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An Efficient Algorithm for Phylogeny

Reconstruction by Maximum Likelihood

Abstract

Understanding the evolutionary relationships among species has been of tremen-

dous interest since Darwin published the Origin of Species (Darwin, 1859). The

evolutionary history (phylogeny) of species is typically represented as a phyloge-

netic tree. Nowadays, the reconstructing of the evolutionary history is still a major

research topic. With the rise of molecular sequencing technologies, advanced com-

putational approaches have been proposed to reconstruct phylogenies. Maximum

likelihood is a statistical method for reconstructing phylogeny which gives better

estimate of the true tree than those produced by other approaches. Howerver, max-

imum likelihood, is highly computational expensive.

Therefore, different heuristics haven been proposed to solve this NP-hard prob-

lem. Among these, IQPNNI (Vinh and von Haeseler, 2004) has been shown to have

highly regarded results. Nevertheless, it requires a lot of computation time. In the

present work we introduce an improved version of the IQPNNI algorithm called IQ-

Tree. Here we focus on improving the runtime performance of IQPNNI by proposing

a fast and reliable search algorithm for phylogeny reconstruction.

To this end, we used the metaheuristic Iterated Local Search (ILS) as our un-

derlying search framework, from which the possibility of using the search history to

improve performance has been identified. Based on the search history we propose

a strategy that directs the search to move quickly through regions, in which better

trees are unlikely to be found. Furthermore, we introduce a vectorization tech-

nique to speed up computations in the tree evaluation function. Our results showed

that IQ-Tree runs two to four times faster than IQPNNI, while the reconstructed

phylogenetic trees have equal or better likelihood than those produced by IQPNNI.
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Chapter 1

Introduction

In this chapter we explain the phylogeny reconstruction problem. Then, we discuss

some methodologies and state of the art techniques for solving the problem. Finally,

we summarize our main contributions to the problem and outline the structure of

the remaining part of the thesis.

1.1 Motivation

The foundation of evolutionary biology was laid by Charles Darwin in his famous

work “On the Origin of Species” (Darwin, 1859). Darwin proposed that life on Earth

has evolved from a common ancestor. “Nothing in biology makes sense except in

the light of evolution”, wrote the prominent geneticist and evolutionary biologist

Theodosius Dobzhansky (Dobzhansky, 1973).

During the evolution of species, traits are inherited and mutations are accumu-

lated. This leads to divergence in the evolutionary paths. Based on common charac-

teristics of contemporary species, the evolutionary relationships between them can

be reconstructed and represented in a so-called phylogeny or phylogenetic tree. Fig-

ure 1.1 illustrates a phylogenetic tree of the great apes species, including human.

Studying evolution helps us understand biological phenomena. Typical examples

of this can be taken from the field of medicine. In order to prevent pathogenic

diseases, researchers must understand the evolutionary pattern of disease-causing

organisms. Hereditary diseases can be controlled by studying evolutionary histories

1



1.1. Motivation 2

of the disease-causing genes. The scientific field studying evolutionary relationships

among various groups of organisms is called phylogenetics (Berkeley, 2010b).

Reconstructing phylogeny is the central topic in phylogenetics because the shape

of phylogenetic trees are often unknown or controversial in many cases. In order to

reconstruct a phylogeny, we have to collect and analyze data about the characters

of each organism of interest. Characters are heritable traits that can be compared

across organisms, such as morphological characteristics, genetic sequences, and be-

havioral traits (Berkeley, 2010a).

Advances in sequencing technologies have led to the emergence of molecular

evolution research in the 1960s. Phylogenetic tree reconstruction is done much

more efficiently using molecular sequences (e.g. DNA, Protein). Because of its

compactness and stable structure, genetic sequences have become the main data

used for reconstructing phylogenetic trees (Zuckerkandl, 1987).

Figure 1.1: Phylogenetic tree of the great apes.



1.2. State of the art phylogeny reconstruction 3

1.2 State of the art phylogeny reconstruction

Although the concept of phylogeny has been around for 150 years, statistical, com-

putational, and algorithmic methods for the problem have only been applied for

about 50 years (Felsenstein, 2004).

Reconstructing a phylogeny is an estimation problem. Genetic sequences are

only available for contemporary species whereas those of their extinct ancestors are

by and large missing. In order to estimate a phylogeny, one needs an objective

function to evaluate different tree topologies and a search strategy to find the best

tree, with respect to the objective function. Phylogenetic reconstruction methods

are classified into four main categories on the basis of their objective functions: max-

imum parsimony, minimum evolution, maximum likelihood, and Bayesian methods

(Barton, 2007). Since phylogeny reconstruction methods are only based on assump-

tions about different aspects of the evolution of the species, one cannot guarantee

that the reconstructed phylogeny exactly reflects the true evolutionary history.

The starting tree for a search procedure is usually built by a fast tree reconstruc-

tion method, e.g. UPGMA (Sokal and Michener, 1958) or Neighbor-Joining (NJ)

(Saitou and Nei, 1987). Such methods use pairwise distances between species to

construct the tree by a greedy algorithm. Since the number of possible tree topolo-

gies grows exponentially with the number of species (Felsenstein, 1978), finding the

optimal tree using exhaustive searches is NP-complete (Foulds and Graham, 1982;

Day and Sankoff, 1986; Addario-Berry et al., 2003).

Therefore, numerous heuristic methods have been introduced to tackle the tree

search problem. The techniques used range from simple hill climbing algorithms

to sophisticated global optimization strategies. In hill climbing algorithms, local

improvements on the current tree are made by using tree re-arrangement techniques

such as nearest neighbor interchange (NNI), subtree pruning and re-grafting (SPR),

tree bisection and reconnection (TBR) (Felsenstein, 2004). The search procedure

stops when no local improvements can be found. Hill climbing techniques have been

shown to be very effective for the phylogeny reconstruction problem, and programs

that implement such techniques are among the most widely used. Notable programs

are Phylip (Felsenstein, 1995), PAUP* (Swofford, 2002), PhyML (Guindon and Gas-
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cuel, 2003; Guindon et al., 2010), RAxML (Stamatakis, 2006). Hill climbing, how-

ever, tends to end up in a local optimum and is not guaranteed to find the best tree

(the global optimum) (Russell and Norvig, 2009). Efforts have therefore been made

for the quest of finding the global optimal tree. Global optimization algorithms for

finding phylogenetic tree are either ad-hoc techniques or based on well-established

metaheuristics. Notable implementations of different metaheuristics for the problem

are: MetaPIGA (Lemmon and Milinkovitch, 2002) and GARLI (Zwickl, 2006) (ge-

netic algorithm), LEAPHY (Whelan, 2007) (tabu search). Vinh and von Haeseler

(2004) also proposed an efficient global optimization strategy IQPNNI (see chapter

4).

1.3 Contributions

In this thesis we developed an efficient tree search algorithm for the problem of

inferring a phylogeny based on the maximum likelihood principle. The idea of our

algorithm is based on the work done in PhyML (Guindon and Gascuel, 2003) and

IQPNNI (Vinh and von Haeseler, 2004). Our aim was to provide an algorithm that

is able to reconstruct good phylogenies in short time.

Within this work we achieved the following contributions:

1. We showed that the tree search algorithm used by Vinh and von Haeseler

(2004) can be formulated as the metaheuristic Iterated Local Search (ILS)

(Lourenco et al., 2003). Since our work is derived from IQPNNI, we decided

to use ILS as the underlying principle to investigate the different components

of the algorithm.

2. By studying ILS we identified the possibility of employing the search history to

enhance performance. To this end, we introduced an efficient search heuristic

called IQ-Tree which utilizes data collected from previous tree search attempts

to adjust the thoroughness of searching the tree space. The heuristic helps the

search to find trees of good quality quickly by eliminating search regions, in

which a new better tree is unlikely to be found.
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3. We employed parallelization technique in IQ-Tree to speed up the time-consuming

likelihood computations. The advantage of this technique is that it can be

used on conventional desktop computers with only one Central Processing

Unit (CPU) and does not require specialized parallelization infrastructure.

4. Our results showed that IQ-Tree reconstructs trees with the same quality as

those by IQPNNI while only needs a fraction of the time required by IQPNNI.

1.4 Thesis Structure

The remaining parts of the thesis are structured as follows:

• Chapter 2 gives a quick overview of the fundamental aspects in phylogeny

reconstruction. Here the focus is given to the maximum likelihood method.

• Chapter 3 describes essential aspects of the metaheuristic Iterated Local Search

that acts as the underlying framework for our tree search algorithm.

• Chapter 4 presents our core tree search framework based on the IQPNNI

algorithm.

• Chapter 5 contains details of our performance optimization techniques. First,

we present extensive analyses of the search behavior of the IQPNNI algorithm.

Then, we introduce a new search heuristic which employs the search history to

make the search more efficient. Second, we present a parallelization strategy

to reduce the tree likelihood computation time. At the end we show the

computational results of IQ-Tree in comparison with IQPNNI.

• Chapter 6 highlights our main contributions and give some aspects about the

future work.



Chapter 2

Essentials of Phylogenetic

Inference

This chapter gives a short introduction to the biological and computational aspects

of molecular phylogeny reconstruction. It presents the problem of phylogenetic tree

reconstruction while introducing the terminologies used throughout the thesis.

2.1 Genetic Information

Since the advent of molecular biology, it has been widely understood, that changes

in genetic information are the driving force of evolution. The genetic information of

a species is stored in the genome and encoded in DNA (deoxyribonucleic acid), or

for some viruses in RNA (ribonucleic acid) (Lemey et al., 2009). The DNA is the

building block of genes which encode proteins.

Genetic data is usually represented by nucleotide or amino acid sequences. Nu-

cleotides are molecules that make up the elementary units of DNA and RNA. Nu-

cleotides exist in five different types: Cytosince, Guanine, Adenine, Thymine and

U racil. A nucleotide sequence can thus be stored as sequences of characters of the

alphabets C, G, A, [T—U] (Thymine is only presented in DNA whereas Uracil is

found in RNA). Amino acids are the building blocks of protein that exist in 20

different biologically relevant types (Table 2.1). Protein sequences are generally

represented by a string of one-letter amino acid abbreviations (Lemey et al., 2009).

6



2.2. Sequence Alignment 7

Name
3-letter 1-letter

Name
3-letter 1-letter

abbr. abbr. abbr. abbr.

Alanine Ala A Methionine Met M

Cysteine Cys C Asparagine Asn N

Aspartic acid Asp D Proline Pro P

Glutamic acid Glu E Glutamine Gln Q

Phenylalanine Phe F Arginine Arg R

Glycine Gly G Serine Ser S

Histidine His H Threonine Thr T

Isoleucine Ile I Valine Val V

Lysine Lys K Tryptophan Trp W

Leucine Leu L Tyrosine Tyr Y

Table 2.1: Twenty amino-acids (Vandamme, 2003).

In recent years, advances in sequencing technologies have led to an exponential

growth of genetic sequence data. There are public sequence databases containing

millions of sequences, for example GenBank (Benson et al., 2005) or EMBL (Ku-

likova et al., 2006). To keep up with the fast-growing number of biological data,

biological sequence analysis methods, including phylogenetic inference, need to be

constantly improved with respect to computational efficiency.

2.2 Sequence Alignment

Throughout the evolutionary process, an organism may sometimes changes its ge-

netic information. Those changes are called mutations. Mutations are usually caused

by radiation, viruses, mutagenic chemicals as well as errors that occur during cell

replication (Bertram, 2000). The accumulation of mutations is the evidence of evo-

lutionary development. Sequences are called homologous if they have evolved from a

common ancestral sequence (Durbin et al., 2002). Given a set of homologous genetic

sequences, one of the common tasks is to compare them to identify regions of sim-

ilarity that may be results of functional, structural and evolutionary relationships
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between the sequences (Mount, 2004). Therefore, sequence alignment is a frequently

used technique for such purpose.

We now describe the method for aligning nucleotide sequences. For protein

sequences the same approach can be applied. A change in a single nucleotide is

called point mutation. Point mutation can be one of the following operations:

• Substitution: replace a nucleotide by another.

• Insertion: insert one nucleotide into the sequence.

• Deletion: delete one nucleotide from the sequence.

In aligned sequences, gaps are inserted in between so that homologous nucleotides

are aligned in the same column. Figure 2.1 shows an example of aligning two DNA

sequences (pairwise alignment). In descendant 1 one insertion event happened.

In descendant 2 substitution and deletion events both occurred. Insertions and

deletions are represented in the alignment by the gap characters (’-’).

Sequences which are short and very similar can be aligned manually. How-

ever, most real-life sequences are very long and contain a large number of highly

variable character patterns. Hence, alignments need to be done by computational

approaches. Alignment algorithms usually use some scoring scheme, based on which

the alignment with highest score is sought (Durbin et al., 2002). A scoring scheme

could be as simple as follows: the score of a match is +1, whereas -1 is for a mis-

match and -2 is for an indel 1. The pairwise alignment in Figure 2.1 has 12 matches,

1 mismatch and 2 indels, yielding a score of 7. In practice scoring schemes are

much more sophisticated since they require careful consideration of the biological

meanings.

Multiple sequence alignment (MSA) is an extension of pairwise alignment where

more than two sequences are aligned. Figure 2.2 shows an example of MSA of

Human, Chimpanzee, Gorilla, Rhesus. MSA acts as the input data for the recon-

struction of phylogenetic trees.

1Since it is not possible to distinguish between insertion and deletion, they are usually referred

to as indels.
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TACGGCTTTACCGA
common ancestor TACCGGCTTTACCGA

TACGGCTTTACCGA

descendant 1

descendant 2

TACCGGCTTTACCGA

  TAC­GGCTTTCC­GA

insertion in descendant 1 (indel) 

substitution in descendant 2 (mismatch)

deletion in descendant 2 (indel)

match

Figure 2.1: Pairwise alignment of DNA sequences.

While two sequences can be efficiently aligned using dynamic programming

(Needleman and Wunsch, 1970; Smith and Waterman, 1981), aligning multipe se-

quences requires significantly more computational effort. Multiple sequence align-

ment was shown to be an NP-complete combinatorial optimization problem (Wang

and Jiang, 1994; Elias, 2006). Various heuristic methods have therefore been devel-

oped for the task of efficiently aligning multiple sequences, such as CLUSTAL W

(Thompson et al., 1994), T-COFFEE (Notredame et al., 2000), MUSCLE (Edgar,

2004).

Figure 2.2: A example of a multiple sequence alignment for human, chimpanzee,

Gorilla and Rhesus. Columns in the alignment are called sites.

1 2 3 4 5 6 7 8 9 10 . . .

Human A T G C G C A T C A . . .

Chimpanzee A T G C - G G T G T . . .

Gorilla G - G A G A C T T A . . .

Rhesus T - C A A G G T C T . . .
...

...
...

...
...

...
...

...
...

...
...

. . .
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2.3 Phylogenetic Tree Reconstruction Methods

Once a multiple sequence alignment is provided, a phylogenetic tree can be con-

structed based on the alignment. Sequences are represented by leaves in the tree.

As mentioned in 1.2, the phylogenetic methods are classified into four main cat-

egories: parsimony, minimum evolution, likelihood and Bayesian methods. The

following short descriptions give a quick overview of each method (Barton, 2007):

• Maximum parsimony: The parsimony score of a tree is computed as the

minimum number of character changes that is required to explain the variation

observed in the alignment. Different tree topologies are compared according

to their parsimony scores and the optimal tree is the one that has the lowest

score (requiring the fewest changes).

• Minimum evolution: The evolutionary distances between all pairs of se-

quences are first estimated and stored in a distance matrix. The optimal tree

is the tree, whose branch patterns and lengths best approximate the distance

matrix.

• Maximum likelihood: Trees are evaluated with a model of evolution, which

reflects the substitution probabilities of characters. The score of a particular

tree is the likelihood of the observed characters having evolved according to

the tree model. The optimal tree is the tree with the highest likelihood score.

• Bayesian: Bayesian inference can be used to construct a phylogenetic tree in

a manner closely related to the maximum likelihood methods. But unlike the

maximum likelihood methods, Bayesian methods try to maximize the posterior

probability of the tree given the alignment. Bayesian methods generally em-

ploy Markov chain Monte Carlo (MCMC) methods to sample the distribution

of trees based on a prior probability distribution.

Accurately reconstructing the phylogeny of species requires a method that is

capable of incorporating multiple mutational events at the same site (Holder and

Lewis, 2003). Maximum likelihood (ML) is such method. In the following we will

describe the ML method for phylogenetic tree reconstruction.
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2.4 Phylogenetics by Maximum Likelihood

In ML a statistical framework is used to infer phylogenetic tree. A hypothesis about

the phylogeny is made and the hypothesis is judged by how well it predicts the

observed data, represented by MSA. Trees are selected based on their likelihoods of

“producing” the data. To calculate the tree likelihood one needs a model of sequence

evolution that reflects the probability of the various mutational events.

2.4.1 Models of Sequence Evolution

Models of sequence evolution provide mechanism for calculating probabilities of

changes/substitutions occurs while sequences evolve. These models are based on

several assumptions about the substitution process of nucleotides or amino acids

(Felsenstein, 1981, 2004):

• Markov process : The probability of character state i changing to character

state j does not depend on the ancestral state prior to i.

• Time-continuous : Substitutions can happen at any time.

• Homogeneous : Substitution probabilities do not change in different parts of

the tree.

• Stationary : The overall character frequencies πi of the nucleotides or amino

acids are at equilibrium and remain constant, where πi is the frequency of

character i.

• Time-reversible: Mutation in either direction is equally likely. The probability

of character i mutating to character j is the same as the probability of the back

mutation j to i within the same amount of time. For the computations based

on the model it is thus unimportant to know which sequence is the ancestor

and which is the descendant. Therefore, the likelihood of the tree generally

does not depend on how the tree is rooted and likelihood computation can be

done on unrooted tree.
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Evolutionary models are often described by substitution rate matrices, which

contain the rate (number of substitutions per unit of evolutionary time) at which

a sequence character is replaced by the alternative. For DNA sequences the evolu-

tionary model is represented as a 4× 4 instantaneous rate matrix Q:

Q =


−µ(aπC + bπG + cπT ) µaπC µbπG µcπT

µaπA −µ(aπA + dπG + eπT ) µdπG µeπT

µbπA µdπC −µ(bπA + dπG + fπT ) µfπT

µcπA µeπC µfπG −µ(cπA + eπG + fπT )



Matrix Q is the most general form of a time-reversible substitution model, which

is also called the General Time-Reversible Model (GTR) (Tavaré, 1986). The rows

and columns of the matrix both correspond to the nucleotide bases A, C, G and

T . µ represents the mean instantaneous substitution rate and a, b, c, d, e, f are the

relative rate parameters. The product of the mean instantaneous and a relative

rate parameter makes up the rate parameter. πA, πC , πG, πT are the frequencies of

the bases A, C, G and T , respectively. For example, the instantaneous rate of

substitution from C to A is µaπA. The diagonal elements of Q is chosen, so that

the sum of elements in each row is equal zero. The GTR model has ten parameters

including six substitution rates and four equilibrium base frequencies. Since the four

frequency parameters sum up to one (πA +πC +πG +πT = 1) and time is measured

in substitution (µ = 1), the number of parameters is reduced to eight (Swofford

et al., 1996).

Almost all DNA substitution models proposed to date are special variants of the

GTR model. If we assume that the equilibrium frequencies of all nucleotide bases are

the same (πA = πC = πG = πT = 0.25) and all substitution types occur at the same

rate (a = b = c = d = e = f = 1) then our substitution model becomes the JC69

model (Jukes and Cantor, 1969). Kimura (1980) introduced the model K2P with

rate parameters for two types of substitution: transition (A←→ G or C ←→ T ) and

transversion (A ←→ T,G ←→ T,A ←→ C, and C ←→ T ). The model F81 with

different base frequencies was introduced by Felsenstein (1981). Hasegawa et al.

(1985) unified the two previous models into a four parameter model HKY85. Figure
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2.3 shows the relationships between different DNA substitution models.

JC69

K2P F81

HKY85

GTR

2 substitution types (transitions vs. 
transversions)

1 substitution type, equal base 
frequencies

different base frequencies

different base frequencies

2 substitution types (transitions vs. 
transversions)

6 substitution. types (4 transversion, 2 
transitions)

Figure 2.3: Substitution Models. Adapted from (Swofford et al., 1996).

The instantaneous rate matrix Q only provides the substitution rate between

pairs of nucleotides for an instant time dt. In order to calculate the likelihood, we

need to derive the probability of change from one nucleotide to another nucleotide

during a time period t. The matrix containing the substitution probabilities between

pairs of nucleotides during time t is called the transition matrix. The elements of

the transition matrix can be computed from the rate matrix via exponentiation:

P (t) = eQt (2.1)
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If Q is diagonalizable, the matrix exponential can be computed directly by de-

composing Q into its eigenvalues and eigenvectors (Strimmer and von Haeseler,

2003). Let Q = UλU−1 be the diagonalization of Q, where λ is a matrix whose

diagonal elements {λi} are the eigenvalues of Q and the column vectors of U are the

corresponding eigenvectors of Q then

P (t) = eQt = eUλtU
−1

= UeλtU−1 (2.2)

since λ is a diagonal matrix:

eλt =


eλ1t · · · 0

...
. . .

...

0 · · · eλ4t

 (2.3)

In a similar way a protein substitution model is described by 20× 20 rate matri-

ces. Substitution models for protein can be divided into two types: empirical and

mechanistic models (Yang, 2006). Empirical models are constructed by analyzing

a large number of sequence data. Mechanistic models, in the contrary, take into

account the biological mechanisms involved in the substitution process. While with

DNA sequence data mechanistic models are used, the construction of amino acid

replacement models are usually focused on the empirical approach. Some of the com-

monly used amino acid substitution models are: Dayhoff (Dayhoff and Schwartz,

1978), JTT (Jones et al., 1992), WAG (Whelan and Goldman, 2001).

2.4.2 Computing Likelihood

In this section we will follow the notations from (Durbin et al., 2002). Assuming

that a model of sequence evolution has been specified, we now can compute the

likelihoods of different trees. Given a set X of n sequences xj for j = 1, ..., n. T

is a tree with n leaves where leave j represents sequence xj and E is the set of all

branch lengths of the edges of T . P (X|T,E) is then the likelihood of the data X

given the tree topology T and its branch lengths E.

In order to compute the likelihood, two assumptions are made (Felsenstein, 2004):

1. Evolution in different lineages is independent.
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2. Evolution in different sites is independent.

If x and y are two nodes of a branch with length t, where y represents the

ancestral sequence of x, then P (x|y, t) is the probability of y evolving to x after

an evolutionary time t. Having made the first assumption, the probability of a

phylogenetic tree is computed as the the product of all the probabilities P (xi|yj, tk),

one for each branch.

root

x5

x1

x2
x3

x4

t4
t1

t2 t3

Figure 2.4: A example of a tree with three sequences and the associated branch

lengths. Adapted from (Durbin et al., 2002).

Figure 2.4 shows an example of a phylogenetic tree containing three contempo-

rary sequences x1, x2 and x3 (external nodes or leaves) with a set of specific ances-

tral sequences x4, x5 (internal nodes). The branch lengths of the tree are denoted by

t1, t2, t3 and t4. The probability of the data given the tree in Figure 2.4 is calculated

as follows:

P (x1, ..., x5|T,E) = P (x5)P (x1|x5, t1)P (x4|x5, t4)P (x2|x4, t2)P (x3|x4, t3) (2.4)

where P (x5) denotes the probability of the sequence x5 being the root of the tree.

The second assumption about the evolution in different sites being independent

allow us to compute the probability of each site separately and then multiply them



2.4. Phylogenetics by Maximum Likelihood 16

to obtain the final likelihood of the tree. Equation 2.4 can therefore be used to

compute the probability of site Si if we consider xi to be a single character of the

corresponding sequence at the respective site. Suppose that the sequence alignment

has m sites, the likelihood of the tree is:

P (X|T,E) =
m∏
i=1

P (Si|T,E) (2.5)

Multiplying a large number probability values may cause numerical instability. To

avoid this, the likelihood of a tree is computed as the sum of the logarithms of the

likelihood values of all the sites.

From now on we will talk about likelihood computation in the context of a single

site and xi is referred to as a character of sequence i at the respective site. Since

the ancestral sequences are unknown and in order to obtain the likelihood of the

known contemporary sequences for a given tree topology, we need to sum over all

the probabilities of the tree having all possible representation of the ancestral nodes.

Equation 2.6 shows how the likelihood of the tree in Figure 2.4 can be computed for

site Si.

P (Si|T,E) =
∑
x4∈Z

∑
x5∈Z

P (x1, x2, x3, x4, x5|T,E) (2.6)

where Z is the set of possible character states, e.g. Z = {A,C,G, T} for DNA.

Combining Equation 2.4 and Equation 2.6 we then have:

P (Si|T,E) =
∑
x4∈Z

∑
x5∈Z

P (x5)P (x1|x5, t1)P (x4|x5, t4)P (x2|x4, t2)P (x3|x4, t3) (2.7)

Felsenstein’s Pruning Algorithm

Since the number of terms in Equation 2.7 grows exponentially with the number of

species, computing the likelihood using this method is intractable. Therefore, Felsen-

stein (1981) introduced a dynamic programming algorithm for rapidly computing

the tree likelihood and thus speeding up the whole computation. The algorithm was

called pruning algorithm.

The pruning algorithm is based on the possibility that one can move the sum-

mation signs in Equation 2.7 to the right and place them directly before the related
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terms. We can rewrite Equation 2.7 as follows:

P (Si|T,E) =
∑
x5∈Z

P (x5)P (x1|x5, t1)
(∑
x4∈Z

P (x4|x5)P (x2|x4, t2)P (x3|x4, t3)
)

(2.8)

This suggests that the conditional likelihoods of different subtrees can be com-

puted in a recursive manner. We call these conditional likelihoods partial likelihoods.

The pruning algorithm computes the likelihood by walking up the tree from the

leaves to the root, using post-order traversal (Durbin et al., 2002).

kk

a
i

j

b

c

Figure 2.5: Computing partial likelihood on subtrees. Adapted from (Durbin et al.,

2002).

A phylogenetic tree can be either bifurcating or multifurcating. Each internal

node of a bifurcating tree has exactly two descendants, whereas an internal node of

a multifurcating tree can have more than two descendants. For the sake of simplicity

we restrict the tree to be bifurcating. For a rooted bifurcating phylogenetic tree with

n leave sequences there are 2n− 1 nodes. Given the character state at node k is a
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(k = 1 . . . 2n − 1, where node 2n − 1 is the root), let P (Lk|a) denotes the partial

likelihood of all the leaves below node k. Let x1u . . . x
n
u denote the characters at

site u of the n sequences x1 . . . xn. P (Lk|a) can be computed from the probabilities

P (Li|b) and P (Lj|c) for all possible b and c, where i and j are the descendant nodes

of k (see Figure 2.4.2). The procedure of Felsenstein’s pruning algorithm can be

described as follows (Durbin et al., 2002):

• Initialization:

Set k = 2n− 1

• Recursion: Compute P (Lk|a) for all a.

If k is a leaf node:

Set P (Lk|a) = 1 if a = xku, otherwise P (Lk|a) = 0.

If k is not a leaf node:

Compute P (Li|a), P (Lj|a) for all a at the child nodes i,j.

Set P (Lk|a) =
∑

b,c P (b|a, ti)P (Li|b)P (c|a, tj)P (Lj|c).

• Termination:

The final likelihood of site u = P (Su|T,E) =
∑

a P (L2n−1|a)πa.

2.4.3 Optimizing Parameters

Maximum likelihood estimation (MLE) is a popular statistical method for finding

values of the model parameters that maximize the likelihood of the data. In phy-

logenetic context the model of MLE contains a tree (comprised of its topology and

branch lengths) and a model of sequence evolution, where the data is the sequence

alignment. The problem of finding the maximum likelihood phylogeny is thus a

multidimensional optimization problem consisting of continuous and discrete opti-

mization (Bryant D., 2005). In the course of searching for the optimal tree with

respect to the likelihood score, the following optimizations are required:
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1. Optimization of the parameters of the substitution model, including the rel-

ative rate parameters and sometimes the transition/transversion rate ratio,

depending on the models (continuous optimization).

2. Optimization of the branch lengths of the tree (continuous optimization).

3. A search over all possible tree topologies (discrete optimization).

Each optimization step is usually done independently, while the other parameters

are fixed. For optimizing model parameters, one can use different standard numerical

optimization techniques, which simultaneously update all parameters. Methods like

BFGS’s method (Broyden Fletcher Goldfarb Shanno) (Gill et al., 1981) and Brent’s

method (Brent, 2002) are the most commonly used. Optimization of the branch

lengths can typically be done by an iterative approach, in which each branch is

optimized separately by Newton’s (Press et al., 2007) or Brent’s method. For a

given tree, one could apply multidimensional optimization for both substitution

parameters and branch lengths using Newton’s method. However, this approach is

difficult to implement and the computation can be quite slow (Swofford et al., 1996).

For large phylogenies, an algorithm propose by Yang (2000) can be used to op-

timize substitution models. The algorithm consists of two phases. In the first phase

BFGS algorithm is used to estimate substitution parameters simultaneously. In the

second phase branch lengths are optimized one after another, while substitution

parameters are fixed. The procedure continues until a global convergence of all

parameters is achieved.

The biggest challenge in phylogeny reconstruction is the discrete optimization

because it deals with the search for the optimal tree in a search space that grows

exponentially with the number of sequences. In the next chapter we will discuss the

metaheuristic Iterated Local Search which is used as the search framework for our

tree search algorithm presented in chapter 4.



Chapter 3

Iterated Local Search

In this chapter, we introduce the theoretical background and methodology of the

metaheuristic Iterated Local Search (ILS) (Lourenco et al., 2003). The underlying

principles and different components of ILS will be discussed in detail. These are the

foundations for our tree search framework described in chapter 4.

3.1 Overview

Nowadays, extremely hard computational problems exist virtually in all fields of

modern science, ranging from molecular biology to physics and operations research.

Most of the problems are combinatorial optimization problems, in which the number

of possible solutions grows exponentially with the problem size. Solving large in-

stances of such problems using straightforward exhaustive search strategies is compu-

tationally impractical. Heuristic search techniques are therefore developed to speed

up the process of finding feasible solutions, while maintaining reasonable accuracy.

Optimality, however, is never guaranteed. The majority of heuristic techniques are

often based on problem-specific knowledge. As a result, they tend to be ad-hoc and

specialized. Thus, such heuristics are hardly transferred to other problems.

Metaheuristics, on the other hand, are developed as general procedures, in which

the embedded heuristic for a specific problem can be treated as a “black box” routine.

As a result, metaheuristics are applicable to a wide range of problems. ILS is a

metaheuristic that belongs to the class of global optimization algorithm. The aim of

20
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global optimization is to search for globally optimal solutions throughout the whole

search space. The opposite of global optimization is local optimization, where the

locally optimal solution is searched within a constrained region of the search space.

The essence of ILS is the construction of a sequence of locally optimal solutions

by perturbing the current local optimum and subsequently applying local search to

the perturbed solution in an iterative fashion (Battiti et al., 2008). When the local

search is given as a “black box”, ILS acts as the coordinator that guides the local

search through the search space to search for better solutions.

3.2 Architecture of ILS

Here we use the same notations as in (Lourenco et al., 2003). Assuming that a

problem-specific heuristic is given. We call this routine LocalSearch and suppose

that it is deterministic. Let C be the cost function of the combinatorial optimization

problem which we want to minimize. We denote by S the solution space, i.e. the set

of all candidate solutions s. LocalSearch then defines a many to one mapping from

S to the subset S∗ ⊂ S of local optimal solutions s∗. For illustration, one could

imagine each solution s∗ having an “attraction basin”, which contains a collection

of solutions s that are mapped to s∗ by LocalSearch (Figure 3.1).

Figure 3.1: Attraction basins of different local optima (Battiti et al., 2008)

The global optima are located within the set S∗. A naive search strategy for
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finding the global optima could be random restart, in which LocalSearch is applied

to random initial solutions in S repeatedly. However, for large problem instances,

the size of S could be too huge for random restart to be useful. Johnson and

McGeoch (1997) and Schreiber and Martin (1998) indicated that random restart

on large instances produces solutions, whose costs are arbitrarily distributed above

the minimal cost. Therefore, random restart has very low probability of finding

solutions that are near the global optima. To increase the probability of finding the

global optima, we need a biased sampling of S∗ in such a way so as to prefer local

optima with the lowest cost.

In order to have a biased sampling, one need to devise a mechanism of how

the elements in S∗ are accessed. This requires the definition of the neighborhood

structure in S∗. Constructing a neighborhood in S∗ usually demands multiple exe-

cutions of LocalSearch, which is computationally expensive (Lourenco et al., 2003).

It is thus of desire if one could explore S∗ without having to explicitly define the

neighborhood in S∗. In ILS biased sampling of the set S∗ is achieved heuristically

by the construction of a walk from a solution s∗ to a “nearby” one, which works

as follows. Given a current solution s∗, s∗ is perturbed into s′ ∈ S. LocalSearch is

then applied to s′ to obtain a locally optimal solution s∗
′ ∈ S∗. Then, an acceptance

criterion decides whether s∗
′
should be the next element of the walk or not. If not we

step back to s∗ and repeat the procedure (Lourenco et al., 2003). The procedure is

illustrated in Figure 3.2. In this way moving to a neighboring solution only requires

one execution of the perturbation method and LocalSearch.

ILS consists of four core components: ConstructInitialSolution, LocalSearch, Per-

turbation, AcceptanceCriterion. The performance of ILS can be improved by inde-

pendently tuning each component. This modular nature of ILS makes the tuning

of the algorithm easier than in other less modular metaheuristics (e.g. Genetic

Algorithm). The high-level architecture and the general procedure of ILS can be

summarized in Algorithm 1. In the following, we will discuss the different aspects

of these components.
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cost

solution space S

s*

s*’

s’

Figure 3.2: Illustration of Iterated Local Search (Lourenco et al., 2003).

Algorithm 1: Pseudocode for Iterated Local Search (Lourenco et al., 2003).

Input: ProblemInstance

Output: s∗

s0 ← ConstructInitialSolution();

s∗ ← LocalSearch(s0);

while ¬ StopCondition() do

s′ ← Perturbation(s∗, SearchHistory);

s∗
′ ← LocalSearch(s′);

s∗ ← AcceptanceCriterion(s∗, s∗
′
, SearchHistory)

end

return s∗;
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3.3 Tuning ILS

3.3.1 Initial solution

Initial solutions can be generated randomly or by a greedy algorithm. Having a

good initial solution is important if one wants to reach high-quality solutions as fast

as possible. In comparison with random starting solutions, using greedy algorithm

often leads to better results much faster when combined with the local search. Hence,

the construction method for the initial solution is usually based on greedy strategies.

3.3.2 Perturbation

Perturbation is the main ingredient of the biased sampling mechanism of ILS. In

order to have an effective biased sampling where local optima of good quality have

high chance of being selected, the perturbation needs to be neither too strong or too

weak. If the perturbation is too weak, the local search will likely bring s′ back to

s∗. If the perturbation is too strong ILS will behave like a random restart algorithm

(Lourenco et al., 2003).

The strength of a perturbation is defined as the number of modified solution com-

ponents. For example, in the Traveling Salesman Problem the number of edges that

are modified by the perturbation represents the perturbation strength. Depending

on the problem, an appropriate perturbation strength can either be fixed or based

on the instant size. Moreover, a more advanced approach to choosing perturbation

strength called adaptive perturbation can also be applied (Lourenco et al., 2003). In

adaptive perturbation the perturbation strength is adapted during the execution of

ILS. For example, when the search seems to get stuck, we increase the perturba-

tion strength and continue until a new better solution is found. The perturbation

strength is then set back to the initial value.

Generally, the perturbation should be defined in a way so that the local search is

unlikely to undo it. To achieve this, apart from avoiding perturbation whose strength

is too weak, it is also important not to use the same neighborhood structure as that

of the local search. The perturbation can also make use of the characteristics of

the problem to produce perturbed solutions of good quality, based on which better
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results can be obtained by the local search.

3.3.3 Acceptance criterion

In ILS a random walk within S∗ is performed. The walk is guided by the local search

and the perturbation method, which creates a move between the current solution

s∗ to a neighboring solution s∗
′
. Upon reaching a new solution s∗

′
, the acceptance

criterion is used to decide whether the walk should continue with s∗
′

or not. If s∗
′

is not accepted, we return to the previously visited solution s∗. The acceptance

criterion is based on the quality of s∗
′
, with respect to the quality of s∗. If the

search only accepts better solutions then its behavior is referred to as intensification

(Equation 3.1).

AcceptanceCriterion(s∗, s∗
′
) =

s
∗′ if C(s∗′) < C(s∗)

s∗ otherwise.

(3.1)

Intensification means that the search focuses intently on the region where the

current best solution are previously found. The opposite of intensification is diver-

sification, in which new solutions are always accepted regardless of their qualities

(Equation 3.2). This means better solutions are searched in different regions of the

search space.

AcceptanceCriterion(s∗, s∗
′
) = s∗

′
(3.2)

In some problems it was shown beneficial to have strategies that balance out

the effects of intensification and diversification. For example, Martin et al. (1992)

implemented a simulated annealing (Kirkpatrick, 1984) type acceptance criterion,

where s∗
′

is always accepted if it is better than s∗. If s∗
′

is worse than s∗, s∗
′

is

accepted with probability e(C(s
∗)−C(s∗′ ))/T , where T is the temperature parameter

which decreases toward the end of the run as in simulated annealing.

3.3.4 Local Search

So far the local search has only been mentioned as a black box routine. Although

ILS could work well without the knowledge of the local search, having access to the
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internal mechanism of the local search can bring a lot of improvement. The choice

of the local search algorithm has a great impact on the overall performance of ILS.

For a given combinatorial optimization problem, a number of different local search

algorithms are usually available. With respect to the quality of the solutions, it

is usually true that the better the local search, the better the corresponding ILS

(Johnson and McGeoch, 1997; Stuetzle and Hoos, 1999). However, such local search

often requires more computing time. Hence, while choosing an embedded heuristic,

one should take into account the trade-off between the quality of solutions against

the computing time.

Although the search history is not mandatory for ILS, its usage can greatly

improve the efficiency of the search. Stuetzle (1999) showed that incorporating

search history enhances performance. In chapter 5 we will describe our heuristic

search which employs the search history to increase search efficiency.



Chapter 4

Searching For The Optimal

Phylogeny

Having described the fundamental concepts of phylogenetic inference and the core

techniques in ILS, we are now ready to employ ILS in the context of phylogenetic

inference. In this chapter we present our general tree search framework based on

ILS. Each component of the framework will be subsequently described in detail.

4.1 General Framework

Our ILS-based tree search framework is depicted in Figure 4.1. This framework was

originally proposed by (Vinh and von Haeseler, 2004), albeit not explicitly mentioned

as an ILS approach. First, an initial tree is generated. Then the parameters of the

substitution model and the branch lengths of the initial tree are optimized. Nearest

Neighbor Interchange (NNI) is the tree rearrangement technique used in the local

search to move between neighboring solutions. We refer to the local search as NNI

search. The Important Quartet Puzzling (IQP) (Vinh and von Haeseler, 2004)

method is used to perturb the tree obtained from the NNI search. Subsequently,

the NNI search is applied to the perturbed tree to generate a new tree. For the

acceptance criterion the intensification strategy is used. If the likelihood of the new

tree is better than that of the current best tree, the new tree is selected as the new

current best tree. As in the ILS framework, this procedure iterates until the stop

27
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condition is met. We refer to each of this iteration as IQ-Tree iteration (Figure

4.1). The stop condition is either a predefined number of iterations or a statistical

stopping rule that predicts the remaining number of iterations needed for the search,

based on how often a new better tree is found (Vinh and von Haeseler, 2004).

Optimize Model 
Parameters

NNI Search

IQP

NNI Search

L(T1*) > L(Tbest) 

Tbest ß T1* 

Yes

NO

Stop Condition ?

NO

Output Tbest
YES

T0 

Tbest 

T1

T1* 

IQ-Tree Iteration

Figure 4.1: The Tree Search Framework
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4.2 Initial Tree

As discussed in section 3.3.1, the starting tree can be either randomly generated or

built by a greedy algorithm whereas greedy algorithm is usually preferred. Here, for

the generation of an initial tree, we use the greedy algorithm BIONJ (Gascuel, 1997),

which is an improved version of the neighbor-joining (NJ) algorithm (Saitou and Nei,

1987). By using this approach a good starting tree can be rapidly constructed.

After the initial tree has been generated, the likelihood of the tree is computed

and subsequently the model parameters are optimized. For the optimization of the

parameters of the substitution model, we use BFGS’s method proposed in (Minh,

2005). The branch lengths of the tree are optimized by Newton’s method (see

2.4.3). Each branch length is optimized separately, while the others are fixed. This

procedure is carried out repeatedly until no improvement of the tree likelihood is

observed. During the tree search procedure, the substitution model parameters are

fixed and only branch lengths are updated.

4.3 Local Search

In phylogeny search, in order to move from one tree topology to another in the neigh-

borhood, three common tree rearrangement techniques are usually used (Felsenstein,

2004):

• Nearest Neighbor Interchange (NNI): Two NNI operations are possible for

every branch of the tree (see Section 4.3.1).

• Subtree pruning and regrafting (SPR): A subtree is pruned from the tree and

then redrafted to a different location on the tree.

• Tree Bisection and Reconnection (TBR): The tree is bisected along a branch,

generating two disjoint subtrees. The subtrees are then reconnected by creat-

ing an addition branch connecting the two subtrees.

The neighborhood sizes correspond to the three aforementioned tree rearrange-

ment techniques are: O(n) (NNI), O(n2) (SPR), O(n3) (TBR), where n is the
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number of leaves (sequences) in the tree (Felsenstein, 2004). The larger the size of

the neighborhood is, the longer it takes to evaluate all neighboring solutions. Since

the effectiveness of ILS attributes to the rapid sampling of the set of local optima,

it is essential for the local search to be fast. Therefore, we chose NNI as our tree

rearrangement technique because it has the smallest neighborhood size. In section

4.3.3, we will present different steps involved in our NNI search.

4.3.1 Nearest Neighbor Interchange

In Figure 4.2, the tree T1 on the left-hand side has four subtrees W,X, Y and Z.

With respect to the internal branch (a, b), the two possible NNI operations are:

swapping X with Y and swapping X with Z (due to symmetry, swapping W with

Z or W with Y will result in the same tree as swapping X with Y or X with Z,

respectively). T2 and T3 are the resulting NNI-trees of the two NNI operations. For

a tree with n leaves, there are n − 3 internal branches, thus the total number of

NNI-trees is 2n− 6.

4.3.2 Branch Length Optimization

Branch length optimization is an essential part of maximum likelihood phylogeny

reconstruction because a phylogeny is not only defined by the tree topology but

also its branch lengths. Here we present the computation needed to determine the

optimal length of a branch. This involves the likelihood computation of the tree.

Let us now consider the optimization of the branch length ta,b, where a and b

are the two nodes of the branch. We denote by La(xa) the partial likelihood of

the subtree with root a, whose character at the site is xa. The a priori probability

of character xa is denoted as πxa . Pxaxb(ta,b) is the probability for character xa to

become xb in time ta,b. The tree likelihood at site i is computed as follows (Yang,

2000):

Li =
∑

xa∈{A,C,G,T}

∑
xb∈{A,C,G,T}

πxaPxaxb(ta,b)La(xa)Lb(xb). (4.1)

Here the computation is described for DNA only, but it can also be used with

proteins by changing the character set. The likelihood of the whole tree is equal to
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Figure 4.2: NNI operations.

the product of the site likelihoods:

Ltree =
∏
i

Li. (4.2)

The optimal value of ta,b is the one that maximizes Ltree, according to Equation 4.2.

To optimize ta,b, we use Newton’s method for one parameter function.

4.3.3 NNI Search

A common strategy to search for the local optimal tree by NNI is to first evaluate

all 2n− 6 NNI-trees. Then, for each NNI-tree all the branch lengths are optimized
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to obtain the optimal tree likelihood. NNI-tree with the highest likelihood will be

chosen as the tree for the next move in the local search. This procedure is repeated

until the local optimum is found.

The aforementioned strategy requires the optimization of all the branch lengths

of every NNI-tree to determine the best one. This is a computationally intensive

process and thus is very slow. Guindon and Gascuel (2003) introduced an efficient

heuristic using NNI that is able to find the local optimal tree in short time. The

essentials of the heuristic lie in the way it handles branch length optimization and

the application of NNIs. The heuristic is used in our NNI search algorithm. In the

following, we will present details of the heuristic.

Evaluating NNI-trees

To compare the likelihoods of the two NNI-trees with that of the current tree,

instead of optimizing all the branch lengths of each tree, only the length of the

internal branch corresponding to the NNI is optimized. Let LT1 be the likelihood of

the current tree T1 after the optimal length l1 of branch (a, b) has been determined.

Similarly, LT2 and LT3 are the likelihoods of the two NNI-trees T2 and T3 after

computing the optimal lengths l2, l3 (Figure 4.2). If LT2 is larger than LT1 and LT3 ,

then tree T2 is better than the two other trees. In this case, we call the corresponding

NNI operation from T1 to T2 a positive NNI and define a score δ = LT2 − LT1 for

the positive NNI.

Note that the pruning algorithm, which we use to compute the tree likelihood, is a

dynamic programing method. Here, the partial likelihood of a subtree is stored at the

root node of that subtree. If the topology of the subtree does not change, its partial

likelihood needs not to be recomputed. The precomputed partial likelihoods of the

subtrees W , X, Y and Z can therefore be reused for the likelihood computation of

the NNI-trees. Thus, computing LT2 and LT3 requires essentially the same time as

computing LT1 . Such possibility for fast evaluation of solutions in the neighborhood

is very important, otherwise doing a local search would be very computationally

expensive.
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Performing NNI Operations

Likelihoods of the NNI-trees are first independently computed by optimizing the

corresponding branch lengths as described above. Then, the positive NNIs are

determined. Subsequently, an appropriate portion of the positive NNIs are simul-

taneously applied to the tree. Here, by performing many NNIs at the same time

instead of one by one, the NNI search can quickly find the local optimum.

The Whole Procedure

Our NNI search procedure consists of the following steps:

1. Evaluate the likelihood of 2n − 6 NNI-trees of the current tree to identify

positive NNIs.

2. When two NNIs correspond to two adjacent branches, they can have one sub-

tree in common. In Figure 4.2, the branches (a, b) and (b, c) of tree T1 are

adjacent and the corresponding NNIs have Z as the subtree in common. If

two positive NNIs correspond to two adjacent branches, only NNI with the

highest δ is conserved. Thus, we obtain a list K of positive NNIs that do not

have joint branches affected by the NNI operations. Elements in K are ranked

according to their score δ.

3. We then simultaneously apply a proportion λ of the NNIs in K to the current

tree, starting from the higher value of δ.

4. Having λ = 1 means all the NNIs are simultaneously applied, whereas λ = 0

means the current tree is left unchanged. Performing a single positive NNI in-

creases the tree likelihood. However, simultaneously applying several positive

NNIs to the tree will not guarantee to improve the tree likelihood, since edges

are not independent (Guindon and Gascuel, 2003). Fortunately, in majority of

the cases, the tree likelihood increases when “most” of the NNIs are applied.

Like in (Guindon and Gascuel, 2003), we choose 0.75 as the initial value of

λ. In case the tree likelihood decreases, we “roll back” the tree to its original

state and reapply a new proportion λ/2 of the NNIs in K. This procedure is



4.4. Perturbation Method 34

repeated until the tree likelihood increases. If λ becomes too small so that the

corresponding proportion in K is smaller than 1, then only the best NNI in K

is performed and the tree likelihood is guaranteed to be increased.

5. Optimize all the branch lengths of the new tree. Here, our approach for branch

length optimization differs from that originally described in (Guindon and Gas-

cuel, 2003). In the paper, branch lengths of the new tree are optimized using a

heuristic approach to reduce computational time (the reader are referred to the

paper for more details). Since we did not notice any performance advantage

of this approach, we decided not to use it.

6. Go back to step 1. This is repeated until no positive NNIs can be found.

Steps 1-6 constitute a so-called “NNI round” (Figure 4.3).

4.4 Perturbation Method

For the perturbation step we use the Important Quartet Puzzling (IQP) algorithm

proposed by (Vinh and von Haeseler, 2004), which is an extension of the Quartet

Puzzling method (Strimmer and von Haeseler, 1996). The tree is perturbed by

randomly removing a proportion of the leaves and then re-inserting them in a random

order back into the tree, using IQP. In the following we will briefly describe the basic

concepts of the two algorithms. For the extensive descriptions we refer the reader

to the two aforementioned papers.

4.4.1 The Quartet Concept

A quartet is defined as a tree with four taxa. For a group of four sequence A, B,

C and X, there are three possible quartets (Figure 4.4). The quartet tree concept

serves as the building block for the Quartet Puzzling (QP) algorithm.

4.4.2 Quartet Puzzling

Quartet Puzzling is a greedy algorithm for reconstructing phylogenetic tree by max-

imum likelihood. In comparison to other heuristic search strategies which optimize
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Figure 4.3: Flowchart diagram of the local search.
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Figure 4.4: Three possible quartets for a group of four sequence A, B, C and X.

an objective function, QP required lower computational efforts. The method first

evaluates all
(
n
4

)
quartet trees (n the number of sequences) by their likelihood values

to determine the ML quartet tree for any set of four sequences. It then carries out
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a so-called puzzling step with the aim of combining the quartet trees to a full tree

with n sequences. In the puzzling step, sequences are added sequentially in random

order to an existing subtree. With regards to the ML quartet trees, the position

of a new sequence is determined by a voting procedure. An intermediate tree of

k < n sequences is produced at each puzzling step. The puzzling step is repeated

several times and the quartet puzzling tree is obtained by a majority-rule consensus

(Margush and McMorris, 1981) of all intermediate trees.

4.4.3 Important Quartet Puzzling

Important Quartet (IQ) is an extended definition of the quartet concept. An IQ

also contains four leaves A, B, C and X, where A,B and C are chosen so that they

are “closely related” to each other in the current tree and X is the new sequence

to be inserted into the tree. The “closely related” concept can be defined by the

introduction of the so-called k-representative leaves. A set of k-representative leaves

of a binary rooted tree T is a collection of at most k 1 leaves that has smallest

distances from the root, where the distance is simply defined as the number of

branches connecting the two respective nodes (Vinh and von Haeseler, 2004).

Consider an unrooted tree T . The tree can then be rooted at an arbitrary internal

node r. The virtual root r then splits T into three rooted disjoint subtrees T1, T2,

and T3 (Figure 4.4.3). The sets of the k-representative leaves can be computed for

each of these subtrees. The nodes A, B and C of an important quartet can be taken

from each of the computed k-representative leaf sets. To put a new sequence X into

tree T , the important quartets are determined for all internal nodes of T . Then for

each important quartet (A,B,C,X), the optimal tree topology is computed using a

fast tree reconstruction method (e.g. Neighbor Joining). From here, the position of

the new sequence X can be determined using the same procedure as in the Puzzling

step of the Quartet Puzzling method.

1In practice, the value chosen for k is much more smaller than the number of sequences, usually

4 or 5.
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Figure 4.5: Tree can be split by a virtual root into three rooted subtree T1, T2 and

T3. Nodes A, B, and C are picked up from the k-representative leaf set of T1, T2

and T3 respectively.

4.4.4 Perturbation With IQP

To perturb the local optimal tree obtained from the NNI search, we first delete each

leaf of the tree with probability pdel (0 < pdel < 1). Then the deleted leaves are

reinserted back into the tree using the IQP algorithm. The advantages of using

IQP as our perturbation method are twofold. First, by perturbing the tree in a

constructive way, the quality of the new tree is higher than those produced by

simple randomization. Second, the mechanism IQP uses to create a new perturbed

tree is substantially different than that used in the NNI search. This means their

neighborhood structures are different from each other and the NNI search will thus

unlikely undo the perturbation.

The perturbation strength is regulated by the parameter pdel. As in (Vinh and

von Haeseler, 2004), we adjust pdel according to the size of the input alignment. Let

n be the number of sequences contained in the input alignment. pdel is then defined

as follows:
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pdel =


0.5 if n ≤ 50

0.3 if 50 < n ≤ 200

0.1 if 200 < n

(4.3)



Chapter 5

Optimizing The Search

Chapter 4 presents the basis of our ILS based search strategy for finding the optimal

phylogenetic tree. In this chapter we will introduce two extensions to our tree

search algorithm. In the first extension, we employ search history to help the NNI

search avoid non-promising regions, i.e. regions with little chance of encountering

better trees (section 5.1). The second extension deals with the vectorization of the

computational routines for the calculation of the tree likelihood (section 5.2). Both

of these extensions are aimed at speeding up the overall runtime performance of the

search.

5.1 Adaptive NNI Search

In our preliminary runs of the IQ-Tree algorithm with several hundred iterations, we

observed the following behavior. In the first iterations, the number of times IQ-Tree

discovers better trees is very high. Whereas, in the remaining iterations, it takes a

significant number of iterations until a better tree is found. This behavior can be

explained by the fact that in the late phase, the size of the attraction basins of the

local optima (see section 3.2), which are better than the current best one, is getting

smaller. Therefore, the probability for the search to reach those attraction basins

also becomes lower. This led to our idea of improving the performance of the search

by avoiding the basins of attraction of low quality local optima. In this section

we will describe our heuristic approach to achieve that idea. From now on, we

39
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want to make clear that when we talk about iteration we refer to IQ-Tree iteration,

which contains multiple NNI rounds (see chapter 4). The reader is reminded of the

distinction between the two terms: iteration and NNI round.

To infer the phylogenetic tree from an input alignment, assume that q IQ-Tree

iterations are carried out. We denote by ni the number of NNIs performed in

iteration i and by Li the log-likelihood of the final tree obtained at the end of the

iteration, for i = 1 . . . q. The log-likelihood of the current best tree after i iterations

is then defined as

Lbesti = max{L1, L2 . . . , Li} (5.1)

Each iteration i will start with the current best tree, whose log-likelihood is Lbesti−1 .

The tree is then perturbed by IQP, resulting in a tree with log-likelihood Li,0. This

tree is gradually improved by the application of NNIs.

Figure 5.1 is a plot showing the change in the log-likelihood of the tree with

respect to the number of NNIs in different iterations of the same run. The log-

likelihood change in each iteration is represented by a colored curve. As seen from

the plot, each curve starts with the current best log-likelihood Lbesti then drops to the

log-likelihood Li,0 by the affect of IQP. Subsequently, the curve goes up gradually

when the tree is improved by NNIs. The curve ends at the locally optimal log-

likelihood Li. The number of NNIs and the log-likelihoods of the tree are shown

in the horizontal and vertical axis, respectively. From the plot we deduced two

important features observed within each iteration:

1. The log-likelihood improvement is more or less linear with the number of NNIs.

2. When the log-likelihood Li,0 of the perturbed tree is very low, compared to

the current best log-likelihood Lbesti , it is unlikely that the log-likelihood Li of

the locally optimal tree is better than Lbesti . The green curve at the bottom of

the plot is such an example.

Based on this observations, we devised a heuristic called adaptive NNI search

that predicts in every iteration i, after the IQP step, whether the NNI search would

lead to a final tree with log-likelihood Li > Lbesti . If Li ≤ Lbesti , according to the
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Figure 5.1: Improvements made by NNIs for several iterations.

prediction, the NNI search is skipped and thus saving valuable computation time

needed for the execution of the NNI search. Details of the heuristic will be discussed

in the following.

Assume that in iteration i, there are k NNI rounds. Let Li,j be the log-likelihood

of the intermediate tree obtained at the end of NNI round j, where 1 < j < k and

Li,0 < Li,1 < · · · < Li,k. The number of NNIs performed in NNI round j is denoted

by mi,j (
∑k

j=1mi,j = ni). The average log-likelihood improvement made per NNI

δij in NNI round j is calculated using

δij =
Lij − Li,j−1

mi,j

(5.2)

We now study the distribution of ni and δij for a complete run of the IQ-Tree

algorithm with 436 iterations.

Figure 5.2 and Figure 5.3 show the distribution of ni and δij. From the distri-
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Figure 5.2: Histogram of ni.

butions we observed that

• ni and δij have maximal frequencies at the values 10 and 11, respectively.

• For ni > 10 and δij > 11: the higher the value, the lower its frequency.

We calculate the critical values nPi and δPij of the two distributions as a function

of P (1 < P < 99). Having P = 95 means that 95% of the time the values of ni

and δij are below nPi and δPij , respectively. LPi is then defined as the log-likelihood

that is greater than Li P% of the time. For each NNI round k of iteration i, LPi is

computed as follows.

LPi = Li,k−1 + (nPi −
k−1∑
j=1

mi,j)× δPi,j (5.3)

Our adaptive NNI search now contains the following steps:
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Figure 5.3: Histogram of δij.

1. The first 100 iterations are performed as described in section 4.1. In addition,

we keep track of ni and δij in each iteration.

2. After the first 100 iterations, we create the empirical distributions of ni and

δij. The distributions are kept updated by adding new values of ni and δij in

the remaining iterations.

3. At the beginning of each NNI round k of iteration i (i > 100), we compute LPi

according to Equation 5.3 where nPi and δPi are computed from the empirical

distributions (P is a predefined confidence level).

4. We abort the NNI search in iteration i and continue with iteration i + 1 if

LPi ≤ Lbesti .

From an ILS perspective, here the search history (the statistics of ni and δij) is
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incorporated into the process of searching for the optimal tree. This helps the search

avoids regions, where better local optima can unlikely be found. The numerical

results will be presented in section 5.3.

5.2 Parallelization Of The Likelihood Computa-

tion

In the previous section we have described a heuristic technique to speed up the search

by avoiding search regions that will not lead to better trees. Parallelization is an-

other approach to reduce computation time and is commonly used when algorithmic

improvements have reached their limits. According to our profiling benchmark, the

computation of the tree likelihood consumes almost 90% of the running time. Hence,

we focus our attempts on parallelizing the likelihood function. In this section, we

will present the application of parallelization to the computation of the likelihood.

The specific technique we use for parallelization is termed vectorization.

5.2.1 Vectorization

In parallel computing vectorization belongs to the class of data level parallelism, in

which software programs that only perform one operation on a single data (scalar

implementation) are modified to perform the same operation on multiple data simul-

taneously (vector implementation). This is achieved by utilizing the vector instruc-

tions of the Central Processor Unit (CPU) (Hillis and Steele, 1986). The instruction

set for vectorization is commonly referred to as SIMD (Single instruction, multiple

data) instruction set (Flynn, 1972). The SIMD implementation of the conventional

CPUs produced by Intel and AMD is called SSE (Streaming SIMD Extensions)

The main advantage of SIMD is that when mathematical calculations on large

set of a data points are needed, SIMD instructions can perform these operations

much faster than non-SIMD instruction. Figure 5.4 shows an example of SIMD

operation applied to the addition of two vectors of size four. Only one SIMD addition

instruction is needed for the computation, whereas it requires four normal addition
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Figure 5.4: Scalar vs. vector implementation.

instruction in a scalar format. The number of data elements that can be processed

in parallel depends on the size of the elements and the processing capacity of the

processor. In conventional desktop computers SIMD instructions can simultaneously

do computations on four single precision numbers or two double precision numbers.

However, there are challenges with the application of SIMD technology. Al-

though auto-vectorization is an active area in compiler research, the most advanced

compilers are only capable of vectorizing simple algorithms. Thus, implementing

an algorithm with SIMD usually requires a lot of efforts involving low-level pro-

gramming. Moreover, SIMD instructions are architecture and application specific.

Re-implementation is therefore usually required if one wants to extend the applica-

tion.

SIMD technology are widely used in the fields of multimedia processing, com-

puter graphic and scientific computing. With the rise of general-purpose comput-

ing on graphics processing units (GPGPU), application of SIMD is becoming more

and more popular. The typical application for SIMD instructions is linear algebra.

Nowadays, numerous SIMD-optimized linear algebra software libraries are available,

such as Mathlab (Matrix Laboratory from Mathworks), Intel’s MKL (Intel’s Math

Kernel Library) and ACML (AMD Core Math Library).
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5.2.2 Vectorizing The Likelihood Computation

Having considered all the challenges concerning the application of the SIMD tech-

nology, we concluded that using an existing linear algebra library would be the best

choice for vectorizing our likelihood function. First, it relieves us from the com-

plication of implementing the algorithm in the low-level SIMD instructions, which

can leads to worse performance if it is not done appropriately. Seconds, using a

linear algebra library will make the code portable since changes and differences in

computer architectures are taken care of by the developers of library.

However, in order to apply such library in our program, we need to do the

likelihood computation by means of matrix calculations. By doing this, the code

can also be exposed to a more advanced parallelization technology like GPGPU. In

the following we present the transformation of the likelihood computation formula

into that of the corresponding matrix operations.

For convenient reading, we rewrite the formula (Equation 4.1) for computing the

tree likelihood at site i, given an internal branch (a, b) .

Li =
∑

xa∈{A,C,G,T}

∑
xb∈{A,C,G,T}

πxaPxaxb(ta,b)La(xa)Lb(xb). (5.4)

For each node a containing character xa at the current site, the partial likelihood

La(xa) can be stored as element of vector La. The size of La is equal to the number

of possible characters represented by xa. For example, if we use DNA data then the

size of La is 4. For protein data La will have size of 20.

The value of the product πxaPxaxb(tab) is the element of the transition matrix P

(see 2.4.1). For DNA, A is a 4× 4 matrix, whereas in case of protein A is a 20× 20

matrix.

Equation 5.4 can therefore be rewritten as follows:

Li = (LbP) · La (5.5)

LbP is the vector-matrix product of vector Lb and matrix P, whereas (LbP) · La is

the dot product of the resulting vector from LbP and vector La.

Equations 5.5 can now be vectorized through the usage of the corresponding

matrix computation routines in a SIMD linear algebra library.
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We chose the linear algebra software library EIGEN (http://eigen.tuxfamily.org)

to vectorize our likelihood computation routines. In contrast to the other three

libraries mentioned above, EIGEN is an open source project whose performance is

at the same level with those of the commercial software.

5.3 Experimental Results

For the purpose of our work we developed a program called IQ-Tree. The program

was implemented based on the source code of the Phylogenetic Diversity Analyzer

(PDA) software written by Minh et al. (2006). The source code was written in the

C++ programming language and is available upon request.

In our analysis, we first compared the accuracy of trees reconstructed by IQ-Tree

with those by IQPNNI on simulation data (section 5.3.1). Then, we used real data

to compare the runtime performance and the log-likelihood of trees produced by the

two programs (section 5.3.2). All analyses were carried out on the same computer

with CPUs of type AMD Opteron Processor 6136.

5.3.1 Simulated Data

Since all phylogeny reconstruction methods are only developed based on assump-

tions about the evolutionary process, the reconstructed trees are not guaranteed

to exactly reflect the evolutionary relationships among the species. However, one

can still measure the accuracy of the methods by using simulated data. This works

as follows. First, a random phylogenetic tree is generated. Then, the evolution of

nucleotide or amino acid sequences is simulated along the tree. The result of this

simulation is a sequence alignment of the contemporary species. Based on this se-

quence alignment a phylogenetic tree is then reconstructed. The accuracy of the

phylogeny reconstruction method is verified by comparing the reconstructed tree

with the original one. There are different metrics to compare a pair of phylogenetic

trees. One of the most widely used metrics is the Robinson-Foulds (RF) distance

(Robinson et al., 1981).

The RF distance between two trees is computed as the number of partitions
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Figure 5.5: Comparison of two phylogenetic trees.

that are contained in one tree and not in the other. The smaller the RF dis-

tance is, the more similar the two trees are. Figure 5.5 shows an example of two

simple phylogenetic trees. Tree T1 has two internal branches, which induce two

partitions {A,C|B,D,E} and {A,C,D|B,E}. Similarly, tree T2 also has two par-

titions {A,D|B,C,E} and {A,C,D|B,E}. T1 and T2 share the same partition

{A,C,D|B,E}, whereas {A,C|B,D,E} is only contained in T1 and {A,D|B,C,E}

is only contained in T2. Thus, the RF distance between T1 and T2 is 2 (Felsenstein,

2008).

In the following we will compare the accuracy of phylogenetic trees generated by

IQ-Tree and IQPNNI for DNA and protein data by means of simulated data.

For DNA data, we generated 20 random trees using PDA. Each tree contains

200 leaves. Then we used the program Seq-Gen (Rambaut and Grass, 1997) to

emulate the evolutionary process along each tree, according to the HKY model

(Hasegawa et al., 1985). The sequence length was 1000. The resulting 20 sequence

alignments were used by IQ-Tree and IQPNNI to reconstruct the phylogenetic trees.

Subsequently, the trees obtained from IQ-Tree and IQPNNI were compared to the

original trees by calculating the RF distance between them. For the computation of

RF distance we used the program TREEDIST in the PHYLIP package (Felsenstein,

1993). Finally, we computed the average RF distance of trees reconstructed by each

program and compare those values with each other.

We did similar simulation for protein data, in which 20 random trees were also



5.3. Experimental Results 49

Table 5.1: Comparison of average RF distances by IQ-Tree and IQPNNI.

Data type
Average RF distance

IQ-Tree IQPNNI

DNA 13.7 13.6

Protein 5.0 5.1

generated. Each tree contains 100 leaves with sequence length of 1000 and WAG

(Whelan and Goldman, 2001) was chosen as the model of sequence evolution.

IQ-Tree and IQPNNI were both run with 400 iterations. The P parameter in

IQ-Tree (section 5.1) is set equal 0.95 (the default value). The results are shown in

Table 5.1. As we can see from the table, the average RF distance of trees produced by

IQ-Tree and IQPNNI are quite similar. The differences in the average RF distances

by the two programs are not substantial because of the stochastic nature of the

algorithms. Thus, for simulated data both methods perform equally well.

5.3.2 Real Data

We used four real data (two DNA and two protein sequence alignments - Table 5.2)

to compare the runtime performance and the log-likelihood of the reconstructed

trees. The two DNA alignments were both used by Vinh and von Haeseler (2004)

and Guindon and Gascuel (2003) to demonstrate their algorithms in the respective

papers. The published results are not relevant for our comparison since the current

version of IQPNNI outperforms them by a large margin, both in term of runtime

and tree log-likelihood. The two protein alignments 74AA and 144AA were kindly

provided by Dr.Heiko A.Schmidt and Dr.Ingo Ebersberger, respectively. We used

the HKY model (Hasegawa et al., 1985) for the DNA sequences and the WAG model

(Whelan and Goldman, 2001) for the protein sequences.
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Table 5.2: Data used for runtime analyses.

Type Name Number of Sequence Sequence Length Model

DNA 218DNA 218 4182 HKY

DNA 500DNA 500 1398 HKY

Protein 74AA 74 4013 WAG

Protein 144AA 144 449 WAG

In order to measure the speedup made by each runtime improvement technique

(section 5.1 and section 5.2), we differentiate among three variants of IQ-Tree:

• IQ-Treesse: Only vectorization is enabled and adaptive NNI search is disabled.

• IQ-Treeadapt−nni: Only adaptive NNI search is enabled and vectorization is

disabled.

• IQ-Tree: The default program with adaptive NNI search and vectorization

enabled.

On all data IQ-Tree and its variants were run with 400 iterations. The same

applies for IQPNNI. For each data we ran the programs 10 times and calculated

the average runtime. In addition to the average runtime, we also show the best

log-likelihood scores obtained by IQPNNI and IQ-Tree after the 10 runs on each

data.

Table 5.3: Speedup for vectorization.

Data IQPNNI Runtime IQ-Treesse Runtime Speedup

218DNA 5296.3s 2863.6s 1,85x

500DNA 7323.7s 4161.5s 1,76x

74AA 20158.5s 7585.1s 2,65x

144AA 15309.8s 4237.8s 3.61x

Table 5.3 shows the speedup made by the application of vectorization. Here we

can see the speedup factor for DNA data is about 1.8x. Whereas for protein data
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the speedup factor is substantially higher. This can be explained by the intensive

computation needed when computing the tree likelihood on protein sequences. Such

computation can largely benefit from the vectorization technique.

Table 5.4: Speedup for adaptive NNI search.

Data IQPNNI Runtime IQ-Treeadapt−nni Runtime Speedup

218DNA 5296.3s 3405.5s 1.56x

500DNA 7323.7s 4704.5s 1.56x

74AA 20158.5s 12295.2s 1.64x

144AA 15309.8s 7617.8s 2.0x

The adaptive NNI search also showed significant runtime improvement (Table

5.4), although the speedup factors are a little bit lower than those from the vec-

torization. It should be noted that the adaptive NNI search is only activated after

iteration number 100. This means the larger the number of iteration is, the more

effective the adaptive NNI search will be.

Table 5.5: Speedup and best log-likelihood comparison between IQPNNI and IQ-

Tree

Data
IQPNNI

Runtime / Log-likelihood

IQ-Tree

Runtime / Log-likelihood
Speedup

218DNA 5296.3s / -156574.96 2092.3s / -156557.71 2.53x

500DNA 7323.7s / -100004.94 3183.2s / -99997.94 2.3x

74AA 20158.5s / -184996.1 6041.9s / -184996.1 3.34x

144AA 15309.8s / -24644.20 3570.9s / -24643.55 4.29x

When the two runtime improvement techniques are enabled, depending on the

data IQ-Tree ran from two to four times faster IQPNNI (Table 5.5). For the protein

data the speedup factor is remarkably high (3.34x for 74AA and 4.29x for 144AA).

Interestingly, the best tree log-likelihoods found by IQ-Tree are also higher than
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those found by IQPNNI in three out of four data (218DNA, 500DNA and 144AA).

For the 74AA data, both IQ-Tree and IQPNNI show the same best log-likelihood.

The RF distance computed between the two trees also showed that they are identical.

In order to have an insight into how the tree is improved within the 400 iterations

by both programs, we created plots that illustrate the log-likelihood improvement

with respect to the number of iterations in the run where the best log-likelihood is

found.

0 100 200 300 400−
15

69
00

−
15

68
00

−
15

67
00

−
15

66
00

Iteration Number

Lo
g−

Li
ke

lih
oo

d

IQ−Tree
IQPNNI

Figure 5.6: Tree log-likelihood improvement by iteration in IQ-Tree and IQPNNI

for 218DNA.
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Figure 5.7: Tree log-likelihood improvement by iteration in IQ-Tree and IQPNNI

for 500DNA.
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Figure 5.8: Tree log-likelihood improvement by iteration in IQ-Tree and IQPNNI

for 74AA.
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Figure 5.9: Tree log-likelihood improvement by iteration in IQ-Tree and IQPNNI

for 144AA.

As we can see from the plots (Figure 5.6, 5.7, 5.8, 5.9) , both IQ-Tree and IQPNNI

show similar search behavior during the whole iterations. For data with large number

of sequences (218DNA, 500DNA) the best tree log-likelihoods were only found in

the last iterations in both programs. Whereas, for smaller data (74AA, 144AA) it

takes less number of iterations for the programs to find the best tree log-likelihoods.

Especially for the data 74AA, we would assume that the global optimal tree has

been found.

The plots and the reported runtime show that IQ-Tree works much more effi-

ciently than IQPNNI.



Chapter 6

Conclusions And Future Work

In this work we have presented two essential runtime improvement techniques for

the originally proposed IQPNNI algorithm:

ILS with memory: By presenting IQPNNI algorithm within the framework of

ILS, we were able to identify the possibility of utilizing the search history to

make the algorithm more efficient. In order to devise a good search history, we

investigated the behavior of the search by extracting the likelihood improve-

ments made by NNIs within different iterations of the algorithm. The major

feature discovered by our analyses is that the likelihood improvement is by

and large linear with the number of NNIs. Thus, we proposed a heuristic in

which the likelihood improvement by each NNI and the number of NNIs in

each iteration are recorded. This allows us to obtain empirical distributions

of the two values. The distributions are used to derive the core values for

predicting whether the continuation of the ongoing iteration is worthwhile, i.e.

whether or not it would lead us to a better tree. According to our results, the

heuristic has made the search run about 1.5 times faster.

Vectorization: We noticed that the formula for computing tree likelihood can be

rewritten in form of matrix operations. This led us to the idea of vectorizing

the likelihood calculation to speed it up. We have considered the challenges

concerning the application of the SIMD instructions for vectorization, which to

our knowledge can worsen the performance of the program if not implemented

55
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correctly. Hence, we decided to use the EIGEN linear algebra library for this

purpose. As shown in our results, the implemented vectorization generally

doubles up the computational speed.

Our results showed that IQ-Tree, with the application of the two techniques,

runs two to four times faster than IQPNNI while producing phylogenetic trees of at

least equal quality.

Future work

After having achieved the primary aim of the current work: speeding up the com-

putation time of IQPPNI, we are now open for the task of improving the solution

quality. To this end, we would like to address some further aspects of the ILS

framework in the future work.

One of which is the use of adaptive perturbation (3.3.2). At the moment, as in

IQPNNI, we use a fixed scheme for the perturbation method, in which a proportion

of the leaves are first deleted and then reinserted into the tree by IQP. This propor-

tion is predefined by the number of sequences in the input alignment and is kept

unchanged throughout the search. A drawback of this strategy is that when the

search gets stuck in a local optimum, a weak perturbation is sometimes not enough

to move the search out of it. Hence, an adaptive perturbation would be helpful

in such case. However, one should consider here the trade-off between speed and

solution quality, since increasing the perturbation strength will lead to the increased

computation time in the local search.

The search would probably benefit from the inclusion of a tabu list of deleted

leaves in the perturbation step. This works as follows. Every time a leaf is deleted

from the tree, it is marked as “tabu” (Glover and Laguna, 1998). The more fre-

quently a leaf is marked as “tabu”, the less likely it will be selected for deletion in

the next iteration. In addition, we will also consider the possibility of having a more

“relaxed” acceptance criterion, in which search diversification is also employed.

Last but not least, it is important for us to be selective in choosing the appro-

priate modifications so that they will work in harmony.
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