
Supplementary Material for “Variable-Deletion Backdoors to Planning” to appear at AAAI-2015
Martin Kronegger, Sebastian Ordyniak, Andreas Pfandler

In this document, we use the following notation: For n ∈ N, we use [n] to denote the set {1, . . . , n}.

Additional Notions and Definitions
In this section we introduce some additional notions and definitions that are not required for the main text but only for some of
the proofs in the appendix

Let P be a SAS+ PLANNING instance and S be a c-Extended Causal Backdoor of P. Let C1 and C2 be two components
in C(P, S) that are equivalent using the isomorphism ϕ from P(V (C1) ∪ S) to P(V (C2) ∪ S), s1 ∈ ST(P(V (C1))), s2 ∈
ST(P(V (C2))), and a ∈ A with at least one precondition or effect on C1, then we say an action a′ ∈ A corresponds to a in C2 if
a′ = ϕ(a) and we write s1 = s2 if s1[v1] = ϕ(s2[ϕ(v1)]) for every v1 ∈ V (C1).

For the proof of Theorem 5 we need to formally define the problem PARTITIONED CLIQUE. Given a k-partite graph G = (V,E)
with partition {P1, . . . , Pk} of V into sets of equal size, we want to find a k-clique, i.e., a set V ′ ⊆ V of k vertices such that
∀u, v ∈ V ′, with u 6= v there is an edge {u, v} ∈ E, and ∀i ∈ [k] it holds that |V ′ ∩ Pi| = 1. The problem is known to be
W[1]-complete when parameterized by k (Pietrzak 2003).

A polynomial parameter transformation (PPT) from a parameterized problem P to a parameterized problem Q is a pa-
rameterized reduction from P to Q that maps instances 〈I, k〉 of P to instances 〈I′, k′〉 of Q with the additional property
that

1. 〈I′, k′〉 can be computed in time that is polynomial in |I|+ k, and

2. k′ is bounded by some polynomial p of k.

Proposition 17 ((Bäckström et al. 2013a, Proposition 4)). Let P and Q be two parameterized problems such that there is a
polynomial parameter reduction from P to Q. Then, if Q has a polynomial bi-kernel also P has a polynomial bi-kernel.

A strong OR-composition algorithm for a parameterized problem P maps t instances 〈I1, k1〉, . . . , 〈It, kt〉 of P to one instance
〈I, k〉 of P such that the algorithm runs in time polynomial in

∑
1≤i≤t |Ii| + max1≤i≤t ki, the parameter k is bounded by a

polynomial in max1≤i≤t ki, and 〈I, k〉 ∈ P if and only if there is an i, where 1 ≤ i ≤ t, such that 〈Ii, ki〉 ∈ P .

Proposition 18 ((Bäckström et al. 2013a, Proposition 4)). If a parameterized problem P has a strong OR-composition algorithm
and its unparameterized version is NP-hard, then it has no polynomial bi-kernel unless coNP ⊆ NP/poly.

Proof of Claim 1
Claim 1 (*). There is an equivalent instance 〈P′′, k′〉 with at most k′′ variables and at most (k′′)2 actions.

Proof. To prove this claim, we first show that in order to decide c-DET it suffices to keep a simple digraph H with at most k′′
vertices. This immediately yields a polynomial bi-kernel. After showing this polynomial bi-kernel we will show that H can in
fact be translated back to an instance 〈P′′, k′〉 of c-DET whose size is polynomially bounded in k′, i.e., we obtain a polynomial
kernel.

To start with, observe, that for the detection problem it suffices to only keep the extended causal graph. Furthermore, arcs
differing only in their label have no influence on the size of the backdoor since all arcs with the same endpoints will be deleted
whenever one of their endpoints is. Thus, H can be constructed as follows: H has the same vertices N as GE(P′) and for
each x, y ∈ N , H contains an arc (x, y) whenever GE(P′) contains an arc (x, y) with label l. The simple digraph H is then a
polynomial bi-kernel for 〈P, k〉.

In order to obtain a polynomial kernel, let us transform H into P′′ as follows. For every vertex v ∈ V (H) we introduce, by
slight abuse of notation, a variable v to the set of variables V . The domain D is set to be {0, 1}. Then, whenever there is an
arc (v, w) in H with v, w ∈ V (H), we add a new action a with pre(a)[v] = 0 and eff(a)[w] = 0 to the set of actions A. In the
initial state I all variables are set to 0 while the goal needs every variable to be 1. Clearly, the instance P′′ = 〈V,D,A, I,G〉 of
SAS+ PLANNING or BOUNDED SAS+ PLANNING is a trivial NO-instance but it is easy to see that

(i) IL(GE(P′′)) = H where IL(·) removes the labels from arcs in a labeled digraph to obtain a digraph, and thus
(ii) the instance 〈P′′, k′〉 of c-DET is equivalent to 〈P, k〉.

It is now easy to see that 〈P′′, k′〉 is a polynomial kernel.

Proof of Theorem 4
Theorem 4 (*). 2-EVAL is paraNP-hard.

Proof. We reduce from the well-known NP-complete problem 3-SAT. Let ϕ be a 3-CNF formula with variables x1, . . . , xn and
clauses C1, . . . , Cm. We construct an instance 〈P, S〉 of 2-EVAL as follows. P has two binary variables si and xi for every i with
1 ≤ i ≤ n and one variable ϕ with domain {0, . . . ,m}. Furthermore, for every i with 1 ≤ i ≤ n and b ∈ {0, 1}, P contains an
action axi

(b) such that pre(axi
(b))[si] = 0, eff(axi

(b))[si] = 1, and eff(axi
(b))[xi] = b. Finally, for every j with 1 ≤ j ≤ m

and l ∈ {1, 2, 3} such that xi or x̄i is the l-th literal of Cj , P contains the action alj such that pre(alj)[si] = 1, pre(alj)[ϕ] = j−1,
eff(alj)[ϕ] = j and either pre(alj)[xi] = 1 if xi is the l-th literal of Cj or pre(alj)[xi] = 0 if x̄i is the l-th literal of Cj . The initial
state requires all variables to have value 0 and the goal state only requires the variable ϕ to have value m. We now set S to
contain only the variable ϕ, which implies that cc-size(GE(P \ S)) ≤ c = 2, as required.

It is now straightforward to show that ϕ is satisfiable if and only if P has a plan.

Proof of Theorem 5
Theorem 5 (*). c-BOUNDED EVAL is W[1]-hard (even if additionally parameterized by the number of variables) and in XP.

Proof. We present a reduction from PARTITIONED CLIQUE. Let G′ = (V,E) be a k-partite graph where V is partitioned into
P1, . . . , Pk with |Pi| = |Pj | for i, j ∈ [k] and let V = {v1, . . . , vn}. We create an instance 〈P, k′′, S〉 of c-BOUNDED EVAL
as follows. The set of variables is given by V ′ := P ∪ C, where P = {P1, . . . , Pk} contains (by slight abuse of notation)
variables representing the partitions of the vertices of graph G′ and C = {ci,j | 1 ≤ i < j ≤ k} contains a set of pair-variables
representing the edges between the partitions that have to be covered. The domain elements are used to represent the state of the
pair variables as well as the vertices of the graph and hence we define D := {0, 1} ∪ V . We create two sets of actions:
• An action setji is contained in set Asel for each i ∈ [k] such that j ∈ Pi. We define the precondition as pre(setji)[Pi] = 0 and

the effect as eff(setji)[Pi] = j.
• For each edge {vi, vj} ∈ E such that vi ∈ Pi′ , vj ∈ Pj′ , for 1 ≤ i < j ≤ n and i′, j′ ∈ [k] (with i′ 6= j′) an action check i,j

is contained in the set Acheck. The preconditions and effects are given by pre(check i,j)[Pi′] = vi, pre(check i,j)[Pj′] = vj ,
and eff(check i,j)[ci′,j′] = 1.

In the following, let k′ =
(
k
2

)
. The set of actions is then given by A := Asel ∪ Acheck, the initial state by I := 0k+k′ , and

in the goal G we set all variables in Vcheck to 1 and all others to undefined (u). Finally, the constructed instance is given by
〈P, k′′ := k + k′, S := V ′〉 with P := 〈V ′, D,A, I,G〉.

In this construction the actions from Asel are used to assign the selected vertex to the respective partition. After that the actions
from Acheck are used to set the variables in C to 1 in order to reach the goal. As the bound on the plan length is k + k′ this is just
sufficient to assign k vertices to the k partitions and to set all edges of the k-clique to 1. This is, however, only possible if the
assigned vertices form a k-clique in G′.

Observe that S is a trivial variable-deletion backdoor set and that the number of variables |V ′| is indeed bounded by k + k′.
Furthermore, notice that the unbounded domain size is essential to represent the vertices to choose from. It is easy to verify that
〈P, k′′, S〉 is a YES-instance iff 〈k,G′, {V1, . . . , Vk}〉 is a YES-instance.

For the membership in XP notice that all possible plans of length k′′ can be trivially bounded by O(nk′′), which immediately
yields the membership result.

Proof of Lemma 6
Lemma 6 (*). |ET(P, S)| is at most c · ((|D|+ 1)2(c+|S|)) · 2(|D|+1)2(c+|S|) .

Proof. The claim of the lemma follows from the following observations for every component C ∈ C(P, S):

(i) C has at most c variables,
(ii) there are at most |D|c+|S| · (|D|+ 1)c+|S| ≤ (|D|+ 1)2(c+|S|) possible configurations for the initial state and for the goal

state on the variables in V (C) ∪ S,

(iii) there are at most (|D|+ 1)2(c+|S|) possible combinations of preconditions and effects for any action that involves only
variables in V (C) ∪ S,

(iv) there are at most (|D|+ 1)2(c+|S|) possible distinct actions that involve only variables in V (C) ∪ S,

(v) there are at most 2(|D|+1)2(c+|S|) distinct sets of actions that involve only variables in V (C) ∪ S.

Proof of Lemma 7
Lemma 7 (*). Given a SAS+ PLANNING instance P, a c-Extended Causal Backdoor S of P, and l ∈ N, we can solve c-EVAL
and c-BOUNDED EVAL of E(P, S, l) in time O(|D|V (E(P,S,l)) + |V | · |ET(P, S)|).

Proof. Let P, S, and l ∈ N be defined as in the statement of the lemma. Furthermore, let P′ = E(P, S, l) and k ∈ N. We need to
solve the instances I = 〈P′, S〉 of c-EVAL and IB = 〈P′, S, k〉 of c-BOUNDED EVAL. We do this by executing the following
three steps:

1) Compute the equivalence class with respect to ≡ of each component C in C(P, S).

2) Compute the reduced instance P′ from P by deleting all but at most l components for each equivalence class from P.

3) Compute the state-transition graph of the reduced instance P′ and solve I or IB , respectively. Return YES, if I or IB is a
YES-instance, respectively, and NO otherwise.

The runtime of the algorithm is obtained as follows. Step 1 needs time O(|V | · |ET(P, S)|) (recall that ET(P, S) is the number
of equivalence classes with respect to ≡), Step 2 can be executed in time O(|V |) (by using clever data structures), and Step 3
needs time at most O(|D|V (E(P,S,l))). Hence, the total runtime of the algorithm is O(|D|V (E(P,S,l)) + |V | · |ET(P, S)|).

Proof of Theorem 8
Theorem 8 (*). c-BOUNDED EVAL is fpt for instances with bounded domain.

Proof. Let I = 〈P, k, S〉 be an instance of c-BOUNDED EVAL. Because we only consider plans of length at most k for P and
every action of P effects at most one component, we obtain that every such plan of P changes variables of at most k components
of C(P, S). Hence, the instance P′ = E(P, S, k + 1) is equivalent to P. It follows from Lemma 7 that I can be solved in time
O(DV (P′) + |V | · |ET(P, S)|). Because P′ has at most |S|+ c · (k + 1) · |ET(P, S)| many variables, the result follows from the
upper bound for ET(P, S) given in Lemma 6.

Proof of Lemma 9
Lemma 9 (*). Let P be a SAS+ PLANNING instance and s1, s2 be two equivalent (total) states of the variables of P. Then, for
any plan from s1 to G in P, there is a plan from s2 to G in P of the same length, and vice versa.

Proof. Let ω1 be a plan from s1 to G in P. We show how to construct a plan ω2 from s2 to G in P of the same length as ω1.
For any action a ∈ A, we define the action a′ as follows:

(i) if a has no preconditions or effects on a component in C(P, S), we set a′ = a,

(ii) otherwise, let C1 be the component in C(P, S) such that a has at least one precondition or effect on C1 and let C2 be a
component in C(P, S) equivalent to C1 such that s1[C1] = s2[C2], then we set a′ to be the action that corresponds to a in
C2. Note that because ESV(P, S, s1) = ESV(P, S, s2) such a component C2 does always exist.

Then, ω2 is obtained from ω1 by replacing every action a ∈ ω1 with the action a′ as defined above. It is straightforward to show
that ω2 is a plan from s2 to G in ω. Because the reverse direction is symmetric this concludes the proof of the lemma.

Proof of Theorem 10
Theorem 10 (*). c-EVAL is in XP for planning instances with bounded domain.

Proof. Let I = 〈P, S〉 be an instance of c-EVAL with maximum domain size |D|, and let s be a (total) state of P. Then, the
vector v = ESV(P, S, s) has at most

∑i≤|ET(P,S)|
i=1 |ST(P(V (Ci)))| ≤ |ET(P, S)| · |D|c entries each of them reaching from 0 to

at most the number n of components of C(P, S). Similarly, the number of states of the variables of S is at most |D||S|. It follows
that the number of equivalent classes (of the total states of P) is at most (n + 1)|ET(P,S)|·|D|c · |D||S|. Using the upper bound on
ET(P, S) from Lemma 6, we obtain that for fixed c, |D|, and |S|, we can build the compressed state-transition graph, and hence
solve the instance I, in time that is polynomial in the input size, as required.

Proof of Theorem 11
Theorem 11. Let P be a SAS+ PLANNING instance with goal G, S be a c-Extended Causal Backdoor of P, d = ESV-D(P, S)+1,
and V(P, S) = 〈Q,∆〉 be the d-VASS obtained from P and S. Furthermore, let sI and sG be two V(P, S)-states (as defined
above) and g be the number of components C in C(P, S) with G[V (C)] 6= u. Then, sI and sG satisfy the following properties:
(P1) P has a plan of length at most k if and only if there is a covering of sG from sI in V(P, S) of length at most 2k + g + 2,
(P2) |Q| ≤ |ST(P(S))| · (1 + |A(P≡)|) + 1, (P3) ||∆|| ≤ 1, (P4) ||sG|| = g, and (P5) V(P, S) can be constructed in time
O(|ET(P, S)| · (|V |+ (|D|+ 1)2(|S|+c))).

Proof. We start by showing Property (P1). We need the following claim.
Claim 2 (*). There is a run of length l from sI to some V(P, S)-state se ∈ { 〈qs, v〉 | s ∈ ST(P(S)) and v ∈ Nd } if
and only if there is a total state s of P and a sequence ω of actions of length l−1

2 such that s is the result of ω in I and
se = 〈qs[S],ESV(P, S, s)∗〉.

The above claim follows by a repeated application of the following claim.
Claim 3. Let s be a total state of P. Then there is a run from 〈qs[S],ESV(P, S, s)∗〉 to some V(P, S)-state se ∈ { 〈qs, v〉 | s ∈
ST(P(S)) and v ∈ Nd } using (at most) 2 transitions if and only if there is a total state s′ and an action a of P such that s′ is the
result of a in s on P and se = 〈qs′[S],ESV(P, S, s′)∗〉.

Towards showing the forward direction of the claim, assume that there is a run r from 〈qs[S],ESV(P, S, s)∗〉 to some
se = 〈qe, ve〉 that uses (at most) two transitions. Because of the construction of V(P, S), r must use two transitions of the
form t1 = 〈qs[S], v1, qs[S],a≡〉 and t2 = 〈qs[S],a≡ , v2, qe〉 for some a≡ ∈ A≡. W.l.o.g. we will assume that a≡ has at least
one precondition or effect on some component C≡ ∈ C(P≡, S) (otherwise the proof becomes only easier). Because of S2
there is a unique nonzero entry of v1 and this entry has value −1 and corresponds to a state of C≡ that is compatible with
pre(a≡)[V (C≡)]. Because r is a run, we obtain that the corresponding entry in ESV(P, S, s)∗ is at least 1 and hence there is
a component C ∈ C(P, S) that is equivalent to C≡ such that s[V (C)] is compatible with the preconditions of the (unique)
action a in P(S ∪ V (C)) that is equivalent to a≡. Furthermore, again because of S2, the unique non-zero entry of v2 is +1
and corresponds to the result of a in s[V (C)] on P(V (C)). Let s′ be the result of a in s on P. Then, ve = ESV(P, S, s′)∗, as
required. It remains to show that e = s′[S]. But this follows immediately from S2, because s[S] ∈ Z(P≡, pre(a≡), S) and e[S]
is the result of a≡ in s[S] on P≡(S).

For the reverse direction, assume that s′ is the result of a in s on P. W.l.o.g., we can assume that a has at least one precondition
or effect on some component C ∈ C(P, S) as otherwise the proof would be merely simpler. Let a≡ be the unique action that
corresponds to a in P≡ and let C≡ be the unique component equivalent to C in P≡. Because s′ is the result of a in s, we obtain
that (1) s[S] ∈ Z(P≡, pre(a≡), S), (2) s[V (C)] ∈ Z(P≡, pre(a≡), V (C≡)), and (3) the ESV-I(P≡, S, C≡, s[V (C)])-th entry
of ESV(P, S, s) is at least 1. (1) and (2) together with S2 (second subitem) imply that there is a control point qs[S],a≡ and two
transitions t1 = 〈qs[S], v1, qs[S],a≡〉 and t2 = 〈qs[S],a≡ , v2, qs′[S]〉 , where v1 ∈ Nd is −1 at the ESV-I(P≡, S, C≡, s[V (C)])-th
entry and 0 on all other entries and v2 ∈ Nd is +1 at the ESV-I(P≡, S, C, s′[S])-th entry and 0 on all other entries. Hence, it
follows from (3) that executing the transitions t1 and t2 from the state 〈qs[S],ESV(P, S, s)∗〉 leads to the required run. This
concludes the proof of the claim.

Using Claim 2, we are now ready to Property (P1). Assume that ω = 〈a1, . . . , ak〉 is a plan for P that results in the state s. It
follows from Claim 2 that there is a run r from sI to 〈qs[S],ESV(P, S, s)∗〉 of length 2k + 1. Because s is a goal state, we obtain
from S3 that there is a transition t = 〈qs[S], 0, qG〉. Furthermore, again because s is a goal state, it follows that the sum of all
entries of ESV(P, S, s) that correspond to a goal state of some component is equal to g. Hence, we obtain a covering of sG from
sI of length 2k + 1 + 1 + g = 2k + g + 2, by appending t followed by all the g applicable transitions of the form 〈qG, v, qG〉
(obtained from S4) to r.

For the reverse direction assume that r is a covering of length l of sG from sI in V(P, S). Since all outgoing transitions
from qG are self-loops, we obtain that V(P, S)-states involving qG only appear (together) at the end of r. Let se be the last
state reached by r before the first occurrence of a state involving qG and let l′ be the length of the subsequence of r from sI to
se. Because the only transitions leading to a state involving qG are from states in { 〈qs, v〉 | s ∈ ST(P(S)) and v ∈ Nd }, we
obtain that se ∈ { 〈qs, v〉 | s ∈ ST(P(S)) and v ∈ Nd } (see S3). It follows from Claim 2 that there is a total state s of P and a
sequence of actions ω of length l′−1

2 such that s is the result of ω in I and se = 〈qs[S],ESV(P, S, s)∗〉. We claim that ω is a plan
of length l−g−2

2 for P. Since the only transitions leading to qG are of the form 〈qs′ , 0, qG〉 where s′ ∈ Z(P≡, G≡, S) (see S3),
we obtain that s[S] is compatible with G. Let 〈qG, v〉 be the last V(P, S)-state visited by r. Because r covers sG, we obtain that
v[d] ≥ g. Because all transitions that increase the value of the d-th dimension in V(P, S) also decrease the value of a dimension
that corresponds to some goal state of some component by the same amount (see S4), it follows that the number of components,
whose state in s is compatible with the goal state, is at least g. Because g is equal to the total number of components in C(P, S)
for which the goal state is defined (see S5), we obtain that all of these components have reached a goal state in s. Hence, s is
compatible with G. Because exactly g + 1 transitions are executed by r after the state se, we obtain that l′ = l− 1− g and hence
the length of ω is l′−1

2 = l−g−2
2 , as required.

Properties P2–P4 now follow immediately from the construction.
Towards showing Property P5, first note that to construct V(P, S) from P and S, we first need to construct P≡, which can be

done in time O(|V | · |ET(P, S)|) (see also the proof of Lemma 7) and then we need to execute steps S1–S5 of the construction
given in Section 3.2. Step S1 takes timeO(|D||S|), Step S2 takes timeO(|A(P≡)|·|D||S|+c) = O((|D|+1)2(|S|+c) ·|ET(P, S)|·
|D||S|+c) = O((|D|+ 1)2(|S|+c) · |ET(P, S)|), Step S3 takes time O(|D||S|), Step S4 takes time O(|ET(P, S)||D|c), and the
time needed for Step S5 is superseded by the time to construct P≡. Hence, the total runtime required to construct V(P, S) is
O(|ET(P, S)| · (|V |+ (|D|+ 1)2(|S|+c))), as required.

Proof of Lemma 14
Lemma 14 (*). Let I = 〈P, S〉 be an instance of c-EVAL that contains no mixed actions. Then I is equivalent to the c-EVAL
instance I′ = 〈P′, S〉, where P′ = E(P, S,m) and m = maxT∈ET(P,S) |ST(P(V (T)))|.

Proof. Let I = 〈P, S〉, I′ = 〈P′, S〉, and m be defined as in the statement of the lemma. We will show that P has a plan if and
only if P′ has a plan. Suppose that P has a plan ω = 〈a1, . . . , al〉. We will first inductively define sequences ω′(i) of actions of
P′, for every i with 0 ≤ i ≤ l, that satisfy the Properties P1–P4 below. In the following let si be the result of 〈a1, . . . , ai〉 in I on
P and let s′i be the result of ω′(i) in I ′ on P′.

P1 ω′(i) is a valid sequence of actions in P′ starting from I ′,
P2 si[S] = s′i[S].
P3 For every T ∈ ET(P, S) and every z ∈ ST(P(V (T))) \ {I[V (T)]}, the following holds: there is a component C ′ ∈ C(P′, S)

equivalent to T such that z = s′i[V (C ′)] if and only if there are j1 and j2 with 0 ≤ j1 ≤ i and i ≤ j2 ≤ l and two components
C1 and C2 equivalent to T in C(P, S) such that z = sj1 [V (C1)] and z = sj2 [V (C2)].

P4 For every T ∈ ET(P, S), the number of components C ′ ∈ C(P′, S) equivalent to T such that s′i[V (C ′)] = I ′[V (C ′)] is at
least the number of components equivalent to T in P′ minus the number of states z ∈ ST(T) \ {I[V (T)]} such that there is a
j with 0 ≤ j ≤ i and a component C ∈ C(P, S) such that sj [V (C)] = z.

We start by setting ω′(0) to the empty sequence. Clearly, ω′(0) satisfies the properties P1–P4. So suppose that we have already
constructed a sequence ω′(i− 1) satisfying the properties P1–P4. We show next how to obtain a sequence ω′(i) from ω′(i− 1)
that also satisfies the properties P1–P4. Depending on the preconditions and effects of ai, we distinguish the following cases:

• If ai has neither an effect nor a precondition on any component of C(P, S), we set ω′(i) = ω′(i − 1), 〈ai〉. Clearly, ω′(i)
satisfies the properties P1–P4.

• If ai has either a precondition or an effect on a component C in C(P, S) but si[V (C)] = si−1[V (C)], we set ω′(i) =
ω′(i − 1), 〈a′i〉, where a′i is the action that corresponds to ai in a component C ′ ∈ C(P′, S) equivalent to C such that
s′i−1[V (C ′)] = si−1[V (C)]. Note that such a component C ′ must always exists due to the properties P3 and P4. Clearly, ω′(i)
satisfies the properties P1–P4.

• Otherwise, i.e., if ai has either a precondition or an effect on a component C in C(P, S) and si[V (C)] 6= si−1[V (C)], we
distinguish the following cases:
– there is a j with 0 ≤ j < i and a component C ′ ∈ C(P, S) equivalent to C such that sj [V (C ′)] = si[V (C)], we again

distinguish the following cases:
∗ if si−1[V (C)] = I[V (C)], we set ω′(i) = ω′(i− 1). Clearly, ω′(i) satisfies the properties P1–P4.
∗ if there is a e with i < e ≤ l and a component C ′′ ∈ C(P, S) equivalent to C with si−1[V (C)] = se[V (C ′′)], we set
ω′(i) = ω′(i− 1). Clearly, ω′(i) satisfies the properties P1–P4.
∗ otherwise, let C1, . . . , Ct be all the components in C(P′, S) equivalent to C such that s′i−1[V (Cp)] = si−1[V (C)] for

every p with 1 ≤ p ≤ t. Furthermore, for every p with 1 ≤ p ≤ t, let api be the action in Cp that corresponds to ai. Then,
we set ω′(i) = ω′(i− 1), 〈a1i , . . . , ati〉. Clearly, ω′(i) satisfies the properties P1–P4.

– otherwise, we again distinguish the following cases:
∗ if si−1[V (C)] = I[V (C)], we set ω′(i) = ω′(i− 1), 〈a′i〉, where a′i is the action that corresponds to ai in a component
C ′ ∈ C(P′, S) equivalent to C such that s′i−1[V (C ′)] = si−1[V (C)]. Note that such a component C ′ always exists due to
Property P4. Clearly, ω′(i) satisfies the properties P1–P4.
∗ if si−1[V (C)] 6= I[V (C)] and for all j with i ≤ j ≤ l there is no component C ′′ ∈ C(P, S) equivalent to C such
that sj [V (C ′′)] = si−1[V (C)]. Let C1, . . . , Ct be all components in C(P′, S) equivalent to C such that s′i−1[V (Cq)] =

si−1[V (C)] and let a1i , . . . , a
t
i be the actions corresponding to ai in Cq for every 1 ≤ q ≤ t. Because of Property P3, we

have t ≥ 1. If t > 1 then we set ω′(i) = ω′(i − 1), 〈a1i 〉. Otherwise, let CI ∈ C(P′, S) be a component equivalent to
C such that s′i−1[V (CI)] = I ′[V (CI)] and for every action a in P′(C1 ∪ S) that has at least one effect in C1 let aI be
the corresponding action in CI . Note that such a component CI always exists due to Property P4. We obtain ω′(i) from

ω′(i− 1) by inserting the action aI after every occurrence of an action a in ω′(i− 1) that has at least one effect in C1.
Clearly, ω′(i) satisfies the properties P1–P4.
∗ otherwise, let C1, . . . , Ct be all the components in C(P′, S) equivalent to C such that s′i−1[V (Cp)] = si−1[V (C)] for

every p with 1 ≤ p ≤ t. Furthermore, for every p with 1 ≤ p ≤ t, let api be the action in Cp that corresponds to ai. Then,
we set ω′(i) = ω′(i− 1), 〈a1i , . . . , ati〉. Clearly, ω′(i) satisfies the properties P1–P4.

This shows that a sequence ω′(l) satisfying the properties P1–P4 can be constructed. Observe that already ω′(l) almost constitutes
a plan for P′. In particular, because ω is a plan for P, we obtain from Property P2 that s′l[S] is compatible with G′[S], and
Property P3 implies that for every component C in C(P′, S), with s′l[V (C)] 6= I ′[V (C)], it holds that s′l[V (C)] is compatible
with G′[V (C)]. Hence, it only remains to show how to extend ω′(l) to ensure that also the components that are still in the
initial state after applying ω′(l) to I ′ achieve a goal state. We achieve this by extending ω′(l) in the following way for every
T ∈ ET(P, S):

Let C1, . . . , Ct be the components equivalent to T in C(P′, S) such that s′l[V (Cq)] = I ′[V (Cq)] for every 1 ≤ q ≤ t. Clearly,
if t = 0 then all components in C(P′, S) that are equivalent to T have reached a goal state after executing ω′(l) and there is no
need to adapt ω′(l) for the components equivalent to T . Otherwise, i.e., if t ≥ 1, let C be a component in C(P′, S) equivalent to
T such that s′l[V (C)] is compatible with G′[V (C)]. Observe that such a component C must exits because of Property P3 and
our assumption that ω is a plan for P. Furthermore, for every action a of P′(C ∪ S) with at least one effect in C and for every
1 ≤ q ≤ t, let aq be the action of Cq that corresponds to a. In order to ensure that the components C1, . . . , Ct reach a goal state,
we insert the actions a1, . . . , at after every occurrence of an action a in ω(l) that has at least one effect on C. After applying the
above procedure for every T ∈ ET(P, S), we obtain a plan ω′ for P′. This shows the forward direction of our claim.

For the reverse direction suppose that P′ has a plan ω′. Because P′ is a sub-instance of P, we obtain that ω′ is a valid sequence
of actions for P that can be applied to the initial state. Let s be the result of ω′ in I on P. Because ω′ is a plan for P′, it
holds that s[V (P′)] is compatible with the goal state. It hence only remains to show how P′ can be extended to a plan for the
remaining variables (components) of P. We will obtain a plan ω for P by applying the following procedure for every component
C ∈ C(P, S) \ C(P′, S):

Because ω′ does not contain any actions with an effect on C, it holds that s[V (C)] = I[V (C)]. Furthermore, there is a
component C ′ of P′ (and hence also of P) such that C ′ is equivalent to C and s[V (C ′)] is compatible with G[V (C ′)]. For every
actions a′ of P(C ′ ∪ S) that has at least one effect on C ′, let a be the unique action of P(C ∪ S) that corresponds to a′ in C. To
ensure that C reaches a goal state, we insert the action a after every occurrence of an action a′ in ω′ that has at least one effect on
C ′. After applying the above procedure for every C ∈ C(P, S) \ C(P′, S), we obtain a plan ω for P.

Proof of Theorem 16
To obtain a kernelization lower-bound result for variable-deletion backdoors, we first show that SAS+ planning with bounded
domain does not admit a polynomial kernel when parameterized by the number of variables.

Lemma 19. SAS+ planning with bounded domain parameterized by the number of variables does not admit a polynomial kernel
unless coNP ⊆ NP/poly

Proof. We show this result by presenting a strong OR-composition for SAS+ planning under bounded domain parameterized by
the number of variables. Due to Proposition 18 this implies that SAS+ planning under bounded domain parameterized by the
number of variables does not have a polynomial (bi-)kernel unless coNP ⊆ NP/poly.

Let (P1, |V1|), . . . , (Pt, |Vt|) be a sequence of SAS+ instances where Pi = 〈Vi, Di, Ai, Ii, Gi〉, for i ∈ [t]. By Vmax we denote
an arbitrary element of {V1, . . . , Vt} of maximum cardinality. Furthermore let D = D1 ∪ · · · ∪Dt and p = |Vmax|. W.l.o.g. we
assume now that all instances P1, . . . ,Pt range over the variables Vmax and over domain D. Notice that this can easily be ensured
by renaming the variables of the instances.

We assume (w.l.o.g.) that t = 2x for some x ∈ N as this can be easily ensured via “padding” with no-instances. The proof
proceeds now by distinguishing between two cases.
Case 1: t > dp. Recall that for any fixed domain size d, SAS+ planning can be solved in time O∗(dp), since the size of the state
transition graph is bounded by O(dp). Let n := maxt

i=1 ‖Pi‖. Thus, solving all instances in the sequence can be done in time
O(t · dp · poly(n)).

In case there is an instance Pi which is a yes-instance of SAS+, we return this witness Pi. Otherwise P1 is returned which
is known to be a no-instance. Since O(t · dp · poly(n)) ≤ O(t2 · poly(n)), the time of the whole procedure is bounded by a
polynomial in

∑t
i=1 ‖Pi‖. Hence, we have obtained a composition for this case (Case 1).

Case 2: t ≤ dp. In this case we need to actually create a new instance that has a solution if and only if at least one of the input
instances has a solution. To this end, we will build a set of “selection actions” that allow to select one of the instances while
blocking all other instances. W.l.o.g. let us assume that the domain D contains at least two elements 0 and 1.

We create a selection gadget for the instances as follows. Let Vsel = {sel01, sel
1
1, . . . , sel

0
log t, sel

1
log t} and Vhelpers = {i∗, g∗} be

sets of variables such that Vsel ∩ V = ∅ and Vhelpers ∩ V = ∅. The set of actions Asel contains now for each i ∈ [log t] two actions

select0i and select1i for which pre(select0i)[sel1i] = 0 and pre(select1i)[sel0i] = 0. In addition, we set eff(select0i)[sel0i] = 1 and
eff(select1i)[sel1i] = 1.

Let b(i) be a bijection from [t] into {0, 1}log t. For i ∈ [t] and j ∈ [log t], we denote by b(i)[j] the projection to the j-th
coordinate of b(i). For example if b(x) = 1001, b(x)[3] = 0 and b(x)[4] = 1.

We can now create for i ∈ [t] the set A′i as follows: A′i := {a′ | a ∈ Ai}. For each i ∈ [t], each a′ ∈ A′i, and each j ∈ [log t]

we additionally require in the precondition that pre(a′)[sel
b(i)[j]
j] = 1 and that pre(a′)[i∗] = 1. This construction now allows

to select an instance Pi (represented by the bit-vector b(i)) by executing the appropriate sequence of actions Asel of length
log t. With this construction we ensure that only the actions of the selected instance A′i will eventually become applicable since
the actions of all other instances are blocked by the preconditions added above. Moreover, we ensure that the initial state was
correctly initialized, which can be done as follows.

We introduce two sets of actions Ainit = {init1, . . . , init t} and Agoal = {goal1, . . . , goal t}with the following properties. First,
for each i ∈ [t], each j ∈ [log t], and each v ∈ V we set pre(init i)[sel

b(i)[j]
j] = 1, eff(init i)[v] = Ii[v], pre(init i)[i

∗] = 0, and

eff(init i)[i
∗] = 1. Second,for each i ∈ [t], each j ∈ [log t], and each v ∈ V we set pre(goal i)[sel

b(i)[j]
j] = 1, pre(goal i)[v] =

Gi[v], pre(goal i)[i
∗] = 1, and eff(goal i)[g

∗] = 1.
The composed planning instance is now given by (P, |V ′|), where P = 〈V ′, D,A′, I ′, G′〉, where V ′ = (V ∪ Vsel ∪ Vhelpers),

A′ = (
⋃t

1 A
′
i ∪ Ainit ∪ Agoal), I ′ = 0|V |+log t+2, and G′[g∗] = 1. Notice that the parameter remains polynomial as |V ′| =

|V |+ log t + 2. Therefore, we have also obtained a composition algorithm for the second case (Case 2).
It follows from Proposition 18 that this problem does not admit a polynomial bi-kernel (and hence no polynomial kernel)

unless coNP ⊆ NP/poly.

Theorem 16 (*). Neither c-EVAL nor c-BOUNDED EVAL with bounded domain admit a polynomial kernel unless
coNP ⊆ NP/poly. This even holds for c-EVAL without goals on components and mixed actions.

Proof. Observe that by putting all variables in the variable-deletion backdoor set, we can polynomially bound the backdoor size
by the number of variables. Hence, as long as the domain size is bounded we can perform a simple PPT from SAS+ PLANNING
planning to c-EVAL, which due to Lemma 19 and Proposition 17 implies that EVAL for instance with bounded domain does not
have a polynomial kernel unless coNP ⊆ NP/poly. In addition, notice that in the construction of the previous proof the plan
length can be bounded by kmax + log t + 2, where kmax denotes the maximum bound on the plan length over all instances in the
sequence (P1, k1, |V1|), . . . , (Pt, kt, |Vt|).

Since all variables are contained in the backdoor there are no components. Thus,

(i) the size of the goal is bounded by the parameter,
(ii) the goal is defined only over variables in the backdoor, and

(iii) there are no mixed actions.

For this reason, the result also holds for c-EVAL that have neither goals on components nor mixed actions and thus in particular
for c-EVAL when additionally parameterized by the size of the goal and c-EVAL on instances with no mixed actions.

