 1989,

HOMER, S. and A.L. SELMAN, Oracles for structural properties: the isomorphism problem and
public-key cryptography, in: Proc. Structure in Complexity Theory (4th Ann. 1EEE Conf.) (1989) 3-
14.

Hoover, HJ. and W.L. Ruzzo, A compendium of problems complete for P, Manuscript, 1985.
HoPCROFT, J.E. and J.D. ULLMAN, Introduction to Automata Theory, Languages, and Computation
(Addison-Wesley, Reading, MA, 1979).

HUNT, J.W., Topics in probabilistic complexity, Ph.D. Dissertation, Dept. of Electrical Engineering.
Stanford Univ., Stanford, CA, 1978.

IMMERMAN, N., Expressibility as a complexity measure: resuits and directions, in: Proc. Structure in
Complexity Theory (2nd Ann. IEEE Conf.) (1987) 194-202.

IMMERMAN, N., Nondeterministic space is closed under complementation, SIAM J. Comput. 17 (1988)
935-938.

IMMERMAN, N. and S.R. MAHANEY, Oracles for which NP has polynomial size circuits, in: Proc. Conf.
on Complexity Theory (1983) 89-93.

IRVING, RW,, An efficient algorithm for the stable room-mates problem, J. Algorithms 6 (1985)
577-595.

Jazavery, M., W.F. OGDEN and W.C. ROUNDSs, The intrinsically exponential complexity of the
circularity problem for attribute grammars, Comm. ACM 18 (1975) 697-706.

JoHnsoN, D.S., The NP-completeness column: an ongoing guide (1st edition), J. Algorithms 2 (1981)
393-405.

JounsoN, D.S., The NP-completeness column: an ongoing guide (7th edition), J. Algorithms 4 (1983)
189-203,

JOHNSON, D.S., The NP-completeness column: an ongoing guide (9th edition), J. Algorithms 4 (1983)
397-411.

JoHNsoN, D.S., The NP-completeness column: an ongoing guide (12th edition), J. Algorithms 5 (1984)
433-447.

Jounson, D.S., The NP-completeness column: an ongoing guide (15th edition), J. Algorithms 6 (1985)
291-305.

JoHnsoN, D.S,, The NP-completeness column: an ongoing guide (17th edition): Computing with one
hand tied behind your back, J. Algorithms 7 (1986) 289-305.

JoHNSON, D.S., The NP-completeness column: an ongoing guide (19th edition): The many faces of
polynomial time, J. Algorithms 8 (1987) 285-303.

JounsoN, D.S., The NP-completeness column: an ongoing guide (20th edition): Announcements,
updates, and greatest hits, J. Algorithms 8 (1987) 438-448.

[137

[138]
[139]
[140]

[141]
[142]

[143)
[144]
[145]
[146)
[147]

[148]
[149]

[150)

[151]
[152]

[153]

[154]
[155]
[156]
[157]
[158)
[159]
{160]
[161]
[162]

[163]
[164]

A CATALOG OF COMPLEXITY CLASSES 157

JoHNsON, D.S.,, The NP-completeness column: an ongoing guide (21st edition): Interactive proof
systems for fun and profit, J. Algorithms 9 (1988) 426-444.

Jongs, N.D., Space-bouned reducibility among combinatorial problems, J. Comput. System Sci. 11

(1975) 68-85.

Jones, N.D. and W.T. LAASER, Complete problems for deterministic polynomial time, Theoret.
Comput. Sci. 3 (1976) 105-117.

Jones, N.D., Y.E. LiEN and W.T. LAASER, New problems complete for nondeterministic log space,
Math. Systems Theory 10 (1976) 1-17.

JosepH, D., Polynomial time computations in models of ET, J. Comput. System Sci. 26 (1983} 31 1-338.
JosepH. D. and P. YOUNG, Independence results in computer science?, J. Comput. System Sci. 23
(1981) 205-222.

JosepH, D. and P. YOUNG, Corrigendum, J. Comput. System Sci. 24 (1982) 378.

Josepr, D. and P. YOUNG, A survey of some recent results on computational complexity in weak
theories of arithmetic, Report No. 83-10-01, Computer Science Dept., Univ. of Wisconsin, Madison,
WI, 1983.

JosepH, D. and P. YOUNG, Some remarks on witness functions for nonpolynomial and noncomplete
sets in NP, Theoret. Comput. Sci. 39 (1985) 225-237.

KADIN, ., PNPUee"} and sparse Turing-complete sets for NP, in: Proc. Structure in Complexity Theory
(2nd Ann. IEEE Conf.) (1987) 33—40.

KADIN, 3., The polynomial hierarchy collapses if the Boolean hierarchy collapses, SIAM J. Comput. 17
(1988) 1263-1282 (errors in the proof in this paper are corrected in [53]).

KARLOFF, H., A Las Vegas RNC algorithm for maximum matching, Combinatorica 6 (1986) 387-392.

KARMARKAR, N., A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984)
373-395. .

KarP, R. M., Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds.,
Complexity of Computer Computations (Plenum Press, New York, 1972) 85-103.

KARP, R.M., On the complexity of combinatorial problems, Networks 5 (1975) 45-68.

KarP, RM. and RJ. LIPTON, Some connections between nonuniform and uniform complexity
classes, in: Proc. 12th Ann. ACM Symp. on Theory of Computing (1980) 302-309; appeared in journal
form as: R.M. KARP and R.J. LipToN, Turing machines that take advice, Enseign. Math. 28 (1982)
191-209.

KarP, R.M. and V. RAMACHANDRAN, Parallel algorithms for shared-memory machines, in: J. van

Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. A (North-Holland, Amsterdam, 1990}
869-941.

Karp, R M., E. UPFAL and A. WIGDERSON, Constructing a maximum matching is in random NC,
Combinatorica 6 (1986) 3548.

KARP, R.M., E. UPFAL and A. WIGDERSON, The complexity of parallel search, J. Comput. System Sci.
36 (1988) 225-253.

KARP, R.M. and A. WIGDERSON, A fast parallel algorithm for the maximal independent set problem, J.
Assoc. Comput. Mach. 32 (1986) 762-773.

KHACHIYAN, L.G., A polynomial algorithm in linear programming, Dokl. Akad. Nauk. SSSR 244
(1979) 1093-1096 (in Russian); English translation in: Soviet Math. Dokl. 20 (1979) 191-194.

KO0, K.-L, Some observations on the probabilistic algorithms and NP-hard problems, Inform. Process.
Lert. 14 (1982) 39-43.

Ko. K.-L, Relativized polynomial time hierarchies having exactly K levels, SIAM J. Comput. 18(1989)
392-408.

KOBLER, J., U. SCHONING, S. Topa and J. TORAN, Turing machines with few accepting computations
and low sets for PP, in: Proc. Structure in Complexity Theory (4th Ann. IEEE Conf.) (1989) 208-215.
KOBLER, 1., U. SCRONING and J. TORAN, On counting and approximation, Acta Inform. 26 (1989)
363-379.

KozeN, D, A clique problem equivalent to graph isomorphism, Manuscript, 1978.

KRENTEL, M., The complexity of optimization problems, J. Comput. System Sci. 36 (1988) 490-509.

KRENTEL, M., Generalizations of OptP to the polynomial hierarchy, Report No. TR88-79, Dept. of
Computer Science, Rice Univ.,, Houston, TX, 1988.

158

[165]
: [166]

[167])

[168]
[169]

[170]

(171}
[172)

[173]
[174]
[175]
(176]

| (177

[178]
[179]

[180]
(1813
[182]
[183]
[184]

[185])

[186]
[187]
[188]
[189]

[190)

[191]
(1923

(193]

D.S. JOHNSON

KURTZ, S.A., On the random oracle hypothesis, Inform. and Control 57 (1983) 4047.

KURTZ S.A., S.R. MAHANEY and J.S. ROYER, The isomorphism conjecture fails relative to a random
oracle, in: Proc. 21st Ann. ACM Symp. on Theory of Computing (1989) 157-166.

LADNER, R.E., On the structure of polynomial time reducibility, J. Assoc. Comput. Mach. 22 (1975)
155-171.

LADNER, R.E., The circuit value problem is log space complete for P, SIGACT News 7(1)(1975) 18-20.
LADNER, R.E. and N.A. LYNCH, Relativizations about questions of log space computability, J.
Comput. System Sci. 10 (1976) 19-32.

LADNER, R.E., N.A. LyNcH and AL. SELMAN, A comparison of polynomial time reducibilities,
Theoret. Comput. Sci. 1 (1975) 103-124.

LAUTEMANN, C., BPP and the polynomial hierarchy, Inform. Process. Lett. 17 (1983) 215-218.
LEGGETT JR, EW. and D.J. MOORE, Optimization problems and the polynomial hierarchy, Theoret.
Comput. Sci. 15 (1981) 279-289.

LEIVANT, D., Unprovability of theorems of complexity theory in weak number theories, Theoret.
Comput. Sci. 18 (1982) 259-268.

LEVIN, L.A., Universal sorting problems, Problemy Peredaci Informacii 9 (1973) 115-116 (in
Russian);, English translation in: Problems of Information Transmission 9 (1973) 265-266.

Lewis, H.R. and C.H. PAPADIMITRIOU, Symmetric space-bounded computation, Theoret. Comput.
Sci. 19 (1982) 161-187.

LICHTENSTEIN, D. and M. SipsEr, GO is polynomial-space hard, J. Assoc. Comput. Mach. 27 (1980)
393401.

LONG, T.J., Strong nondeterministic polynomial-time reducibilities, Theoret. Comput. Sci. 21 (1982)
1-25.

LyNcH, N., Log space machines with multiple oracle tapes, Theoret. Comput. Sci. 6 (1978) 25-39.
MAHANEY, S.R., Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis, J.
Comput. System Sci. 25 (1982) 130--143.

MAHANEY, S.R., Sparse sets and reducibilities, in: R.V. Book, ed., Studies in Complexity Theory (Wiley,
New York, 1986) 63-118.

MAHANEY, S.R. and P. YOUNG, Reductions among polynomial isomorphism types, Theoret. Comput.
Sci. 39 (1985) 207-224.

MANDERS, K. and L. ADLEMAN, NP-complete decision problems for binary quadratics, J. Comput.
System Sci. 16 (1978) 168-184.

MATHON, R., A note on the graph isomorphism counting problem, Inform. Process. Lett. 8 (1979)
131-132.

MATUACEVIC, Y, Enumerable sets are Diophantine, Dokl. Akad. Nauk. SSSR 191 (1970) 279-282
{in Russian); English translation in: Soviet Math. Doklady 11 (1970) 354-357.

MaYR, E.W. and A.S. SUBRAMANIAN, The complexity of circuit value and network stability, in: Proc.
Structure in Complexity Theory (4th Ann. IEEE Conf.) (1989) 114-123.

MEYER, A.R., Weak monadic second order theory of successor is not elementary recursive,
Manuscript, 1973.

MEYER, A.R. and L.J. STOCKMEYER, The equivalence problem for regular expressions with squaring
requires exponential time, in: Proc. 13th Ann. IEEE Symp. on Switching and Automata Theory (1972)
125-129.

MILLER, G.L., Riemann’s hypothesis and tests for primality, J. Comput. System Sci. 13 (1976) 300-317.
NisaN, N. and A. WIGDERSON, Hardness vs. randomness, in: Proc. 29th Ann. IEEE Symp. on
Foundations of Computer Science (1988) 2-11.

PapaDiMITRIOU, C.H., Games against nature, in: Proc. 24th Ann. IEEE Symp. on Foundations of
Computer Science (1983) 446-450; revised version appeared as: C.H. PAPADIMITRIOU, Games against
nature, J. Comput. System Sci. 31 (1985) 288-301.

PapaDiMiTRIOU, C.H., On the complexity of unique solutions, J. Assoc. Comput. Mach. 31 (1984)
392-400.

PapapiMITRIOU, C.H. and K. STEIGLITZ, Combinatorial Optimization: Algorithms and Complexity
(Prentice-Hall, Englewood Cliffs, NJ, 1982).

PapapiMITRIOU, C.H. and D. WOLFE, The complexity of facets resolved, J. Comput. System Sci. 37
(1988) 2-13.

[194]
[195]

[196]

[197]

[198]

[199]
[200]

[201]
[202]

[203]

[204]
[205]

[206]

[207)
[208)
[209]

[210]
[211]

212
[213]
[214]
[215]
[216]
[217)

[218)
[219]

[220]

(221]

A CATALOG OF COMPLEXITY CLASSES 159

PAPADIMITRIOU, C.H. and M. YANNAKAKIS, The complexity of facets (and some facets of complexity),
J. Comput. System Sci. 28 (1984) 244-259.

PapADIMITRIOU, C.H. and M. YANNAKAKIS, A note on succinct representations of graphs, Inform. and
Control 71 (1986) 181-185.

PAPADIMITRIOU, C.H. and S. ZacHos, Two remarks on the power of counting, in: Proc. 6th GI Conf.
on Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 145 (Springer, Berlin,
1983) 269-276.

PauL, W.J,, N. PIPPENGER, E. SZEMEREDI and W.T. TROTTER, On determinism versus non-determinism
and related problems, in: Proc. 24th Ann. IEEE Symp. on Foundations of Computer Science
(1983) 429-438. .

PIPPENGER, N., On simultaneous resource bounds, in: Proc. 20th Ann. IEEE Symp. on Foundations of
Computer Science (1979) 307-311.

PRrATT, V., Every prime has a succinct certificate, SIAM J. Comput. 4 (1975) 214-220.

PROVAN, J.S., The complexity of reliability computations in planar and acyclic graphs, SIAM J.
Comput. 15 (1986) 694-702. .

RABIN, M.O,, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980) 128-138.
RACKOFF, C., Relativized questions involving probabilistic algorithms, J. Assoc. Comput. Mach. 29
(1982) 261-268.

RAZBOROV, A.A., Lower bounds for the size of bounded-depth networks over a complete basis with
logical addition, Mat. Zametki 41 (1987) 598607 (in Russian); English translation in: Math. Notes
Acad. Sci. USSR 41 (1987) 333-338. '

REGAN, K., The topology of provability in complexity theory, J. Comput. System Sci. 36 (1988)
384-432. -

REIF, J.H., Universal games of incomplete information, in: Proc. I Ith Ann. ACM Symp. on Theory of
Computing (1979) 288-308.

REIF, J.H., Complexity of the mover’s problem and generalizations, in: Proc. 20th Ann. IEEE Symp.on
Foundations of Computer Science (1979) 421-427; a formal version of this paper appeared as:

Complexity of the generalized movers problem, in: J. Schwartz, ed., Planning Geometry and
Complexity of Robot Motion (Ablex, Norwood, NJ, 1985) 421-453.

REiF, J.H,, Logarithmic depth circuits for algebraic functions, SIAM J. Comput. 15 (1986) 231-
282.

REIF, J.H., On threshold circuits and polynomial computation, in: Proc. Structure in Complexity
Theory (2nd Ann. IEEE Conf') (1987) 118-123.

RIvEsT, R., Cryptography, in: J. van Leeuwen, ed.,, Handbook of Theoretical Computer Science,
Vol. A (North-Holland, Amsterdam, 1990) 717-755.

ROBSON, J.M., N by N checkers is Exptime complete, SIAM J. Comput. 13 (1984) 252-267.
RUDICH, S., Limits on provable consequences of one-way functions, Doctoral Dissertation, Univ. of
California, Berkeley, CA, 1988. ‘

Ruzzo, W.L., Tree-size bounded alternation, J. Comput. System Sci. 21 (1980) 218-235.

Ruzzo, W.L., On uniform circuit complexity, J. Comput. System Sci. 22 (1981) 365-383.
SALOMAA, A., Formal languages and power series, in: J. van Lecuwen, ed., Handbook of Theoretical
Computer Science, Vol. B (North-Holland, Amsterdam, 1990).

SANTHA, M., Relativized Arthur—Merlin versus Merlin—Arthur games, Inform. and Comput. 80 (1989)
44-49.

Savitch, W.J., Relationship between nondeterministic and deterministic tape classes, J. Comput.
System Sci. 4 (1970) 177-192.

SaviTcH, W.J., Nondeterministic log n space, in: Proc. 8th Ann. Princeton Conf. on Information
Sciences and Systems, Dept. of Electrical Engineering, Princeton Univ., Princeton, NJ (1974) 21-23.
SAVITCH, W.J., A note on relativized log space, Math. Systems Theory 16 (1983) 229-235.
SCHAEFER, T.J., Complexity of some two-person perfect-information games, J. Comput. System Sci. 16
(1978) 185-225.

SCHONING, U., Graph isomorphism is in the low hierarchy, in: Proc. 4th Symp. on Theoretical Aspects
of Computing, Lecture Notes in Computer Science, Vol. 247 (Springer, Berlin, 1986) 114-124.
ScHWARTZ, J.T., Fast probabilistic algorithms for verification of polynomial identities, J. Assoc.
Comput. Mach. 27 (1980) 710-717. :

160

[222]
[223]

(224]
[225)
[226]
[227]

[228]

[229)
[230)
[231)
[232]
[233]
[234]
[235)
[236]
[237]
[238]
[239]
[240]
[241]
[242]
[243]
[244)
[245]
[246]
{247
[248]
[249]
[250]

[251]

D.S. JOHNSON

SESFERAS, 1.1, Relating refined space complexity classes, J. Comput. System Sci. 14 (1977) 100-129.
SEIFERAS, J.I, M.J. FisCHER and A.R. MEYER, Separating nondeterministic time complexity classes,
J. Assoc. Comput. Mach. 25 (1978) 146-167.

SHMovs, D.B. and E. TARDOS, Computational complexity, in: Handbook of Combinatorics (North-
Holland, Amsterdam, to appear).

SIMON, 1., On some central problems in computational complexity, Doctoral Thesis, Dept. of
Computer Science, Cornell Univ.,, Ithaca, NY, 1975.

SimMon, J., Space-bounded probabilistic Turing machine complexity classes are closed under
complement, in: Proc. 13th Ann. ACM Symp. on Theory of Computing (1981) 158-167.

SIMON, J., On tape-bounded probabilistic Turing machine acceptors, Theoret. Comput. Sci. 16 (1981)
75-91.

SIPSER, M., On relativization and the existence of complete sets, in: Proc. Internat. Coll. on Automata,
Languages, and Programming, Lecture Notes in Computer Science, Vol. 140 (Springer, Berlin, 1982)
523-531.

SIPSER, M., Borel sets and circuit complexity, in: Proc. 15th Ann. ACM Symp. on Theory of Computing
(1983) 61-69.

SIPSER, M., A complexity theoretic approach to randomness, in: Proc. 15th Ann. ACM Symp. on
Theory of Computing (1983) 330-335.

SKYUM, S., and L.G. VALIANT, A complexity theory based on Boolean algebra, J. Assoc. Comput.
Mach. 32 (1985) 484-502.

SMOLENSKI, R., Algebraic methods in the theory of lower bounds for Boolean circuit complexity, in:
Proc. 19th Ann. ACM Symp. on Theory of Computing (1987) 77-82.

SOLOVAY, R. and V. STRASSEN, A fast Monte-Carlo test for primality, SIAM J. Comput. 6(1977) 84-85.
STOCKMEYER, L., The polynomial time hierarchy, Theoret. Comput. Sci. 3 (1976) 1-22.
STOCKMEYER, L., On approximation algorithms for #P, SIAM J. Comput. 14 (1985) 849-861.
STOCKMEYER, L., Classifying the computational complexity of problems, J. Symbolic Logic §2(1987)
1-43.

STOCKMEYER, L.J. and A.R. MEYER, Word problems requiring exponential time, in: Proc. 5th Ann.
ACM Symp. on Theory of Computing (1973) 1-5.

SuDBOROUGH, L.H., On the tape complexity of deterministic context-free languages, J. Assoc. Comput.
Mach. 25 (1978) 405414,

SzeLEPCSENYI, R., The method of forcing for nondeterministic automata, Bull. EATCS 33 (1987)
96-100.

Topa, S.. On the computational power of PP and @P, in: Proc. 30th Ann. IEEE Symp. on Foundations
of Computer Science (1989) 514-519.

TORAN, J., Structural properties of the counting hierarchies, Doctoral Dissertation, Facultat
d'Informatica, UPC Barcelona, 1988.

VALIANT, L.G., Relative complexity of checking and evatuating, Inform. Process. Lett. 5(1976) 20-23.
VALIANT, L.G., The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979) 189-201.
VALIANT, L.G., The complexity of enumeration and reliability problems, SIAM J. Comput. 8(1979)
410-421.

VALIANT, L.G. and V.V. VAzIRANL, NP is as easy as detecting unique solutions, Theoret. Comput. Sci.
47 (1986) 85-93. :

VaN EMDE Boas, P., Machine models and simulations, in: J. van Leeuwen, ed., Handbook of
Theoretical Computer Science, Vol. A (North-Holland, Amsterdam, 1990) 1-66.

VAN LEEUWEN, J., Graph algorithms, in: J. van Leeuwen, ed., Handbook of Theoretical Computer
Science, Vol. A (North-Holland, Amsterdam, 1990) 525-631.

Vazirani, U.V. and V.V. VaZIRANY, A natural encoding scheme proved probabilistic polynomial
complete, Theoret. Comput. Sci. 24 (1983) 291-300.

VENKATESWARAN, H. and M. TOMPA, A new pebble game that characterizes parallel complexity
classes, SIAM J. Comput. 18 (1989) 533-549.

WAGNER, K.W., Bounded query computation, in: Proc. Structure in Complexity Theory (3rd Ann.
IEEE Conf.) (1988) 260-277.

WANG, H., Proving theorems by pattern recognition, Bell Systems Tech. J. 40 (1961) 1-42.

[252)
[253)
[254]

(255
[256)

(2571
[258]
[2591

[260]
[261]

[262)
[263]
[264)
[265]
[266]
(267

[268]

A CATALOG OF COMPLEXITY CLASSES 161

WECHSUNG, G., On the Boolean closure of NP, in: Proc. Internat. Conf. on Fundamentals of
Computation Theory, Lecture Notes in Computer Science, Vol. 199 (Springer, Berlin, 1985) 485-493.
WiLson, C.B., Relativized circuit complexity, in: Proc. 24th Ann. IEEE Symp. on Foundations of
Computer Science (1983) 329-334.

WiLsoN, C.B., A measure of relativized space which is faithful with respect to depth, J. Comput. System
Sci. 36 (1988) 303-312.

WRATHALL, C., Complete sets for the polynomial time hierarchy, Theoret. Comput. Sci. 3(1976) 23-34.
Yao, A.C., Theory and applications of trapdoor functions, in: Proc. 23rd Ann. 1EEE Symp. on
Foundations of Computer Science (1982) 80-91.

YA0, A.C.-C., Separating the polynomial-time hierarchy by oracles, in: Proc. 26th Ann. 1IEEE Symp.on
Foundations of Computer Science (1985) 1-10.

YOUNG, P., Some structural properties of polynomial reducibilities and sets in NP, in: Proc. 1 5th Ann.
ACM Symp. on Theory of Computing (1983) 392-401.

ZACHOS, S., Collapsing probabilistic polynomial hierarchies, in: Proc. Conf. on Complexity Theory
(1983) 75-81.

ZACHOS, S., Probabilistic quantifiers and games, J. Comput. System Sci. 36 (1988) 433-451.
ZAcHos, S. and H. HELLER, A decisive characterization of BPP, Inform. and Control 69 (1986)
125-135.

BABAI, L., Talk presented at the 21st Annual Symposium on Foundation of Computer Science, San
Juan, Puerto Rico, October 29, 1979 (not in the Proceedings).

Banal, L., L. FOrTNOW and C. LUND, Non-deterministic exponential time has two-prover interactive
protocols, Manuscript, 1990.

CHEN, J., A new complete problem for DSPACE(log n), Discrete Applied Math. 25 (1989) 19-26.
CooK, S.A., Personal communication correcting typographical error in [63].

CooOK, S.A. and P. MCKENZIE, Problems complete for deterministic logarithmic space, J. Algorithms
8 (1987) 385-394. :

LunD, C., L. FOrRTNOW, H. KARLOFF and N. Nisan, The polynomial time hierarchy has interactive
proofs, Announcement by electronic mail, December 13, 1989.

SHAMIR, A., IP=PSPACE, Manuscript, 1989.

