
Ant Colony Optimization for Tree

Decompositions

Thomas Hammerl and Nysret Musliu

Institute of Information Systems, Vienna University of Technology, Austria
thomas.hammerl@gmail.com, musliu@dbai.tuwien.ac.at

Abstract. Instances of constraint satisfaction problems can be solved
efficiently if they are representable as a tree decomposition of small
width. Unfortunately, the task of finding a decomposition of minimum
width is NP-complete itself. Therefore, several heuristic and metaheuris-
tic methods have been developed for this problem. In this paper we
investigate the application of different variants of Ant Colony Optimiza-
tion algorithms for the generation of tree decompositions. Furthermore,
we extend these implementations with two local search methods and we
compare two heuristics that guide the ACO algorithms. Our computa-
tional results for selected instances of the DIMACS graph coloring library
show that the ACO metaheuristic gives results comparable to those of
other decomposition methods such as branch and bound and tabu search
for many problem instances. One of the proposed algorithms was even
able to improve the best known upper bound for one problem instance.
Nonetheless, for some larger problems the best existing methods outper-
form our algorithms.

1 Introduction

Many constraint satisfaction problems (CSPs) can be solved efficiently if they
have a tree decomposition of small width. Each tree decomposition has a charac-
teristic called width and each CSP problem can be transformed to many different
valid decompositions. The smaller a decomposition’s width the faster the solu-
tion to the problem can be computed.

To illustrate the application of tree decomposition for solving CSP problems
suppose that we have to find solutions for the the graph coloring problem (GCP),
which is a well known CSP in the literature. For this problem we have to find a
coloring of vertices of a given graph in such a way that no two vertices connected
by an edge share the same color. An instance of the GCP is shown on the left
side of Figure 1. The task is now to find a valid coloring just using the colors
red, green, and blue.

One naive approach to solve this problem might be to try out all possible
combinations of variable assignments and see which ones are valid. There are dn

possible combinations in general where d is the number of available colors and
n is the number of vertices.

Fig. 1. Instance of the graph coloring problem and one possible tree decomposition

To solve this problem by tree decomposition, we should first generate the
tree decompositon of the corrosponding problem graph. The concept of tree
decomposition has been introduced first by Robertson and Seymour [14]:

Definition 1. (see [14], [10]) Let G = (V,E) be a graph. A tree decomposition
of G is a pair (T, χ), where T = (I, F) is a tree with node set I and edge set F ,
and χ = {χi : i ∈ I} is a family of subsets of V , one for each node of T , such
that

1.
⋃

i∈I χi = V ,

2. for every edge (v, w) ∈ E, there is an i ∈ I with v ∈ χi and w ∈ χi, and

3. for all i, j, k ∈ I, if j is on the path from i to k in T , then χi ∩ χk ⊆ χj.

The width of a tree decomposition is maxi∈I |χi|−1. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all possible tree decompositions
of G.

One possible tree decomposition for our graph coloring problem is shown on
the right side of Figure 1. This tree decomposition fulfills all conditions of the
previous definition. If we want to solve the graph coloring problem based on this
tree decomposition, we can start out by solving the subproblems given by each
vertex in the tree decomposition. Using our naive approach of trying out all pos-
sible combinations of variable assignments we generate 33 (27) different solution
candidates for the vertex containing A, B, and C. Because of the constraints
A 6= B, A 6= C, and B 6= C only six of them are valid. For the subproblem con-
taining the vertices C and D we generate 32 (9) solution candidates and rule out
three of them because of the constraint C 6= D. We can now get all solutions to
the whole problem by joining the subproblem solutions. Therefore, we will take a
look at the variables both subproblems have in common. In this case, that is the
variable C. Each solution for the subproblem A,B,C is joined with the solutions
for the subproblem C,D sharing the same color for the vertex C. By using the
tree decomposition we had to generate 36 combinations of variable assignments
in order to determine all solutions compared to the 81 combinations we had to
generate without the tree decomposition. This difference increases very quickly
with the size of the graph coloring problem and constraint satisfaction problems

in general. The smaller the subproblems in the tree decomposition the more effi-
cient we can solve a particular problem. This is why we are interested in finding
tree decompositions of small width.

Tree decompositions can be generated from a given graph by successive elim-
ination of graph vertices. Each time a vertex is eliminated a new tree node is
created that contains the eliminated vertex and its neighbors. Additionally, the
neighbors of the eliminated node are connected in the remaining graph. It is
guaranteed that there is a so-called optimal elimination ordering that yields the
tree decomposition with the minimum width of all valid tree decompositions for
the given constraint graph. Therefore, one way to generate a tree decomposi-
tion of small width is to search for a good ordering of the vertices of the graph.
Unfortunately, there are n! different elimination orderings. For that reason not
only exact methods but also many approximation algorithms have been applied
to the problem of finding tree decompositions of small width.

A complete algorithm for tree decompositions is proposed by Gogate and
Dechter [7]. This algorithm applies different pruning techniques, and provides
anytime solutions, which are good upper bounds for tree decompositions. Heuris-
tic techniques for the generation of tree decompositions with small width are
mainly based on searching for a good elimination ordering of graph nodes. Sev-
eral heuristics that run in polynomial time have been proposed for finding a
good elimination ordering of nodes. These heuristics select the ordering of nodes
based on different criteria, such as the degree of the nodes (min degree heuristic),
the number of edges to be added to make the node simplicial (min-fill heuristic),
connectivity with the vertices previously selected in the elimination ordering
(Maximum Cardinality Search (MCS) [17]) etc. For other types of heuristics
based on the elimination ordering of nodes see [10].

Metaheuristic approaches have also been used for tree decompositions. Sim-
ulated annealing was applied by Kjaerulff [9]. Applications of genetic algorithms
for tree decompositions are presented in [11] and [13]. A tabu search approach
for generation of the tree decompositions has been proposed by Clautiaux et al
[2]. The authors reported good results for DIMACS vertex coloring instances.
Their approach improved the previous results in literature for 53% of instances.
Some of the results in [2] have been further improved by Gogate and Dechter [7].
Upper bounds for several other problems have been improved by iterated local
search algorithm [12].

Ant Colony Optimization (ACO) has not been applied yet for tree decompo-
sitions. In this paper we investigate the following variants of ACO algorithms for
finding tree decompositions of small width: Simple Ant System ([3], [6]), Elitist
Ant System ([3], [6]), Rank-Based Ant System [1], Max-Min Ant System ([15],
[16]), and Ant Colony System [4]. We propose two different pheromone update
strategies and implement two stagnation measures that indicate the degree of di-
versity of the solutions constructed by the ants. Furthermore, we implement two
constructive heuristics (Min-Degree, Min-Fill) that can be incorporated alterna-
tively into every ACO variant as a guiding function and investigated the combi-
nation of ACO with two existing local search methods: Hill Climbing and Iter-

ated Local Search [12]. Finally we compare the results achieved by Ant Colony
System for 62 DIMACS graph coloring instances with the results of other state
of the art heuristic and exact algorithms.

2 Generation of Tree Decompositions by Ant Colony

Optimization

Ant Colony Optimization (ACO) is a population-based metaheuristic introduced
by Marco Dorigo [3] in 1992. As the name suggests the technique was inspired by
the behaviour of “real” ants. Ant colonies are able to find the shortest path be-
tween their nest and a food source just by depositing and reacting to pheromones
while they are exploring their environment. The basic principles driving this
system can also be applied to many combinatorial optimization problems. For
a detailed description of different ACO algorithms and their applications the
reader is referred to the book “Ant Colony Optimization” [5] written by Dorigo
and Stützle.

In this section we propose the application of ACO to the problem of finding
tree decompositions of small width. We have implemented different ACO vari-
ants and combined these variants with different guiding heuristics, local search
methods and pheromone update strategies that we will discuss after giving an
explanation of the basic structure of the algorithm.

A simple constraint graph and the corresponding ACO construction tree are
shown in Figure 2. The construction tree can be obtained from the constraint
graph as follows: (1) Create a root node s that will be the starting point of every
ant in the colony; (2) For every vertex of the constraint graph append a child
node to the root node s; (3) To every leaf node append a child node for every
vertex of the constraint graph that is neither represented by the leaf node itself
nor by an ancestor of this node; (4) Repeat step 3 until there are no nodes left
to append.

Fig. 2. Constraint graph G and the ACO construction tree.

All possible elimination orderings for the constraint graph can now be repre-
sented as a path from the root node s to one of the leaf nodes in the construction
tree. Therefore each of the ants finds such a path and at each node on its way
the ant decides where to move next probabilistically based on the pheromone
trails and a heuristic value both associated with the outgoing edges.

2.1 Pheromone Trails

A pheromone trail constitutes the desirability to eliminate a certain vertex x
after another vertex y. The more pheromone is located on a trail the more likely
the corresponding vertex will be chosen by the ant. A way to represent the
pheromone trails of our construction tree is the matrix as shown below:

T =









τx1x1
τx1x2

τx1x3

τx2x1
τx2x2

τx2x3

τx3x1
τx3x2

τx3x3

τsx1
τsx2

τsx3









(1)

Each row contains the amounts of pheromone located on the trails connecting
a certain node with all the other nodes. For example, the first row contains the
pheromone levels related to the node x1 describing the desirability of eliminating
x2 (τx1x2

) respectively x3 (τx1x3
) immediately after x1. The last row is dedicated

to the root node s that is the starting point for every ant.
All pheromone trails are initialized to the same value in the beginning of the

algorithm that is computed according to the following equation:

τij =
m

Wη
∀τij ∈ T (2)

Wη is the width of the decomposition obtained using the guiding heuristic
(min-degree or min-fill) while m is the size of the ant colony.

2.2 Heuristic Information

The ants make their decision which vertex to eliminate next not solely based
on the pheromone matrix but also consider a guiding heuristic. We have im-
plemented two different heuristics. In order to compute both of these heuristic
values we need to maintain a separate graph in addition to the construction tree.
We will call this graph the elimination graph because this graph is obtained from
the original constraint graph by successively eliminating the vertices traversed
by the ant in the construction tree. Further, we will denote this graph as E(G, σ)
where G is the original constraint graph and σ is a partial elimination ordering.

Min-Degree The value for the min-degree heuristic is computed according to
this equation:

ηij =
1

d(j, E(G, σ)) + 1
(3)

The expression d(j, E(G, σ) represents the degree of vertex j in the elimina-
tion graph E(G, σ).

Min-Fill The value for the min-fill heuristic is computed according to this
equation:

ηij =
1

f(j, E(G, σ)) + 1
(4)

The expression f(j, E(G, σ) represents the number of edges that would be
added to the elimination graph due to the elimination of vertex j.

2.3 Probabilistic Vertex Elimination

We will now take a more detailed look on how exactly the ants move from node
to node on the construction tree. All of the ACO variants with the exception
of Ant Colony System use Equation 5 alone to compute the probability pij of
moving from a node i to another node j where α and β are parameters that
can be passed to the algorithm in order to weight the pheromone trails and the
heuristic values.

pij =
[τij]

α
[ηij]

β

∑

l∈E(G,σ)

[τil]
α

[ηil]
β
, if j ∈ E(G, σ) (5)

This probability is computed for each vertex left in the elimination graph.
According to these probabilities the ant decides which vertex to eliminate next.

Ant Colony System introduces an additional parameter q0 that constitutes
the probability that the ant moves to the “best” node instead of making a
probabilistic decision:

j =

{

arg maxl∈E(G,σ){[τil]
α[ηil]

β}, if q ≤ q0;
Equation 5, otherwise;

(6)

If a randomly generated number q in the interval of [0, 1] is less or equal q0

then the ant moves to the node that otherwise would have the highest probability
to be chosen. Ties are broken randomly.

Ant Colony System also introduces a so-called local pheromone update. Af-
ter an ant has constructed its solution it removes pheromone from the trails
belonging to its solution according to the following equation whereas ξ is a
variant-specific parameter and τ0 is initial amount of pheromone:

τij ← (1− ξ)τij + ξτ0 (7)

The motivation for this is to diversify the search so that subsequent ants will
more likely choose other branches of the construction tree.

2.4 Pheromone Update

After each of the ants has constructed an elimination ordering (that optionally
has been improved by a local search thereafter) the values in the pheromone

matrix are updated reflecting the quality of the constructed solutions which will
enable the subsequent ants in the following iteration to make decisions in a more
informed manner. Moreover, pheromone is removed from the pheromone trails so
poor solutions can be forgotten that might have been the best known solutions
in earlier iterations of the algorithm.

Pheromone Deposition Given an elimination ordering σk that was con-
structed by an ant k we need to determine for each subsequent elimination (i, j)
in σk the amount of pheromone that will be deposited on the corresponding
pheromone trail τij . We implemented an edge-independent and an edge-specific
pheromone update strategy. The first adds the same amount of pheromone to all
trails belonging to σk while the latter adds more or less pheromone to individual
trails depending on the quality of a certain elimination.

The edge-independent pheromone update strategy adds the reciprocal value
of the tree decomposition’s width to all pheromone trails that are part of σk:

∆τk
ij =

{ 1
W (σk) , if (i, j) belongs to σk;

0, otherwise;
(8)

In contrast to the edge-independent update strategy the edge-specific update
strategy deposits different amounts of pheromone onto the trails belonging to
the same elimination ordering:

∆τk
ij =

{ 1
d(j,E(G,σkj))/|E(G,σkj)|

· 1
W (σk) , if (i, j) belongs to σk;

0, otherwise;
(9)

This amount depends on the ratio between the degree of the vertex j when it
was eliminated d(j, E(G, σkj)) and the number of vertices left in the elimination
graph |E(G, σkj)| at that time.1

Which ants are allowed to deposit pheromone and how this pheromone is
weighted varies between the different ACO variants. The reader is referred to [5]
for description of these variants.

Pheromone Evaporation After the pheromone has been added to the trails a
certain amount of pheromone is removed. This amount is determined based on
the pheromone evaporation rate ρ:

τij = (1− ρ)τij ∀τij ∈ T (10)

While all the other ACO variants remove pheromone from every pheromone
trail Ant Colony System only removes pheromone from the trails belonging to
the best known elimination ordering σbs:

τij = (1− ρ)τij ∀(i, j) ∈ σbs (11)

1 σkj is the partial elimination ordering that is obtained from σk by omitting j and
all vertices that are eliminated after j.

2.5 Local Search

All ACO variants can optionally be extended with one of two local search meth-
ods we implemented for tree decompositions. Both of these algorithms try to
improve the quality of the solutions that were constructed by the ant colony
by changing the positions of certain vertices in the elimination orderings. We
used two local search techniques in this paper: an hill climbing algorithm and
an iterated local search similar to the algorithm proposed by Musliu [12]. Both
of these algorithms are discussed in detail in Section 5.4 of the master’s thesis
[8] this paper is based on.

2.6 Stagnation Measures

If the distribution of the pheromone on the trails becomes too unbalanced due to
the pheromone depositions, the ants will generate very similar solutions causing
the search to stagnate. In order to enable the algorithm to detect such situa-
tions we have implemented two stagnation measures (Variation Coefficient and
λ Branching Factor) proposed by Dorigo and Stützle [5] that indicate how explo-
rative the search behaviour of the ants is. A detailed description of stagnation
measures is given in [8] (page 67).

3 Computational Results

In order to evaluate and compare the performance of the different ACO algo-
rithms, a series of experiments were performed. All of these experiments were
performed for the ten representative instances of the DIMACS Graph Coloring
Challenge.

We experimented with variant-independent parameters and parameters of
each ACO variant. After setting of all parameters to values that were obtained
through trial and error the following experiments were performed (time-limit of
200 seconds was set for each run):

– [(α, β), . . .] = [(1, 10), (2, 20), (3, 30), (5, 40), (2, 50)]: the combination of α =
2 and β = 50 outperformed the other combinations (considering best average
width over five runs) in 27 of 50 experiments.

– Guiding Heuristics: we compared min-fill and min-degree heuristics. The re-
sults clearly indicated that the min-fill heuristic gives better results. Nonethe-
less, the min-degree heuristic is much more time-efficient. For instance, the
ACO algorithms were only able to complete one iteration within 200 seconds
for the problem instance le450 5a using the min-fill heuristic while 144 it-
erations could be performed using the min-degree heuristic. This is why we
decided to use the min-degree heuristic for all remaining experiments since
we would otherwise be unable to investigate the impact of the pheromone
trails on the search behaviour of the ants due to the small number of itera-
tions.

– Number of ants: 5, 10, 20, 50, 100. Best results were obtained by using ant
colonies consisting of 100 ants for Simple and Elitist Ant System (SES, EAS),
50 ants for Rank-Based Ant System(RAS), 20 ants for Max-Min Ant System
(MAS) and five ants for Ant Colony System (ACS).

– Weight e for Elitist Ant System: 2, 4, 6 and 10. Elitist weight of 10 gave best
results.

– Number of ants w to deposit pheromone in every iteration in Rank-Based
Ant System: 3, 5, 7 and 10. Best results were obtained with w = 10.

– Max-Min Ant System: [(a, f), . . .] = [(10, 2), (3, 5), (10, 5), (3, 2)]. (3, 5) pa-
rameter combination gave best results.

– Ant Colony System: [(q0, ξ), . . .] = [(0.1, 0.3), (0.5, 0.05), (0.1, 0.05), (0.5, 0.3)].
(0.5, 0.3) gives the best results among all of these combinations.

Note that we initialize τ0 the pheromone trails to m/Wη because according
to [5] it is a good heuristic to initialize the pheromone trails to a value that is
slightly higher than the expected amount of pheromone deposited by the ants
in one iteration. Additionally we set the pheromone evaporation rate ρ to 0.1
for our experiments because that also worked well for the travelling salesman
problem according to [5].

After we had found good parameter settings for each ACO variant we were
now ready to compare them. Therefore, five runs were performed by each variant
for every instance of the experimental set with α = 2, β = 50, ρ = 0.1 and a time-
limit of 500 seconds. Min-degree was used as the guiding heuristic. Additionally,
the parameter settings for each variant were applied based on the results of the
prior experiments.

Instance
Minimum Width Average Width

SAS EAS RAS MAS ACS SAS EAS RAS MAS ACS
DSJC125.1 65 65 65 64 63 65.6 65.4 65.4 64 63.8

games120 37 38 38 37 37 38.8 38.8 38.6 37.4 37

le450 5a 311 312 303 308 309 313.6 314 310.2 312.8 311.4
le450 5b 313 314 311 307 312 313.6 315.8 314.8 313.2 313.4
miles500 25 25 25 25 25 25.4 25.2 25.8 25 25.2
myciel6 35 35 35 35 35 35 35 35 35 35
myciel7 68 68 69 68 69 68.8 68.8 69 68.8 69

queen12 12 114 113 112 112 111 114.6 114 114.4 113.2 112

queen8 8 48 48 48 47 47 48 48 48.2 47 47
school1 237 231 232 228 232 238 235.2 235.4 233.4 233.2

Table 1. Comparison of minimum and average widths achieved by all ACO variants over 5 runs.
Given in bold are those values that represent single-best solutions among all variants.

Table 3 lists the minimum and the average width achieved by each ACO vari-
ant for each problem instance. According to these results Max-Min Ant System
and Ant Colony System performed slightly better than the other variants. Only
once, for the problem instance le450 5a, Rank-Based Ant System was able to
achieve better results than Max-Min Ant System and Ant Colony System. For
all other problem instances one of these two variants delivered the best minimum
and average width. Since Ant Colony System more often gave the single best

solution among all variants, we decided to focus our remaining investigations on
this ACO variant.

In Section 2.4 we presented two different pheromone update strategies. In
order to compare them we have applied Ant Colony System with each of them.
The edge-specific pheromone update strategy gave slightly better results than
the edge-independent strategy.

Our final experiments dealt with the combination of Ant Colony System with
the iterated local search and the hill climbing algorithm. Ant Colony System
in combination with the iterated local search clearly outperformed the hybrid
algorithm consisting of Ant Colony System and the hill climbing local search.
ACS+HC was only able to give better results than ACS+ILS for two out of the
ten problem instances (see page 91 in [8]).

4 Comparison with the results in the literature

Based on the results of our experiments we compared our Ant Colony System
(ACS) variants with the results from the literature for 62 well known DIMACS
graph coloring instances. All results reported in this paper have been obtained
on a machine equipped with 48GB of memory and two Intel(R) Xeon(R) CPUs
(E5345) having a clock rate of 2.33GHz. We performed 10 runs for each exam-
ple with our ACS and ACS+ILS algorithms. Each run was performed with a
time-limit of 1000 seconds. The best results from a set of algorithms proposed
by Koster, Bodlaender and Hoesel in [10] (KBH) were obtained with a Pentium
3 800MHz processor. Results of Tabu Search (TabuS) algorithm proposed in [2]
were obtained with a Pentium 3 1 GHz processor. Experiments for the branch
and bound (BB) algorithm presented by Gogate and Dechter in [7] were per-
formed on a Pentium 4 2.4 GHz processor using 2 GB of memory. The results
with the genetic algorithm (GA) in [13] were obtained in a Intel(R) Xeon(TM)
3.2 GHz processor and 4 GB of memory. Results of iterative heuristic algorithm
(IHA) [12] were obtained with a Pentium 4 processor 3 GHz and 1 GB of RAM.

Figure 3 visualizes for how many problem instances ACS respectively ACS+ILS
gave a better, equal or worse minimum width compared (regarding the best
found solution) with each of the other decomposition methods . As can be seen,
both algorithms outperformed KBH on more instances than vice versa but only
ACS+ILS also managed to outperform BB.

Algorithms GA, IHA and TabuS outperform our algorithms considering the
number of found better upper bounds. However, the time limit of our algorithm
was set to 1000 seconds, whereas other algorithms were executed for much longer
time. Unfortunately, due to the space limitation of this paper we can not present
these results here, but the reader is referred to [12] (this paper presents the
execution times of KBH, BB, TabuS, GA and IHA). Based on these results
it is clear that for large examples the execution time of these algorithms was
much longer compare to our algorithms. Note that our ACS+ILS was able to
find an improved upper bound of 30 for the problem instance homer.col. By
applying the ACS+ILS algorithm with the min-fill heuristic we could further

Fig. 3. Comparison of ACO algorithms with other decomposition methods.

improve the upper bound for this instance to 29. Considering comparison of
ACS and ACS+ILS, for 25 problem instances ACS+ILS gave a better minimum
width than ACS on its own. ACS was never able to outperform ACS+ILS with
the exception of the problem instances inithx.i.2 and inithx.i.3 for which ACS
achieved a better average width than ACS+ILS.

5 Conclusions

In this paper we have applied the ant colony optimization metaheuristic to the
problem of finding tree decomposition of small width. Our experiments suggested
that the ACO variants Max-Min Ant System and Ant Colony System give the
best results for tree decompositions. We have applied Ant Colony System with
and without the iterated local search to 62 benchmark graphs. The hybrid algo-
rithm turned out to give better results than Ant Colony System on its own. It
could improve the best known upper bound of the problem instance homer.col
from 31 to 29. For 28 instances the algorithm was able to return a width equal to
the best known upper bound. Nevertheless, especially for more complex problem
instances both algorithms gave worse results than the best methods in literature.
However, the time limit of our algorithm was set to 1000 seconds, whereas other
algorithms were executed for longer time.

Subject of future research is the investigation of self-adaptive parameter set-
tings. The algorithm could make use of the stagnation measures in order to
adjust parameters such as the evaporation rate ρ autonomously. Another viable
extension worth of further investigation is the application of ant colonies consist-
ing of a number of ants proportional to the number of vertices in the constraint
graph. That possibly could help to improve the quality of the pheromone updates
and therefore could also improve the convergence behaviour of the algorithm.

Acknowledgments: The research herein is partially conducted within the compe-
tence network Softnet Austria (http://www.soft-net.at/) and funded by the Aus-
trian Federal Ministry of Economics (bm:wa), the province of Styria, the Steirische

Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of Vienna in terms of the
center for innovation and technology (ZIT). Additionally, this work was partially sup-
ported by the Austrian Science Fund (FWF), project P20704-N18.

References

1. B. Bullnheimer, R. F. Hartl, and C. Strauss. A New Rank Based Version of the
Ant System: A Computational Study. Central European Journal for Operations
Research and Economics, 7(1):25-38, 1999.

2. F. Clautiaux, A. Moukrim, S. Négre, and J. Carlier. Heuristic and meta-heurisistic
methods for computing graph treewidth. RAIRO Oper. Res., 38:13–26, 2004.

3. M. Dorigo. Optimization, Learning and Natural Algorithms [in Italian]. PhD thesis,
Dipartimento die Elettronica, Politecnico di Milano, Milan, 1992.

4. M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, April 1997.

5. M. Dorigo and T. Stützle. Ant Colony Optimization. Bradford Book, 2004. ISBN
0262042193.

6. M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26:29–41, 1996.

7. Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In
Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence,
UAI-04, pages 201–208, 2004.

8. Thomas Hammerl. Ant Colony Optimization for Tree and Hypertree Decomposi-
tions Master’s Thesis, Vienna University of Technology, 2009.

9. U. Kjaerulff. Optimal decomposition of probabilistic networks by simulated an-
nealing. Statistics and Computing, 1:2–17, 1992.

10. A. Koster, H. Bodlaender, and S. van Hoesel. Treewidth: Computational experi-
ments. Electronic Notes in Discrete Mathematics 8, Elsevier Science Publishers,
2001.

11. P. Larranaga, C.M.H Kujipers, M. Poza, and R.H. Murga. Decomposing bayesian
networks: triangulation of the moral graph with genetic algorithms. Statistics and
Computing (UK), 7(1):1997, 1991.

12. N. Musliu. An iterative heuristic algorithm for tree decomposition. In Recent
Advances in Evolutionary Computation for Combinatorial Optimization, Volume
153, pages 133-150, 2008. Carlos Cotta, Jano van Hemert (Eds.).

13. N. Musliu and W. Schafhauser. Genetic algorithms for generalised hypertree de-
compositions. European Journal of Industrial Engineering, 1(3):317–340, January
2007.

14. N. Robertson and P. D. Seymour. Graph minors. II. algorithmic aspects of tree-
width. Journal Algorithms, 7:309–322, 1986.

15. T. Stützle and H. Hoos. Max-min Ant System and local search for the traveling
salesman problem. In IEEE International Conference on Evolutionary Computa-
tion, pages 309–314, 1997.

16. T. Stützle and H. Hoos. Max-min Ant System. Future Gener. Comput. Syst., 16
(9):889–914, 2000.

17. R.E. Tarjan and M. Yannakakis. Simple linear-time algorithm to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13:566–579, 1984.

