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Abstract Break scheduling problems arise in working areas where breaks are
indispensable, e.g., in air traffic control, supervision, or assembly lines. We
regard such a problem from the area of supervision personnel. The objec-
tive is to find a break assignment for an existing shiftplan such that various
constraints reflecting legal demands or ergonomic criteria are satisfied and
such that staffing requirement violations are minimised. We prove the NP-
completeness of this problem when all possible break patterns for each shift
are given explicitly as part of the input. To solve our problem we propose two
variations of a memetic algorithm. We define genetic operators, a local search
based on three neighbourhoods, and a penalty system that helps to avoid local
optima. Parameters influencing the algorithms are experimentally evaluated
and assessed with statistical methods. We compare our algorithms, each with
the best parameter setting according to the evaluation, with the state-of-the-
art algorithm on a set of 30 real-life and randomly generated instances that are
publicly available. One of our algorithms returns improved results on 28 out
of the 30 benchmark instances. To the best of our knowledge, our improved
results for the real-life instances constitute new upper bounds for this problem.

Keywords Break Scheduling · Complexity · Memetic Algorithms · Hybrid
Genetic Algorithms · Real-life Application

Magdalena Widl
Knowledge-based Systems Group, Vienna University of Technology
Favoritenstrasse 9
1040 Wien, Austria
Tel.: +43-1-58801-18415
E-mail: widl@kr.tuwien.ac.at

Nysret Musliu
Database and Artificial Intelligence Group, Vienna University of Technology
E-mail: musliu@dbai.tuwien.ac.at



2

1 Introduction

Many working areas require staff members to maintain high concentration
while performing their tasks. These include air traffic control, security check-
ing, supervision, or assembly line workers, where loss of concentration can
result in dangerous situations. It is therefore required that staff take breaks
after given periods of time. Additionally, staffing requirements, which define
the number of staff required to be working during a given period, should be
fullfilled.

Our particular problem origins from a real-life scenario in the area of su-
pervision personnel. As input we are given a shiftplan consisting of consecutive
timeslots and of scheduled shifts, the total breaktime required for each shift, a
set of temporal constraints concerning the locations and lengths of breaks and
of working periods, and staffing requirements for each timeslot. The breaktime
for each shift is to be scheduled such that the temporal constraints are satisfied
and violations of staffing requirements are minimised. We denote our formu-
lation as break scheduling problem (BSP). Figure 1 depicts a small shiftplan
with a possible solution.

Req.

Timeslot

Shift 1

Shift 2

Shift 3

Shift 4

Shift 5

Shift 6

Shift 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2 2 2 1 0 2 3 3 3 2 1 2 4 4 5 5 3 4 5 3 5 5 2 3 2 2 4 2 2 2

Breaks

4

3

3

3

3

4

4

Breaks are scheduled such that long shifts contain four breaks, short shifts contain three breaks,
no break is longer than two timeslots, and no working period is longer than six timeslots. The
staffing requirements are indicated as a demand curve and as numbers of staff in the bottom line.
They are not satisfied in all timeslots, i.e., there is undercover in timeslot 22 and overcover in
timeslots 16 and 24.

Fig. 1 A shiftplan with different shifts and breaktimes

Previously, the task of scheduling of breaks has been addressed mainly as
part of the so-called shift scheduling problem. Several approaches have been
proposed for problem formulations that include a small number of breaks.
These approaches schedule the breaks within a shift scheduling process. In
particular, Dantzig developed the original set-covering formulation [12] for
the shift scheduling problem, in which feasible shifts are enumerated based on
possible shift starts, shift durations, breaks, and time windows for breaks. Ex-
amples of integer programming formulations for shift scheduling include [1],
[3], and [29]. A comparison of different modeling approaches was given by
Aykin [2]. Rekik et al. [25] developed two other implicit models and improved
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upon previous approaches, among them Aykin’s original model. Tellier and
White [28] developed a tabu search algorithm to solve a shift scheduling prob-
lem originating in contact centers. This algorithm has been integrated into the
workforce scheduling system Contact Center Scheduling 5.5. An approach [16]
to shift scheduling with breaks suggests to first schedule the shiftplan with-
out breaks (see [14] and [21]) and then generate three to four breaks per shift
with a greedy approach. The formulation of a shift scheduling problem with a
planning period of one day and at most three breaks (two 15 minutes breaks
and a lunch break of one hour) has been considered recently in [9] and [24].
In [9], the authors make use of automata and context-free grammars to for-
mulate constraints on sequences of decision variables. The approach suggested
in [24] is based on modeling the regulations of the shift scheduling problem by
using regular and context-free languages. Then a large neighborhood search is
applied to find solutions for the whole problem of scheduling both shifts and
breaks. In addition to the previous model, the authors apply their methods for
single and multiple activity shift scheduling problems. A new implicit formula-
tion for multi-activity shift scheduling problems using context-free grammars
has been proposed by Côté et al. [10].

Some important break scheduling problems arising in call centers, airports,
and other areas include a much higher number of breaks compared to the
problem formulations in previous works on shift scheduling. Also, additional
requirements like time windows for lunchbreaks or restrictions on the length of
breaks and worktime can emerge. These new constraints significantly enlarge
the search space. Therefore, researchers recently started to consider a new
approach which regards shift scheduling and break scheduling as two different
problems and tries to solve them in separate phases.

The problem tackled in this paper (BSP) consists of scheduling breaks to
a given shiftplan. It has first been introduced by Beer et al. [6]. In addition
to an arbitrary number of breaks per shift, the problem formulation allows to
impose several specific temporal constraints on the assignment of breaks. A
similar break scheduling problem, which origins in call centers and also includes
meetings and some slightly different constraints, has been described in [5]
and [26]. Beer et al. [6] also introduced real-life benchmark instances containing
shifts that include more than ten breaks. To solve BSP, local search techniques
based on min-conflicts have been proposed in [4] and [6]. A simple memetic
algorithm for this problem has been proposed in [22]. An algorithm based on
constraint programming and local search for BSP in combination with shift
design has been investigated in [17]. Although initial solutions of this hybrid
solver are promising, the results obtained by solving the break scheduling
problem separately (after generation of shifts) could not be improved.

These approaches to BSP have been used successfully for solving large
real-life instances and have also been deployed in practice. However, the best
solutions for these instances are not yet known, and the question is whether
the solutions can be improved. Further, the computational complexity of this
problem has not been investigated so far.
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This paper presents new complexity results for this problem. In particular,
we prove that the decision variant of BSP is NP-complete when all possible
break patterns for each shift are defined explicitly as part of the input. To
obtain improved upper bounds for the BSP, we propose two new memetic al-
gorithms. Both algorithms are based on the same initialisation process and the
same memetic representation, and apply a local search based on the same set
of three neighbourhoods. The local search contributes through hill-climbing
rather than diversification. The first algorithm is based on a classic memetic
approach with crossover, mutation, and selection. The second algorithm con-
tains new ideas that avoid the weaknesses of the first approach. These new
ideas include a penalty system and a new crossover operator.

Both algorithms depend on a set of parameters for which we experimen-
tally evaluate different values. The impact of each parameter is statistically
verified. We finally compare the outcomes of our algorithms with the best
existing results for a set of benchmarks from the literature. One of our algo-
rithms returns improved results on 28 out of 30 instances. To the best of our
knowledge, these results represent new upper bounds for the available BSP
real-life instances.

The problem definition, the second algorithm, and the evaluation of this
algorithm have been presented at the 7th International Workshop on Hybrid
Metaheuristics [31]. This paper extends [31] by a complexity analysis that
justifies the application of metaheuristics, a detailed explanation of a fast
method to generate break patterns, an additional algorithm with a parameter
evaluation and a discussion of its weaknesses, and a comparison of the two
algorithms to methods presented in the literature.

The remaining parts of this work are organised as follows: We first give
a formal definition of BSP and present our complexity results. Solving BSP
with memetic algorithms is presented in Sections 4 to 6, where Section 4
describes elements the two algorithms have in common, and Sections 5 and 6
describe each algorithm with its parameter evaluation. Section 7 describes the
set of real-life and random instances, the experimental setup, and a comparison
with the literature. We draw our conclusions and describe the future work in
Section 8.

2 Problem Statement

BSP deals with scheduling of breaks in a shiftplan that consists of consecutive
timeslots and of shifts starting and ending in defined timeslots. One shift
represents exactly one employee on duty within a sequence of timeslots. Two or
more shifts may overlap in time, i.e., have timeslots in common. A timeslot in a
particular shift is referred to as slot. To each slot, either a break, worktime, or
time used for familiarisation with a new working situation has to be assigned.
The latter stems from the real-life nature of BSP. After a break, the working
situation may have changed, and therefore the employee is given some time to
get familiar with the new circumstances (for example, in air traffic control). We
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are further given staffing requirements which indicate the number of employees
required to be working in each timeslot.

The objective is to find an assignment for each slot such that breaks are
distributed within each shift according to some temporal constraints and such
that violations of staffing requirements are minimised. These violations can
occur as over- or undercover violation. Since we are dealing with a real-life
problem, different measures are taken for the two types, as in the particular
domain, undercover is a more serious problem than overcover.

In the following, we provide a set of formal definitions necessary to provide
a precise problem statement.

Definition 1 (Shiftplan P) A pair (T,S) where T = {1, 2, . . . , k} is a set of
consecutive timeslots and S = {S1, . . . , Sn} is a set of shifts.

Definition 2 (Timeslot t) An element of T representing a time period of
fixed length. In our real-life instances, each timeslot corresponds to a period
of five minutes.

Definition 3 (Shift S) A set S = {ti, ti+1, ..., ti+m}, S ⊆ T , of consecutive
timeslots, i.e., tj+1−tj = 1 for i ≤ j < i+m. The shift start is denoted Ss = ti
and the shift end Se = ti+m. Each shift represents exactly one employee on
duty. Two or more shifts can have timeslots in common.

Definition 4 (Slot) A timeslot in a particular shift. A slot can be assigned
one of three values: 1 (1-slot) for a working employee, 0 (0-slot) for an employee
on break or 0̄ (0̄-slot). 0̄-slots are assigned to those and only those slots that
directly follow a sequence of 0-slots. A 0̄-slot stands for an employee who is
getting familiar with an altered working situation after a break. During a 0̄-
slot, the employee is not consuming breaktime but neither counted as working
staff regarding staffing requirements.

Definition 5 (Breaktime τ(|S|)) A function τ : {|S1| , . . . , |Sn|} → N that
maps each shift length to a number of 0-slots that have to be assigned to a
shift Si with length |Si|.

Definition 6 (Staffing requirements ρ(t)) Function ρ : T → N assigning
a number of required 1-slots to each timeslot.

Definition 7 (Work period W ) A set of consecutive 1- and 0̄-slots in a
particular shift.

Definition 8 (Break B) A set of consecutive 0-slots in a particular shift.

Definition 9 (Temporal Constraints C) A set C = {C1, . . . , C5} of global
restrictions regarding lengths and locations of breaks and work periods inside
shifts.

C1 Break positions (d1, d2). In each shift, each timeslot in {ti, ti+1, . . . , ti+d1−1}
and {ti+m−d2+1, . . . , ti+m}must be assigned a 1-slot, i.e., a break may start
earliest d1 timeslots after the start and end latest d2 timeslots before the
end of its associated shift.
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C2 Lunch breaks (h, g, l1, l2). Each shift S with |S| > h must contain a break
BL with BL ≥ g, i.e., with a minimum length of g timeslots, starting at
least l1 and ending at most l2 timeslots after the start of its shift.

C3 Work periods (w1, w2). For each work period W , w1 ≤ |W | ≤ w2.
C4 Minimum break duration (w, b). A work period W with |W | ≥ w must be

followed by a break B with |B| ≥ b.
C5 Break lengths (b1, b2). For each break B, b1 ≤ |B| ≤ b2.

Definition 10 (Break pattern D) A set D ⊂ S of timeslots representing
a set of breaks (0-slots) for a shift S such that |D| = τ(|S|) and and all
constraints in C are satisfied.

Definition 11 (Possible break patterns DS for a shift S) A set DS ⊂ 2S

of break patterns for shift S. Section 4.2 explains how a set of break patterns
can be generated.

Definition 12 (Solution B) A total map B : S → 2T with B(S) ∈ DS for
each S ∈ S. A solution assigns a break pattern to each shift.

Based on these definitions we define BSP as follows:

Definition 13 (Break Scheduling Problem BSP)
Instance

A tuple (P, τ, ρ, C) with each element as described above.

Objective
Let Q = (P, τ, ρ, C) be an instance of BSP. The objective is to find a solution
B such that the following objective function is minimised:

F (B, T, ρ) = wo ·O(B, T, ρ) + wu · U(B, T, ρ)

where

– wo and wu are weights for over- and undercover violations respectively, and
– for ω(B, t) the number of 1-slots in timeslot t ∈ T according to B,

– U(B, T, ρ) =
∑
t∈T

max(0, ρ(t) − ω(B, t)), i.e., the undercover violations,

and
– O(B, T, ρ) =

∑
t∈T

max(0, ω(B, t)− ρ(t)), i.e., the overcover violations.

Figure 2 depicts a solution for a small instance of BSP.

3 Computational Complexity

We present a proof of NP-completeness for BSP under the condition that break
patterns are given explicitly as part of the input. BSP can be re-formulated
as decision problem with the same input (P, τ, ρ, C). The question is whether
for an instance Q there exists a solution B such that F (B, T, ρ) = 0.
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ρ
T

S1

S2

S3

S4

S5

S6

S7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2 2 2 1 0 2 3 3 3 2 1 1 4 4 5 7 3 4 5 3 5 5 2 3 2 2 4 2 2 2

1 1 1 1 1 0 0 0̄ 1 1 1 0 0 0̄ 1 1 1

1 1 1 0 0 0̄ 1 1 1 0 0 0̄ 1 1 1 1

1 1 1 1 0 0̄ 1 1 1 0 0 0̄ 1 1 1

1 1 1 1 0 0̄ 1 1 1 0 0 0̄ 1 1 1

1 1 1 1 0 0̄ 1 1 1 0 0 0̄ 1 1 1

1 1 1 1 0 0 0̄ 1 1 1 0 0̄ 1 1 1

1 1 1 1 0 0 0̄ 1 1 1 1 1 0 0 0̄ 1 1 1

1 2 3 4 6 2 3 2 2 2

work periodbreak1-slot

0̄-slot

overcover undercover

τ
4

3

3

3

3

4

4

A solution for instance: (P, τ, ρ, C) with P = (S, T ), T = {1, . . . , 30}, S = {S1, S2, ..S7}, τ(|S|) =
3 if |S| ≤ 15; τ(|S|) = 4 otherwise, ρ as stated in the second line, C1 = (3, 3), C2 = (25, 4, 7, 7),
C3 = (3, 6), C4 = (5, 2), C5 = (1, 3). The solution depicted for this instance is the mapping
B(S1) = {11, 12, 17, 18}, B(S2) = {4, 5, 10, 11}, etc.

Fig. 2 An instance of BSP with a solution

Lemma 1 The problem BSP is in NP.

Proof Given an instance Q = (P, τ, ρ, C) of BSP and a set B containing an
arbitrary break pattern for each S ∈ S, it can be checked in time O(|T | · |S|)
whether ρ(t) is satisfied for each timeslot t. ut

We define BSP’ as modification of BSP as follows:

Definition 14 (BSP’) Without loss of generality, we eliminate the 0̄-slots
from BSP so that break patterns in BSP’ contain only 0- and 1-slots. An
instance of BSP is a tuple Q′ = (P, τ, ρ, γ) where the definitions of P, τ, ρ
equal those in BSP and γ is a function that maps each shift S to a set D′S ⊂ 2S

of break patterns such that for each D′ ∈ D′S it holds that |D′| = τ(S). The
question is whether for an instance Q′ there exists a solution B′ such that
F (B′, T, ρ) = 0.

The difference between BSP and BSP’ is that BSP is given the set of
possible break patterns implicitly by τ(S) and C whereas for BSP’ this set is
given explicitly by γ.

We show that BSP’ is NP-complete by reduction from the well-known NP-
complete problem Exact Cover by 3-Sets (X3C) [15].

Definition 15 (X3C) An instance of X3C is a pair X = (U,F) where U is a
set with |U | = 3m, m > 1, and F is a collection of 3-element subsets of U , i.e.,
|F | = 3 and F ⊂ U for each F ∈ F . The question is whether F contains an
exact cover for U , i.e., a subcollection F ′ ⊆ F , such that each element of U
occurs in exactly one member of F ′.

Theorem 1 The problem BSP’ is NP-complete.

Proof The NP-membership of BSP’ follows from the NP-membership of BSP.
To show that BSP’ is NP-hard, we present a reduction from X3C. Given
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an arbitrary instance X = (U,F) of X3C, we construct an instance Q′ =
(P, τ, ρ, γ) of BSP’ in polynomial time as follows.

– P = (T,S) where T = {1, 2, . . . , 3m}, S = {S1, S2, . . . , Sm}, and S = T
for each S ∈ S.

– τ(|S|) = 3 for each S ∈ S.
– ρ(t) = |S| − 1 for each t ∈ T ,i.e., in each timeslot exactly one break is

required.
– γ(S) = {{σ(u) | u ∈ F} | F ∈ F} where σ : U → N is a bijective function

enumerating all elements in U : σ(u1) = 1, σ(u2) = 2, ..., σ(u3m) = 3m.

The following observations can be made from the construction of the in-
stance of Q′. The number of timeslots equals the number of elements in U . All
shifts are of the same length and contain all timeslots. The number of 0-slots
for each shift is 3, which is the size of each F ∈ F . The number of shifts is
m, which in X is the number of sets needed to cover U . For each timeslot ρ
requires one 0-slot. All shifts S ∈ S share the same set γ(S) of break pat-
terns, which equals the elements of F mapped by σ. We now show that X is
a positive instance of X3C if and only if Q′ is a posivite instance of BSP ′.
⇒ If X is a positive instance of X3C, then there exists a collection of

sets F ′ such that each element u ∈ U occurs in one F ∈ F ′. By applying
σ to all elements in each set F ∈ F ′ we obtain a set of sets that represent
break patterns for the shifts in the instance Q′. These break patterns cover
exactly the timeslots in T because F ′ covers exactly the elements in U and
because of the definition of T . Further, the staffing requirement function ρ is
defined to return 3m−1 for any timeslot, therefore, by exactly covering T , the
break patterns also fullfill the staffing requirements. Therefore, Q′ is a positive
instance of the reduced BSP’ problem.
⇐ If Q′ is a positive instance of BSP’, then there exists a set of break

patterns such that each timeslot in T occurs in exactly one break pattern
because by the definition of ρ, each timeslot must contain exactly one 0-slot.
By applying σ−1 to each element of each break pattern, we thus obtain a set of
sets that cover exactly the elements in U . Therefore, X is a positive instance
of the original X3C problem. ut

In the following, we present an example for the reduction from an X3C problem
to BSP’.

Let X = (U,F) with U = {A,B,C,D,E, F,G,H, I} and
F = ({A,C, F}, {C,D,E}, {F,G,H}, {A,D,G}, {B,G, I}, {D,E,H}). Then
an instance Q′ = (P, τ, ρ, γ) of BSP’ is constructed as follows:

– T = {1, 2, 3, 4, 5, 6, 7, 8, 9}

– S = {S1, S2, S3} with S1 = S2 = S3 = {1, 2, 3, 4, 5, 6, 7, 8, 9}

–
t 1 2 3 4 5 6 7 8 9
ρ(t) 2 2 2 2 2 2 2 2 2
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– σ
U A B C D E F G H I
T 1 2 3 4 5 6 7 8 9

– γ(S1) = γ(S2) = γ(S3) = ({1, 3, 6}, {3, 4, 5}, {6, 7, 8}, {1, 4, 7}, {2, 7, 9}, {4, 5, 8})

ρ
T

S1

S2

S3

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

2 τ

3

3

3

Fig. 3 Solution for BSP’ instance reduced from X3C instance

A solution for Q′ is the mapping S1 7→ {1, 3, 6}, S2 7→ {2, 7, 9}, S3 7→
{4, 5, 8}. Fig. 3 depicts this solution. It is easy to construct the solution for
the X3C instance X by looking up the values in the σ function.

4 New Memetic Algorithms for BSP

Motivated by the complexity results of the previous section, we propose two
different memetic algorithms to solve the BSP. Memetic algorithms were first
described in [20]. An overview on memetic algorithms for scheduling problems,
among others, is given in [11]. An example of a memetic approach to nurse
scheduling is given by [8].

A memetic algorithm consists of genetic operators and local improvements
executed on a set of solutions. The initial set of solutions is usually created
randomly or by a fast heuristic. Our algorithms both use the same memetic
representation, initialisation heuristic, and neighbourhoods for a local search.
They differ in their genetic operators, the application of the local search, and
one of them additionally applies a penalty system.

We earlier proposed a simple memetic algorithm for this problem [22]. The
two algorithms in this work are a significant improvement regarding several
aspects. In particular, a new memetic representation based on time periods
rather than on single shifts contributes to the improvements. This new rep-
resentation also requires different genetic operators. The previous algorithm
is clearly outperformed by the current algorithms on all benchmark instances
from the literature and therefore it is not described here. The algorithm pre-
sented in Section 6 of this work has appeared previously in conference pro-
ceedings of the International Workshop on Hybrid Metaheuristics [31].

In this section we present the components the two algorithms have in com-
mon, i.e., the memetic representation, the initialisation of sets of break pat-
terns and of an initial population, the neighbourhoods, and the local search
procedure. Sections 5 and 6 describe the two algorithms, their parameters, and
the evaluation of the parameters.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

ρ
T

3 3 2 2 2 2 2 2 2 3 3 3 4 4 3 3 2 2 3 3 3 3 3 3 4 3 2 2 2 2 2 2 3 3 3

S1

S4

S5

S6

S7

S8

S9

S10

S2

S31 1 1 1 0 0̄ 1 1 1 1 0 0̄ 1 1

1 1 1 0 0̄ 1 1 0 0̄ 1 1 1

1 1 0 0̄ 1 1 1 0 0̄ 1 1 1

1 1 1 1 0 0 0̄ 1 1 1 1 1

1 1 1 1 0 0̄ 1 1 1 1 0 0̄ 1 1

1 1 1 1 0 0̄ 1 1 1 1 0 0̄ 1 1

1 1 1 1 0 0 0̄ 1 1 1 1 1

1 1 1 0 0̄ 1 1 1 0 0̄ 1 1

1 1 1 0 0̄ 1 1 1 1 1 0 0̄ 1 1 1 1 1 0 0̄ 1 1 1 1 0 0̄ 1 1

u

o

- - - 1 2 - - - - - - 1 - - 1 - 1 - - - - - 2 - - - 1 - - - - 1 1 - -

- - - - - - 1 - - - - - 2 1 - - - - - - 1 1 - - - - - - - - - - - - -

M1 M2 M3

The memetic representation of a shiftplan with solution by a set of meme instances
M = {M1,M2,M3} where M1 = (1, 12, {S1, S2, S3}, 〈S1 7→ {4, 11}, S2 7→ {4, 8}, S3 7→
{5, 11}〉, 48), M2 = (13, 23, {S4, S5, S6, S7}, 〈S4 7→ {14, 19}, S5 7→ {15, 16}, S6 7→
{17, 23}, S7 7→ {17, 23}), 60), and M3 = (24, 35, {S8, S9, S10}, 〈S8 7→ {26, 32}, S9 7→
{28, 29}, S10 7→ {26, 31}), 48). The values for FM are calculated according to Definitions
13 and 17 with weights wo = 2 and wu = 10. Lines u and o show the number of undercover
and overcover violations per timeslot respectively.

Fig. 4 Memetic Representation

4.1 Representation

Definition 16 (Memetic Representation) The memetic representation of
an instance of BSP is a set M̄ = {M̄1, . . . , M̄q} of memes. The memetic
representation of a solution of an instance of BSP is a setM = {M1, . . . ,Mq}
of instances of memes, or alleles in genetic terms.

Definition 17 (Meme M̄ and Meme Instance M) A meme M̄ ∈ M̄ is a
triple (ts, te,SM ) where

– ts, te ∈ T , ts < te
– SM ⊆ S, and
– SM contains a shift S if and only if ts ≤ b(Ss + Se)/2c < te with Ss and
Se denoting the first, respectively last, timeslot of the shift.

An instance M of a meme M̄ carries parts of a solution with respect to the
time period between ts and te. It is represented by a tuple (ts, te,SM ,BM , FM )
where

– ts,te, and SM are defined as in M̄ ,
– BM is a function BM : SM → 2T with B(S) ∈ DS for each S ∈ SM . It

assigns a break pattern to each shift involved in M , and
– FM = F (BM , TM , ρ) is a fitness value with F as in Definition 13 and
TM =

⋃
S∈SM S contains the timeslots involved in M .

Fig. 4 depicts the memetic representation of a solution for an instance of
BSP.
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We retrieve the set M̄ of memes for an instance Q = (P, τ, ρ, C) of BSP
heuristically as follows. For each t ∈ T let set St = {S ∈ S | t ∈ S}, i.e., the set
of shifts taking place during t. Further let p : T → N be a function assigning
a value to each timeslot such that

p(t) =
∑
S∈St



0 if t < Ss + d1

0 if t > Se − d2

1 if Ss + d1 < t < Ss + d1 + b1 + w1

1 if Se − d2 > t > Se − d2 − b1 − w1

100 otherwise

.

As described in Section 2, d1 and d2 denote the number of timeslots after
Ss and before Se respectively, to which no breaks can be assigned, b1 stands
for the minimal length of a break, and w1 for the minimal length of a work
period.

The lower p(t) for a timeslot t, the less breaks can be assigned to t. p(t)
is defined and the constants 0, 1, and 100 are chosen in a way such that
timeslots with many break assignment possibilities are well distinguished. In
an alternative setting, the constants could be replaced by variables depending
on the number of possible break patterns of St.

The objective is to find a set T̄ of timeslots which have a low number
of possible breaks and whose pairwise distance is above a certain threshold.
These timeslots serve as “borders” between memes. In between these borders,
we will find timeslots with a high value for p. Shifts sharing such timeslots will
be assigned to the same meme.

To this end, we determine an ordered set of timeslots T̄ ⊂ T such that

–
∑
t∈T̄

p(t) is minimised

– For each ti, tj ∈ T̄ : |ti − tj | > d with d = b(min
S∈S
|S|)/2c, i.e., the distance

between each pair of timeslots is at least half of the smallest shift length

To retrieve this set, we start by adding timeslot t0 to T̄ such that p(t0)
returns the smallest value among the elements in T , ties broken randomly.
We continue by adding timeslots ti for i > 0 to T̄ such that ti ∈ T \ T̄ ,
p(ti) is smaller than the value for any other t ∈ T \ T̄ , and |tl − tj | > d for all
tl, tj ∈ T̄ ∪{ti} until no more timeslots exist which fullfill the last requirement.
For k =

∣∣T̄ ∣∣ − 1 we retrieve the set M̄ = {M̄1, M̄2, . . . , M̄k} of memes with
M̄i = (ti, ti+1,SM ) for 0 ≤ i < k and SM as described in Definition 17.

Definition 18 (Individual I) A pair I = (B, FI) where B is a solution for
an instance of BSP and FI the fitness value of the solution as described in
Definition 13.

Definition 19 (Population I) A set I of individuals.
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Definition 20 (Generation) State of a population during an iteration of
the algorithm.

Definition 21 (Memepool M̂) The set M̂ of all meme instances in a gen-
eration.

Definition 22 (Elitist E) The individual E ∈ I with the lowest fitness value
among a generation.

4.2 Initialisation of Break Patterns

Both presented algorithms rely on a set of break patterns that is computed
at the beginning. The problem of finding a single break pattern D ∈ DS for
a shift S can be modeled as a simple temporal problem [13] and consequently
be solved in cubic time with respect to |S| using Floyd-Warshall’s shortest
path algorithm [23], but the number of break patterns |DS | usually grows ex-
ponentially with respect to |S|. However, with some restrictions on the break
patterns and by exploiting some of their common characteristics, we can gen-
erate big sets of break patterns using a reasonable amount of computing time
and space.

We precalculate a subset D̂S of DS for each shift length with the following
restrictions on the break patterns in D̂S .

– For C5, which denotes the minimal and maximal allowed length of breaks,
we replace b2 by b̂2 = min(b2, b1 + 1), except for lunchbreaks, where we

replace b1 and b2 by b̂1 = b̂2 = g, i.e., their minimal value according to C2.
– Break patterns can include breaks of different sizes. For example, if τ(|S|) =

10 without lunchbreak, then this breaktime can be constructed out of two
breaks with length 2 and two breaks with length 3, or five breaks with
length 2. Thus, possible break patterns in DS for a shift S include all
possible combinations of break lengths that sum up to τ(|S|) as well as
their permutations. In the example with τ(|S|) = 10, the following are
all possible permutations of break lengths: (3, 3, 2, 2), (2, 3, 2, 3), (3, 2, 3, 2),
(2, 2, 3, 3), (2, 3, 3, 2), (3, 2, 2, 3) and (2, 2, 2, 2, 2). We select only one per-
mutation from each combination at random. For τ(|S|) = 10, we compute
all possible patterns with break combination (2, 2, 2, 2, 2) and all possible
patterns for one permutation selected randomly from all permutations of
the combination (3, 3, 2, 2).

To save computation time and space, we exploit the fact that shifts and
periods within shifts of the same length share the same set of break patterns.
Such common sub-patterns have to be calculated and stored only once and
can then be applied to different shifts.

We compute D̂S for each shift as follows: If, according to constraint C2

(see Section 2), the shift contains a lunch break, we consider each timeslot
the lunch break may be assigned to according to C2 and divide the shift into
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S1

|S1| = 60, τ(60) = 10(p = 25, b = 3) Lunchbreak (p = 32, b = 4)

S2

|S2| = 50, τ(50) = 8
(p = 22, b = 2) Lunchbreak (p = 25, b = 3)

(p = 25, b = 3) Lunchbreak (p = 22, b = 2)

S3 |S3| = 25, τ(25) = 3

(p = 25, b = 3)

Some break patterns for (p = 25, b = 3)

Fig. 5 Computation of break patterns

periods before and periods after each lunch break position. A set of break
patterns for any of these periods depends on the length p of the period, the
breaktime b it must contain, and C. Since C is defined globally, a set of break
patterns can be identified by (p, b). That means that any period of length p, in
which b timeslots have to be assigned 0-slots, has the same set of valid break
patterns. We compute a set of sub-patterns for each possible period before and
after lunch breaks and for each period covering the shifts that do not contain a
lunch break. Since periods with the same length and breaktime share the same
set of patterns, we only have to compute a subset of patterns for each pair
(p, b). For each shift length we store only references to the sets of sub-patterns.

An example for this method is depicted in Fig. 5. The first shift, S1, is
divided into two parts by its lunch break. The first part consists of 25 timeslots
and the second part of 32 timeslots. Note that a different location of the lunch
break could be possible, but is not depicted here. We want to assign three
0-slots to the first part and four 0-slots to the second part. Again, a different
assignment may be possible, such as assigning four 0-slots to the first part,
and three to the second part, as long as none of the constraints in C is violated
and the number of 0-slots amounts to τ(|S1|). For the second shift, S2 two
possibilities for placing the lunchbreak are shown. In shift S3 no lunch break
is required. In all shifts a period with attributes (p = 25, b = 3) occurs. These
periods share the same set of break patterns.

Whenever a fresh random break pattern is needed during the algorithm, we
can just take one from the respective table and do not depend on the cubic time
algorithm needed to generate a break pattern on-the-fly. These precalculated
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|S|
∣∣∣D̂S

∣∣∣ |S|
∣∣∣D̂S

∣∣∣
60 2,514 126 56,150,948
92 14,149 138 374,959,311

102 131,698 144 1,133,795,593

Table 1 Sizes of D̂S for different shift lengths from our real-life benchmarks

sets of break patterns are used in the initialisation of the algorithm and by
the local search and mutation operators.

Table 1 shows the sizes of D̂S according to the constraints for different
shift lengths in the publicly available problem instances. Specific information
on these instances is given in Section 7.

4.3 Generating the Initial Population

Each individual I in the population is initialised in two steps: First, for each
shift S ∈ S a valid break pattern D is selected randomly from D̂S . This
provides us with a first solution satisfying the temporal constraints C. Second,
a simple local search using Neighbourhood N1, as described below, is executed
on the solution.

4.4 Neighbourhoods

A neighbour of a solution B of the BSP is another solution B′ which can be
reached from B by applying a move. A move is a small change on the solution
resulting in another, better or worse, solution.

A neighbourhood consists of all possible solutions that can be obtained by
a certain type of move. All our move types depend on a break B. We define
three different neighbourhoods of very different size.

Definition 23 (Single Assignment Neighbourhood N1) The set of all
solutions that are reached by moving a break B to a different set of timeslots
under consideration of C. This includes appending B to its predecessor or
successor, which results in one longer break. Examples are depicted in Fig. 6.
For the problem instances used in this work (for details see Section 7), the size
of this neighbourhood averages three to four neighbours.

Fig. 6 Two possible single assignment moves of a break within a shift
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Definition 24 (Double Assignment Neighbourhood N2) The set of all
solutions that are reached by moving a break B and its predecessor or suc-
cessor to different sets of timeslots under consideration of C. Like in N1, two
breaks can be joined to form a longer break. Two breaks of different length
can be swapped. This neighbourhood is significantly larger than N1. For the
instances tested, its size amounts to up to 100 neighbours. This neighbourhood
is illustrated in Fig. 7.

Fig. 7 Two possible double assignment moves of a break within a shift

Definition 25 (Shift Assignment Neighbourhood N3) The set of solu-
tions that are reached by changing the whole break pattern of the shift that
contains B. The possible patterns are retrieved from the pre-calculated set
of break patterns D̂S described in Section 4.2. For performance reasons, we
do not consider the complete D̂S , but only a randomly selected subset. The
size of this subset determines the size of the neighourhood. Fig. 8 depicts this
neighbourhood. This neighbourhood is likely to contribute to diversification
rather than intensification. This behaviour is also reflected in the evaluations
described in Sections 5.4 and 6.4.

Fig. 8 Four possible shift assignment moves exchanging the whole break pattern

4.5 Local Search

At each iteration of the local search the following steps are performed on an
individual I. First, a break B is selected at random out of a set B̂ of breaks. B̂
may comprise all breaks that are currently included in the individual’s solution,
or a subset thereof. Second, a neighbourhood out of the three neighbourhoods
{N1,N2,N3} is chosen according to the parameter η = (η1, η2, η3) which rep-
resents the probability for each neighbourhood to be selected. Then the set N
of all neighbours according to the chosen neighbourhood is computed.
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Next, for N ∈ N let δ(N, I) = F (N) − F (I), i.e., the difference between
the fitness value of an individual and its neighbours, and let N ′ = {N ∈ N |
δ(N, I) ≤ 0}. If |N ′| > 0 then I is assigned the N ∈ N ′ for which δ(N, I) is
minimal, ties broken randomly. Thus, I is assigned its best neighbour. Oth-
erwise nothing happens. The local search terminates when for µ subsequent
iterations |N ′| = 0, i.e., no neighbours with better or equal fitness could be
found.

This procedure is influenced by three parameters: The size of B, the search
intensity determined by µ, and the probabilities η of the different neighbour-
hoods. Tests on different values for these parameters are described in Sec-
tions 5.4 and 6.4. Algorithm 1 outlines the local search procedure.

Algorithm 1 LocalSearch (Individual I, Breaks B)
1: c← 0
2: repeat
3: B ← select break B ∈ B̂ randomly
4: N ← select and compute one of {N1,N2,N3}
5: N ′ ← {N ∈ N | δ(N, I) ≤ 0}
6: if |N ′| > 0 then
7: I ← N ∈ N ′ with minimal δ(N, I)
8: c← 0
9: else

10: c← c+ 1
11: end if
12: until c == µ
13: return I

5 MABS – Memetic Algorithm for Break Scheduling

This algorithm creates each offspring either by mutation or by crossover from
the previous generation. A k-tournament selector [7] decides which individuals
survive in each iteration. The local search is applied in each iteration on a sub-
set of the population. Algorithm 2 outlines this method. We also experimented
with the application of a tabu list in the local search procedure.

5.1 Crossover and Mutation

Each individual I ∈ I \ {E} is replaced by an offspring created either by mu-
tation or by crossover. Crossover takes place with probability α and mutation
with 1 − α. The crossover operator selects a partner J ∈ I with J 6= I ran-
domly out of the generation and creates an offspring inheriting each meme
from either of the parents. The decision on which meme to inherit from which
parent can be taken randomly or with a probability γ to inherit the meme
M with better fitness. Values for the parameters α and γ are evaluated in
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Algorithm 2 MABS - Memetic Algorithm for Break Scheduling
1: buildBreakPatterns
2: I ← Initialisation
3: repeat
4: E ← fittest I ∈ I
5: for all individuals I ∈ I \ {E} do
6: x← select random float uniformly distributed in [0..1]
7: if x ≤ α then
8: J ← select random individual J 6= I
9: I ← crossover(I, J)

10: else
11: I ← mutate(I)
12: end if
13: end for
14: I ← select(I \ {E}) ∪{E}
15: IF ← |I| · λ fittest individuals in I
16: for all I ∈ IF do
17: B̂ ← all breaks contained in I
18: I ← localsearch(I,B̂)
19: end for
20: until timeout
21: return fittest I ∈ I

Section 5.4. The mutation operator performs one random move on the given
individual using the shift assignment neighbourhood.

5.2 Selection

The selection operator selects a set of individuals that survive the current
iteration. The elitist is excluded from the selection process; it survives with-
out passing a selection. Among the other individuals, a k-tournament selector
[7] is applied. This operator randomly takes k individuals, k ≤ |I|, out of
the generation to perform a tournament. Out of these k individuals, the one
with the best fitness value survives. This procedure is repeated |I| − 1 times.
The population then consists of the elitist and the individuals selected by the
tournament.

5.3 Local Search with Tabu List

MABS performs the local search as described earlier on a subset of individuals.
The set B̂ of breaks, on which the local search is conducted, contains all breaks
of the solution of the individual. In case the tabu list is used, the following
modification applies to the search: The computed neighbourhood N is reduced
by those neighours that currently reside in the tabu list. A tabu list [18] L
is maintained for each break B. L contains the timeslots the first slot of B
has previously been assigned to. Whenever a move is performed by B, L is
updated by deleting the oldest value in L and adding the current first slot of
B. The length of the tabu list thus determines for how long a value is kept.
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If any of the tabu moves leads to a globally improved neighbour, however,
it is allowed anyway. The tabu list intends to prevent the local search from
re-visiting previously computed solutions.

5.4 Parameter Evaluation

We evaluated a set of parameters that influence the quality of solutions. For
the parameter evaluation we selected a set of six different instances among 30
problems presented by Beer et al. [6], which are publicly available in [27]. The
timeout was set to 3,046 seconds according to a benchmark on the machine
used by Beer et al. [6] and our machine. The algorithm was run ten times for
each instance and parameter value. The impact of each parameter was assessed
using the Kruskal-Wallis test [19]. Detailed results of this evaluation can be
found in Section 5.2.6 of [30], where this algorithm is found under the name
”MAR2”.

The following parameters were evaluated for this algorithm:

|I| Population size. Values tested: 1, 4, 10, 20, 40, 70, best |I| = 4.
γ Crossover: Probability to select the fitter meme. Values tested: 0.0, 0.6, 0.9,

no significance.
α Crossover vs Mutation: Probability to create offspring by crossover, 1 − α

probability to create offspring by mutation. Values tested: 0.5, 0.7, 0.9, no
significance.

κ Selection pressure: Number of individuals performing a tournament. Values
tested: 1, 2, 3, best κ = 1.

λ Search rate, percentage of population the local search is applied on. Values
tested: 0.1, 0.2, 0.5, 0.8, best λ = 0.8.

|L| Length of tabu list. Values tested: 0, 1, 2, 4, best |L| = 0.
µ Search intensity: Number of iterations the local search continues without

finding improvements. This value is multiplied by the number of breaks

|̂B| available to the local search. Values tested: 2, 6, 8, 10, 15, best µ = 10.
η = (η1, η2, η3): Probability for each neighbourhood to be selected in each lo-

cal search iteration. Values tested: (1, 0, 0), (0, 1, 0), (0, 0, 1), (.6, .3, .1),
(.3, .6, .1), (.3, .1, .6), best η = (.3, .6, .1).

The population size made a significant difference in most of the instances,
with the value performing best being |I| = 4. This value being larger than 1
means that the genetic operators indeed have an impact the solution quality.
At the same time, the values for two out of three parameters that influence the
genetic operators gave no significant difference. The parameter κ defining the
selection pressure did have an impact on the solution qualities, but the best
value was κ = 1, i.e., the algorithm performed best when no selection pressure
was applied at all. Other than the parameters for the genetic operators, most of
the parameters for the local search, i.e., λ, |L|, µ and η significantly influenced
the solution qualities. An interesting outcome is that the use of the tabu list
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actually worsened the solution qualities, as for most of the instances tested,
the best results were obtained with a tabu list of 0 length.

A possible interpretation of these results is that the genetic operators
mainly diversify solutions and the local search does most of the improvements.
The high value for λ supports this interpretation. A tabu list is usually ap-
plied to guide the algorithm away from local optima. A possible reason why
the tabu list did not improve our results is that it is too restrictive and its
combination with the genetic operators results in too much diversification.

5.5 Weaknesses of the Algorithm

In addition to the parameter evaluation discussed above, an analysis of the log
files of the evaluation runs allowed us to identify the following weaknesses of
the algorithm.

1. The contribution of the genetic operators consisted mainly in diversifica-
tion, but at least the crossover operator should be expected to contribute
to an improvement of the solutions. Often good and diverse memes, i.e.,
memes with a good distribution of breaks, were deleted by the random
selection of memes inside the crossover operator.

2. The local search was performed on whole solutions, i.e., on all memes of
a solution, even though some memes had more potential to be improved
than others.

3. The tabu list contained positions of breaks. It is possible that due to the
very high number of combinations of break patterns in shifts containing
the same timeslots, the tabu list blocked the way to new optima at a too
early stage.

6 MAPBS – Memetic Algorithm with Penalties for Break
Scheduling

The unusual results of the parameter evaluation of MABS along with some
intuition on possible weaknesses of this algorithm led us to a complete re-
design, resulting in the new algorithm MABPS.

To avoid discarding too many good memes, as had been observed in MABS,
we designed the crossover operator to work on memes of the whole generation
rather than on two selected parents. This means that an offspring can have
more than two parents and each individual is more likely to become a parent. In
each iteration the best memes of the current meme-pool are put together into
one individual to make sure they survive. We further included the selection
mechanism into the crossover operator. The selection is now performed on
memes rather than on individuals. This way, good memes, which may be part
of a bad individual, are also less likely to be discarded.

The local search was changed to focus on memes that have more potential
to be improved. To assess this potential, memes keep a memory to track their
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improvement history. We call this memory a penalty system. A high penalty
value indicates a local optimum. Memes with a high penalty value are less
likely to be searched further and more likely to be discarded by the crossover
operator. The mutation now acts as a diversification on single memes rather
than on whole individuals.

Algorithm 3 outlines the procedure. In the following we describe the penalty
system, the new crossover and selection mechanism, and the application of the
local search and mutation in MAPBS.

Algorithm 3 MAPBS - Memetic Algorithm with Penalties for Break Schedul-
ing
1: buildBreakPatterns
2: I ← Initialisation
3: repeat
4: I ← crossover-select(I)
5: E ← fittest I ∈ I
6: for all individuals I ∈ I \ {E} do
7: M′ ← elements of M with lowest penalty value PM

8: I ← mutate(I,M′)

9: B̂ ← all breaks contained in M′

10: I ← localsearch(I, B̂)

11: I ← penalty-update(I, B̂)
12: end for
13: until timeout
14: return fittest I ∈ I

6.1 Penalty System

For each meme instance M we additionally store the following values:

– Best fitness value F̄M : The best value for FM the meme ever reached
– Penalty value PM : Number of iterations since last update of F̄M

The higher PM , the longer the meme was not able to improve. This means
it is more likely to be stuck in a local optimum. We use this value in two parts
of the algorithm: The crossover operator prefers memes with a low value for
PM to eliminate memes stuck in local optima, disregarding their fitness value
FM . Second, the subset of memes which is used for the mutation and local
search also prefers memes with low PM and thereby focuses on areas where
improvements are more likely to be found. After each iteration, the values for
F̄M and PM are updated for each M ∈M as follows.{

F̄M = FM , PM = 0, if F̄M < FM

PM = PM + 1 otherwise
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6.2 Crossover and Selection

First, an individual is created by selecting for each meme M̄ its instance M
with the best current fitness value FM out of the current meme-pool. This
individual is likely to be the elitist in the current population. Second, each of
|I| − 1 individuals is created as follows. For each meme M̄ we perform a k-
tournament selection [7] on the set of its instances in the current meme-pool.
We select k instances at random out of the current meme-pool and inherit
the instance M with the lowest penalty value PM to the offspring. The first
part assures to survive the best meme instances of the current meme-pool.
The second part forms the actual crossover procedure. By using PM as the
selection criterion, we get rid of meme instances that have been stuck in local
optima for too long. If a local optimum constitutes a global optimum, then
it survives through the first step of the crossover operator. Fig. 9 depicts the
crossover operator.

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

I4

I3

I2

I1

I2, I1

I1, I3

I3, I4

I3, I2

FM = 56, PM = 3 FM = 70, PM = 3

FM = 80, PM = 3 FM = 72, PM = 3

FM = 46, PM = 2 FM = 74, PM = 4

FM = 58, PM = 3 FM = 50, PM = 4

FM = 80, PM = 3 FM = 74, PM = 4

FM = 80, PM = 3 FM = 70, PM = 3

FM = 58, PM = 3 FM = 72, PM = 3

FM = 46, PM = 2 FM = 50, PM = 4

The first offspring is created by choosing only the fittest instance of each meme, i.e., M̄1 from I2
and M̄2 from I1. The remaining offsprings are created by applying a k-tournament selection on
each meme’s instances. The values for FM are calculated according to Definitions 13 and 17 with
weights wo = 2 and wu = 10. Different values for FM after the crossover may occur from shifts
overlapping into different memes.

Fig. 9 Crossover operator



22

6.3 Mutation and Local Search

On each individual I ∈ I \{E} the following steps are performed: A setM′ ∈
M of meme instances is selected such that M′ contains the meme instances
with the lowest penalty values (ties are broken randomly). Each M ′ ∈ M′ is
mutated as follows. A set of shifts S ′ ∈ SM ′ is chosen at random. Then for
each shift S′ ∈ S ′ its current break pattern is replaced by a pattern selected
randomly out of the set D̂S′ of break patterns computed in the beginning as
described in Section 4.2. The size of S ′ is a parameter value. Different values
for this parameter are evaluated in Section 6.4. The local search is executed
as described earlier with set B̂ containing only the set of breaks contained in
M′.

6.4 Parameter Evaluation

As for MABS, we also evaluated parameters for MAPBS. The environment for
this parameter evaluation was the same as for MABS in Section 5.4. Detailed
results of this evaluation can be found in Section 5.2.7 of [30].

The following parameters were evaluated for this algorithm:

|I| Population size. Values tested: 1, 4, 6, 10, 20, best |I| = 4.
λ Percentage of meme instances inM being mutated and locally improved for

each individual (Size of |M′|). Values tested: 0.05, 0.1, 0.2, 0.3, 0.5, best
λ = 0.05.

σ Mutation weight, percentage of shifts being mutated. Values tested: 0.01,
0.05, 0.1, 0.3, 0.5, best σ = 0.05.

κ Selection, number of memes performing a tournament in the crossover op-
erator. Values tested: 1, 2, best κ = 1.

µ Search intensity, number of iterations the local search continues without
finding improvements. This value is multiplied by the number of breaks

|̂B| available to the local search. Values tested: 10, 20, 30, 40, best µ = 20.
(η1, η2, η3): Probability for each neighbourhood to be selected in each lo-

cal search iteration. Values tested: (0, .5, .5), (.5, 0, .5), (.5, .5, 0), (.2, .8, 0),
(.8, .2, 0), (.3, .3, .3), (1, 0, 0), (0, 1, 0), best η = (.8, .2, 0).

This algorithm also performed best with a small population size. As for
MABS, we also tested a population size of |I| = 1 to make sure that the
population based approach is indeed necessary to obtain good solutions. Since
mutation may worsen a solution during the progress of the algorithm, for
|I| = 1 the best obtained solution was kept in memory.

The mutation and search rate λ determining |M′| led to the best results
when kept low. On many problem instances, λ = 0.05 leads to only one meme
instance being mutated and searched. The mutation weight σ also worked well
with a low value. σ determines the percentage of shifts which are assigned
a new break pattern during a mutation. Similar to the other algorithm, the
value of κ did not have an impact.
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As in MABS, the local search intensity µ was set relative to the number

of breaks |̂B| taking part in the search. For this algorithm, larger values for

µ probably perform better than for MABS because |̂B| is much smaller. In

MABS, B̂ contains the complete set of breaks in the solution, but MAPBS
considers only a subset of all breaks, namely those contained in M′, which,
according to the low value for λ were only a small subset. We tested some
more neighbourhood combinations than for MABS. All runs where N3 par-
ticipated gave worse results than those where we used only N1 and N2. The
best performing combination was η1 = 0.8 and η2 = 0.2. A possible reason for
this result is that the shift assignment neighbourhood diversifies rather than
intensifies the search. However, the algorithm is designed to diversify by the
genetic operators rather than by the local search.

7 Comparison of Results

For the parameter evaluation we selected a set of six different instances among
30 problems presented by Beer et al. [6], which are publicly available in [27].
20 of them were retrieved from a real-life application and ten of them were
generated randomly. The set of instances is the same as the one used by the
authors of [6]. Details regarding the random generation are provided by the
same authors in [27].

The input data C (constraints) and k (number of timeslots) is the same for
all random and real-life instances with k = 2016 and C defined as follows:

C1 Break positions: d1 = d2 = 6.
C2 Lunch breaks: h = 72, g = 6, l1 = 42, l2 = 72.
C3 Duration of work periods: w1 = 6, w2 = 20.
C4 Minimum break times: w = 10, b = 4.
C5 Break durations: b1 = 2, b2 = 12.

All values are given in timeslots with one timeslot corresponding to five
minutes. k thus represents one calendar week.

The real-life instances were drawn from a real-life problem in the area
of supervision personnel. They are characterised by two main factors: Differ-
ent staffing requirements and different forecast methods. Staffing requirements
vary according to calendar weeks. A forecast method is a specific way of plan-
ning a future shiftplan, influencing the number of shifts and the shift lengths.
As shown in Section 4.2, the domain size DS grows exponentially with respect
to the shift length |S|. Therefore, instances with short shifts have a smaller
search space.

As for the parameter evaluation, the timeout per run was normalised to
3,046 seconds according to a benchmark of the machine of [6] and ours. This
allows us a more reliable comparison of our results to the best existing up-
per bounds for the BSP presented in [6]. We ran the algorithm ten times for
each instance and parameter value. Each run was performed on one core with



24

2.33GHz of a QuadCore Intel Xeon 5345 with three runs being executed si-
multaneously, i.e., three cores being fully loaded. The machine provides 48GB
of memory. A more detailled description of the empirical parameter evaluation
can be found in [30].

For the final runs we used the following settings for MABS: |I| = 4, γ = 0.9,
κ = 1, α = 0.9, λ = 0.8, |L| = 0, µ = 10 and η = (0.3, 0.6, 0.1), and for
MAPBS: |I| = 4, λ = 0.05, σ = 0.05, µ = 20, κ = 1 and η = (0.8, 0.2, 0.0).
Table 2 compares the results of MABS and MAPBS to state-of-the-art results
from [6]. The numbers in columns Best and Avg represent the best and average
values of the objective function from Definition 13 over ten runs.

The algorithm presented in [6] has shown to be very good in practice and
has been used in real-life applications. Based on Table 2 we can conclude that
our MABS algorithm manages to improve state-of-the-art results for random
instances, but it is outperformed by [6] in most real-life instances. Our second
algorithm (MAPBS) returns improved results on all random instances and
18 out of 20 real-life instances compared to both results from literature and
results returned by MABS. Another feature of MAPBS is the low standard
deviation σ which makes the algorithm more reliable.

8 Conclusions and Future Work

We proposed two different memetic approaches to optimise BSP. In both algo-
rithms we applied a local search heuristic for which we proposed three different
neighbourhoods. Further, we introduced a method to avoid local optima based
on penalties for parts of solutions which are not improved during a number
of iterations. We justified the choice of a metaheuristic to optimise BSP by
presenting an NP-completeness proof for BSP under the condition that the
input contains break patterns explicitly.

For each algorithm we conducted a set of experiments with different pa-
rameter settings and then compared the algorithms with their best settings.
The following conclusions can be drawn from the parameter evaluation:

– Using genetic operators combined with a local search returns better results
than using only a local search.

– Applying the local search either only on some individuals or only on small
parts of each individual’s solution significantly improves the qualities of
the solutions compared to applying the local search on all individuals and
entire solutions.

– Using the two smaller neighbourhoods in the local search returns better
solutions than using only one neighbourhood. The largest of the proposed
neighbourhoods performs worst.

– The use of a penalty system to guide the local search towards meme in-
stances that are not likely to be in local optima significantly improves the
quality of the solutions.

We compared our results to the best existing results in literature for 30
publicly available benchmarks. Our algorithm returned improved results for
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Instance
Beer et al.[6] MABS MAPBS

Best Avg σ Best Avg σ Best Avg σ
2fc04a 3,094 3,224 84 3,244 3,326 50 2,816 2,961 71
2fc04a03 3,100 3,200 61 3,220 3,328 57 2,834 2,934 54
2fc04a04 3,232 3,342 68 3,226 3,297 44 2,884 2,954 60
2fc04b 1,822 2,043 92 2,266 2,387 68 1,884 1,948 49
3fc04a 1,644 1,767 102 1,810 1,909 59 1,430 1,533 67
3fc04a03 1,632 1,759 87 1,846 1,944 55 1,440 1,514 40
3fc04a04 1,932 1,980 40 1,930 2,056 87 1,614 1,718 48
3si2ji2 3,626 3,667 35 3,344 3,398 27 3,177 3,206 17
4fc04a 1,694 1,817 126 1,814 1,972 139 1,478 1,540 29
4fc04a03 1,666 1,795 87 1,742 1,870 59 1,430 1,502 42
4fc04a04 1,918 2,017 95 1,850 1,980 60 1,606 1,674 48
4fc04b 1,410 1,489 49 1,628 1,772 154 1,162 1,233 48
50fc04a 1,672 1,827 81 2,018 2,090 32 1,548 1,603 36
50fc04a03 1,686 1,813 84 1,822 1,951 87 1,402 1,514 67
50fc04a04 1,790 1,917 64 1,914 2,009 48 1,480 1,623 89
50fc04b 1,822 2,012 91 2,322 2,464 98 1,818 1,900 56
51fc04a 2,048 2,166 89 2,490 2,836 687 1,886 2,074 87
51fc04a03 1,950 2,050 86 2,318 2,377 37 1,886 1,949 46
51fc04a04 2,058 2,191 64 2,370 2,728 678 1,958 2,039 52
51fc04b 2,244 2,389 94 2,796 2,950 88 2,306 2,367 43
random1-1 728 972 177 544 592 41 346 440 48
random1-2 1,654 1,994 172 712 817 92 370 476 65
random1-5 1,284 1,477 99 696 742 47 378 418 29
random1-7 860 1,077 154 824 940 73 496 583 42
random1-9 1,358 1,658 213 672 734 38 318 423 51
random1-13 1,264 1,535 245 570 699 68 370 445 55
random1-24 1,586 1,713 74 884 934 46 542 611 43
random1-28 1,710 2,020 233 626 726 71 222 318 71
random2-1 1,686 1,855 142 914 1,058 91 724 889 75
random2-4 1,712 2,053 242 794 889 56 476 535 45

Table 2 Comparison with literature: Real life and random instances

28 out of 30 instances. To the best of our knowledge, our solutions represent
the new upper bounds for the available real-life problems.

For future work, it would be interesting to see how the MAPBS algorithm
performs on long runs. The small population resulting from the parameter
evaluation in Section 6.4 could be due to a short runtime.

Another interesting question is how to solve the two problems of shift
scheduling and break scheduling in a single phase by a memetic approach.
Dealing with the entire problem when the number of breaks for each shift is
large is a challenging task due to a much larger search space.
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