
A Heuristic Based System for
Generation of Shifts with Breaks

Johannes Gärtner

XIMES Corp.

Vienna, Austria

Nysret Musliu

Technische Universität Wien

Vienna, Austria

Wolfgang Slany

Technische Universität Graz

Graz, Austria

Abstract

In this paper a system for the automatic generation of shifts with breaks
is presented. The problem of generating shifts with breaks appears in
many areas of workforce scheduling, like in airline companies, airports,
call centers etc. and is of high practical relevance. A heuristics algorithm
for solving this problem is described. It is based on greedy assignment
of breaks in shifts and repair steps for finding the best position of breaks
inside of shifts. The commercial product in which the algorithms are
included is used in practice. Computational results for a real life problem
in a large European airport are given.

1 INTRODUCTION

Workforce scheduling is necessary in many industries like , e.g., industrial
plants, hospitals, public transport, airlines companies. The typical process for
planning and scheduling of a workforce in an organization consists of several
stages. The first stage is to determine the temporal requirements for staffing
levels. After these temporal requirements are defined, usually in the next phase
the shifts are constructed. In this phase also the staffing level for each shift is
determined. Then the total number of employees needed is calculated based on
the average number of working hours for a certain period of time, usually one
week.

In Table 1 an example of such temporal requirements is given. In this
example the temporal requirements are given for one week. Based on these
requirements and some constraints about the possible start and length of shifts,
the aim in the shift design problem is to generate legal shifts that meet in the
best way the temporal requirements. Additionally in some situation generation
of breaks for each employee may be required. The detailed description of the
problem we consider in this paper is given in the next section.

The shift design problem we consider in this paper is similar to a problem
which has been addressed in literature as shift scheduling problem. Typically
for this problem it is required to generate shifts and number of employees for
each shift for a single day. The aim is to obtain solutions without under-staffing

1



Table 1: Possible temporal requirements for one week

Time interval/day Mon Tue Wed Thu Fri Sat Sun
07:00-11:00 5 5 5 5 5 1 1
11:00-14:30 10 10 10 10 10 4 4
14:30-20:30 12 12 12 12 12 4 4
20:30-06:00 14 14 14 14 14 4 4

and to minimize number of employees. The shift scheduling problem has been
addressed mainly by using Integer Programming (IP). Dantzig [3] developed the
original set-covering formulation. In this formulation for each feasible shift ex-
ist one variable. Feasible shifts are enumerated based on possible start, length,
breaks and time windows for breaks. When the number of shifts increases
rapidly this formulation is not practical. Bechtold and Jacobs [2] proposed a
new integer programming formulation. In their formulation, the modelling of
break placements is done implicitly. Authors reported superior results with
their model compared to the set covering model. Their approach however is
limited to scheduling problems of less than 24 hours per day. Thompson [7] in-
troduced a fully implicit formulation of shift scheduling problem. A comparison
of different modelling approaches is given in by Aykin [1].

Note that the problem of shift design we consider in this paper differs in
several aspects from the problem of shift scheduling addressed in these papers.
First, we consider generation of shifts for a week. We consider also minimizing
of number of shifts and in our problem under-staffing may be allowed to some
degree. For solving this problem the local search techniques based in tabu
search were proposed and implemented ([6]). Further improvement of these
algorithms is presented in [5]. The local search algorithms have been included
in the commercial product called Operating Hours Assistant(OPA).

In this paper we describe extension of this system considering generation
of shifts together with breaks for each employee. Generation of breaks makes
the problem of generation of shifts much more complex, correspondingly the
automatic generation of shifts with breaks is a very important issue for sched-
ulers as good solutions can reduce significantly the costs of organizations. In
Section 4 we apply the system to a real problem of a large airport in Europe.
Note that experienced professional planners can construct solutions for prac-
tical problems by hand. However, the time they need is sometimes very long
(one hour to several days for very large instances), and, because of the large
number of possible solutions, the human planners can never be sure how strong
their solution differs from the best one. Therefore, the aim of automating the
generation of shifts with breaks is to make possible the generation of good so-
lutions in a short time, thereby reducing costs and finding better solutions for
problems that appear in practice.



2 PROBLEM DESCRIPTION

First we describe problem of generation of shifts without breaks as consid-
ered in [6]. Then the extension of this problem by including breaks is presented.

Instance:

• n consecutive time intervals [a1, a2), [a2, a3), . . . [an, an+1),
all with the same length slotlength in minutes. Each interval
[ai, ai+1) has an adjoined numbers wi indicating the optimal
number of employees that should be present during that in-
terval. Time point a1 represents the begin of the planning
period and time point an represents the end of the planning
period. The format of time points is: day:hour:minute. For
simplicity the temporal requirements are usually represented
using longer time intervals. See one possible representation of
temporal requirements for one week in Table 1.

• y shift types v1, . . . , vy. Each shift type vj has the following
adjoined parameters: vj .min-start, vj .max-start which repre-
sent the earliest and latest start of the shift and vj .min-length,
vj .max-length which represent the minimum and maximum
lengths of the shift. In Table 2 an example of shift types is
given.

• An upper limit for the average number of working shifts per
week per employee.

Table 2: Possible constraints for shift types in the shift design problem

Shift type Earliest begin Latest begin Shortest length Longest length
M 05:00 08:00 07:00 09:00
D 09:00 11:00 07:00 09:00
A 13:00 15:00 07:00 09:00
N 21:00 23:00 07:00 09:00

Problem:

Generate a set of k shifts s1, . . . , sk. Each shift sl has adjoined
parameters sl.start and sl.length and must belong to one of the
shift types. Additionally, each real shift sp has adjoined parameters
sp.wi, ∀i ∈ {1, . . . , C} (C represents number of days in the planning
period) indicating the number of employees in shift sp during the
day i. The aim is to minimize the four components given below:

• Sum of the excesses of workers in each time interval during the
planning period.



• Sum of the shortages of workers in each time interval during
the planning period.

• Number of shifts k.

• Distance of the average number of duties per week in case it is
above a certain threshold.

For the extended problem which includes also the generation of breaks, it
is necessary to generate a predetermined number of breaks for each employee.
In this case for each shift type the possible break types should be defined
by the decision maker. The break type determines feasible time windows of
breaks inside of the shift. In the system described in this paper we consider
break types with following features: minimal length of break, maximal length of
break, minimal and maximal distance of start of break from the shift begin, and
minimal distance of end of break from the end of the shift. One or more breaks
may be required to be generated for each shift and employee. The objective of
the problem remains as described previously.

This is a multi criteria optimization problem. The criteria have different
importance depending on the situation. We use for this problem the objective
function, which is a scalar function which combines the four weighted criteria.
Note that we consider the design of shifts for a week (less days are also possible)
and assume that the schedule is cyclic (the consecutive element of the last time
slot of the planning period is the first time slot of planning period).

3 APPLICATION DESCRIPTION

Generation of shifts with breaks is one of most important features of the latest
version of Operating Hours Assistant (OPA) (version 2.0). This system is suit-
able for use in different kind of organizations, like call centers, airports, etc. It
facilitates an appropriate planning of working hours, staffing requirements and
generation of optimal shifts which fulfill the legal requirements and also mini-
mize over and under staffing in the organization. Good solution in this stage of
workforce scheduling can reduce significantly the cost of organization and also
are important for later stage in workforce scheduling (generation of workforce
schedules). In this paper we will concentrate on one of main features of OPA
2.0, which is the generation of shifts with breaks. The current version is based
on the previous version which included local search algorithms for generation
of shifts without breaks and also the tools for definition of temporal require-
ments, and constraint about the shifts, as well preferences of user considering
different criteria. For a description of these algorithms see [6, 4]. Then we give
a description of the heuristics for generating breaks.

3.1 Generation of breaks

We consider the generation of breaks as a separated stage from the gener-
ation of shifts. For each shift there should be generated a fixed number of



breaks. However, each employee can have different breaks, i.e., if one shift
has more employees the number of breaks which the shift will contain will be
NumberOfEmployees ∗ NumberOfF ixedBreaksPerShift.

For generation of breaks we rely in the solution produced by the local search
(included in version 1.0 of OPA ([6])). Intuitively one possibility would be to
consider breaks in the phase of generating shifts with the local search tech-
niques. However, this would imply a tremendous increase of neighborhood
solutions that should be generated during each iteration in the local search.
Indeed, if we would have applied only two simple moves in breaks (change
length of break and shifting of break to the left or right), for each shift with n

employee, where each employee should have m breaks, one needs to generate
m×n∗2 neighborhood solution for a particular shift. To avoid so large number
of neighborhood solutions we consider generation of breaks only after the shifts
are generated.

For generation of breaks after generation of shifts we propose a heuristic
method which is based in combination of greedy search with the local improve-
ment based technique. The algorithm for the generation of shifts with breaks
consists of the following steps:

1. Generate shifts without breaks

2. Convert solutions to shifts with one employee per day

3. Generate the difference in temporal requirements (difference curve)

4. Assign fixed breaks to shifts based on greedy algorithm

5. Apply repair steps to breaks

6. Create solution with shifts and multiple employees

The first step in solving this problem is a procedure based on the local
search algorithms. This procedure is not a subject of this paper and we de-
scribe it only briefly. This procedure is based on the iterative improvement of
the initial solution based on repair steps. Repair steps were used to explore
the neighborhood of solutions for this problem. In order to generate the neigh-
borhood and accept the solution for the next iteration, basic principles of the
tabu search technique are used. However, while tabu search can find acceptable
solutions for this problem, the complete exploration of the neighborhood (using
all defined moves) in each iteration is very time consuming. To make search
more effective a new approach based on using of knowledge about the problem
in combination with tabu search is used. For a detailed description of these
algorithms see [6].

The solution generated in the first phase contains shifts which can have more
than one employee in more than one day. Next, the solution should be converted
in shifts which can contain maximal one employee assigned to each particular
day. Based on the solution without breaks and given temporal requirements
from the problem the difference in temporal requirements (we call it difference



curve, as in OPA the temporal requirements are presented graphically with
some curve) is found. Next, the greedy algorithm for assigning of breaks to
shifts is applied. The pseudo code of greedy algorithm is presented below:
For each shift in Solution

For i=1 to NumberofBreaksToBeAssigned

FindLegalRegionOfBreak
FindBestPositionOfBreak
DeterminLengthOfBreak

Next

�Next

The legal region of each break is found based on the constraints about the
length and possible begin of a break inside of shift. The best position of each
break is found based on the difference curve. The main idea is to locate the
break with a greedy procedure in the best position in which the weighted sum
of undercover and overcover is minimized. For example, in case there is a region
where the overcover is very high that is a good position for a break as in this
way the over cover is decreased. The length of a break is set in this step to
be as short as possible. The last step in the generation of breaks is to apply
some repair steps to the breaks which are already assigned. The basic repair
steps which are used are enlargement of length of breaks and changing the
break position to the left or right (within the legal region of a break). After
fixing positions of breaks inside of the shifts, the solution with shifts which have
multiple employees is created, by joining the duties of shifts which have the same
starting time and length. The shift which is created by joining several shifts
will contain also all breaks of joined shifts. Representing a solution in this form
eases the construction of workforce schedules (assigning of shifts to particular
employee), which is usually the next phase in the workforce scheduling process.

Note that the step of generating breaks does not have any impact on the
number of shifts which were generated in the first phase. Considering un-
dercover and overcover, in case there exist some overcover the quality of the
solution can be increased during the generation of breaks.

4 APPLICATION USE

In this section we illustrate use of the system with the problem which appeared
in one of largest airport in Europe. Although the extension of system for
generation of shifts with breaks has been only recently implemented, the system
has been already successfully used to solve some larger problems in airline
companies and railway companies. Unfortunately we could not find similar
benchmark problems from literature to compare our results and the results
presented here are result of solving real life problems from consultants of XIMES
Company.



Figure 1: Screenshot of Operating Hours Assistant

We now describe the process of the generation of shifts with breaks in OPA
for a specific problem. In Figure 1 the screenshot of the software (OPA) is
given. The generation of solution requires several steps to be defined from
decision maker.

4.1 Definition of temporal requirements

The first step in designing shifts is to define the temporal requirements (see
Figure 2). Typically, the temporal requirements would be given for a week, but
they can also be given for one day or less then seven days. In our case, when
the temporal requirements are given for a week, the cyclic structure has to be
considered (e.g., the night shift that begins on Sunday at 23:00 is 8 hours long
and impacts the first day of the next week). For the problem we consider here
the temporal requirements defined for one week. Figure 2 shows part of the
requirements input screen.

4.2 Constraints regarding shift types

Shift types determine the possible start and length of the shifts. In this case
(see Figure 3), five shift types are defined, morning shift, day shift, evening
shift, night shift, and post shift. Shifts generated by algorithms should fulfill



Figure 2: Definition of temporal requirements in Operating Hours Assistant



Figure 3: Definition of shift types in Operating Hours Assistant

Figure 4: Definition of weights about the criteria in Operating Hours Assistant

the criteria required by the shift types. For example, morning shift can start
between 5:00-7:40 and their length should be from 7,5 - 9,5 hours.

4.3 Weights of criteria

The solution to the shift design problem is evaluated with a scalar function,
which combines four weighted criteria: excess in minutes, shortage in minutes,
number of shifts and distance from average number of duties per week. OPA
offers the possibility to change the importance of these criteria (Figure 4). The
decision maker can include his preferences easily. For this case the following
weights are selected from decision maker for the criteria: overcoverWieght =
0.6 , undercoverWeight = 0.8, NumberOfShiftWeight = 36,
distanceFromAverageNumberOfDutiesPerWeek = 0

4.4 Definition of break types

The last phase in problem definition is to define break types for each shift. In
Figure 3 each shift type has exactly one break type. Break types determine the
possible legal region of the start of a break and its length. In this case for each
shift type has the same break type (see Figure 5).



Figure 5: Definition of break types in Operating Hours Assistant

4.5 Generation of shifts

After the constraints have been defined, the algorithm for the generation of
shifts can be called. As described in this paper the generation of shifts with
breaks is done in two phases. In the first phase the algorithm for finding of
a solution for shifts without breaks is executed. This algorithm iteratively
improves the initial solution. User get a visual representation of the solution
found so far and can thereby watch improvements. The algorithm can be
stopped at any time and can be started all over again from any solution. In
case the decision maker is not satisfied with a preliminary solution, the weights
can be changed and attempts could be made to improve the current solution.
After the shifts without breaks are generated the method proposed in this paper
is applied to generate breaks for each shift and each employee.

For the given requirements, constraints and weights, algorithm which com-
bine basic tabu search and guided search and starts with a good initial gen-
erates the solution with shifts without breaks which has the following fea-
tures: overcover = 8.04% , undercover = 0%, NumberOfShift = 21,
AverageNumberOfDutiesPerWeek = 4.9.

The algorithm for the generation of breaks which is applied after this
phase generates all breaks for each employee and shift and could improve
significantly the quality of the solution consideration weighted sum of over-
cover and undercover. The solution found after two phases has these fea-
tures: overcover = 3.53% , undercover = 2.36%, NumberOfShift = 21,
AverageNumberOfDutiesPerWeek = 5.23.

In in Figure 6 the solution which contains 21 shifts for this problem found
by OPA is presented. The last column in this Figure indicates the number
of breaks for each shift. For example the shift M6 has 14 breaks which are
represented in Figure 7

5 CONCLUSION

In this paper a system for the generation of shifts with breaks was presented.
A method for the generation of breaks was discussed in detail. The presented
method is based on the greedy assignment of breaks in legal positions in shifts
and improvement of solution by local changes of length and position of breaks.
The method was shown to give good results in practice. The use of this applica-
tion at a large European airport was presented. The system can produce better
solutions than experienced professional planners in shift scheduling although it



Figure 6: Solution generated by OPA

Figure 7: Breaks generated for shift M6



is based on a simple algorithm. It makes possible the generation of a good
solutions in a relatively short time, thereby reducing costs and finding better
solutions for problems that appear in practice. For the future work it would be
interesting to further analyze whether generating shifts and breaks during the
local search would give better results than solving this problem in two phases,
although in our opinion this would increase the time to reach solutions because
the number of neighborhood solutions during each iteration would be tremen-
dously increased. Further, it would be interesting to analyze the behavior of
other algorithms (e.g., tabu search) when the repair steps are applied in breaks
in the last phase.

Acknowledgment

This work was supported by FWF (Austrian Science Fund) Project No. Z29-

N04.

References

[1] Turgut Aykin. A comparative evaluation of modeling approaches to the
labor shift scheduling problem. European Journal of Operational Research,
125:381 –397, 2000.

[2] Jacobs L.W. Bechtold, S.E. Implicit modeling of flexible break assignments
in optimal shift scheduling. Management Science, 36(11):1339 –1351, 1990.

[3] G.B. Danzig. A comment on eddie’s traffic delays at toll booths. Operations

Research, 2:339 –341, 1954.

[4] Johannes Gärtner, Nysret Musliu, and Wolfgang Slany. Rota: A research
project on algorithms for workforce scheduling and shift design optimisa-
tion. Artificial Intelligence Communications, 14(2):83–92, 2001.

[5] Luca Di Gaspero, Johannes Gärtner, Guy Kortsarz, Nysret Musliu, An-
drea Schaerf, and Wolfgang Slany. The minimum shift design problem:
Theory and practice. In 11th Annual European Symposium on Algorithms,

Budapest, 2003.

[6] Nysret Musliu, Andrea Schaerf, and Wolfgang Slany. Local search for shift
design. European Journal of Operational Research, 153(1):51–64, 2004.

[7] G. Thompson. Improved implicit modeling of the labor shift scheduling
problem. Management Science, 41(4):595–607, 1995.


