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Abstract.In this report we describe a collection of hypergraphs used to evaluate our im-
plementations of hypertree decomposition algorithms. Hypertree decomposition was intro-
duced by Gottlob et al. [6] as new structural decomposition method in constraint satisfac-
tion. Since hypergraphs in constraint satisfaction do not have any specific properties, they
can also be used for other evaluation purposes.
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1 Introduction

An instance of a constraint satisfaction problem (CSP) [10,3] consists of a set of variables that
range over a domain of values together with a set of constraints that allow certain combinations
of values for certain sets of variables. The question is whether one can instantiate the variables
in such a way that all constraints are simultaneously satisfied. Since the CSP is NP-complete in
general, several approaches have been developed in the literature to identify tractable subclasses.
One such direction is based on structural decomposition methods.

By the structure of a CSP instance we understand the dependencies between the variables
caused by the constraints. These dependencies can be naturally represented by a hypergraph, that
is a generalization of a graph such that the (hyper)edges connect an arbitrary subset of vertices.
Each variable of a CSP instance represents a vertex in the hypergraph and each constraint repre-
sents a hyperedge connecting the vertices corresponding tothe variables in the constraint. The
domain values and allowed variable instantiations are ignored when considering only the struc-
ture of a CSP instance. The intuitive idea of structural decomposition methods is to decompose
a constraint hypergraph into strongly connected components which can be organized as a tree.
Examples of such decomposition approaches arebiconnected components[5], tree clustering[4],
cycle cutset[2], hinge decomposition[8], etc.

Gottlob et al. [6] recently introduced a new structural decomposition method calledhypertree
decomposition. They have shown that hypertree decomposition is more appropriate for decompos-
ing constraint hypergraphs than other decomposition methods. The associatedhypertree-widthis
a measure for the cyclicity of the underlying hypergraph. Inparticular, this means that the less the
width of a hypertree decomposition the more efficiently the corresponding CSP can be solved. A
competitive task is therefore to construct a hypertree decomposition of a given constraint hyper-
graph with width as small as possible. The minimal width overall hypertree decompositions is
called thehypertree-widthof the hypergraph.

In the scope of a research project [1], we have developed and implemented several algorithms
for constructing hypertree decompositions of small width.For evaluating these algorithms, we
collected a hypergraph library based on industrial CSPs as well as self-constructed hypergraphs.
In this report, we present our hypergraph library; each hypergraph in the library is described in a
text file in the following format:

Hyperedge 1 (Vertex 1 1, Vertex 1 2, ..., Vertex 1 n1),
Hyperedge 2 (Vertex 2 1, Vertex 2 2, ..., Vertex 2 n2),
...
Hyperedge m (Vertex m 1, Vertex m 2, ..., Vertex m n

m
).

Due to this simple structure, we do not formally define the syntax of our format. Just note that
the names of hyperedges and vertices may consist of any combination of lower- and uppercase
letters, numbers, underscore, colon, etc. Comments start with ‘%’ and continue until the end of the
line. Some files may also contain definitions within angle brackets in the header.
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Figure 1: The basic cell of an adder circuit

2 The Hypergraph Library

2.1 DaimlerChrysler

In this section, we describe four classes of hypergraphs obtained from DaimlerChrysler during their
cooperation with the Database and AI Group at Vienna University of Technology. In particular,
these classes areadder circuits, bridge circuits, theNewSystemclass, and theATV partial system.

2.1.1 Adder Circuits

This kind of parameterized examples consists of a certain number of bit adders connected in a
line. The basic cell of such an adder circuit is shown in Figure 1. The problem is to find the valid
input-output values of such a circuit. For example, an addercircuit consisting of two basic cells
connected in a line can be represented by a hypergraph in the following way:

init (C0),
and1 (I1, I2, TempHa1),
xor1 (I1, I2, TempG1),
andA1 (C0, TempG1, TempHb1),
or1 (TempHb1, TempHa1, C1),
xorA1 (TempG1, C0, S1),
and2 (I3, I4, TempHa2),
xor2 (I3, I4, TempG2),
andA2 (C1, TempG2, TempHb2),
or2 (TempHb2, TempHa2, C2),
xorA2 (TempG2, C1, S2).

Our hypergraph library contains 99 hypergraphs of this kindstarting atadder 1 (6 hyper-
edges and8 vertices) extracted from a single basic cell up toadder 99 (496 hyperedges and
694 vertices) extracted from a circuit consisting of99 basic cells connected in a line. It is easy to
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Figure 2: Adder decomposition by hand
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Figure 3: The basic cell of a bridge circuit

construct a hypertree decomposition of width2 for these simple examples since each of the cells
can be easily decomposed of width2 and the interconnections of the cells are via two hyperedges.
See Figure 2 for such a decomposition by hand. The hypertree-width of all these hypergraphs is2.

2.1.2 Bridge Circuits

This kind of parameterized examples consists of a certain number of bridge cells connected in a
line. The basic cell of such a bridge circuit is shown in Figure 3. The problem is again to find the
valid input-output values of such a circuit. For example, a bridge circuit consisting of two basic
cells connected in a line can be represented by a hypergraph in the following way:

Init (Uqv1),
M1v1 (IR1v1, IR2v1, IR3v1),
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Figure 4: Bridge decomposition by hand

M2v1 (IR4v1, IR5v1, IR3v1),
M3v1 (Uqv1, IR1v1, IR4v1, Umv1),
N1v1 (Iqv1, IR1v1, IR2v1),
N2v1 (IR1v1, IR3v1, IR4v1),
N3v1 (IR2v1, IR3v1, IR5v1),
N4v1 (IR4v1, IR5v1, Imv1),
UCONNv1 (Umv1, Uqv2),
ICONNv1 (Imv1, Iqv2),
M1v2 (IR1v2, IR2v2, IR3v2),
M2v2 (IR4v2, IR5v2, IR3v2),
M3v2 (Uqv2, IR1v2, IR4v2, Umv2),
N1v2 (Iqv2, IR1v2, IR2v2),
N2v2 (IR1v2, IR3v2, IR4v2),
N3v2 (IR2v2, IR3v2, IR5v2),
N4v2 (IR4v2, IR5v2, Imv2),
UCONNv2 (Umv2, Uqv3),
ICONNv2 (Imv2, Iqv3),
Term (Uqv3).

Our hypergraph library contains 99 hypergraphs of this kindstarting atbridge 1 (11 hyper-
edges and11 vertices) extracted from a single basic cell up tobridge 99 (893 hyperedges and
893 vertices) extracted from a circuit consisting of99 basic cells connected in a line. It is easy to
construct a hypertree decomposition of width3 for these examples since each of the cells can be
easily decomposed of width3 and the interconnections of the cells are via two hyperedges. See
Figure 4 for such a decomposition by hand. In fact, some of ouralgorithms were able to con-
struct hypertree decompositions of width2 for all these examples. The hypertree-width of all these
hypergraphs is2.
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2.1.3 NewSystem

Another kind of hypergraphs in our hypergraph library consists of four instances of increasing size
called “NewSystem”. In particular,NewSystem1 consists of84 hyperedges and142 vertices,
NewSystem2 consists of200 hyperedges and345 vertices,NewSystem3 consists of278 hy-
peredges and474 vertices, andNewSystem4 consists of418 hyperedges and718 vertices. The
hypertree-width ofNewSystem1 andNewSystem2 is 3. In the case ofNewSystem3 and
NewSystem4we could only find hypertree decompositions of width4 so far, i.e., their hypertree-
width is at most4.

2.1.4 ATV Partial System

The hypergraphatv partial system from DaimlerChrysler is a model of a jet propulsion
system. It consists of88 hyperedges and125 vertices. Its hypertree-width is3.

2.2 NASA

One of the most challenging examples in our hypergraph library is from NASA. In its original for-
mulation it consists of680 hyperedges and579 vertices. However, the corresponding hypergraph
is not connected; it contains8 hyperedges that do not have vertices in common with any other
hyperedge. Removing these isolated hyperedges results in ahypergraph consisting of672 hyper-
edges and569 vertices. Of course, the hypertree-width of both variants must be the same; some
algorithms, however, require that the input hypergraph is connected.

Several attempts in the past to construct a hypertree decomposition of acceptable width for the
NASA example failed. The first successful approach was due toMcMahan [9], who achieved a de-
composition of width23. We could improve this result to width21 by reimplementing McMahan’s
algorithm and adding some randomization steps.

2.3 ISCAS

The well-known benchmark library of the IEEE InternationalSymposium on Circuits and Sys-
tems (ISCAS) is often used in the literature for testing the performance of algorithms. There are
three large ISCAS benchmark suites: ISCAS85, ISCAS89, and ISCAS99. The examples in these
benchmarks model several kinds of circuits like ALUs, controllers, multipliers, etc. In order to
make them accessible for our purposes, we transformed theirrepresentation into our file format.

In this way, we obtained the following12 hypergraphs from the ISCAS85 benchmark suite:
c432 models a27-channel interrupt controller and consists of160 hyperedges and196 vertices,
c499 models a32-bit SEC circuit and consists of202 hyperedges and243 vertices,c880 models
a 8-bit ALU and consists of383 hyperedges and443 vertices,c1355 models a32-bit SEC cir-
cuit and consists of546 hyperedges and587 vertices,c1908 models a16-bit SEC/DED circuit
and consists of880 hyperedges and913 vertices,c2670 models a12-bit ALU with controller
and consists of1193 hyperedges and1350 vertices,c3540 models a8-bit ALU and consists
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Figure 5:8 × 8 Grid Figure 6:3 × 3 × 3 Cube

of 1669 hyperedges and1719 vertices,c5315 models a9-bit ALU and consists of2307 hyper-
edges and2485 vertices,c6288 models a16 × 16 multiplier and consists of2416 hyperedges
and2448 vertices, andc7552 models a32-bit adder/comparator and consists of3512 hyperedges
and3718 vertices. From the ISCAS89 and ISCAS99 benchmark suites, weextracted30 and24
hypergraphs respectively starting from a size of13 hyperedges and17 vertices up to a size of
39531 hyperedges and39568 vertices. For example,s298 models a traffic light controller and
consists of133 hyperedges and139 vertices ands349 models a4 × 4 add-shift multiplier and
consists of176 hyperedges and185 vertices.

The widths of hypertree decompositions of the ISCAS hypergraphs vary significantly; in fact,
we do not know their hypertree-width. However, they seem to be very useful for comparing vari-
ous hypertree decomposition algorithms since our experiments have shown that it is very hard to
construct hypertree decompositions of small width (if theyexist) of these hypergraphs.

2.4 Grids

The grid hypergraphs in our hypergraph library are extracted from pebbling problems of the fol-
lowing form: Given ann×n chessboard (see Figure 5) where pebbles are arbitrarily placed on the
white squares. The question is whether it is possible to put pebbles on the black squares such that
for each of the pebbled white squares some of its adjacent black squares are pebbled and for each
non-pebbled white square some of its adjacent black squaresare not pebbled. This pebbling prob-
lem translates naturally into a Boolean CSP: For each black square we choose a variable and for
each white square we choose an appropriate constraint on itsadjacent black squares. For example,
encoding a4 × 4 grid in this way results in:

C0:1 (X0:0, X1:1, X0:2),
C0:3 (X0:2, X1:3),
C1:0 (X0:0, X2:0, X1:1),
C1:2 (X0:2, X1:1, X2:2, X1:3),
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C2:1 (X1:1, X2:0, X3:1, X2:2),
C2:3 (X1:3, X2:2, X3:3),
C3:0 (X2:0, X3:1),
C3:2 (X2:2, X3:1, X3:3).

Our hypergraph library contains 98 hypergraphs of this kindstarting atgrid2d 2 (2 hy-
peredges and2 vertices) extracted from a2 × 2 grid up togrid2d 99 (4900 hyperedges and
4901 vertices) extracted from a99 × 99 grid. A special feature of these hypergraphs is that they
are highly cyclic, i.e., the hypertree-width of ann× n grid is at leastn

3
. This can be easily verified

by the game-theoretic characterization of hypertree-width [7]. In particular,⌊n

3
⌋+1 marshals have

a winning strategy to capture the robber on ann × n grid by advancing row by row through the
grid and monotonically forcing the robber into one of the corners to eventually capture him. It
is easy to see that the robber cannot be captured by a smaller number of marshals. Hence, the
hypertree-width of a hypergraph encoding ann × n grid is⌊n

3
⌋ + 1.

We have also generalized the above idea of extracting hypergraphs from 2-dimensional grids
in such a way that we consider 3-dimensional cubes and 4- and 5-dimensional hypercubes. For
example, encoding a3 × 3 × 3 cube (see Figure 6) in the above way results in:

C0:0:1 (X0:0:0, X1:0:1, X0:1:1, X0:0:2),
C0:1:0 (X0:0:0, X1:1:0, X0:2:0, X0:1:1),
C0:1:2 (X0:0:2, X0:1:1, X1:1:2, X0:2:2),
C0:2:1 (X0:1:1, X0:2:0, X1:2:1, X0:2:2),
C1:0:0 (X0:0:0, X2:0:0, X1:1:0, X1:0:1),
C1:0:2 (X0:0:2, X1:0:1, X2:0:2, X1:1:2),
C1:1:1 (X0:1:1, X1:0:1, X1:1:0, X2:1:1, X1:2:1, X1:1:2),
C1:2:0 (X0:2:0, X1:1:0, X2:2:0, X1:2:1),
C1:2:2 (X0:2:2, X1:1:2, X1:2:1, X2:2:2),
C2:0:1 (X1:0:1, X2:0:0, X2:1:1, X2:0:2),
C2:1:0 (X1:1:0, X2:0:0, X2:2:0, X2:1:1),
C2:1:2 (X1:1:2, X2:0:2, X2:1:1, X2:2:2),
C2:2:1 (X1:2:1, X2:1:1, X2:2:0, X2:2:2).

Our hypergraph library contains 28 hypergraphs extracted from 3-dimensional cubes starting
at grid3d 2 (4 hyperedges and4 vertices) extracted from a2 × 2 × 2 cube up togrid3d 29
(12194 hyperedges and12195 vertices) extracted from a29 × 29 × 29 cube. Moreover, our li-
brary contains 8 hypergraphs extracted from 4-dimensionalhypercubes and 6 hypergraphs ex-
tracted from 5-dimensional hypercubes. Unfortunately, incontrast to 2-dimensional grids, it is
very hard to determine the hypertree-width of these hypergraphs. In the case of 3-dimensional
cubes, however, we were able to identify an interval in whichthe hypertree-width must lie. The
idea is to generalize the above strategy in the Robber & Marshals game in such a way that the
marshals move in shape of two adjacent 2-dimensional planes. A careful analysis reveals that
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Figure 7: Hypergraph and its dual graph of theclique 4 example

M(n) + 1 marshals have a winning strategy in this way, where

M(n) = n − 2 + (2n − 1)
⌊n

5

⌋

− 5
⌊n

5

⌋

2

+

{

2 if n ≡ 4 (mod 5)

0 otherwise.

Moreover, note that
⌈

n
2

5

⌉

marshals are necessary to cover a single plane in ann × n× n cube,

which yields a trivial lower bound of
⌈

n
2

5

⌉

+1 marshals to capture the robber. Hence, the hypertree-

width of a hypergraph encoding ann × n × n cube lies in the interval[
⌈

n
2

5

⌉

+ 1, M(n) + 1].

2.5 Cliques

The clique hypergraphs in our hypergraph library are a parameterized class of examples, each
consisting ofn hyperedges such that each hyperedge has a vertex in common with each other hy-
peredge and each vertex occurs in exactly two hyperedges, i.e., the dual graph of the hypergraph is
a clique such that each edge in the dual graph corresponds to exactly one vertex in the hypergraph.
For example,clique 4 consisting of4 hyperedges and6 vertices has the form:

C1 (X1, X2, X3),
C2 (X1, X4, X5),
C3 (X2, X4, X6),
C4 (X3, X5, X6).

The hypergraph and its dual graph of theclique 4 example is shown in Figure 7. Our
library contains 98 hypergraphs whose dual graphs are cliques as described above starting at
clique 2 consisting of2 hyperedges and1 vertex up toclique 99 consisting of99 hyper-
edges and4851 vertices. It is easy to see that such clique hypergraphs withn hyperedges have
hypertree-width⌈n

2
⌉. This follows immediately from the fact that each hyperedgeis connected

with each other hyperedge via a unique vertex. The corresponding hypertree consists of only
two nodes such that one node is labeled with⌈n

2
⌉ hyperedges and the other node is labeled with
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⌊n

2
⌋ hyperedges. Since every hypergraph can be decomposed in this way (the conditions of a

hypertree decomposition are trivially satisfied), the clique examples represent the worst case con-
cerning hypertree-width. Although there exists only a trivial hypertree decomposition of these
hypergraphs, some of our algorithms spent a huge amount of time for finding this decomposition.

3 Conclusion

In this report, we presented our CSP hypergraph library consisting of several classes of hyper-
graphs. Our library contains industrial examples from DaimlerChrysler, NASA, and the ISCAS
circuits as well as self-constructed hypergraphs like Grids and Cliques. The latter ones have the
advantage that their hypertree-width is known in advance.

Our experiments have shown that the evaluation results sometimes depend on the order of the
hyperedges and vertices in the input file. Therefore, we propose to order hyperedges and vertices
randomly when reading them from the file. This guarantees that the obtained results only depend
on the hypergraph and not on a particular representation of the hypergraph.
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