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Abstract

Hyperheuristics are an emergent area of search methodologies which try to address
computationally hard problems at a new level of abstraction. Instead of having a sin-
gle algorithm that is optimised to perform well on a certain class of problem instances,
hyperheuristics try to leverage the power of a whole set of problem specific heuristic
algorithms. By combining and parametrising these heuristics or heuristic components
in different ways, the overall algorithm should be able to perform better over a wider
range of problem instances. Ideally, a hyperheuristic does not need to know anything
about the problem class it operates on and only very little about the available heuris-
tics. Because of this, hyperheuristics can often be applied without modifications to
whole new problem domains and therefore represent a further step towards a very
general problem solving algorithm.

This thesis describes a new hyperheuristic algorithm that was specifically designed
to be completely problem domain independent and which works at a clearly defined
level of abstraction. The algorithm is structured in different search phases that try to
balance intensification and diversification of the search process. The available low-
level heuristics are evaluated repeatedly in terms of certain properties and ranked
according to a quality based metric that was found to work well across all tested
low-level heuristics. Furthermore, the algorithm incorporates ideas from a number
of different areas of metaheuristic research, such as iterated local search, simulated
annealing, tabu search and genetic algorithms.

The main goal of this work was to develop a hyperheuristic that achieves good
overall performance on a wide variety of unrelated search domains. In order to assess
the generality of the algorithm, it was tested on six different, well-studied problem
domains from the field of combinatorial optimisation. A version of the algorithm was
also submitted as a candidate for the Cross-domain Heuristic Search Challenge 2011
organised by the University of Nottingham. Out of the twenty participants from all
over the world, our algorithm was ranked sixth in the final competition.

v





Kurzfassung

Hyperheuristiken bilden ein aufstrebendes Forschungsgebiet für Suchstrategien, wel-
che die Einführung einer neuen Abstraktionsebene nützen um komputational schwie-
rigen Problemen zu begegnen. Anstatt einen einzelnen Algorithmus zu verwenden,
der auf eine bestimmte Klasse von Probleminstanzen optimiert ist, versuchen Hyper-
heuristiken die individuelle Leistungsfähigkeit einer gegebenen Menge von problems-
pezifischen Heuristiken auszunutzen. Durch die unterschiedliche Kombination und
Parametrisierung dieser Heuristiken sind Hyperheuristiken theoretisch dazu in der
Lage, gute Ergebnisse über einen größeren Bereich von Probleminstanzen zu erzie-
len. Idealerweise operieren Hyperheuristiken ohne jegliches Wissen bezüglich der zu
lösenden Problemklasse und nur mit sehr geringem Wissen über die zur Verfügung
stehenden untergeordneten Heuristiken. Aus diesem Grund können Hyperheuristiken
auch oft ohne große Modifikationen auf neue Problemklassen angewendet werden.
Damit stellen sie einen weiteren Schritt auf dem Weg zu einem universellen Problem-
lösungsalgorithmus dar.

Die vorliegende Arbeit beschreibt eine neue Hyperheuristik, die speziell darauf
ausgelegt wurde, gänzlich unabhängig von einer bestimmten Problemklasse zu arbei-
ten und die sich dafür einer sehr klaren Abstraktionsebene bedient. Der Algorithmus
ist in eine Anzahl unterschiedlicher Suchphasen untergliedert, welche für ein geeigne-
tes Verhältnis zwischen der Intensivierung und der Diversifizierung des Suchprozes-
ses sorgen. Die verfügbaren untergeordneten Heuristiken werden fortlaufend anhand
mehrerer Eigenschaften bewertet und mit einer neuen qualitätsbasierten Metrik ge-
reiht. Weiters vereinigt der Algorithmus eine Reihe von Ansätzen aus verschiedenen
Gebieten der Forschung an Metaheuristiken, namentlich Iterated Local Search, Simu-
lated Annealing, Tabusuche und genetischen Algorithmen.

Das Hauptziel dieser Arbeit war die Entwicklung einer Hyperheuristik die gu-
te universelle Leistung über eine Vielzahl unterschiedlicher Problemklassen aufweist.
Um die allgemeinen Problemlösungseigenschaften des Algorithmus bewerten zu kön-
nen, wurde er anhand sechs verschiedener populärer Problemklassen aus dem Bereich
der kombinatorischen Optimierung getestet. Eine Variante des Algorithmus wurde als
Kandidat bei der Cross-domain Heuristic Search Challenge 2011 von der University
of Nottingham eingereicht. Unter den 20 teilnehmenden Kandidaten aus aller Welt
belegte unser Algorithmus im finalen Bewerb den sechsten Platz.
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CHAPTER 1
Introduction

1.1 Motivation

It is a long-standing goal of the artificial intelligence research community to design an
algorithm that is able to solve problems from a wide range of different problem classes.
The first attempts can be dated back to the very beginnings of artificial intelligence
research in the late 1950s. One of the earliest representatives was the General Problem
Solver[77], which used an abstract representation of states and rules to transform one
problem state into another. A means-end analysis was employed to gradually get
closer to the desired goal state. Although the required descriptions needed to be so
detailed that it could only be applied to toy problems such as the ”Tower of Hanoi”[64],
it was already specifically designed to be able to tackle almost any problem class and
it therefore shows the great ambitions of early AI research.

As soon as researchers try to address problems of the real-world instead of just
toy problems, it becomes evident that these are often inherently hard. Complexity
research showed, that many real-world problems fall in the complexity class of NP-
hard problems[21]. This means that there exists no algorithm that in general is able
to compute an optimal solution within a timespan that is polynomial in the size of
the given problem instance (unless P = NP). In other words, to optimally solve such
problems there is no fundamentally faster way than iterating over all possible solu-
tions and check for the best. Even the ever-increasing amount of processing capacity
available with modern computer technology can often not match the computational
complexity of NP-hard problems. A good practical example is the problem of vehicle
routing[31]. Countless delivery companies in the world face the problem of plan-
ning an optimal route for their fleet of delivery vehicles in order to service all their
customers in the shortest amount of time. A problem of great practical importance,
yet the largest non-trivial problem instance that could be solved optimally to date,
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has only 135 customers[7] - and that is for a greatly simplified version of the actual
real-world problem.

Because of this rather unsatisfactory situation, researchers began to develop effi-
cient heuristic methods to deal with large real-world problem instances. Heuristics
often provide good solutions to hard problems in a short amount of time, but they
cannot give any guarantee that they will find the optimal solution. Some heuris-
tics do however provide guarantees regarding the approximation ratio of an optimal
solution. For example, as shown in [20], the Christofides heuristic for solving the trav-
elling salesman problem is able to always produce solution tours that are no longer
than 150% of the shortest possible tour. Besides often not giving optimal solutions,
heuristics have another big disadvantage: they are very problem specific. Most heuris-
tics only work for a clearly defined set of problems and there is no easy way to devise
a good heuristic for a given new problem domain.

In order to address this problem, researchers began to think about general heuris-
tics that can be applied to any problem domain. Since almost all problem solving
algorithms can be formulated as some kind of search for an optimal solution quality
within a certain space of solutions, many different search strategies were developed in
order to perform such searches efficiently. This work lead to the formation of a new
field of research, called ”metaheuristics” (first mention of the term in [46]).

Metaheuristics attempt to provide a non problem-specific optimisation algorithm
which explores a search space in a guided manner in order to quickly find (near-) op-
timal solutions (see [9] for a list of accepted definitions for metaheuristics). The great
hope was, to find one type of algorithm that performs an efficient search, no matter
how the solution space is structured. Researchers pursued a wide variety of different
approaches and often found natural processes to be very useful prototypes for new
optimisation algorithms. This lead to the development of algorithms like Simulated
Annealing[63] (modelling a physical cooling process), Ant Colony Optimisation[33]
(mimicking the way a collection of ants finds a short way to a food source), Genetic
Algorithms[52] (implementing the biological process of gene mutation and recombi-
nation) or Particle Swarm Optimisation[61] (imitating the movements of a bird flock).
Very successful metaheuristics that were not inspired by nature are Iterated Local
Search[69] (escape local optima by restarting local search with a perturbed solution)
and Tabu Search[47] (temporarily block visited solutions from being re-visited during
the search). Researchers began to refine their favourite approaches and often tried to
demonstrate their superiority over competing algorithmic paradigms.

The hope to find the one universally predominant class of metaheuristics had to be
finally given up after theoretical results like the ”No free lunch” theorems[109] were
developed. They define a fundamental limit for the efficiency of any given search
strategy when averaged over all possible problem classes. It was basically found out,
that the average search space has very little structure to be exploited and that no matter
how an algorithm operates, it is possible to come up with problem instances at which
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the algorithm performs poorly.
One hope still left is that an algorithmic approach can be developed that might still

dominate all the others on only all ”interesting” problem instances. Since an integral
part of the no free lunch theorems is that they are only valid when taking into account
absolutely all possible problem spaces, it cannot be ruled out that the subset of all
practical real-world problem instances is indeed dominated by a single algorithmic
approach. It is to be expected that no one simple metaheuristic can meet this require-
ment but that it will have to incorporate (or gather) some kind of knowledge about
the problem class it is working on in order to improve the average performance within
this domain.

Taking advantage of such domain knowledge to improve the quality of a general
algorithm was tried in many different ways. An interesting approach to this task was
introduced in [25], which describes the concept of a hyperheuristic, acting on a higher
level than traditional metaheuristics. According to [15]: ”A hyperheuristic is a search
method or learning mechanism for selecting or generating heuristics to solve computa-
tional search problems”. By utilising a set of existing (low-level) heuristics or heuristic
components, they try to solve problems more efficiently or robustly than these indi-
vidual low-level components could by themselves. Generalising the original idea of
hyperheuristics to adapt to a specific problem instance within one problem class, it
should also be possible to adapt to completely different problem classes altogether.
Hyperheuristics are therefore another step towards the decades-old dream of finding
a single, universally applicable problem solving technique for all practical problems.

1.2 Aim of this Thesis

This thesis pursues the following goals:

1. to present the concept of hyperheuristics and discuss its application to cross-
domain search problems

2. to develop a new hyperheuristic algorithm that performs well over a range of
different problem domains and implement it on top of an existing hyperheuristic
framework

3. to experimentally evaluate the characteristics of the proposed algorithm on a set
of well-known benchmark datasets

1.3 Results

The main results of this thesis are:

1. we developed a new hyperheuristic algorithm that introduces a novel way of
switching between different search phases, uses an adaptive ranking mechanism
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and a quality based selection strategy to take best advantage of the available
low-level heuristics

2. we provide extensive test-results and performance characteristics of the algo-
rithm on the following problem domains:

• Max-SAT

• One-dimensional bin-packing

• Personnel scheduling

• Permutation flow-shop

• Vehicle routing problem

• Travelling salesman problem

3. results show that our algorithm achieves a good overall problem-solving capa-
bility and performs especially well with the Max-SAT and personnel scheduling
instances

4. we implemented our algorithm on top of thy HyFlex framework [10] and submit-
ted it as a candidate for the Cross-domain Heuristic Search Challenge 2011 1 by
the University of Nottingham where we were ranked 6th out of 20 participants

1.4 Organisation

The remaining parts of this thesis are organised as follows: in Chapter 2, we give an
introduction to hyperheuristics, beginning with the historical developments and a clas-
sification scheme for current hyperheuristics. We continue to briefly describe some of
the notable state of the art hyperheuristic techniques and give an overview of research
towards cross-domain hyperheuristics. In Chapter 3 we define the problem classes
used for testing of the developed hyperheuristic, describe which low-level heuristics
were used for our experiments and also cover existing hyperheuristic approaches for
each of the individual problem domains. We also give a description of the hyperheuris-
tic framework used for the development of the algorithm and explain the evaluation
method. In Chapter 4, we then introduce our newly developed algorithm by giving a
detailed description of the separate components as well as a pseudocode implemen-
tation for the main functional entities. Chapter 5 discusses the results and compares
the algorithm to a number of competing high quality cross-domain hyperheuristics.
Chapter 6 concludes this thesis with a summary of the results and contributions of
this work. It also gives an insight into currently ongoing development work as well as
an outlook on promising directions of future research regarding this algorithm.

1http://www.asap.cs.nott.ac.uk/chesc2011
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CHAPTER 2
Hyperheuristics

Hyperheuristics are a way to incorporate existing problem-class specific domain knowl-
edge in the form of simple low-level heuristics into a higher-level search strategy which
schedules and guides the execution of the lower-level heuristics. The idea is that an
ensemble of heuristics, orchestrated by a top-level strategy, is able to perform better
on average at solving a wide range of problems as any of the underlying heuristics
alone. Another common use-case for hyperheuristics is to quickly address new or un-
common problem types where not much domain knowledge is available. In order to
apply a hyperheuristic to such a new problem domain it is sufficient to define very
simple heuristics which often follow directly from the solution representation of the
new problem (eg. a simple hill-climbing local search using small changes in the so-
lution vector as search steps). In many cases, the flexible and robust nature of the
top level hyperheuristic can produce good results without spending much effort on
analyzing and manually adapting the algorithm to a new domain.

This black-box approach when it comes to solving a problem is similar to the
principle of metaheuristics. In fact, it could be argued, that hyperheuristics are just
a somewhat more complex class of metaheuristics. There is however an important
conceptual distinction between the two: metaheuristics search within a space of can-
didate solutions to a problem, whereas hyperheuristics always search within a space
of heuristics to solve the problem. As such, hyperheuristics introduce a new level of
abstraction and can be seen as a natural extension of the metaheuristic concept.

2.1 History

Although the name ”hyperheuristic” itself was only coined rather recently, the un-
derlying ideas behind hyperheuristics are much older. Methods to combine different
scheduling rules in factory production were already described in the early 1960s by
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Fisher and Thompson in [37]. In their far-sighted work, they concluded that proba-
bilistic learning could be used to find a suitable sequence of scheduling rules which
would improve upon their respective individual performance. This is especially note-
worthy because at that time, not even the idea of metaheuristics existed and that only
very rudimentary local search techniques were available.

Probably due to the generally immature state of the computational search method-
ologies and the limited amount of available computing power, nobody really picked
up the idea until the early 1990s. Some concepts similar to hyperheuristics were how-
ever already investigated before that. In 1973, Rechenberg proposed a method of
adaptively changing the mutation rate of evolutionary algorithms (described in [88])
and in 1976, Rice formulated the algorithmic selection problem in [91]. The question
of which algorithm is likely to best solve a given problem was examined and lead to
the field of meta-learning.

In 1993, the term ”hyperheuristic” was still not in use, but the exact same concept
was used in [49], where a hill-climbing algorithm operates on a search space of control
strategies for satellite communication. The problem is known to be NP-hard and there
were real-life problem instances that could not be solved in a reasonable amount of
time. Using the newly proposed algorithm they could however increase the number of
solvable instances as well as shorten the time to find a solution when compared with
existing techniques which in part relied on human experts. This result was one of the
first that showed the practical viability of a hyperheuristic approach and paved the way
for further research. The work was done only shortly after, for the first time, sequences
of heuristics were formally defined as a search space and suitable neighbourhood
structures were given in [98].

Then in 1995, one of the first heuristic generation methods based on genetic algo-
rithms was introduced in [107], which a few years later led to the development of the
TEACHER system (”Techniques for the Automated Creation of HEuRistics”) in [106].
Teacher was also one of the first systems that was successfully applied to a whole
range of different problem domains (circuit routing, load balancing, process mapping,
etc.). It worked by addressing the decomposition of an existing problem solver for a
given domain into smaller heuristic methods and the classification of an application
domain into subdomains. Statistical evaluation was performed on the individual sub-
domains in order to find out which heuristic methods worked best with each. Finally,
Teacher tried to generate new improved heuristic methods and find ones that worked
well across the whole problem domain.

Another very similar approach to hyperheuristics was introduced in 1998 with the
Squeaky Wheel optimisation method as described in [58]. Squeaky Wheel uses a dual
search space: one is the normal space of solutions to the given problem instance,
the other is a priority space of solution components. Solutions are constructed by a
greedy algorithm that uses a priority ordering of the solution parts as input. Whenever
changing a part of a solution is identified as likely to improve the quality of the overall
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solution, its priority is increased and therefore made more likely to be improved upon
by the constructive heuristic. By simultaneously operating in two different search
spaces, Squeaky Wheel can effectively escape local minima in the search process and
proved to produce encouraging results in scheduling and graph colouring domains.

The term ”hyperheuristic” itself dates back to the year 1997 - it was first used to de-
scribe a sequence of several artificial intelligence methods and their parameters within
a distributed automated theorem proving system (ATP)[32]. These sequences were
used to facilitate so-called reproduction runs, which made it possible to reproduce the
exact steps of a learning process that led to a particular solution.

Three years later in the year 2000, the term was used independently and with
a slightly different meaning, to describe ”heuristics to choose heuristics”[25]. In
this work, the hyperheuristic model with the clear distinction between a problem
independent top-level heuristic selection process and the problem specific low-level
heuristics was introduced. Three different selection processes for the underlying low-
level heuristics were examined: a random approach, a greedy approach and a choice
function-based approach. The random approach simply chooses one of the available
heuristics randomly at each step. The greedy approach evaluates the changes in the
objective function value with each of the available heuristics and chooses the best for
each step. The choice function estimates how effective each of the low-level heuristics
will be, based on the current state of the search space and the knowledge gained from
previous applications of the heuristics. Four different choice functions were suggested
and compared. This newly introduced hyperheuristic approach has been successfully
applied to a scheduling task and inspired much further research in the area of hyper-
heuristics.

A timeline of some of the important developments in the field of hyperheuristics
is shown in figure 2.3.

2.2 Classification of Hyperheuristics

Albeit being a rather young area of research, hyperheuristics already span a wide
range of different approaches and techniques. This comes to no surprise, as hyper-
heuristics can build on the very established foundations of computational search pro-
cesses and metaheuristic research. In fact, pretty much every major metaheuristic
approach has also been applied at the hyperheuristic level. Because of this, it is often
also possible to identify groups of hyperheuristics using traditional metaheuristic cate-
gories. Figure 2.1 shows an attempt of classifying a number of important metaheuristic
concepts according to their main characteristics.

When looking purely at the hyperheuristic level, the following main categories can
be identified (according to [19]):

• Heuristic selection methodologies
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Figure 2.1: Some classes of metaheuristics (based on [35])

Online Offline None

Hyperheuristic

Construction Perturbation

Heuristic Selection Heuristic Generation

Construction Perturbation

Feedback
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Nature of
search space

Figure 2.2: Hyperheuristic classification (based on [19])

• Heuristic generation methodologies

• Online learning hyperheuristics

• Offline learning hyperheuristics

• Non-learning hyperheuristics

The first two address the nature of the search space used by the hyperheuristic,
while the remaining ones concern the source of the feedback for the learning process.
An illustration of this classification scheme is depicted in figure 2.2.
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Figure 2.3: Timeline of hyperheuristics developments

Heuristic Selection

Heuristic selection deals with choosing a suitable sequence of low-level heuristics to
apply from a pool of available heuristics. The search space for this type of hyperheuris-
tic is therefore the set of all possible sequences of low-level heuristics. Pure heuristic
selection processes do not modify the underlying heuristics, but only schedule them.
Depending on the actual implementation, it is however often possible to parametrise
them. Because of this, a clear distinction between pure heuristic selection and heuristic
generation can not always be made.

Notable representatives of this class can be found in [37, 85, 101, 4].

Heuristic Generation

Heuristic generation also allows for the creation of new low-level heuristics. This usu-
ally works by exchanging certain parts of problem-specific heuristics or by applying
genetic programming techniques (see [65]). Some of the approaches could strictly also
be viewed as heuristic selection, albeit working partly on a lower level of heuristic
components. Notable representatives of hyperheuristics employing heuristic genera-
tion can be found in [1, 100, 79, 87].

Online Learning Hyperheuristics

Online learning hyperheuristics usually do not have any prior knowledge about the
problem class they are working on. They have to gain knowledge about the available
low-level heuristics as well as the problem instance they are working on purely by trial
and error. Common techniques for online learning come from the field of reinforce-
ment learning, which tries to continuously incorporate knowledge from the progress
of the search itself in order to perform more informed actions in the future.
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Offline Learning Hyperheuristics

The idea with offline learning is that a set of training problems is presented to the
hyperheuristic before it is actually used. The hyperheuristic then tries to learn some
form of knowledge from these training samples which hopefully can be applied suc-
cessfully to problems outside the training dataset as well. The extracted knowledge
can be in various forms: from rules or classifiers (as in [70] and [94]) over case-based
reasoning (see [18]), to genetically evolved structures (for example [93] and [102]).

Non-Learning Hyperheuristics

Hyperheuristics that do not learn were mainly used in the initial work on hyperheuris-
tics by Cowling et al.[25]. While they are clearly inferior to hyperheuristic selection
processes that apply some learning mechanism, they can be useful as a baseline com-
parison when working with hyperheuristics.

2.3 State of the Art

Soon after the re-introduction of the hyperheuristic concept by Cowling et al. in
2000[25], many different approaches were examined using the newly proposed model.
One of the first improvements on the choice function based approach by Cowling et al.
was the use of reinforcement learning (as described in [26]). Reinforcement learning
uses a generic model of an environment that is in a certain state and can be influenced
by performing actions which are chosen by a certain policy. The notion of a reward is
used to increase or decrease the score of state,action-pairs that have been previously
encountered. See [59] for a survey on this technique.

When it comes to hyperheuristics, actions are usually the application of the low-
level heuristic and the reward is derived from the change in the solution quality. A
notable reinforcement learning based hyperheuristic is described in [75] and a com-
bination with a tabu-search mechanism in [17]. With simulated annealing, another
common metaheuristic technique is successfully added to the reinforcement learning
tabu search in [34].

There is no absolute requirement for hyperheuristics that the top-level process has
to be a heuristic itself. Several knowledge based strategies have been successfully
applied as heuristic selection processes as well. In [18], a case-based reasoning process
is employed to create a hyperheuristic that produces very good results in a timetabling
problem. Another comparative work with a knowledge based classifier system for
hyperheuristic selection was done in [103].

Recent interesting developments in the area of hyperheuristics include multi-objective
heuristic generation by a genetic algorithm as described in [100], where a genetic pro-
gramming approach is used to solve a variant of the job-shop problem that has to be
optimised simultaneously for minimal makespan, minimal mean tardiness and mini-
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mal mean flow time. This work expands the area of hyperheuristics to the much more
challenging problem domains of multi-objective optimisation.

Another promising area of hyperheuristic research is currently being explored with
multi-agent systems as described in the work of [83]. An agent-based cooperative
hyper-heuristic framework is proposed, that includes a number of low-level heuristic
agents and a single cooperative hyper-heuristic agent. The heuristic agents are allowed
to communicate synchronously or asynchronously through the hyperheuristic agent,
which tries to balance their individual strengths and weaknesses. It has been shown
that this approach can yield superior performance compared to existing sequential
hyper-heuristics at a set of permutation flow-shop benchmark instances.

A good survey of currently existing hyperheuristic techniques can be found in [15].

2.4 Towards Cross-domain Hyperheuristics

The majority of hyperheuristic research has been devoted to single domain applica-
tions. The goal was mostly to make existing metaheuristics more robust and to adapt
to a wider range of problem instances within one domain. Notable exceptions are [81]
and [79] which use multi expression programming and linear genetic programming
to evolve other evolutionary algorithms. This approach was applied to the travelling
salesman problem, the quadratic assignment problem and general function optimiza-
tion problems. In [42], a source-code generator is described, which produces C++ code
via automatic synthesis of stochastic local search algorithms. This system can gener-
ally be applied to many different problem domains as well. The problem description
has to be provided in an XML syntax and the resulting code has to be completed
manually with problem specific methods.

Every multi-disciplinary problem solving algorithm faces the question of how to
choose a generic problem representation. In addition to that, hyperheuristics need
a unified interface to access multiple different low-level heuristics, regardless of the
problem domain they are designed to work with. The HyFlex framework as described
in [12] was developed to directly address these issues. Building on the research results
from [84] and [8], it provides probably the most abstract and generic interface for
hyperheuristic algorithms to date. HyFlex comes with a rather large set of comparative
problem domains and test instances, shifting away the focus from improving existing
solution strategies within a problem domain, towards a more generally applicable
problem solving ability.

In [11], a brief comparative study on the performance of different state of the art
hyperheuristics using the HyFlex framework is conducted. A number of basic algo-
rithms from the literature was implemented and tested on three different problem
domains (bin-packing, permutation flow-shop and personnel scheduling). Interest-
ingly, a simple version of iterated local search was found to produce the best overall
results.
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In 2011, an international competition explicitly targeted at cross-domain hyper-
heuristics was organised by the University of Nottingham, in order to encourage re-
search in that direction and to objectively compare different hyperheuristic approaches
in that area. The ”Cross-domain Heuristic Search Challenge 2011” strongly built upon
the HyFlex framework and was the first competition of its kind. This tournament was
especially important, because objectively comparing cross-domain hyperheuristics is
a very difficult task and probably one of the reasons why not very much research
has been done in that direction. A common framework like HyFlex not only makes
sure that everybody uses the same implementations of low-level heuristics, but also
that the information available to the hyperheuristic is exactly the same for each of the
candidates.

The results of this competition are certainly an important contribution towards a
more comprehensive understanding of problem independent top-level solution strate-
gies and a major step forward in cross-domain hyperheuristic research.
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CHAPTER 3
Problem Definition

In this Chapter, we will define the problem environment which we used for the work
on our hyperheuristic. We will introduce the different problem classes used as applica-
tion domains for the developed algorithm as well as the available low-level heuristics
and the specific benchmark instances for training and testing that were provided with
the HyFlex framework. In addition to that, we will also shortly address existing hy-
perheuristic research works that deal with each of the problem domains. At the end
of the Chapter we will describe the underlying HyFlex framework that was used for
the implementation of our algorithm as well as the evaluation method employed.

3.1 Goal Description

The main goal of this research was the development of a hyperheuristic algorithm
that is universally applicable, regardless of the specific problem class. It is to be ex-
pected, that increased generality and robustness of an algorithm come at the cost of
sub-optimal individual results. In fact, for every particular instance there exist more
specialised heuristics that produce better results. Previous hyperheuristic research of-
ten focused on a single problem domain and produced very competitive or even new
best known solutions for individual instances (see for example [86]). This work how-
ever does not strive for optimal performance on individual instances or even problem
classes. It is therefore somewhat distinct from the majority of previous works on hy-
perheuristics.

In order to analyse the performance of the algorithm, the following problem do-
mains were used for our experiments:

1. Maximum satisfiability (Max-SAT)

2. One-dimensional bin-packing
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3. Permutation flow-shop

4. Personnel scheduling

5. Travelling salesman problem (TSP)

6. Vehicle routing problem (VRP)

3.2 Problem Domains

Max-SAT

The well-known boolean maximum satisfiability problem is to find an assignment to
all boolean variables of a set of logical clauses, that leads to the highest number of
these clauses evaluating to true. An example of a problem instance in conjunctive
normal form is given in formula 3.1.

(x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) (3.1)

In this case, a possible solution would be the assignment x1 = true, x2 = f alse, x3 =

true, x4 = true, which would satisfy all three clauses. The problem is known to be
NP-hard[39] and many other problems can easily be expressed as an instance of a SAT
problem. In fact, the boolean satisfiability problem was the first problem proven to
be NP complete in [21]. In his work, Cook showed how any nondeterministic Turing
machine could be expressed as a series of logic clauses that are only satisfiable if and
only if the corresponding Turing machine accepts its input. By doing so, he proved
that the boolean satisfiability problem is equivalent to the class of problems, solvable
by a nondeterministic Turing machine in polynomial time. SAT problems (and the
variation Max-SAT) comprise a very well studied problem class with numerous highly
effective heuristic solvers available.

Existing Hyperheuristic Research

Heuristic generation methods were applied to SAT in [38], where genetic program-
ming was used in order to build new composite heuristics out of building blocks
which were identified as parts from the well-known local search algorithms Walk-
SAT and Novelty. A very similar approach was used in [5], where a strongly-typed
grammar-based genetic programming approach is used to evolve ”disposable”, prob-
lem instance specific heuristics.

Local Search Heuristics

The following local search heuristics for the Max-SAT problem were used for the de-
velopment of this algorithm (as described in [54]):
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• GSAT[96]

• HSAT[45]

• WalkSAT[95]

• Novelty[72]

Mutation Heuristics

The following mutation heuristics for the Max-SAT problem were used for the devel-
opment of this algorithm (as described in [54]):

• flip a random variable

• flip a random variable from a broken clause

• flip a random variable from the set of variables with the highest gain

• flip the oldest non-flipped variable from the set of variables with the highest gain

Bin-Packing

The one-dimensional bin-packing problem deals with packing objects of various weights
into as few (fixed-capacity) bins as possible. Each object j is assigned a weight wj and
every bin is only allowed to be filled with objects as long as their total weight does
not exceed the bin’s capacity c. A mathematical formulation of the one-dimensional
bin-packing problem taken from [71] can be seen in equation 3.2.

Minimise
n

∑
i=1

yi

Subject to
n

∑
j=1

wjxij ≤ cyi, i ∈ N = 1, ..., n,

n

∑
i=1

xij = 1, j ∈ N,

yi ∈ {0, 1} , i ∈ N,

xij ∈ {0, 1} , i ∈ N, j ∈ N. (3.2)

The binary variable yi indicates whether bin i is non-empty, xij is true iff object j is
contained in bin i and n is the total number of objects to be packed. A quadratic
goal function (as described in [55]) is used, which favours bins that have very little
remaining capacity.
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Existing Hyperheuristic Research

Heuristic generation methods have been applied to bin-packing in [14], where a ge-
netic programming approach was able to autonomously evolve the well known first-
fit heuristic often applied by humans. Additional research on the scalability of the
evolved heuristics was conducted in [16]. A histogram-matching based genetic pro-
gramming technique for evolving constructive heuristics is described in [87] and pro-
duces high quality solutions. In [67], the strongly related 0/1 knapsack problem with
two separate objective functions is also addressed successfully with genetically evolved
heuristics. A three dimensional version of this problem is investigated in [2], where
evolved heuristics again produce results competitive to human level solutions. One
of the earliest hyperheuristic research on the bin-packing problem was conducted in
[94], where the classifier system XCS[108] is trained to select among various simple
non-evolutionary heuristics.

Local Search Heuristics

The following local search heuristics for the bin-packing problem were used for the
development of this algorithm (as described in [55]):

• swap largest object from lowest filled bin with a smaller piece from a randomly
selected bin

• take all objects from the lowest filled bin and repack them into the other bins

Mutation Heuristics

The following mutation heuristics for the bin-packing problem were used for the de-
velopment of this algorithm (as described in [55]):

• swap two random pieces

• split a highly filled bin into two bins

• empty the highest filled bins and repack them with a best-fit heuristic

• empty the lowest filled bins and repack them with a best-fit heuristic

Permutation Flow-Shop

The permutation flow-shop problem is to find a sequence in which n jobs can be
scheduled on m consecutive machines. Each job has to go through all of the available
machines in the same order. A job can only be processed on one machine at once and
also every machine can only work on a single job at a time. The ordering of the jobs
has to be maintained throughout the whole process - that is, the order in which the
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jobs enter the first machine is exactly the order in which they leave the last machine.
The processing time of job i on machine j is denoted by pij and the starting time with
starti,j. The goal is to find a permutation π = π(1), ..., π(n), with π(i) being the place
in the job sequence assigned to job i, that minimises the completion time of the last
job in the sequence. Equation 3.3 shows the calculation of the completion time Cπ(i),j
of job i on machine j.

startπ(i),j = max
{

startπ(i),j−1, startπ(i−1),j

}
,

with

startπ(0),j = 0 and startπ(i),0 = 0,

Cπ(i),j = startπ(i) + pπ(i),j. (3.3)

Existing Hyperheuristic Research

In [105], a range of different genetic algorithms is used with a hybrid chromosome
containing both, a schedule for the initial stage as well as a sequence of dispatching
rules for the subsequent stages. This approach was termed ”meta-hyper-heuristic”
and gave encouraging results. An early hyperheuristic approach is used in [78], where
a Heuristics Combination Method (HCM) is described which essentially performs
heuristic selection. A variety of different approaches is examined, including some
based on evolutionary algorithms. An interesting approach to the permutation flow-
shop problem is described in [83], where a distributed agent-based system is used in
which low-level heuristic agents cooperate by exchanging good solutions while syn-
chronously searching the same solution space. Greedy and tabu-based strategies are
used to decide about the specific low-level heuristic at each step.

Local Search Heuristics

The following local search heuristics for the permutation flow-shop problem were used
for the development of this algorithm (as described in [104]):

• steepest descent local search

• first improvement local search

• random single local search step

• single first improvement local search step

Mutation Heuristics

The following mutation heuristics for the permutation flow-shop problem were used
for the development of this algorithm (as described in [104]):

17



• randomly reinsert a job at a different position

• swap two randomly selected jobs

• shuffle the entire permutation

• create a new solution with the NEH algorithm[76]

• randomly shuffle a number of selected jobs

• remove a number of randomly selected jobs and reinsert them using NEH

Personnel Scheduling

Personnel scheduling is an important task in a wide variety of businesses. It basically
deals with deciding which employee should work on which day and in which shifts
over a certain planning period. The details of this problem class are however very
important for the definition of the problem and may be very different between ap-
plication cases. Personnel scheduling is therefore only an umbrella term for a whole
range of related problems, differing in their specific constraints and objectives. A con-
straint might for example be the total number of hours an employee is allowed to
work per week. In another application this constraint might be an objective, where it
is allowed for an employee to exceed a certain number of hours but this excess should
be minimised. Each objective can also have a certain weight, which indicates how bad
it is for a solution to not meet this objective. The test-environment at hand implements
a framework which allows for a wide variety of personnel scheduling problems to be
expressed. For details of the implementation see [30].

Existing Hyperheuristic Research

One of the early works that helped laying the foundations for the area of research
on hyperheuristics was [25] and it applied three different categories of hyperheuristic
approaches to a personnel scheduling problem class. They examined a random heuris-
tic selection process, a greedy approach and one based on a choice function together
with different acceptance criteria. Another variant of the personnel scheduling prob-
lem class is dealt with by the same author in [24], this time using a genetic algorithm
for heuristic selection. Follow-up research was performed in [23], analysing a hyper-
heuristic approach dealing with a large number of available low-level heuristics. The
work in [51] examines a guided genetic algorithm working on a chromosome repre-
senting the selection and the sequence of the underlying low-level heuristics. A simple
heuristic is used to guide the injection or removal of gene groups from the chromo-
some. A personnel scheduling hyperheuristic employing a form of tabu-search among
the low-level heuristics is introduced in [17]. The low-level heuristics are competing
to be selected according to a rank-based metric inspired by reinforcement learning. A
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stochastic search among low-level heuristics modelled after the simulated annealing
technique is used in [6]. This pure heuristic selection process was found to give notable
improvements over the best problem-specific metaheuristics known at that time.

Local Search Heuristics

The following local search heuristics for the personnel scheduling problem were used
for the development of this algorithm (as described in [30]):

• first improvement hill-climber: swap shifts within a single employee’s work
schedule

• first improvement hill-climber: swap employees within a single shift assignment

• first improvement hill-climber: introduce or delete a group of shift assignments

• variable depth search [13]

• variable depth search with introducing and deleting moves

Mutation Heuristics

The following mutation heuristics for the personnel scheduling problem were used for
the development of this algorithm (as described in [30]):

• randomly assign a number of new shifts

• randomly delete a number of shift-assignments keeping the solution feasible

Travelling Salesman Problem

The travelling salesman problem is another very popular NP-hard combinatorial op-
timisation problem dating back to the 19th century, where the problem was defined
by W. R. Hamilton and T. Kirkman. In its basic form, the goal is to find a shortest
route among a number of cities, so that the travelling salesman visits each city ex-
actly once and in the end returns to the starting point of his journey. The problem
can conveniently be modelled using a weighted graph G = (V, E), where the set of
vertices V = {1, ..., n} represents the cities and the edge set E = {(i, j) : i, j ∈ V, i < j}
corresponds to the possible paths between two cities, with each edge (i, j) having an
associated cost cij which denotes the distance of the path. The solution to the travelling
salesman problem is then to find a Hamiltonian cycle on G, which has the lowest total
cost.

Due to the high practical importance of this problem class in applications ranging
from transportation and logistics to printed circuit board manufacturing, there exists
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a vast number of highly performant algorithms that use exact or heuristic method-
ologies. A very popular set of benchmark instances is available under the name of
TSPLIB[89].

Existing Hyperheuristic Research

The travelling salesman problem was approached with hyperheuristic techniques in
[60], where a grammar-based genetic programming algorithm was used to construct
heuristics that were able to rapidly solve benchmark instances from TSPLIB and pro-
duced results competitive with the best known results from the literature at that
time. Another similar evolutionary approach known as Multi Expression Program-
ming (MEP) was used for TSP in [80]. An MEP chromosome usually encodes several
different computer programs, leading to a form of implicit parallelism. The results
of this work mostly outperformed simple heuristics based on the nearest neighbour
principle or on minimum spanning trees.

Local Search Heuristics

The following local search heuristics for the travelling salesman problem were used
for the development of this algorithm:

• two-opt local search with first improvement

• three-opt local search with first improvement

• two-opt local search with best improvement

Mutation Heuristics

The following mutation heuristics for the travelling salesman problem were used for
the development of this algorithm:

• greedily reinsert the cities of a deleted sub-sequence

• randomly reinsert a city at a different position within the tour

• swap two randomly selected cities

• randomly shuffle the tour

• randomly shuffle a sub-sequence of the tour

• flip the order of a sub-sequence of the tour
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Vehicle Routing Problem

The vehicle routing problem is a classic logistics problem of high practical importance.
It was first introduced in 1959 by Dantzig[31] and shares some properties with the
travelling salesman problem. The goal is to service a set of customers by visiting them
with one of a set of available vehicles. A formal definition of the classical vehicle
routing problem as found in [22] is the following: Let G = (V, A) be a graph where
V = {v0, v1, ..., vn} is a vertex set, and A = {(vi, vj) : vi, vj ∈ V, i 6= j} is an arc set.
The special vertex v0 represents a depot, while the remaining vertices correspond to
customers. A cost matrix cij and a travel time matrix tij are associated with A. The
vehicle routing problem is then defined on an undirected graph G = (V, E), with the
vertices V and the edge set E = {(vi, vj) : vi, vj ∈ V, i < j}. Each customer has a
non-negative demand qi and a service time ti. A fleet of m vehicles, each with the
same capacity Q is located at the depot v0. The task is to construct a set of at most m
deliveries, such that the following conditions are fulfilled:

• each route starts and ends at v0

• each customer is visited exactly once by exactly one vehicle

• the total demand of each route does not exceed Q

• the total duration of each route does not exceed a limit D

• the total routing cost is minimal

Existing Hyperheuristic Research

Five different vehicle routing problem variants are tackled with an adaptive large
neighbourhood search (ALNS) in [86]. The adaptivity of this algorithm comes from
a layer that performs heuristic selection among a number of insertion and removal
heuristics that try to diversify and intensify the search. The results were very en-
couraging, as 183 new best solutions from a benchmark set containing 486 instances
could be found. Another heuristic selection algorithm for the VRP was developed in
[40]. There, the algorithm performs a hill-climbing search among pairs of constructive-
perturbative heuristics. In [41], an evolutionary approach was applied to particularly
hard VRP instances. Sequences of three different types of low-level heuristics (con-
structive, perturbative and noise heuristics) were evolved in order to create or improve
upon partial solutions. The approach proved to result in very competitive solutions
on a standard benchmark set.

Local Search Heuristics

The following local search heuristics for the vehicle routing problem were used for the
development of this algorithm:
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• two-opt local search

• local search using generalised insertion (GENI)[44]

Mutation Heuristics

The following mutation heuristics for the vehicle routing problem were used for the
development of this algorithm:

• two-opt mutation

• or-opt[82] mutation

• delete a part of a tour within the area of a certain location and reinsert them
using GENI

• delete a part of a tour within a certain timespan and reinsert them using GENI

• shift a part of a tour

• shift and mutate a part of a tour

3.3 Evaluation Method

Due to the somewhat novel area of cross-domain hyperheuristic algorithms, it is dif-
ficult to find existing research data for a fair comparison. Obviously for every prob-
lem instance there exists a multitude of specialised algorithms which are pretty much
certain to achieve superior results. We therefore resorted to applying the same exper-
imental settings as employed by the Cross-domain Heuristic Search Challenge 20111.
This challenge was specifically designed for algorithms that should perform well over
a range of known and unknown independent problem domains and is therefore per-
fectly suited for judging the performance of the algorithm at hand.

The rules of the competition required the participants to make use of the HyFlex
framework, which offers a concise interface for a clean hyperheuristic model. Solution
candidates had to be written in pure Java, without the use of multi-threading or native
code. A set of eight default hyperheuristics was made available prior to the contest, to
be used as a baseline comparison during the development phase. These hyperheuris-
tics were deemed to be of average quality by the organisers of the competition. In fact,
after a few weeks of development time our new algorithm already outperformed even
the best of the default hyperheuristics on almost all instances.

In order to provide a somewhat comparable metric for measuring the runtime
of the participant’s algorithms on their respective development systems, the organis-
ers of the competition decided to provide a closed-source benchmark program. This

1http://www.asap.cs.nott.ac.uk/chesc2011
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benchmark performed various typical operations within the HyFlex framework and
measures their total execution time on the development system it is run on. The out-
put of the program is a number of seconds, which should roughly be equivalent to
600 seconds on the final test platform for deciding the results of the competition. This
benchmark was provided for both Windows and Linux operating systems, in 32 and
64 bit versions. Development and testing for the algorithm at hand was mainly per-
formed on an Intel T9400 Core2 processor clocked at 2.53GHz, running a 32-bit Linux
kernel. The benchmark program gave consistent ratings with no variance, although
the same the benchmark run on the same machine under 32-bit Windows was a bit less
stable. See table 3.1 for the output of the benchmarking program on 30 consecutive
runs without any other system activity. Since the benchmarking program itself was
only provided as a closed-source native binary, nothing can be said about its reliability
but the stable result of the benchmarking program under Linux gave some confidence
over the validity of the result. It turned out after the competition, that the benchmark
seemingly overestimated the performance of the development machine significantly,
leading to better results in the preliminary leaderboard.

Platform Min Max Avg Stddev
32-bit Linux 715 715 715 0

32-bit Windows 7 692 745 702 15.6

Table 3.1: Benchmark results of 30 consecutive runs.

Test Data

The test data for the evaluation of the algorithm was chosen among a number of
different benchmark datasets described in [53] and in tables 3.2-3.7.

Framework Description

The HyFlex framework (Hyperheuristics Flexible framework) as described in [12] and
[10], offers an intuitive interface to utilise a set of given low-level search and mutation
heuristics, easing the task of working purely on a high-level search strategy without
any a priori knowledge about the problem instance or the heuristics available. It is an
object-oriented framework implemented in the Java programming language, provid-
ing a concise way to access typical operations when working with hyperheuristics. It is
built as a modular system, providing general-purpose methods for the interaction with
separately implemented problem-specific heuristic modules. This separation follows
the model depicted in figure 3.1 and allows the user to concentrate on the hyper-
heuristic part without having any knowledge about the underlying problem specific
algorithms. The so-called domain barrier represents this abstraction, which is an im-
portant concept in hyperheuristic research. The only kind of information crossing the
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No. Name Source Variables Clauses
0 contest02-Mat26.sat05-457.reshuffled-07 [27] 744 2464
1 hidden-k3-s0-r5-n700-01-S2069048075.sat05-488.reshuffled-07 [27] 700 3500
2 hidden-k3-s0-r5-n700-02-S350203913.sat05-486.reshuffled-07 [27] 700 3500
3 parity-games/instance-n3-i3-pp [28] 525 2276
4 parity-games/instance-n3-i3-pp-ci-ce [28] 525 2336
5 parity-games/instance-n3-i4-pp-ci-ce [28] 696 3122
6 highgirth/3SAT/HG-3SAT-V250-C1000-1 [3] 250 1000
7 highgirth/3SAT/HG-3SAT-V250-C1000-2 [3] 250 1000
8 highgirth/3SAT/HG-3SAT-V300-C1200-2 [3] 300 1200
9 MAXCUT/SPINGLASS/t7pm3-9999 [3] 343 2058
10 jarvisalo/eq.atree.braun.8.unsat [27] 684 2300
11 highgirth/3SAT/HG-3SAT-V300-C1200-4 [3] 300 1200

Table 3.2: Max-SAT instances

No. Name Source Capacity Pieces
0 falkenauer/u1000-00 [36] 150 1000
1 falkenauer/u1000-01 [36] 150 1000
2 schoenfieldhard/BPP14 [36] 1000 160
3 schoenfieldhard/BPP832 [36] 1000 160
4 10-30/instance1 [56] 150 2000
5 10-30/instance2 [56] 150 2000
6 triples1002/instance1 [56] 1000 1002
7 triples2004/instance1 [56] 1000 2004
8 test/testdual4/binpack0 [36] 100 5000
9 test/testdual7/binpack0 [36] 100 5000
10 50-90/instance1 [56] 150 2000
11 test/testdual10/binpack0 [36] 100 5000

Table 3.3: Bin-packing instances

domain barrier are the fitness gains from the low-level heuristics as well as a coarse
runtime estimation.

For every problem domain, the following problem specific components were pro-
vided:

• a set of suitable low-level heuristics, possibly with parameters

• an internal solution representation

• a scalar solution evaluation function

• methods to initialise, copy and compare solutions
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No. Name Source Best Known Staff Shift Types Days
0 BCV-3.46.1 [29] 3280 46 3 26
1 BCV-A.12.2 [29] 1294 12 5 31
2 ORTEC02 [29] 270 16 4 31
3 Ikegami-3Shift-DATA1 [57] 2 25 3 30
4 Ikegami-3Shift-DATA1.1 [57] 3 25 3 30
5 Ikegami-3Shift-DATA1.2 [57] 3 25 3 30
6 CHILD-A2 [29] 1111 41 5 42
7 ERRVH-A [29] 2197 51 8 42
8 ERRVH-B [29] 6859 51 8 42
9 MER-A [29] 9915 54 12 42

10 BCV-A.12.1 [29] 1294 12 5 31
11 ORTEC01 [29] 270 16 4 31

Table 3.4: Personnel scheduling instances

No. Name Source Jobs Machines
0 100x20/1 [99] 100 20
1 100x20/2 [99] 100 20
2 100x20/3 [99] 100 20
3 100x20/4 [99] 100 20
4 100x20/5 [99] 100 20
5 200x10/2 [99] 200 10
6 200x10/3 [99] 200 10
7 500x20/1 [99] 500 20
8 500x20/2 [99] 500 20
9 500x20/4 [99] 500 20
10 200x20/1 [99] 200 20
11 500x20/3 [99] 500 20

Table 3.5: Pemutation flow-shop instances

The hyperheuristic is intentionally shielded from almost all low-level information
about the available heuristics or the problem instance. The only information avail-
able to the hyperheuristic is:

• the number of available low-level heuristics

• a broad classification of each low-level heuristic

• optionally available parameters for the low-level heuristic

• the runtime information of previously applied heuristics

• a scalar solution quality measure
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No. Name Source Cities
0 pr299 [90] 299
1 pr439 [90] 439
2 rat575 [90] 575
3 u724 [90] 724
4 rat783 [90] 783
5 pcb1173 [90] 1173
6 d1291 [90] 1291
7 u2152 [90] 2152
8 usa13509 [90] 13509
9 d18512 [90] 18512
10 200x20/1 [90] 200
11 500x20/3 [90] 500

Table 3.6: Travelling salesman problem instances

No. Name Source Vehicles Vehicle Capacity
0 Solomon/RC/RC207 [97] 25 1000
1 Solomon/R/R101 [97] 25 200
2 Solomon/RC/RC103 [97] 25 200
3 Solomon/R/R201 [97] 25 1000
4 Solomon/R/R106 [97] 25 200
5 Homberger/C/C1-10-1 [97] 250 200
6 Homberger/RC/RC2-10-1 [97] 250 1000
7 Homberger/R/R1-10-1 [97] 250 200
8 Homberger/C/C1-10-8 [97] 250 200
9 Homberger/RC/RC1-10-5 [97] 250 200

Table 3.7: Vehicle routing problem instances

The classification of the low-level heuristic type can be one of: local search, muta-
tion, crossover or ruin-recreate. This type information is made available only as a
rough guideline - no guarantees about specific heuristic properties can be derived from
this classification. It can however be expected that mutation heuristics usually result
in a worse solution, whereas local search heuristics usually do not. Crossover type
heuristics work with two solutions as input and produce one solution as output which
usually shares some of the properties from the two input solutions. Ruin-recreate
heuristics usually destroy a part of the solution and subsequently use a construction
heuristic to rebuild a full solution.

The low-level heuristics were allowed to make use of none, one or both of the
parameters named intensityOfMutation and depthOfSearch. Valid parameter
values are floating point values between 0 and 1. As with the mentioned heuristic
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Figure 3.1: HyFlex abstraction model for hyperheuristics

classification, the names of these parameters are only a rough guideline and no guar-
antees are made about the actual usage of these parameters by the low-level heuristics.
Usually, higher intensityOfMutation values lead to a greater part of the solution
being changed, and higher depthOfSearch values lead to better but slower results
from a local search heuristic.

Solutions are represented in a linear array of slots which has a predetermined size
that can be set by the hyperheuristic. They are only ever addressed as indices within
this array and cannot be accessed directly. After the solution array size has been set,
individual solution slots can be initialised separately with a special call to the HyFlex
framework. This call may use some kind of constructive heuristic to generate an initial
solution. After the solutions have been initialised, repeated calls of the available low-
level heuristic methods can be used to improve the fitness of the solution(s).

Apart from these main interaction methods with the problem specific part, HyFlex
offers some utility functions to copy from one solution slot to another, to check two
solution slots for equality, to explicitly get the fitness value of a solution slot and
to gain a track record of past search performance as well as some coarse runtime
estimation (measured in milliseconds).

Scoring System

The scoring method of the competition was modelled after the Formula 1 point system
in use until 2010: the top eight participating algorithms within each problem instance
are awarded 10, 8, 6, 5, 4, 3, 2 and 1 points respectively. The rank of an algorithm is
determined by the fitness value of the best solution found within a runtime limit of
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600 seconds on a reference evaluation platform. If two or more algorithms produce the
same fitness value to within a range of 10−6, the respective points are added together
and split equally among the candidates. These scores are then summed over all 30
problem instances, thus resulting in the final ranking of the algorithms. Should two
or more algorithms have the same final result score, priority is given to the algorithm
which is more often ranked on the first place at the other instances. A separate pro-
gram was provided which calculated the final score of an algorithm when competing
against 8 default hyperheuristics which were deemed as of average quality.

As the score of an algorithm according to this system purely depends on the rel-
ative performance against a number of other competing algorithms, the organisers of
the CHeSC 2011 provided a way for the participants to measure their relative perfor-
mance in the run-up to the final competition. This leaderboard ranking was repeatedly
published according to the raw fitness values on the test instances submitted by the
participants on a voluntary basis. It has to be stressed of course, that the ranking of
the leaderboard can only give a rough estimation of the algorithm’s performance in
the final competition, due to the following shortcomings:

• participation is purely voluntary (the real opponents in the actual challenge may
be completely different)

• the results are obtained only from the test data provided initially and does not
incorporate results on the hidden instances and the hidden domains

• the algorithms are run on different hardware and operating systems and only
runtime limited by the result of the benchmark program

Especially the last factor had a rather heavy influence on the results of the leaderboard
as was found out in the aftermath of the competition.
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CHAPTER 4
Algorithm Description

4.1 Overview

Following the classification of Burke et al. in [15], our algorithm is an online learning
hyperheuristic, working mainly on heuristic selection. The novelty of the proposed
approach lies in the repeated switching between two search variants, namely a serial
search phase working only on a single solution and a systematic parallel search phase
working with a set of different solutions at the same time. We further propose a
grading mechanism for the ordering of the low-level heuristics and a selection strategy
for the available mutation heuristics.

The following main components of the algorithm are executed repeatedly:

• Serial search

• Generation of mutated solutions

• Parallel search

• Selection of a new working solution

After an initialisation phase, in which the preliminary scores of the available heuris-
tics are determined, the search continues by systematically executing the local-search
heuristics in order of their respective quality scores. The splitting in a serial and a par-
allel search phase balances the focus of the search between exploration of new parts
of the search space and the exploitation of the quality of the currently best working
solution.

Throughout the search process, the performance and runtime characteristics of the
low-level heuristics are measured and the scores responsible for their selection are
updated accordingly. In addition to that, the overall search progress is monitored
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Figure 4.1: Execution cycle of the algorithm

continuously and mechanisms such as the temporary blocking of ineffective heuristics
or the restart of the algorithm from the last best solution are applied. A tabu-list in
form of a ringbuffer containing a determined number of already visited solutions is
used to avoid cycles in the search process. The basic execution cycle of the different
phases of the algorithm is illustrated in figure 4.1.

4.2 Detailed Description of the Algorithm

Initialisation Phase

The algorithm begins with calculating preliminary quality-scores for all the local-
search heuristics available for the given problem instance. It does this by initialising
the first solution slot and applying the heuristics in turn, recording their gain and
their required runtime. The heuristics are called with the highest possible parameter
settings for the depth of search and the intensity of the mutation (where applicable).
The quality-score qh for each heuristic h is initially calculated as qh = gh/th where
gh denotes the gain as the difference between the solution value before and after the
execution of h and th is the runtime of the local search heuristic. The best solution
found during this initial phase is stored and returned as the working solution for the
subsequent serial search phase.

Serial Search Phase

The available local-search heuristics are applied sequentially to the current working
solution, in order of decreasing qualities qh. Whenever a solution is found that is
either better or equally good but different, it is accepted as current working solution
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and the search restarts with the best local-search heuristic. Additionally, a ringbuffer
of limited size (determined experimentally) keeps track of the solutions visited so far.
A solution which is already contained inside the ringbuffer is never accepted. The
parameters for the depth of search and the intensity of mutation are set to random
values before the application of each heuristic. The serial search phase ends whenever
no further improvement could be found with all the available heuristics, therefore
resulting in a locally optimal solution. See 4.3 for the corresponding pseudocode.

Quality Updates

In predetermined time intervals, the qualities of the local-search heuristics are up-
dated to reflect their performance during the whole search process. For each execution
i = {1, ..., n} of heuristic h, the runtime th,i as well as the gain gh,i is logged. The gain
denotes the difference between the function value of the solution before and after the
application of h. The quality qh of each heuristic is then calculated using formula 4.1.

qh =
∑n

i=1 H(gh,i)

∑n
i=1 th,i

(4.1)

with

H(x) =

{
0 if x ≤ 0

1 if x > 0

Generation of Mutated Solutions

The available mutation and ruin-recreate heuristics are placed in a roulette-wheel re-
flecting their relative qualities. Initially all mutation heuristics have the same chance of
being selected (i.e. the same quality). After each execution i of the mutation heuristic
h, its quality q′h is set to q′h = ∑n

i=1 g′h,i where g′h,i denotes the gain of the mutation
heuristic h as the difference between the function value of the solution before the ap-
plication of h and after the application of h and a subsequent optimisation run with
the local search heuristics. This optimisation run is effectively part of the parallel
search phase and ensures that the solution is in a local optimum with respect to all
local search heuristics. This special quality measure for mutation heuristics is used,
because the immediate change in the function value after its application does not allow
to determine the usefulness of a given mutation heuristic.

With the current working solution as input, a set of mutated offsprings is generated
by applying a selection of mutation heuristics chosen by a repeated run of the roulette-
wheel process. The mutation intensity is set using the formula r · (1 − tused/ttotal),
where r is a random number between 0 and 1, tused is the number of milliseconds
since the start of the algorithm and ttotal is the total allotted runtime in milliseconds.
This reduces the probability for large mutations towards the end of the search. A
pseudocode implementation is given in 4.4.
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Parallel Search Phase

Starting from the set of mutated solutions, the parallel search phase begins to work
on the candidate solutions one after another. It begins with applying the best local-
search heuristic to the first candidate. If an improvement is found, the new solution
is accepted, otherwise it is discarded. Afterwards the search continues with the next
solution slot and the local-search heuristic scheduled for this slot. Whenever a global
improvement is found (i.e. the result is better than the currently best found solution so
far), it is immediately accepted as the working solution for the next serial search phase
and the parallel search is aborted. Otherwise the search goes on until all solutions
have reached a local optimum with respect to all available local-search heuristics. See
algorithm 4.7 for a pseudocode implementation.

Working Solution Selection

Assuming no global improvement was found during the parallel search phase, a solu-
tion is selected from the pool of solutions containing the locally optimal output from
the serial search phase as well as the parallel search phase. Solutions with a better
quality have higher probability of being selected. If all solutions in the set are con-
tained in the ringbuffer, a random mutation will be applied to the best solution until
the result is not contained in the buffer anymore.

Additional Mechanisms

A number of additional mechanisms were implemented in order to improve the per-
formance of the algorithm and make sure the search does not get stuck.

Skipping Inefficient Heuristics

If a local-search heuristic is found to be ineffective it is skipped at both the serial and
the parallel search phase with a 50% chance. The definition of an ineffective heuristic
is, that the rate of successful applications is below 1%. Note, that this also helps to
weed out local search heuristics that are ”masked” by another (better) local search
heuristic, i.e. they never improve a solution once the other (better) heuristic has failed
to improve the same solution. This effect is the result of the way the local search
heuristics are applied: a heuristic of lower quality never gets the chance to work on a
solution that a higher quality heuristic has managed to improve.

Restarting the Search

Whenever the search continues for a certain amount of time or a certain number of
search iterations, producing only solutions which are worse than a given threshold
(relative to the currently best solution), the search continues with the generation of
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Figure 4.2: Internal structure of solution array, with m mutated solutions and a ring-
buffer of size r

mutated solutions from the currently best solution. This helps to avoid a diverging
search progress, where the solution quality only gets worse.

Hashed Solution Ringbuffer

Because the HyFlex framework does not allow for direct solution access, it is not
straight-forward to implement an efficient solution ringbuffer. The naive approach
to perform a linear search within the ringbuffer in order to determine if a solution
is already contained can be too time-consuming. To remedy this situation, a chain-
ing hashtable using the function value of a solution as key for the hash function is
implemented to speed up the access to the ringbuffer.

Constant Assignments

The proposed algorithm uses a number of constants which were determined experi-
mentally. The following assignments were found to work well for the given problem
classes and test environment:

• number of mutated solutions: 7

• size of the ringbuffer: 50

• quality update interval: 5000 milliseconds

• threshold for search restart: 150% of the currently best solution

• time interval outside the threshold to trigger search restart: 6000 milliseconds

• number of search iterations outside the threshold to trigger search restart: 6

4.3 Pseudocode Implementation

In this Section we give an approximate pseudocode version of our proposed hyper-
heuristic HAHA. Note, that only the main functionality can be seen from this imple-
mentation and that especially the additional mechanisms described above have been
omitted for clarity.
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Algorithm 4.1 shows the main problem solving method of the hyperheuristic which
maintains the basic execution cycle shown in 4.1. The working of the serial and par-
allel search phase can be seen in 4.3 and 4.7 respectively. Algorithm 4.4 outlines the
generation of the mutated solutions as input for the parallel search and 4.6 shows the
selection of the working solution for the subsequent iteration of the execution cycle.
The remaining methods used in this pseudocode version are the initialisation of the
heuristic qualities 4.2, as well as the periodic update of these qualities 4.5.

Algorithm 4.1: HAHA main solving method
1: HAHA
2: LS← available local search heuristics sorted by decreasing quality q
3: b← create ringbuffer
4: s← create solution array
5: swork ← initialiseLSQualities()
6: sbest ← swork
7: while time not expired do
8: b.add(swork)
9: serialSearch(swork)

10: for i = 1→ 7 do
11: si ← generateMutation(swork)
12: end for
13: parallelSearch(s1..7)
14: end while
15: return sbest

Algorithm 4.2: Initialisation of quality measures for the local search heuristics
1: initialiseLSQualities

2: swork ← generate random initial solution
3: for i = 1→ |LS| do
4: ti ← tnow
5: si ← applyHeuristic(LSi, swork)
6: ti ← tnow − ti
7: qi ← ti/(swork − si)
8: if getFitness(si) < getFitness(sbest) then
9: sbest ← si

10: end if
11: end for
12: return sbest
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Algorithm 4.3: Serial search using a single solution swork

1: serialSearch(swork)
2: for i = 1→ |LS| do
3: setDepthOfSearch(random(0..1))
4: stemp ← applyHeuristic(LSi, swork)
5: if time to update the qualities then
6: updateLSQualities()
7: end if
8: if NOT b.contains(stemp) AND (getFitness(stemp) < getFitness(swork) OR

(getFitness(stemp) = getFitness(swork) AND swork 6= stemp)) then
9: swork ← stemp

10: b.add(swork)
11: i← 1
12: end if
13: end for

Algorithm 4.4: Generate a mutated solution based on swork

1: generateMutations(swork)
2: setIntensityOfMutation(random(0..(1− tused/ttotal)))
3: hm ← select mutation heuristic with roulette wheel of mutation qualities
4: sm ← applyHeuristic(hm, swork)
5: return sm

Algorithm 4.5: Update the quality measures for the local search heuristics
1: updateLSQualities

2: for i = 1→ |LS| do
3: impi ← number of times heuristic LSi has improved the solution
4: runtimei ← total runtime of heuristic LSi
5: qi = impi/runtimei
6: end for

Algorithm 4.6: Select one of the best solutions from the given solution set s1..7

1: selectSolution(s1..7)
2: sort solution s1..7 in decreasing order of their fitnesses
3: for i = 1→ 7 do
4: if random(0..1)< 0.8 then
5: return si
6: end if
7: end for
8: return s7
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Algorithm 4.7: Parallel search operating on a set of solutions s1..7 simultaneously
1: parallelSearch

2: for i = 1→ 7 do
3: // start with all working heuristics set to the best LS heuristic (index 1)
4: whi ← 1
5: end for
6: repeat
7: candidatesLe f t← f alse
8: for i = 1→ 7 do
9: if whi ≤ |LS| then

10: setDepthOfSearch(random(0..1))
11: stemp ← applyHeuristic(LSwhi , si)
12: if getFitness(stemp) < getFitness(sbest) then
13: sbest ← stemp
14: swork ← stemp
15: b.add(stemp)
16: return
17: else
18: if getFitness(stemp) < getFitness(si) then
19: si ← stemp
20: b.add(stemp)
21: // continue with best LS heuristic (index 1)
22: whi ← 1
23: else
24: // continue with the next best LS heuristic
25: whi ← whi + 1
26: candidatesLe f t← true
27: end if
28: end if
29: end if
30: end for
31: until not candidatesLe f t
32: if b.contains(s1..7) then
33: randomly mutate swork
34: else
35: swork ← selectSolution(s1..7)
36: end if
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CHAPTER 5
Experimental Results

In this Chapter we show experimental results for the problems defined in Section
3.2. These are the official scores published by the organisers of the competition1. The
evaluation instances were randomly chosen for the contest and include two hidden
instances from each domain which were not available prior to the submission date for
the competition. The values in the result tables represent the median solution value
per instance of 31 subsequent runs with different random seeds. The runtime was
limited to 600 seconds CPU-time and the evaluation of each algorithm was performed
on the same machine in order to make the results comparable.

Tables 5.1 through 5.6 show the results for each of the problem domain separately
and table 5.7 presents the overall ranking of the final competition for each of the
20 competitors. In figures 5.1 through 5.6 you see graphs of the 15 best algorithms
for each domain and the total scores in 5.7. Note that the scoring system assigns a
maximum of 50 points for each of the domains (5 instances with no more than 10
points each).

In figure 5.1 we see that the top 3 algorithms are very close together with our
algorithm ranked on third place. This is probably due to the low integer solution
values of the problem instances, leaving little room for significantly better results and
producing many algorithms with identical fitness values, which in turn leads to a
somewhat distorted view because of the ranking performed by the scoring system.

In the bin-packing domain we observe the really outstanding performance of the
AdapHH algorithm, which dominates the field (see figure 5.2). The fact that this is
the only domain where continuous improvements are easily accessible through the
low-level heuristics may be a reason for the big advantage of one algorithm over all
the others. While this domain shows the great efficiency of AdapHH, it also reveals
a possible weakness in the quality grading scheme of our algorithm because there is

1http://www.asap.cs.nott.ac.uk/chesc2011/results.html

37

http://www.asap.cs.nott.ac.uk/chesc2011/results.html


EPH
HAEA
SA-ILS
GISS

MCHH-S
XCJ
ISEA

PHUNTER
AVEG-Nep

NAHH
ML

KSATS
HAHA

VNS-TW
AdapHH

0 5 10 15 20 25 30 35 40

Max-SAT

Figure 5.1: Max-SAT results

no quality distinction among equally fast, always improving low-level heuristics. Our
quality measure which proved to be rather robust with the other problem domains
leads to difficulties in the bin-packing class.

Figure 5.3 shows a rather evenly distributed picture of the scores, which might
be due to the fact that this is the slowest problem class where individual low-level
heuristics may take many seconds to complete. Therefore the results of this domain are
probably the most random because every hyperheuristic only has a very small number
of attempts to apply the low-level heuristics. This observation is further supported by
the fact that the otherwise superior AdapHH only achieves a rather poor 10th rank.
Despite the difficulties of this domain, our algorithm manages to perform very well
within this problem class.

Permutation flow-shop results in 5.4 show that almost half of the algorithms do not
manage to score any points in this domain, giving rise to the suspicion that its fitness
landscape is very hard for a large part of the different hyperheuristic approaches. A
similar picture can be seen with the results of the travelling salesman problem in 5.5.

Interestingly, the results of the vehicle routing problem in 5.6 are very different
from the travelling salesman instances, although the two domains should in theory
exhibit similar characteristics. This is a good example where different low-level heuris-
tics can change the problem environment completely even if the problem themselves
are very much alike. This is also reflected in the significant differences of the rankings
from the algorithms between those two domains.
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Algorithm Inst 3 Inst 5 Inst 4 Inst 10 Inst 11
VNS-TW 3.0 3.0 2.0 3.0 10.0
SA-ILS 13.0 23.0 12.0 15.0 9.0
DynILS 23.0 56.0 37.0 31.0 19.0

ML 5.0 10.0 3.0 9.0 8.0
AdapHH 3.0 5.0 2.0 3.0 8.0

KSATS 4.0 7.0 2.0 4.0 9.0
EPH 7.0 11.0 6.0 14.0 13.0

GenHive 16.0 44.0 31.0 19.0 14.0
PHUNTER 5.0 11.0 4.0 9.0 8.0
ACO-HH 11.0 35.0 9.0 17.0 13.0

HAHA 3.0 4.0 2.0 5.0 8.0
ISEA 5.0 11.0 4.0 9.0 11.0
GISS 16.0 21.0 13.0 17.0 9.0
SelfS 13.0 36.0 14.0 14.0 10.0
XCJ 6.0 8.0 5.0 9.0 10.0

AVEGNep 8.0 10.0 5.0 9.0 7.0
MCHH-S 8.0 14.0 8.0 8.0 9.0

HAEA 6.0 12.0 5.0 12.0 11.0
Ant-Q 23.0 52.0 38.0 27.0 14.0
NAHH 8.0 10.0 4.0 9.0 7.0

Table 5.1: Max-SAT results

5.1 Discussion of Results

The results show that our algorithm performs very well with the Max-SAT and the
personnel scheduling problem classes. This is very interesting, because these two
domains are conceptionally very different. While the heuristics for Max-SAT are very
fast and complete within the millisecond range, the heuristics of personnel scheduling
take a long time to complete, often requiring over 10 seconds for a single call. Because
of this result it is clear that a ranking of local search heuristics can be very effective
both with very fast and very slow heuristics. The worst results for the algorithm are
in the bin-packing and travelling salesman domains. The bin-packing problems have
very fast heuristics as well but also heuristics that seem to be able to result in very
small improvements throughout the whole search process. This might be a case where
the quality measure used for the ranking of the local search heuristics is suboptimal.
The bin-packing domain was the only case where this phenomenon was observed.

The travelling salesman problem is strongly related to the vehicle routing problem,
yet the ranking for our algorithm are rather far apart. Both domains share the theoret-
ical concept of finding short cycles in graphs, both use moderately fast heuristics and
the distribution of the results has similar properties as well. One thing that might have
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Algorithm Inst 7 Inst 1 Inst 9 Inst 10 Inst 11
VNS-TW 0.03696 0.00715 0.01671 0.10878 0.02776
SA-ILS 0.07873 0.01153 0.01458 0.11039 0.02958
DynILS 0.04027 0.00767 0.01016 0.10872 0.01285

ML 0.04214 0.00753 0.01456 0.10852 0.02182
AdapHH 0.01607 0.00360 0.00356 0.10828 0.00354

KSATS 0.01923 0.00780 0.01149 0.10892 0.02199
EPH 0.05042 0.00360 0.01127 0.10866 0.02238

GenHive 0.02994 0.00708 0.01037 0.10859 0.02286
PHUNTER 0.04787 0.00360 0.02012 0.10908 0.03948
ACO-HH 0.04771 0.00320 0.00388 0.10986 0.01486

HAHA 0.08829 0.00726 0.01450 0.11023 0.02790
ISEA 0.03422 0.00328 0.00365 0.10862 0.00640
GISS 0.06917 0.00837 0.03218 0.11259 0.05922
SelfS 0.06642 0.00736 0.01441 0.10968 0.02391
XCJ 0.02201 0.01145 0.01569 0.10856 0.02850

AVEGNep 0.08737 0.00773 0.01807 0.11139 0.03750
MCHH-S 0.06225 0.00729 0.01459 0.10976 0.02861

HAEA 0.04522 0.00363 0.01379 0.10873 0.02400
Ant-Q 0.04909 0.01650 0.02102 0.10990 0.03765
NAHH 0.05504 0.00347 0.00473 0.10878 0.00554

Table 5.2: Bin-packing results

contributed to these seemingly contradictory results is the fact that the solutions for
these instances are very close together, with the average results from the contestants
always being within a few percent of the best result. Because of this, the ranking of
the algorithms together with the integer scoring system might be not ideal for this
domains, leading to a slightly skewed picture.

Overall, the results are competitive and certainly justify further research on this
approach. Especially the fact that it managed to perform very good on two totally dif-
ferent problem domains is an encouraging result with respect to the original goal of
cross-domain applicability. The competition also helped to point out some weaknesses
of the quality measure which will be addressed in future versions of the algorithm.
Another result from the competition is that the specific details of the employed scor-
ing system can have a high influence on the final results and that it is not equally
well suited for the different problem domains. A possible improvement for the com-
parisons of the result would be to switch from an ordinal scale to a ratio scale that
expresses the results as normalised real values in the range of 0..1. A suitable ex-
ponential weighting function could then be applied to give the best algorithms an
additional advantage (as implemented in the F1-scoring system), while still maintain-
ing the requirement of having a fixed sum of scores for each of the problem instances.
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Figure 5.3: Personnel scheduling results

Such a continuous rating system would have far superior statistical properties over the
currently used scheme.

5.2 Description of Competing Algorithms

The following Section describes the approach by the four top-scoring algorithms in
the competition. A short overview about the inner workings as well as a short perfor-
mance comparison is given.
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Algorithm Inst 5 Inst 9 Inst 8 Inst 10 Inst 11
VNS-TW 19 9628 3223 1590 320
SA-ILS 20 9750 3228 1625 340
DynILS 33 9893 3324 1870 465

ML 18 9812 3228 1605 315
AdapHH 24 9667 3289 1765 325

KSATS 22 9681 3241 1640 355
EPH 22 10074 3232 1615 345

GenHive 21 12708 3274 1727 330
PHUNTER 25 10136 3255 1595 320
ACO-HH 26 11212 3346 1760 355

HAHA 21 9666 3236 1558 335
ISEA 20 9966 3308 1660 315
GISS 25 9625 3294 1785 370
SelfS 26 9803 3249 1635 350
XCJ 30 33390 3277 1658 380

AVEGNep 26 10230 3283 1765 360
MCHH-S 32 13297 3344 1785 370

HAEA 25 9795 3266 1699 345
Ant-Q 33 73535 3348 1970 425
NAHH 27 9827 3246 1644 345

Table 5.3: Personnel scheduling results

AdapHH

The adaptive hyper-heuristic AdapHH as described in [74] produced by far the best
results in the final competition. It uses an adaptive dynamic heuristic set (ADHS) that
keeps track of the performance of the individual heuristics and excludes all but the
best performing heuristics after a certain number of iterations. The metric to determine
the quality of a heuristic is shown in formula 5.1.

pi =w1
[
(Cp,best(i) + 1)2(tremain/tp,spent(i))

]
× b+

w2( fp,imp(i)/tp,spent(i))− w3( fp,wrs(i)/tp,spent(i))+

w4( fimp(i)/tspent(i))− w5( fwrs(i)/tspent(i))

b =

{
1, ∑n

i=0 Cp,best(i) > 0

0, otherwise
(5.1)

In this formula, Cp,best(i) is the number of new best solutions found, fimp(i) and
fwrs(i) denote the sum of improvements and worsenings. fp,imp(i) and fp,imp(i) and
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Algorithm Inst 1 Inst 8 Inst 3 Inst 10 Inst 11
VNS-TW 6251 26803 6328 11376 26602
SA-ILS 6336 26886 6390 11514 26703
DynILS 6269 26875 6365 11419 26670

ML 6245 26800 6323 11384 26610
AdapHH 6240 26814 6326 11359 26643

KSATS 6292 26860 6366 11466 26683
EPH 6250 26816 6347 11397 26640

GenHive 6279 26835 6366 11434 26648
PHUNTER 6253 26858 6350 11388 26677
ACO-HH 6249 26904 6353 11393 26724

HAHA 6269 26850 6353 11419 26663
ISEA 6262 26844 6366 11419 26663
GISS 6329 26979 6385 11516 26758
SelfS 6287 26859 6369 11443 26678
XCJ 6271 26910 6366 11481 26710

AVEGNep 6322 26952 6379 11507 26743
MCHH-S 6336 26937 6397 11527 26716

HAEA 6261 26826 6353 11408 26651
Ant-Q 6358 26971 6407 11545 26792
NAHH 6245 26885 6323 11383 26671

Table 5.4: Permutation flow-shop results

fp,wrs(i) refer to the same values, but only aggregated over a single search iteration
(phase). tremain denotes the remaining time of the algorithm, tspent(i) and tp,spent(i)
mark the time spent by heuristic i from the start of the algorithm or the start of the
current phase respectively. The weights w1,2,3,4,5 are set in a decreasing manner and are
sufficiently far apart so that the influence of the individual terms is ranked in order
of their importance. The performance measure pi is then used to rank the heuristics
and those from the worse half of the ranking are excluded for a number of search
phases (tabu duration). Each time a heuristic is to be applied, one is selected from
the adaptive set with probability pri shown in formula 5.2. At the end of each search
phase some additional heuristics are excluded based on the distribution of a second
quality metric for each heuristic.

pri = ((Cbest(i) + 1)/tspent)
(1+3t f 3)

t f = (texec − telapsed)/texec (5.2)

AdapHH also employs a form of relay hybridisation, that tries to determine pairs of
heuristics that were found to be effective when applied consecutively. The parameters
for the mutation intensity and the search depth are continuously updated according to
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Figure 5.5: Travelling salesman problem results

a reward-penalty strategy for each heuristic. A sophisticated move acceptance criterion
called ”Adaptive Iteration Limited List-based threshold Accepting” (AILLA) is used
that takes the fitness values of previously found new best solutions into account in
order to adaptively set the acceptance threshold.

Finally, a completely new solution is initialised and used to continue the search,
whenever a certain threshold level is reached. This threshold level is set according to
the remaining execution time, the cost of reinitialisation (runtime of the initialisation
heuristic) and the possibility of finding a new best solution after reinitialising.

AdapHH gave outstanding results in the final competition - it is ranked first in the
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Algorithm Inst 0 Inst 8 Inst 2 Inst 7 Inst 6
VNS-TW 48194 21042675 6819 67378 54028
SA-ILS 49046 21281226 6994 70614 57607
DynILS 48194 20987358 6823 67308 54100

ML 48194 21093828 6820 66893 54368
AdapHH 48194 20822145 6810 66879 53099

KSATS 48578 21557455 6947 72027 58738
EPH 48194 21064606 6811 66756 52925

GenHive 48271 21083157 6868 67236 56022
PHUNTER 48194 21246427 6813 67136 52934
ACO-HH 48200 21137472 6851 67202 53428

HAHA 48414 21291914 6917 69324 56039
ISEA 48194 20868203 6832 67282 54129
GISS 49010 21651052 7001 72630 59804
SelfS 49043 21040810 6984 69646 56647
XCJ 48412 21162559 6884 68005 54967

AVEGNep 48639 21520601 6969 70194 57998
MCHH-S 49412 21504030 6997 70685 57836

HAEA 48194 20925949 6824 67488 54144
Ant-Q 49613 21277953 7016 69987 55314
NAHH 48194 20971771 6841 67418 53097

Table 5.5: Travelling salesman problem results

Max-SAT, the bin-packing and the TSP instances as well as close second in the flow-
shop category. The VRP and especially the personnel scheduling domains however
proved to be a harder challenge for this algorithm. As personnel scheduling is a very
slow domain, where the low-level search heuristics require a long time to complete,
this could be an indication that the mechanisms of AdapHH require more iterations
to be effective than our algorithm.

VNS-TW

The hyperheuristic VNS-TW by Hsiao et. al. uses an iterated local search strategy with
a three level ranking system of the local search heuristics. The algorithm starts with
first perturbing an inital solution with a randomly selected mutation or ruin-recreate
heuristic before it is improved with local search. After each application of a local search
heuristic, their ranks are updated to be one of the three available levels: −1, 0, 1. As
soon as an improvement to the current solution is found, the ranks of all heuristics are
set to 1. If the local search heuristic did not change the fitness of the solution its rank
is set to 0 and to −1 if it also did not change the solution at all. The local search phase
is aborted as soon as all heuristics have the rank −1 or a number of consecutive steps
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Algorithm Inst 6 Inst 2 Inst 5 Inst 1 Inst 9
VNS-TW 76147 13367 148206 21642 149132
SA-ILS 64185 13390 162642 20667 152271
DynILS 69798 14359 149869 21654 150060

ML 80671 13329 145333 20654 148975
AdapHH 60900 13347 148516 20656 148689

KSATS 64495 13296 156577 20655 147124
EPH 74715 13335 162188 20650 155224

GenHive 67475 13353 167297 20718 147960
PHUNTER 64717 12290 146944 20650 148658
ACO-HH 73348 14371 149672 21663 151610

HAHA 65498 13317 155941 20654 148655
ISEA 70471 13339 149149 20657 150474
GISS 61580 13352 162266 20657 149590
SelfS 73894 14386 203667 20687 153590
XCJ 63654 13354 152321 20658 153110

AVEGNep 77884 12397 184710 20655 166742
MCHH-S 72005 13534 207891 20850 160303

HAEA 60608 13342 146951 20655 147283
Ant-Q 76678 14382 193827 21656 160684
NAHH 65398 13358 157242 20654 152081

Table 5.6: Vehicle routing problem results

was executed without improving the fitness of the solution. The heuristic selection
process itself chooses a random heuristic from all available heuristics with the largest
rank.

After the local search phase, the resulting solution is compared to the input solu-
tion of the preceding shaking step. If the new solution is worse, then the mutation or
ruin-recreate heuristic is added to a tabu list. If the new solution has equal fitness then
the corresponding mutation or ruin-recreate heuristic is added to the tabu list with a
probability of 0.2.

In a subsequent environmental selection step, one of the solutions of the archive is
replaced by the new solution. If the shaking and the local search managed to improve
the input solution, then it is replaced by this better output. If however there was
no improvement, then a 2-tournament selection process on the solution archive is
performed in order to find a worse solution to be replaced.

As final ingredient, a periodical adjustment step is performed every 1/10th of the
total time budget. In this step, the number of consecutive non-improving iterations
allowed for the local search step and the size of the population archive is updated
depending on various conditions of the search process.

The VNS-TW hyperheuristic algorithm achieved the second place in the final rank-
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Figure 5.6: Vehicle routing problem results

Rank Algorithm Score Author/Team Affiliation
1 AdapHH 181 Mustafa Misir University KaHo Sint-Lieven, Belgium
2 VNS-TW 134 Ping-Che Hsiao National Taiwan University, Taiwan
3 ML 131.5 Mathieu Larose Université de Montréa,Canada
4 PHUNTER 93.25 Fan Xue Hong Kong Polytechnic U., Hong Kong
5 EPH 89.75 David Meignan Polytechnique Montréal, Canada
6 HAHA 75.75 Andreas Lehrbaum Vienna University of Technology, Austria
7 NAHH 75 Franco Mascia Université Libre de Bruxelles, Belgium
8 ISEA 71 Jiri Kubalik Czech Technical University, Czech Rep.
9 KSATS-HH 66.5 Kevin Sim Edinburgh Napier University, UK

10 HAEA 53.5 Jonatan Gomez Univ. Nacional de Colombia, Colombia
11 ACO-HH 39 José Luis Núñez Universidad de Santiago de Chile
12 GenHive 36.5 CS-PUT Poznan University of Technology, Poland
13 DynILS 27 Mark Johnston Victoria University of Wellington, New Zealand
14 SA-ILS 24.25 He Jiang Dalian University of Technology, China
15 XCJ 22.5 Kamran Shafi University of New South Wales, Australia
16 AVEG-Nep 21 Tommaso Urli University of Udine, Italy
17 GISS 16.75 Alberto Acuña University of Santiago de Chile, Chile
18 SelfSearch 7 Jawad Elomari Warwick University, UK
19 MCHH-S 4.75 Kent McClymont University of Exeter, UK
20 Ant-Q 0 Imen Khamassi University of Tunisia, Tunisia

Table 5.7: Final competition ranking

ing of the competition. The good performance in the Max-SAT and the personnel
scheduling classes as well as the rather poor results in the bin-packing domain are
similar to our algorithm, indicating some common strengths and weaknesses.

ML

With his algorithm ML, Larose uses a reinforcement-based variant of iterated local
search similar to the method described in [73]. The algorithm repeatedly executes
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Figure 5.7: Total results

Diversification-Intensification cycles, where a solution is first perturbed and then im-
proved as much as possible with the local search heuristics. In the diversification
step, ML either applies one of the mutation and ruin-recreate heuristics, or a special
no-op heuristic that does not change the solution and therefore gives the subsequent
intensification step a second chance to improve the solution. The algorithm uses a
move acceptance criterion that only accepts a new solution if it is an improvement
over the current solution or if the current solution has not been improved for the last
120 iterations.

For the heuristic selection process, the algorithm performs an Adaptive Large
Neighbourhood Search (ALNS) as described in [92]. A set of rules consisting of
condition-action pairs is used, where the action corresponds to the available low-level
heuristics and the conditions are based on the previously applied heuristics. A con-
tinuously updated weight matrix facilitates a reinforcement learning process that tries
to increase the weights of beneficial heuristics. A roulette-wheel selection process is
performed to choose a heuristic according to its relative weight entry in the matrix.

Not much else is known about the details of the ML algorithm, but it produced
very good results among all problem classes, achieving the third place in the overall
ranking. One interesting thing to note about the results of ML is, that it was con-
sistently ranked among the top seven algorithms for each problem class. This level
of robustness is not even matched by the otherwise outstanding AdapHH algorithm
(with a worst-case ranking of 10), giving rise to the implication that reinforcement
learning is indeed a very promising area of research for cross-domain hyperheuristics.
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Pearl Hunter

Another very interesting approach is found with Pearl Hunter from Xue which achieved
the 4th best result from the competition. Pearl Hunter (PHunter) uses the analogy of
a rational diver trying to collect pearls from oysters. Two different modes of dives are
used, namely ”snorkeling” (local search heuristics with a low depth of search parame-
ter) and ”deep dive” (local search heuristics with a high depth of search parameter). A
common search pattern is to start with a number of initial solutions (positions) where
a few snorkeling dives are performed which in turn identify positions worthy of a
subsequent deep dive.

In addition to that general structure, four distinct modes of the algorithm are de-
fined: average calls, crossover emphasised, crossover only and average calls with on-
line pruning. These modes are switched according to a decision tree model which uses
various success percentages of previous dives as classificiation criteria. The decision
tree was trained with the machine learning toolkit WEKA [50] in a separate offline
phase.

Pearl Hunter achieved top scores in the vehicle routing problem domain and aver-
age to good results in the remaining domains. Because of the fact that it did not have
a domain with very bad results, it seems to be a rather robust approach as well. One
interesting fact is that Pearl Hunter got the best combined scores on the two hidden
domains (TSP and VRP) out of all the participating algorithms. This indicates that the
trained decision tree model managed to generalise well on the unseen problem classes.

Additional Approaches

A number of different additional approaches was employed by the remaining com-
petitors with varying degree of success. EPH from Meignan uses a co-evolutionary
approach where a population of solutions is evolved by applying sequences of heuris-
tics which are in turn evolved according to their performance by a separate evolu-
tionary algorithm. Kubalik with his candidate ISEA utilises an evolutionary iterated
local search algorithm called POEMS[66] that was demonstrated to perform well on a
number of other discrete optimisation problems. Also a hybrid evolutionary approach
was used by Gómez with his algorithm HAEA[48].

Ant colony optimisation was used with relatively little success by Núñez with
ACO-HH and Khamassi with Ant-Q[62]. A Genetic Hive Hyperheuristic (GenHive)
was implemented by Frankiewicz et al., where the analogy of a bee hive is used to
describe an evolutionary multi-agent system where each agent employs an evolved
sequence of low-level heuristics.

Johnston et al. uses a dynamic iterated local search technique termed DynILS,
which applies an adaptive concept of different kick strategies (as described in [68].
These kick strategies are switched according to a reward system that gives advantage
to kick moves and strengths that performed well in the past. In the context of the given
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task, an individual kick refers to any one of the mutation and ruin-recreate heuristics
in combination with the intensity of mutation parameter.

AVEG-Nep[43] by Urli and Di Gaspero uses a reinforcement learning approach
with a state formulation that captures the recent trend of the search process. The
actions within this reinforcement learning process are not individual heuristics, but
heuristic families (local search, crossover, mutation or ruin-recreate) in combination
with a parameter (intensity of mutation and depth of search). GISS by Acuna et al.
and KSATS-HH by Sim work with a simulated annealing process, the latter one also
including a reinforcement learning technique.
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CHAPTER 6
Conclusion

In this thesis we gave an overview of existing research on hyperheuristics and pre-
sented various definitions and classifications. We proposed a new hyperheuristic
algorithm for solving cross-domain search problems which uses a straightforward
approach of intensification/diversification phases and a novel, quality-based rank-
ing mechanism for low-level heuristics. We tested the algorithm using benchmark
instances from six different, well-known combinatorial optimisation problems. The
results of the algorithm showed a good general problem solving capability and also
revealed potential for further improvements.

We documented the implementation of the algorithm on basis of the HyFlex frame-
work and discussed the results of our submitted candidate for the Cross-domain
Heuristic Search Challenge 2011. The statistical weaknesses of the scoring method
employed by the challenge are explained and a possible remedy is proposed. We also
analysed the competing hyperheuristic approaches, described the best-performing al-
gorithms from the competition and gave an overview about the techniques used by
the remaining participants.

6.1 Further Research

The ongoing research concerning this algorithm tries to incorporate ideas from a multi-
agent reinforcement learning approach (as used in [43]), that applies a completely or-
thogonal metric for deciding which heuristics to choose. This new approach does not
distinguish between the individual low-level heuristics of a certain type, but instead
treats them as a single family and only switches between these families of heuristics.
We hope to be able to combine the best properties of these two approaches in or-
der to gain additional robustness for different problem domains and to hopefully be
successful in future hyperheuristic competitions.
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Another issue that is going to be addressed in future versions of the algorithm
is the employed quality measure for the local search heuristics, as the competition
results indicated that it has potential for improvement in certain problem domains.
Some results in the literature also give reason to expect that the usage of different
acceptance criteria might turn out to give our algorithm an additional performance
improvement.
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