Exercise 1 (5 credits) Recall the following characterizations of the complexity classes \(\Sigma_i^P \) and \(\Pi_i^P \) for \(i \geq 1 \).

Theorem.

- Let \(L \) be a language and \(i \geq 1 \). Then \(L \in \Sigma_i^P \) iff there is a polynomially balanced relation \(R \) such that the language \(\{ x \# y \mid (x, y) \in R \} \) is in \(\Pi_{i-1}^P \) and
 \[
 L = \{ x \mid \text{there exists a } y \text{ with } |y| \leq |x|^k \text{ s.t. } (x, y) \in R \}
 \]

- Let \(L \) be a language and \(i \geq 1 \). Then \(L \in \Pi_i^P \) iff there is a polynomially balanced relation \(R \) such that the language \(\{ x \# y \mid (x, y) \in R \} \) is in \(\Sigma_{i-1}^P \) and
 \[
 L = \{ x \mid \text{for all } y \text{ with } |y| \leq |x|^k, (x, y) \in R \}
 \]

Corollary.

- Let \(L \) be a language and \(i \geq 1 \). Then \(L \in \Sigma_i^P \) iff there is a polynomially balanced, polynomial-time decidable \((i + 1)\)-ary relation \(R \) such that
 \[
 L = \{ x \mid \exists y_1 \forall y_2 \exists y_3 \cdots Q y_i \text{ such that } (x, y_1, \ldots, y_i) \in R \}
 \]
 where \(Q \) is \(\forall \) if \(i \) is even and \(\exists \) if \(i \) is odd.

- Let \(L \) be a language and \(i \geq 1 \). Then \(L \in \Pi_i^P \) iff there is a polynomially balanced, polynomial-time decidable \((i + 1)\)-ary relation \(R \) such that
 \[
 L = \{ x \mid \forall y_1 \exists y_2 \forall y_3 \cdots Q y_i \text{ such that } (x, y_1, \ldots, y_i) \in R \}
 \]
 where \(Q \) is \(\exists \) if \(i \) is even and \(\forall \) if \(i \) is odd.

Give a rigorous proof of this corollary.
Hint. Use the above theorem and proceed by induction on i. It suffices to prove the correctness of the characterization of $\Sigma_i P$. You may use the characterization of $\Pi_i P$ in the induction step.

Exercise 2 (5 credits) Recall the $\Sigma_2 P$-hardness proof of MINIMAL MODEL SAT by reduction from the QSAT_2-problem: Let an arbitrary instance of QSAT_2 be given by the QBF

$$
\psi = (\exists x_1, \ldots, x_k)(\forall y_1, \ldots, y_\ell)\varphi
$$

Now let $\{x'_1, \ldots, x'_k, z\}$ be fresh propositional variables. Then we construct an instance of MINIMAL MODEL SAT by the variable z and the formula

$$
\chi = (\bigwedge_{i=1}^k (\neg x_i \leftrightarrow x'_i)) \land (\neg \varphi \lor (y_1 \land \ldots \land y_\ell \land z))
$$

Recall from the lecture that we have already proved the following implication:

ψ is true (in every interpretation) \Rightarrow z is true in a minimal model of χ.

Give a rigorous proof also of the opposite direction, i.e.:

z is true in a minimal model of χ \Rightarrow ψ is true (in every interpretation).

Hint. Let J be a minimal model of χ and let z be true in J.

- First show that then $J(y_j) = \text{true}$ for every j.
- Second, let I be the truth assignment obtained by restricting J to the variables $\{x_1, \ldots, x_k\}$. Show that (by the minimality of J) I is indeed a partial assignment on $\{x_1, \ldots, x_k\}$ s.t. for any values assigned to $\{y_1, \ldots, y_\ell\}$, the formula φ is true.