
Local search algorithm for unicost set covering

problem

Nysret Musliu

Vienna University of Technology, Karlsplatz 13, 1040 Vienna, Austria

Abstract. The unicost set covering problem is a NP-hard and it has
many applications. In this paper we propose a new algorithm based on
local search for solving the unicost set covering problem. A fitness func-
tion is proposed for this problem and different neighborhood relations
are considered for the exploration of the neighborhood of the current
solution. A new approach is introduced for effective exploration of the
neighborhood during the improvement phase. This approach is based on
the upper bound of the best cover, which is found during the search,
and using only determined moves. Additionally, in order to avoid cy-
cles during the search, a search history is used. The proposed algorithm
is experimentally evaluated for 85 well-known random and combinato-
rial problems in the literature, and it gives very satisfactory results in a
reasonable amount of time. The proposed algorithm improves the best
existing solutions for 8 problems in the literature. For a class of combi-
natorial problems, the best existing results are improved significantly.

1 Introduction

For the set covering problem ([7]) we have given the finite set X and the family
F of subsets of X. Each element of X belongs to at least one subset of F . The
problem is to find the minimum size subset C ⊆ F whose members cover all
elements of X. The variant of the set covering problem in which all sets in F

have the weight 1 is called the unicost set covering problem.
Many problems can be formulated as a set covering problem. Applications of

a set covering problem include scheduling, testing, construction of optimal logical
circuits, inspection of computer viruses, etc. The unicost set covering problem
considered in this paper appeared in the problem of generation of generalized
hypertree decompositions from tree decompositions. The importance of tree de-
compositions and hypertree decompositions lies in the fact that many constraint
satisfaction and other NP -complete problems can be polynomially solved if their
associated hypergraph has a low width for the chosen decomposition. Tree and
hypertree decompositions are out of the main focus of this paper, and therefore
the reader is refereed to [5] and [10] for definitions and further details on the
importance of these concepts for solving constraint satisfaction problems.

Different methods have been proposed in the literature for the set covering
problem. Examples of using exact methods are [1] and [2]. For solving larger
instances of this problem, approximation algorithms and heuristic algorithms

have been proposed. One of the best approximation algorithms is the greedy
algorithm [6]. The greedy algorithm finds a solution for the set covering problem
by iteratively picking a set that covers as many remaining uncovered variables
as possible. Grossman and Wohl [11] compared nine different algorithms for
the set covering problem including different variants of the greedy algorithm,
randomized algorithms, and neural networks. They reported that the best results
were obtained by using the randomized greedy algorithm. This algorithm is
identical to the greedy algorithm, except that in the phase of selection ties are
broken randomly for sets which contain the same number of uncovered variables.
The results obtained by the randomized greedy algorithm were obtained by
iterating this algorithm 100 times.

Marchiori and Steenbeek [13] enhanced the greedy algorithm by introducing
a new rule for breaking ties in the steps of adding and removing sets. Further,
the simple optimization step was applied in the constructed solution by the en-
hanced greedy algorithm. An iterated algorithm is proposed that starts each
run with partial cover obtained from the solution constructed by the enhanced
greedy algorithm in the previous iteration. The authors reported very good re-
sults with this method and they improved the best results for many problems in
the literature. Nonobe and Ibaraki [14] have proposed a tabu search algorithm
for constraint satisfaction problems. This general tabu search problem solver has
been applied for the set covering problem and the algorithm has been evaluated
for the class of problems defined from Steiner triple systems. The tabu search
approach has also been used in [12], here the authors compared their results for
70 problems to CPLEX, and report better results than those reported in [11].
However, the quality of results reported in [12] are worse than the results re-
ported in [13]. Other metaheuristic approaches, such as genetic algorithms ([4])
have been proposed for solving this problem.

In this paper we propose a new method based on local search for solving the
unicost set covering problem. We investigate the use of different neighborhood
relations and propose a simple fitness function for this problem. The proposed
algorithm includes a new method for the generation of the neighborhood during
each iteration based on the knowledge of the number of sets of the current best
known solution. Additionally, the algorithm uses a search history and a basic
tabu search mechanism to avoid cycles during the search.

This paper is organized as follows: in the next section the local search al-
gorithm for solving the unicost set covering problem is described. In section 2,
its computational results on 85 problems are presented, before the final section
which contains our conclusions and remarks.

2 Local search algorithm

In this section a local search based algorithm for unicost set covering problem
is described. The algorithm is based on an iterative local improvement of the
initial solution. In each iteration the neighborhood of the current solution is
generated, and one solution from this neighborhood is selected for the next

iteration. A basic variant of a local search is used for the selection criteria, in
which the best solution of the neighborhood is selected for the next iteration.
However, also the so called tabu mechanism to avoid the cycles during the search
is introduced. If the solutions are obtained by moves, which are performed in
a determined number of previous iterations, then they are considered as tabu
solutions and will be accepted only if they fulfill particular criteria. For the
generation and restriction of the neighborhood of the current solution, a unique
method is applied. This method is based on the upper bound for the number
of sets of the best solution found during the search. The basic elements of this
local search procedure are described below in detail.

2.1 Neighborhood structure

As described in Section 1 the solution for the set covering problem is a subset
C ⊆ F whose members cover all elements of X. Note that the solution, which
in this case is the subset C, can be illegal in the beginning and also in the
improvement phase, i.e. a solution which does not cover all elements of X. To
generate the neighborhood of subset C two basic moves are applied:

ADD SET (S) - a set S (which is not in C) from the family of sets F is
added in C: C ← C ∪ S

REMOV E SET (S) - a set S is removed from C: C ← C − S

Another move, which has been used in the literature, swaps one set S1 in C

with another set S2 not in C: SWAP SETS(S1, S2)
The whole neighborhood that is generated by only applying ADD SET and

REMOV E SET moves contains |F | solutions. If the SWAP SETS move is
applied the generated neighborhood is much larger. In this case the whole neigh-
borhood contains |C| ∗ (|F | − |C|) solutions.

The SWAP SETS move can be performed by the sequence of ADD SET

and REMOV E SET moves:

SWAP SETS(S1, S2) = REMOV E SET (S1) + ADD SET (S2)

To avoid a very large number of solutions in the neighborhood we implemented
a method which only applies ADD SET and REMOV E SET moves. We also
experimented with all three moves mentioned above. The experiments showed
that the moves ADD SET and REMOV E SET are sufficient to obtain very
satisfactory solutions in a reasonable amount of time.

2.2 Restricting neighborhood by introducing an upper bound

parameter

We define the upper bound parameter as the number of sets of actual best
legal solution. If only the ADD SET and REMOV E SET moves are applied,
this upper bound can be used to restrict the neighborhood during the search.
With this restriction the move ADD SET can be applied in the current solution
only if the number of sets in the current solution is less than upperbound − 1.

The upper bound is calculated from the first legal solution, which covers all
elements of X. If the legal solution is improved during the search, the upper
bound parameter is updated automatically. The motivation for restricting the
neighborhood during the search is given below. By using this restriction the
search is intensified in the neighborhood (considering number of sets) of the
current best solution by not allowing the exploration of the solutions which have
more sets than the current best legal solution. However, this method does not
restrict the exploration of solutions with worse fitness. Moreover, by using fitness
function defined in section 2.3, with this restriction is enforced almost all the
times during the improvement phase (the phase in which one cover is already
known) that in one iteration the REMOV E SET is performed, whereas in the
next iteration ADD SET move is performed. The move REMOV E SET can
be applied during each iteration, if the variables can be covered with less sets.
Through alternate applying of ADD SET and REMOV E SET we mimic the
SWAP SETS move with much smaller neighborhood during each iteration.

Additionally, to make the search more effective, during the neighborhood
exploration the following rule is applied: if the set is removed from C, in the
next iteration for adding in C are considered only the sets which share elements
with the set removed in the previous iteration. This requires storing of additional
information for the problem, but makes the search more effective.

2.3 Fitness function

A simple fitness function is used to calculate the quality of solution during the
search. A penalty of value 1 for each uncovered element of set X and each set in
C is given. The fitness of solution is equal with the sum of uncovered variables
and the number of sets in C:

Fitness = NrOfUncoveredElements + |C|

The aim is to minimize this fitness function during the search, such that all
elements of set X are covered.

To calculate the fitness efficiently, the fitness of neighborhood solutions is
calculated only from the fitness of the previous solution and the change caused
from the applied move.

2.4 Initial solution

We experimented with the empty initial solution and the initial solution which is
generated with the greedy algorithm [6]. The greedy algorithm finds a solution
for the set covering problem by iteratively picking a set that covers as many
remaining uncovered variables as possible. The results presented in this paper
are obtained with the initial solution which is obtained by the greedy algorithm.

2.5 Using of the search history

In order to avoid the cycles during the search, the search history is used. The
information for the search are stored in a short term memory (tabu list). In this
memory are stored the information for the sets which are removed or added in
the past number of iterations nIter. For example, if the solution accepted for
the next iteration is obtained by adding the set S1 in C, in the tabu list will
be added the set S1. The moves ADD SET (S1) and REMOV E SET (S1) are
made tabu (can not be applied) for several iterations depending on the length of
the tabu list. We experimented with the different lengths for the tabu list. In the
first variant the length of the tabu list is same for all examples independently
from the size of the problem. In the second variant we experimented with the
tabu length which depends from the number of sets in the solution generated
by the greedy algorithm. Experimental results showed that the second variant
gives better results for the problems we consider in this paper. The information
for the length of the tabu list used in experiments are given in Section 3.

2.6 Selection criteria

The solution is accepted for the next iteration based on the following criteria:
the best solution (ties are broken randomly) from the neighborhood becomes the
current solution in the next iteration, if it is not tabu solution. The solution is
considered tabu, if it is obtained by applying of one of moves on the set which
is in the tabu list. If the best solution from neighborhood is tabu, the aspiration
criterion is applied. For the aspiration criteria, we use a standard version [9]
according to which the tabu status of a move is ignored if the move has a fitness
better than the current best solution.

2.7 The algorithm

The pseudo code of the overall local search algorithm which was shown the
best in the experimental evaluation is given below. This algorithm exploits the
simple fitness function defined in the section 2.3, applies only ADD SET and
REMOV E SET moves, and makes use of the short term memory. Additionally,
the upper bound parameter is used to reduce the neighborhood.

Local search algorithm

1. Generate the initial solution
2. Initialize the tabu list and the UPPERBOUND parameter
3. Generate the neighborhood of the current solution as described in section 2.2
(apply only ADD SET and REMOV E SET moves)
4. Evaluate the neighborhood solutions
5. Select the solution for the next iteration (see section 2.6)
5. Update the tabu list and UPPERBOUND parameter
7. Go to step 3 if the stopping criteria is not fulfilled, otherwise go in step 8
8. Return the best legal solution

3 Computational results

The algorithms proposed in this paper are evaluated experimentally for 85 prob-
lems from the literature. These problems include random problems and the set
covering problems which appeared in different combinatorial problems. Charac-
teristics of these instances are presented in [13]. Instances 4-6, A-E and NRE-
NRH are random generated instances. Instances 4-6 are from [1], A - E from [2],
and NRE - NRH from [3]. All these instances are available from the OR-library
(http://mscmga.ms.ic.ac.uk/jeb/orlib/scpinfo.html). These instances represent
a weighted set covering problem, in which columns can have different costs. As
in [11], [13], [12] the costs of columns are discarded when applying the algorithm
to the unicost set covering problem. The results obtained in this paper are com-
pared with the results from [11], [13], [12] and are not comparable with (except
for instances E.1 − E.5) the results obtained by [1], [2], and [3] because they
considered a weighted set covering problem.

The CYC and CLR instances are from [11] and arise from combinatorial prob-
lems. These instances are derived from two questions of Erdós and are described
in detail in [11]. The STS instances are derived from Steiner triple systems ([8]),
and they are known to be difficult set covering instances.

Our algorithms are implemented in C++ and the experiments are performed
in a computer Pentum 4, 2,4GHZ, 512 MB RAM. For each problem 10 indepen-
dent runs are executed.

The algorithm presented in Section 2.7, which has been shown to be very
powerful for unicost set covering problem exploits the tabu list. The parameter
for the length of the tabu list is found experimentally for each class of instances
mentioned before. The tabu length depends from the number of sets in the
solution that is obtained by the greedy algorithm (we denote this parameter
as NrOfGreedySets). For each class of problems the length of the tabu list is
obtained as follows: TabuLength = TSFactor ∗ NrOfGreedySets + 1. The
experiments with the following tabu length factor (TSFactor) were performed:
0, 0.05, 0.1, 0.15 and 0.2. The best tabu length for each class of problems was
chosen based on the sum of the average number of sets in 10 runs (for all solutions
of that particular class), and based on the average time for which the solutions
are found.

In Tables 1, 2, and 3 are presented the results of the algorithm proposed
in this paper for 85 problems from the literature. The results obtained with
the previous approaches proposed in the literature are also presented in these
tables. The ITEG algorithm [13] was tested on a multi-user Silicon Graphics
IRIX Release 6.2 IP25, 194 MHZ MIPS R10000 processor, 512 MB RAM. The
algorithms from [12] were tested on Dell Precision 530 Workstations with two
1.8 GHz Pentium Xeon processors and 1GB of RAM. First column of each table
represents the problems for which the results are given. In the second column for
each problem is presented the best solution obtained by the algorithms proposed
in [11] (the number represents number of sets the solution contains). In the
third and the fourth column are presented results from [12]. The best solution is
presented in the third column, whereas the time for which the solution is found

is presented in the fourth column (T). Next three columns represent results
from [13] (best solution, averages number of sets for 10 runs, and average time
used for each problem). The last three columns give the results obtained by the
algorithm proposed in this paper (see section 2.7). From these three columns
the first column represents for each problem the best solution obtained in 10
runs. The second column gives the average and standard deviation of number
of sets in 10 runs. Last column gives information for the average (and standard
deviation) time for which the best solution is found. The time for all algorithms
is given in seconds.

In [14] and [15] are given results only for STS class of problems. These results
are not included here. To our best knowledge the tables given in this paper
represent the best known results for the unicost set covering problems found in
the literature. The only exception is the problem STS.135 for which a better
solution (with value 103) is reported in [15].

Based on these tables we can conclude that the approach proposed in this
paper gives better results compared to [11] for 52 problems. The methods pro-
posed in [11] do not outperform our algorithm for any of problems. Compared
to the methods proposed in [12] our approach gives better results for 24 prob-
lems. The only problem for which the approach proposed in [12] is better (for
1 set) is the problem scpnrg2. In [12] are not given results for CYC, CLR and
STS problems. The ITEG algorithm proposed in [13] outperforms slightly our
approach (considering average in 10 runs) in 22 examples, whereas our approach
outperforms ITEG in 34 problems. Considering the best solution in 10 runs our
approach gives better results for 9 problems compared to ITEG, and ITEG does
not give better results than our approach for any of problems. The algorithm
proposed in this paper improves the best known results in the literature for 8
problems (6.4, A.4, D.3. NRG1, CYC08 - CYC11) and can find the best known
results for all problems, except for the problems NRG2 (62 instead of 61 obtained
in [12]) and STS.135 (104 instead 103 obtained in [15]). The results for prob-
lems CY C.08−CY C.11 are improved significantly by our algorithm. Note that
with the individual tabu length for each problem (not the tabu length for the
class of problems) our algorithm could also find better solution for the following
problems: NRE4(16), A.2(38), and D.1(24).

4 Conclusion

In this paper we presented a local search algorithm for solving the unicost set
covering problem. We have used simple neighborhood relations and have intro-
duced a unique approach for neighborhood exploration during the search. The
neighborhood exploration is based on the upper bound of the number of sets
in the best solution and restriction of particular add moves. This restriction is
based on information about the removed set in the previous iteration. Addition-
ally, we have used a search history to avoid possible cycles during the search.
The proposed algorithm has been evaluated experimentally in 85 problems which
appeared previously in the literature. Experimental results show that our local

Table 1. Comparison of the results for the class of problems 4,5,6,A,B,C,D,E

[11] [12] ITEG ([13]) Our algorithm

Example Best Best T Best Avg T(Avg) Best Avg(Stdev) T(Avg/Stdev)

scp41.txt 41 38 938 38 38 10 38 38,1 (0,3) 0,5 (0,7)

scp42.txt 38 37 5 37 37 10 37 37 (0,0) 0 (0,0)

scp43.txt 40 38 1 38 38 10 38 38 (0,0) 0 (0,0)

scp44.txt 41 38 272 39 39,1 10 38 38,6 (0,5) 0,7 (1,1)

scp45.txt 40 38 23 38 38 10 38 38 (0,0) 0,4 (1,0)

scp46.txt 40 37 3 37 37,8 10 37 37,2 (0,4) 0,8 (0,9)

scp47.txt 41 38 413 38 38,4 10 38 38,4 (0,5) 1,1 (0,7)

scp48.txt 40 38 6 37 37,7 10 37 37,6 (0,5) 1 (1,3)

scp49.txt 40 38 35 38 38,1 10 38 38 (0,0) 1 (1,2)

scp410.txt 41 38 161 38 38,6 10 38 38,3 (0,5) 1,2 (1,4)

scp51.txt 35 35 5 34 34,9 10 34 34,7 (0,5) 1 (2,2)

scp52.txt 35 35 6 34 34,7 10 34 34,2 (0,4) 3,2 (2,6)

scp53.txt 36 34 39 34 34 10 34 34 (0,0) 0,8 (1,4)

scp54.txt 36 34 1182 34 34 10 34 34 (0,0) 1,6 (2,0)

scp55.txt 36 34 12 34 34,1 10 34 34,1 (0,3) 2,2 (3,0)

scp56.txt 36 34 989 34 34,5 10 34 34,1 (0,3) 3,1 (3,0)

scp57.txt 35 34 75 34 34 10 34 34 (0,0) 0,6 (1,1)

scp58.txt 37 34 74 34 34,9 10 34 34,4 (0,5) 2,2 (3,6)

scp59.txt 36 35 6 35 35 10 35 35,6 (1,0) 0,6 (1,0)

scp510.txt 36 34 1873 34 34,6 10 34 34,5 (0,5) 3,4 (3,6)

scp61.txt 21 21 5 21 21 60 21 21 (0,0) 0 (0,0)

scp62.txt 21 21 6 20 20,3 60 20 20 (0,0) 0,7 (0,8)

scp63.txt 21 21 10 21 21 60 21 21 (0,0) 0 (0,0)

scp64.txt 22 21 4 21 21 60 20 20,9 (0,3) 0,6 (1,9)

scp65.txt 22 21 25 21 21 60 21 21 (0,0) 0 (0,0)

scpa1.txt 40 39 337 39 39,1 30 39 39 (0,0) 3,2 (2,9)

scpa2.txt 41 39 79 39 39,1 30 39 39 (0,0) 4,7 (3,1)

scpa3.txt 40 39 179 39 39 30 39 39,1 (0,3) 1,8 (1,8)

scpa4.txt 40 38 1715 38 38 30 37 37,8 (0,4) 5,7 (6,6)

scpa5.txt 40 38 771 38 38,7 30 38 38,4 (0,5) 6,1 (4,5)

scpb1.txt 23 22 719 22 22 60 22 22 (0,0) 8,3 (8,8)

scpb2.txt 22 22 17 22 22 60 22 22 (0,0) 2 (4,2)

scpb3.txt 22 22 698 22 22 60 22 22 (0,0) 1,1 (3,5)

scpb4.txt 23 22 1910 22 22 60 22 22,1 (0,3) 11,6 (9,5)

scpb5.txt 23 22 46 22 22,2 60 22 22 (0,0) 12,1 (8,9)

scpc1.txt 45 43 1524 43 43,5 40 43 43,5 (0,5) 5,9 (5,7)

scpc2.txt 45 44 197 43 43,5 40 43 43,4 (0,5) 9,5 (8,5)

scpc3.txt 45 43 1029 43 43,6 40 43 43,4 (0,5) 10,2 (10,4)

scpc4.txt 46 43 1325 43 43,1 40 43 43,3 (0,5) 11,6 (9,2)

scpc5.txt 45 44 149 43 43,5 40 43 43,9 (0,3) 2,1 (2,0)

scpd1.txt 26 25 395 25 25 110 25 25,1 (0,3) 6,4 (10,7)

scpd2.txt 25 25 1890 25 25 110 25 25 (0,0) 2,2 (1,4)

scpd3.txt 25 25 91 25 25 110 24 24,9 (0,3) 21,6 (27,0)

scpd4.txt 26 25 226 25 25 110 25 25 (0,0) 17,7 (16,4)

scpd5.txt 26 25 200 25 25 110 25 25 (0,0) 24,1 (16,4)

scpe1.txt 5 5 - 5 5 10 5 5 (0,0) 0 (0,0)

scpe2.txt 5 5 - 5 5 10 5 5 (0,0) 0 (0,0)

scpe3.txt 5 5 - 5 5 10 5 5 (0,0) 0 (0,0)

scpe4.txt 5 5 - 5 5 10 5 5 (0,0) 0 (0,0)

scpe5.txt 5 5 - 5 5 10 5 5 (0,0) 0 (0,0)

Table 2. Comparison of the results for the class of problems NRE, NRF, NRG, NRH

[11] [12] ITEG ([13]) Our algorithm

Example Best Best T Best Avg T(Avg) Best Avg(Stdev) T(Avg/Stdev)

scpnre1.txt 17 18 38 17 17 34 17 17,3 (0,5) 2,2 (3,0)

scpnre2.txt 17 18 27 17 17 34 17 17,1 (0,3) 1,5 (2,3)

scpnre3.txt 17 18 32 17 17 34 17 17,1 (0,3) 16,5 (38,8)

scpnre4.txt 17 17 54 17 17 34 17 17,2 (0,4) 5 (7,8)

scpnre5.txt 17 17 586 17 17,2 34 17 17 (0,0) 4,5 (4,6)

scpnrf1.txt 10 11 29 10 10,3 66 10 10,7 (0,5) 17,3 (28,9)

scpnrf2.txt 11 11 39 10 10,4 66 10 10,5 (0,5) 43,9 (63,3)

scpnrf3.txt 11 11 30 10 10,6 66 10 10,6 (0,5) 48,7 (112,6)

scpnrf4.txt 11 11 22 10 10,5 66 10 10,7 (0,5) 17,9 (31,5)

scpnrf5.txt 11 10 482 10 10,7 66 10 10,6 (0,5) 29,4 (73,5)

scpnrg1.txt - 63 1089 62 62,4 26 61 62,4 (0,8) 27,3 (24,1)

scpnrg2.txt - 61 3401 62 62,5 26 62 62,3 (0,5) 29,8 (34,4)

scpnrg3.txt - 62 901 62 62,8 26 62 62,9 (0,6) 20,8 (24,5)

scpnrg4.txt - 63 1045 62 63,7 26 62 63,1 (0,7) 41,8 (42,7)

scpnrg5.txt - 63 406 62 62,7 26 62 62,8 (0,4) 40,2 (35,7)

scpnrh1.txt - 35 2008 34 34,8 61 34 34,9 (0,6) 8,7 (16,3)

scpnrh2.txt - 36 297 34 34,7 61 34 34,9 (0,3) 7,8 (21,2)

scpnrh3.txt - 36 968 34 34,8 61 34 34,9 (0,3) 19,1 (32,2)

scpnrh4.txt - 35 940 34 35 61 34 34,9 (0,6) 26,1 (67,7)

scpnrh5.txt - 36 454 34 34,6 61 34 34,8 (0,4) 50,3 (150,0)

Table 3. Comparison of the results for the problems CYC, CLR and STS

[11] [12] ITEG ([13]) Our algorithm

Example Best Best T Best Avg T(Avg) Best Avg(Stdev) T(Avg/Stdev)

scpcyc06.txt 60 - - 60 61,4 0 60 60 (0,0) 0 (0,0)

scpcyc07.txt 144 - - 144 148 1 144 144 (0,0) 0 (0,0)

scpcyc08.txt 352 - - 348 351,8 5 342 343,8 (0,6) 11,1 (10,4)

scpcyc09.txt 816 - - 825 827,6 19 774 791,9 (6,4) 110,4 (122,6)

scpcyc10.txt 1916 - - 1858 1860,7 110 1820 1823,9 (2,9) 488,9 (189,7)

scpcyc11.txt 4268 - - 4202 4218,3 500 4088 4144,9 (24,5) 1497,8 (67,2)

scpclr10.txt 28 - - 25 25 10 25 25 (0,0) 0 (0,0)

scpclr11.txt 27 - - 23 23 20 23 23 (0,0) 0 (0,0)

scpclr12.txt 27 - - 23 23 50 23 23 (0,0) 3,7 (3,8)

scpclr13.txt 29 - - 23 25,3 110 23 23,4 (0,5) 79 (64,9)

STS27.txt - - - 18 18 1 18 18 (0,0) 0 (0,0)

STS45.txt - - - 30 30,7 2 30 30 (0,0) 0,1 (0,3)

STS81.txt - - - 61 61 11 61 62,4 (1,0) 0 (0,0)

STS135.txt - - - 104 104 15 104 105,7 (1,2) 1,1 (3,5)

STS243.txt - - - 198 202,2 100 198 199 (2,1) 29,6 (31,1)

search algorithm gives very satisfactory results for problems appearing in the
literature. In particular, our algorithm performs as well as the best results cited
in the literature, except for two problems. The solutions generated by our algo-
rithm for these two problems are only worse with respect to 1 set. For 8 problems
from the literature our algorithm discovers better solutions. In the future work
we are planning to analyze the use of the frequency based memory and to apply
the adaptive tabu list for the unicost set covering problem.

Acknowledgments: This paper was supported by the Austrian Science Fund
(FWF) project: Nr. P17222-N04, Complementary Approaches to Constraint Sat-

isfaction

References

1. E. Balas and A. Ho. Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: a computational study. Mathematical Programming,
12:37–60, 1980.

2. J. E. Beasley. An algorithm for set covering problems. European Journal of Oper-
ational Research, 31:85–93, 1987.

3. J. E. Beasley. A lagrangian heuristic for set covering problems. Naval Research
Logistics, 37:151–164, 1990.

4. J. E. Beasley and P. C. Chu. A genetic algorithm for set covering problem. Euro-
pean Journal of Operational Research, 94:392–404, 1996.

5. H. L. Bodlaender. Discovering treewidth. In In P. Vojtás, M. Bieliková, B. Charron-
Bost, and O. Sýkora, editors, SOFSEM 2005: Theory and Practice of Computer
Science, pages 116. Springer, Lecture Notes in Computer Science, vol. 3381, 2005.

6. V. Chvátal. A greedy heuristic for the set-covering problem. Math. of Oper. Res.,
4/3:233–235, 1979.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, editors. Introduction
to Algorithms, 2nd ed. The MIT Press, Massachusetts, 2001.

8. D.R. Fulkerson, G.L. Nemhauser, and L.E. Trotter. Two computationally difficult
set covering problems that arise in computing the 1-width of incidence matrices of
steiner triple systems. Mathematical Programming Study, 2:72–81, 1974.

9. Fred Glover and Manuel Laguna. Tabu search. Kluwer Academic Publishers, 1997.
10. G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural csp decompo-
sition methods. Artificial Intelligence, 124(2):243–282, 2000.

11. T. Grossman and A. Wool. Computational experience with approximation algo-
rithms for the set covering problem. European Journal of Operational Research,
101:81–92, 1997.

12. G. Kinney, J.W. Barnes, and B. Colleti. A group theoretic tabu
search algorithm for set covering problems. Working paper, available from
http://www.me.utexas.edu/ barnes/research/, 2004.

13. Elena Marchiori and Adri Steenbeek. An iterated heuristic algorithm for the set
covering problem. Proceedings of WEA’98, Germany, 1998.

14. K. Nonobe and T. Ibaraki. A tabu search approach to the constraint satisfaction
problem as a general problem solver. European Journal of Operational Research,
106:599–623, 1998.

15. M.A. Odijk and H. van Maaren. Imporved solutions for the steiner triple covering
problems. Technical Report, TU Delft University, 11, 1996, 1996.

