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Abstract. The problem of designing workforce shifts and break patterns
is a relevant employee scheduling problem that arises in many contexts,
especially in service industries. The issue is to find a minimum number of
shifts, the number of workers assigned to them, and a suitable number of
breaks so that the deviation from predetermined workforce requirements
is minimized.
We tackle this problem by means of a hybrid strategy in the spirit of
Large Neighborhood Search, which exploits a set of Local Search opera-
tors that resort to a Constraint Programming model for assigning breaks.
We test this strategy on a set of random and real life instances employed
in the literature.

1 Introduction

The typical process for scheduling of employees in an organization consists of
several stages. Usually the first phase is to find the temporal requirements, which
determine the needed number of employees for each day and time interval during
the planning period. For example in the staffing requirements given in Fig. 1a
there should be 6 employees at work every Monday between 08:00-11:00. After
the temporal requirements are defined, the shifts can be designed. In this stage
the number of employees for each shift and day has to be determined. Moreover,
for each employee assigned to a shift, a set of breaks that fulfill different con-
straints about their location and lengths should be scheduled (Fig. 1b). Fig. 2
presents possible shifts and scheduled breaks for the instance in Fig. 1.

Shift and break assignment problems may differ in constraints and objectives
and are referred in the literature with different names as shift design [9,13], shift
scheduling [3,4,17,19], and break scheduling [5,14,20]. Such problems arise in
airports, call centers, and service industry in general and have been extensively
investigated in Operations Research and recently have been also tackled with



AI techniques. Obtaining good solutions for shift design and break scheduling is
of vital relevance due to legal issues considering the working time of employees,
well-being of employees, and the importance of reducing costs while satisfying
staffing requirements. In some working environments it is imperative to obtain
good solutions, e.g., assigning inadequate breaks to air traffic controllers can
lead to loss of concentration which can cause serious problems.

Both shift design and break scheduling are characterized with a huge search
space and many conflicting constraints that have to be satisfied. Due to the com-
plexity of these problems, two approaches have been followed in the literature. If
the number of breaks to be scheduled is not large (2-3 breaks) the design of shifts
and break assignment is performed simultaneously. In cases when the number of
breaks to be assigned per shift is large (up to ten breaks) the shift design and
break scheduling problems are solved separately, i.e. break assignment is per-
formed only after shifts are generated. Decomposing the general problem (shift
design and break scheduling) into two sub-problems makes it easier to solve, but
it is hard to predict which shift plan will produce good solutions after break
assignments. Therefore, this approach usually requires the knowledge of domain
experts when the shift plan is generated. The solution of the entire problem
when the number of breaks to be assigned is large is a challenging task due to
much larger search space of possible solutions.

We investigate a solution procedure of the whole problem (shift design and
break scheduling) with a large number of breaks. Our contribution lies on au-
tomating the whole process of shift design and break assignment, and therefore
minimizing the need for a domain expert in this phase of staff scheduling. To
the best of our knowledge the whole shift design and break scheduling problem
we consider in this paper has not been yet investigated in the literature. To this
aim, we propose a new hybrid Local Search-Constraint Programming (LS-CP)
method to solve the problem. The method have been applied and experimentally
evaluated on a set of real life and randomly generated instances.

2 Problem Definition

It is useful to define an interval as a structure composed of two attributes, start
and length, which describe the temporal interval [start, start + length). In
the following, interval variables will be denoted by greek letters. We also use
basic interval arithmetic operations such as the sum of a value to the interval,
i.e., a⊕ [b, c) = [a+ b, a+ c).

For the shift and break design problem we are given a set D of days, which
are subdivided into a set of n equally long consecutive timeslots T = {τ1 =
[a1, a2), τ2 = [a2, a3), . . . , τn = [an, an+1)}, at a given time granularity. Each
timeslot τt belongs (entirely) to day bt/gc, where g is the time granularity mea-
sured as the number of timeslots per day. Moreover, for each timeslot τt ∈ T ,
we are given a staffing requirement rt, which indicates the number of employees
that should be working during that timeslot (see Fig. 1a for an example).
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(a) Workforce requirements

Name Earliest Latest Minimum Maximum
start start length length

Morning Shift 05:00 08:00 07:00 09:00
Day Shift 09:00 12:00 07:00 09:00
Evening Shift 13:00 15:00 07:00 09:00

(b) Shift types

Fig. 1: An example instance.

There are given also a set of p shift types {v1, . . . , vp}. Each shift type vj

constrains the earliest and the latest start (vj .min start and vj .max start) and
the minimum and maximum length (vj .min length and vj .max length) for the
shifts belonging to that type (see Fig. 1b for an example).

The problem consists in designing the shifts and deciding the break patterns,
i.e., determining the values of the following decision variables for each shift si:

(V1) The shift type yi ∈ {v1, . . . , vp}.
(V2) The shift interval σi. On the basis of its shift type, the allowed values

for σi are as follows: σi.start ∈ [yi.min start, yi.max start], σi.length ∈
[yi.min length, yi.max length]. It is important to observe that the deter-
mined σi interval will be the same throughout the time horizon, i.e., each
shift is constrained to have precisely the same start time (e.g., 05:00) and
length (e.g., 08:00) on all the days.

(V3) The number of employees wid assigned to shift si on day d.
(V4) For each employee e working on day d, the set of break intervals Bide =

{β1
ide, β

2
ide, . . .}; for each b = 1, . . . , |Bide|, the interval variables have the

following domains βb
ide.start ∈ (d·g)⊕σi and βb

ide.length ∈ [1, σi.length].

It is worth noticing that, according to the formulation, also the number of
breaks |Bide| for each shift/day/employee has to be determined (although its
value is constrained between lower and upper bounds that can be computed by
reasoning on break patterns). This is because the legal working/break patterns
do depend also on the number of breaks, and together they do affect the objective
function of the problem.
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Fig. 2: A possible solution of the problem in Fig. 1.

An employee is considered to be working during the timeslots comprised in
the shift but not in any of his/her breaks in that shift. More formally, an employee
e works on timeslot τt ∈ T on day d = bt/gc, if the following condition holds:
t ∈ (d ·g)⊕σi \

⋃|Bide|
b=1 βb

ide. This condition can also be employed to define the so
called working periods ωb

ide, b = 1, . . . , |Bide| + 1, which are the complementary
intervals of the shift w.r.t. the breaks.

The following constraints on the break patterns must hold:

HC1: A fixed total amount of break time, depending on the length of the
shift, must be granted to every worker, i.e.,

∑|Bide|
b=1 βb

ide.length = total-
break timei, for d ∈ D, e = 1, . . . , wid.

HC2: The break length must be included within two bounds, i.e., break minimum-
length ≤ βb

ide.length ≤ break maximum length.
HC3: If the working period preceding a break is too long, the break minimum

length is altered, i.e., ωb−1
ide ≥ long working period ⇒ βb

ide.length ≥
long break minimum length; obviously, break minimum length ≤ long-
break minimum length ≤ break maximum length.

HC4: The length of the working periods must be included within two bounds,
i.e., working period minimum length≤ ωb

ide.length ≤ working period-
maximum length.

HC5: The first and the last break have to start at a given distance from the shift
extremes, i.e., β1

ide.start ≥ earliest break start and β
|Bide|
ide .start ≤

latest break start.
HC6: If a shift exceeds the length min length for lunch, it must include a

lunch break λide, whose length is fixed (i.e., λide.length = lunch break-
length) and its start must lay at a given distance from the shift extremes,

that is, λide.start ≥ earliest lunch break start and λide.start ≤
latest lunch break start.

The objective for the shift design and break scheduling problem is to generate
a feasible solution that minimizes the violation of soft constraints given below:



SC1: Sum of the excesses of workers in each time slot of the planning horizon.
SC2: Sum of the shortages of workers in each time slot of the planning horizon.
SC3: Number of shifts employed.

The soft constraints have different importance depending from the problem.
The objective function is the weighted sum of the three components, where the
weights depend on the instance.

Notice that we consider designing shifts for a week and assume that the sched-
ule is cyclic, i.e. the shifts that start on the last day of the planning period and
stretch over midnight will have their end in the first day of the planning period.
The cyclicity must be considered in applications where the night shifts inter-
leave in some time slots with the morning shifts of the next day. Decomposing
of problem in a daily basis would make the problem simpler to solve. However,
if the days can have different staffing requirements during the week like in our
case, the cyclicity of days can not be taken into consideration. Therefore, in such
cases the time slots, where the night shifts interleave with the morning shifts,
must be either covered only by night or by morning shifts, which may lead to
worse solutions regarding the cover of staffing requirements.

3 Previous work

To the best of our knowledge the whole problem we consider in this paper has not
yet been investigated in the literature. However, several related problems have
been previously extensively studied. Dantzig developed the original set-covering
formulation [7] for the shift scheduling problem, in which feasible shifts are enu-
merated based on possible shift starts, shift durations, breaks, and time windows
for breaks. Aykin [2] introduced an implicit integer programming model for the
shift scheduling problem in 1996 and later he compared an extended version [3]
of his previous model with a similarly extended formulation introduced by Bech-
told and Jacobs [4]. He observed Bechtold and Jacobs’ approach needed fewer
variables whereas his approach needed fewer constraints. Several problems were
solved using both models with the integer programming software LINDO. The
model proposed by Aykin was shown to be superior. Rekik et al. [17] developed
two other implicit models and managed to improve upon previous approaches
among them Aykin’s original model. Tellier and White [19] developed a tabu
search algorithm to solve a shift scheduling problem originating in contact cen-
ters which is integrated into the workforce scheduling system Contact Center
Scheduling 5.5 from PrairieFyre Soft Inc. (http://www.prairiefyre.com). The
solution of a shift scheduling problem with a planning period of one day, and
at most three breaks (two 15 minutes breaks and a lunch break of 1 hour) has
been considered in [6] and [16]. In [6] the authors make use of automata and
context-free grammars to formulate constraints on sequences of decision vari-
ables. Quimper and Rousseau [16] investigate modeling of the regulations for
the shift scheduling problem by using regular and context-free languages and
solved the overall problem with Large Neighborhood Search. In addition to the



previous model, the authors applied their methods in single and multiple activity
shift scheduling problems.

We note that our problem has several differences to the shift scheduling
problems considered in the literature. We allow much larger number of breaks
per shift (up to 10 breaks), the planning period is one week and we take into
consideration the cyclicity. Moreover, our problem definition imposes some other
constraints on shifts and breaks. Therefore, we can not make a direct comparison
with the mentioned approaches in the literature.

Our problem can be divided in two sub-problems (shift design and break
scheduling) which were considered separately in previous literature. Shift design
problem regards generation of shifts without breaks for a week and has been con-
sidered in [13] and [9]. Musliu at al. [13] proposed a tabu search based algorithm
to solve this problem. Additionally, their method orders moves and applies these
first to regions with larger conflicts (larger over/under-staffing). The proposed
solution methods have been used since several years in the commercial software
package OPA of Ximes Inc. Di Gaspero et al. [9] proposed the application of
hybrid approaches based on local search and min-cost max-flow techniques. The
hybrid algorithm improved results reported in [13] on benchmark examples.

The break scheduling problem that imposes same constraints for breaks de-
fined in this paper has been investigated in [5,20,14]. Beer et al. [5] applied a
min-conflict based heuristic to solve this problem. This method has been applied
in a real-life application for the supervision personnel. Results presented in [5]
has been further imporved by memetic algorithms proposed in [14,20]. Note that
a simplified break scheduling problem can be formulated as temporal constraint
satisfaction problem (STP) [8] therefore it can be solved in polynomial time.
This algorithm can be applied to find legal position of breaks, but without tak-
ing into consideration over-staffing and under-staffing that are very important
criteria when solving shift design and break scheduling problems.

4 The Hybrid LS-CP Solver

We devise a hybrid strategy for tackling this problem that combines a Local
Search (LS) method for determining the shifts with a Constraint Programming
(CP) model for assigning breaks. In the following we outline some basic aspects
of LS and CP, and we detail how we blend them in the hybrid solver.

4.1 LS and CP Basics

Local Search [11] is a family of methods to solve combinatorial optimization
problems based on the definition of proximity (or neighborhood): a LS algorithm
typically moves from a solution to a near one, trying to improve an objective
function, iterating this process. LS algorithms generally focus the search only in
specific areas of the search space, so they are incomplete methods, in the sense
that they do not guarantee to find a feasible (or optimal) solution, but they
search non-systematically until a specific stop criterion is satisfied.



In order to apply LS to the problem, we have to specify three main elements:
the search space S, the neighborhood relation N (s) and the cost function f .

The search space consists of the set of potential solutions of a problem,
expressed in accordance to a given problem model. A LS algorithm starts from
an initial state s0 (which can be obtained with some other technique or generated
randomly) and enters a loop that navigates the search space, stepping from a
state si to one of its neighbors si+1 ∈ N (si). The search is controlled by a
strategy driven by the cost function f , that estimates the quality of each state
and, without loss of generality, it has to be minimized.

One of the most common LS techniques is Hill Climbing. This technique has
many variants, however in all cases the basic idea is to perform only moves that
improve or leave unchanged (i.e. sideways moves) the value of the cost function.
The way a move is selected characterize the different Hill Climbing strategies.
The so-called Randomized Hill Climbing (RHC), which has been employed in
this work, draws a random move at each step of the search and accepts it only
if it is a non-worsening move. A widely adopted stop criterion for RHC is based
on stagnation detection: the search is stopped after a number of non-improving
moves have been drawn (also called idle iterations).

Constraint Programming [1] is a declarative programming paradigm, in which
combinatorial optimization problems are encoded using a language consisting in
variables and constraints and solved by a CP solver.

This paradigm is based on complete methods that analyze the search space
alternating deterministic (constraint propagation, that is, the removal of values
that cannot be assigned to any solution) and non-deterministic (variable assign-
ment) phases. This process is iterated until a solution is found or unsatisfiability
is reached; in the latter case the process backtracks to the last choice point (i.e.,
the last variable assignment) and tries other assignments.

In order to apply CP to a given problem it is necessary to model the problem
in terms of variables and constraints that must hold. The solving procedure is
then implemented in the CP solver and it resorts to some sort of tree search.

4.2 LS for Shift and Break Design

In the Shift and Break Design settings, LS deals with a search space composed of
a set of shifts S, each of them determined by its interval, and for each day of the
time horizon the number of workers assigned and the size of the set of breaks.
Notice that LS works on a partial representation of the solution, since the breaks
are only specified in their number but not in the intervals they span. To complete
this representation to a full solution we resort to a CP model (described below)
whose purpose is to determine the interval variables of each break.

The set of shifts, S, includes a number of inactive shifts, which have been
assigned no worker on all days. These shifts are useful since, even though they
do not contribute to the solution quality in their state, they can be possibly
assigned workers during the search (i.e., become active) if their use leads to a
solution improvement. Conversely, the shifts having at least a worker assigned
in one day are called active.



Concerning the procedure for generating a random initial solution, we create
a fixed number of random distinct active and inactive shifts for each shift type
(for these instances a number of four active and two inactive shifts has proven
to be adequate). Afterwards, for the active shifts, we assign a random number
of employees for each day.

The neighborhood relations are similar to those considered in [9]. The moves
have been modified to deal with the addition of the number of breaks. Moreover,
a move dealing directly with the break component and a move for solution
perturbation (which aims in decreasing the number of shifts) have been added.
In detail the moves employed are the following:

N1 ChangeStaff(i, d,m ∈ {↑, ↓}): the staff of shift si on day d is increased (↑) or
decreased (↓) by one employee.

N2 ResizeShift(i,m ∈ {↑, ↓}, q ∈ {←,→}): the length of shift si is increased or
decreased by one timeslot, on the left- (←) or on the right-hand (→) side.
This move is applied in a shift only if the modified shift does not violate
hard constraints regarding its length and start.

N3 ChangeBreaks(i, d,m ∈ {↑, ↓}): the number of breaks of shift si on day d is
increased or decreased by one.

N4 MergeShifts(i, j): the two shifts si and sj are merged together; the employees
assigned to them are added and the interval of the resulting shift and the
number of breaks for each day are averaged.

All the moves but ChangeStaff are meaningful on active shifts only, therefore
they will be applied only on them. The ChangeStaff move, instead, is used also
to change the state of a shift from active to inactive or vice versa.

The cost function is the weighted sum of the deviation (excess and shortage,
with different weights) from the working requirements at each timeslot plus an
additional weighted component that accounts for the number of active shifts
employed in the solution. Notice that to allow an accurate computation of the
deviation from the requirements a full solution is needed, therefore the cost
function has to be computed only after a full solution has been determined by
solving the CP model by means of a CP solver.

The neighborhood relations are intermingled in an Iterated Local Search
(ILS) strategy [12], which exploits the set union of ChangeStaff, ResizeShift and
ChangeBreaks neighborhoods —driven by RHC— followed by a solution pertur-
bation obtained by applying a few random MergeShifts moves. The pseudocode
of this procedure is shown in Fig. 3. The procedure is repeated as long as an
overall timeout is not expired.

The Local Search procedure has been implemented using EasyLocal++
[10], and the software has been compiled with the GNU C++ compiler (v. 4.1.2).

4.3 The CP-Based Break Assignment

The breaks are determined by the solution of a CP model that considers all the
shift variables (V1)–(V3) as fixed and searches for a suitable assignment of breaks



1: draw a random initial solution for the shift decision variables and store it in sc
2: determine break assignment on sc by means of the CP model
3: s∗ := sc
4: while ¬timeout expired do
5: ι := 0
6: repeat
7: /* Apply RHC first */
8: j := RandomInt(1, 3)
9: m := RandomMove(Nj)

10: s′c := sc �m
11: determine break assignment on (a subset of) s′c by means of the CP model
12: if f(s′c) < f(sc) then
13: sc := s′c
14: ι := 0
15: else
16: ι := ι+ 1
17: end if
18: until ι > maxι
19: if f(sc) < f(s∗) then
20: s∗ := sc
21: end if
22: /* Then perturb solution trying to merge k shift pairs */
23: m := RandomMove(N4 × . . .×N4| {z }

k

)

24: sc := sc �m
25: end while

Fig. 3: The Iterated Local Search strategy for determining shift decision variables.

1: Input: the workforce requirements rt, and a partial solution s, consisting in the
determination of (active) shifts, workers, and number of breaks Bid

2: set up variables {βbide|b = 1, . . . , Bid, i = 1, . . . , |S|, d = 1, . . . , D, e = 1, . . . , wid}
3: post break constraints on variables βbide
4: if inconsistent state then
5: return 〈∅,+∞〉
6: end if
7: optional: fix some of the βbide variables and modify rt accordingly
8: set free βbide variables as branching variables
9: set variable fobj as the weighted deviation from the (possibly modified) workforce

requirements r′t on all timeslots t ∈ T
10: while ¬ timeout do
11: branch and bound on βbide, as driven by the values of fobj
12: end while
13: if all βbide variables are assigned then
14: return 〈{βbide}, fobj〉
15: else
16: return 〈∅,+∞〉
17: end if

Fig. 4: The CP-based procedure for determining the break decision variables.



(V4) accordingly. More in detail, since the size of the breaks set on each day has
been already determined by the LS solver, the decision variables considered in
the CP break assignment model are only the starts and lengths of the breaks,
which are also subject to the set of constraints described in Section 2 (including
the ones on the complementary working periods variables). Furthermore, the
(weighted) deviation from the workforce requirements is computed for all the
timeslots involved in the break assignment and it is used as the cost measure
for the underlying Constrained Optimization Problem. The CP model has been
coded in Gecode [18] and solved by the standard Branch & Bound procedure
implemented in that system. The CP-based procedure is shown in Fig. 4.

It is worth noticing that this model can be easily applied also to break as-
signment subproblems that involve only a subset S ′ ⊆ S of the shifts employed
in the current solution. To this aim, it is sufficient to consider a set of modified
workforce requirements r′t, which can be obtained from rt by subtracting all the
employees working in the shifts s ∈ S \ S ′ (line 7 in Fig. 4). Such an approach
is similar to the Large Neighborhood Search (LNS) [15], in which a subset of
the decision variables of the current solution are left free and the neighborhood
induced by their possible combinations of values is explored by CP.

From Fig. 3, it is possible to observe that the CP model is employed in two
stages of the Iterated Local Search procedure. At first (line 2), the model is used
to assign breaks to a randomly generated initial solution. In this context, the
whole set of shifts is passed to the CP-based procedure and the best solution
computed by the procedure within a timeout of 25 seconds is retrieved. For
most of the instances we tested, this time is enough to allow the CP solver to
find a complete solution, however for a few instances the CP solver will not be
able to find an initial solution. In the latter cases we overcome this problem by
determining the break assignment of each shift taken in isolation. That is, we
establish an order on the shifts and start determining the breaks for the first
shift, then we fix these values and proceed with the second shift, further we fix
the values of the first two shifts and proceed with the third shift, and so on.

The second use of the CP model (line 11 of Fig. 3) is in the determination of
the breaks after performing a move. In this context, we decided to fix the break
decision variables of all the shifts not involved in the move. That is, after a shift
have been modified by a move all its breaks are optimized again by the CP-based
procedure. Since in this case the size of the search space is much smaller than
those of the whole problem, we let the CP solver to search for the best solution
imposing a timeout of 0.5 seconds. In preliminary experiments we found out that
this value allows to explore a satisfactory portion of the search tree.

5 Experimental Evaluation

To evaluate our algorithms we use existing benchmark instances in the literature
for shift design and break scheduling. A set of real-life instances were provided
from the authors of [5]. In addition, we apply our algorithms to randomly gen-



erated benchmarks. All instances are publicly available at http://www.dbai.
tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks.

All instances have been solved at a time granularity of 5 minutes. In each
instance are given staffing requirements for one week. The number of required
employees in each time slot depends from the particular instance. For the real life
instances up to 11 employees are required in one time slot, whereas for randomly
generated instances the number of needed employees is up to around 27 for each
time slot. The weight for shifts is 60, and the weights for shortage and excess
are 10 and 2, respectively. These weights were selected based on experience with
solving problems in real life applications.

Since, this is the first attempt to solve the whole shift design and break
assignment problem, there are no previous results to compare with. Therefore,
the aim of the experimental evaluation is to analyze the behavior of the hybrid
algorithm on the basis of its components. We mainly evaluate the different com-
binations of variable selection heuristics in the CP framework. The purpose of
these heuristics is to guide the CP search toward the most promising regions of
the search tree by an early detection of failing assignments (according to the fail
first principle). In this work we tested the following 6 strategies: Random, Max-
imum Degree, Maximum Accumulated Failure Count, Minimum Size, Minimum
Size/AFC, Minimum Size/Degree.

Another design choice would have been the value selection heuristic for CP.
However, in a preliminary experimental phase we found out that this choice was
rather irrelevant. Therefore, in the following we apply always the selection of
values to be assigned in increasing order. All the experiments were allowed 1
hour of computing time on an Intel QuadCore PC running Debian Linux 4.0.

In Fig. 5 we plot the progress of the hybrid algorithm equipped with different
strategies for variable selection on two instances of the benchmark set (a real
life and a randomly generated one). The qualitative behavior of the different
strategies is consistent across all the instances and they show a slight dominance
of the AFC MAX heuristic w.r.t. the other heuristics tested.

For the purpose of investigating the reasons of the dominance of AFC MAX,
we analyze the exploration capabilities of the different variable selection heuris-
tics. In Fig. 6 we plot the distribution of the improvements attained by CP
during the exploration of the search tree. Data have been collected along the
full executions of the algorithm on the whole benchmark set. The improvements
are measured as the difference between the cost of the first and the last solu-
tion found by CP within the time granted. In the picture, the rightmost bar
marked with a P, refers to the frequency of solutions directly found by applying
constraint propagation only. Those solutions are quite valuable, since they are
proven to be optimal without the need of additional tree search.

Is it possible to observe that, differently from other heuristics, AFC MAX
features a long left tail, leading to cost improvements up to 400 cost units. The
superiority of AFC MAX is also confirmed by the number of improving solutions
explored by CP, reported in the last column of Table 1. In this table, we also
compute other statistics for further analyzing the behavior of the heuristics in
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Fig. 5: Behavior of the algorithm on a real life and a random instance.

Variable Selection ρ(impr,#nodes) ρ(impr, #nodes
#fail

) #nodes #fails #sols

RND -0.286∗∗∗ -0.434∗∗∗ 9692 4822 4.13
AFC MAX -0.228∗∗∗ -0.343∗∗∗ 7011 3490 5.53
DEGREE MAX -0.311∗∗∗ -0.373∗∗∗ 8180 4075 4.83
SIZE MIN -0.374∗∗∗ -0.448∗∗∗ 6682 3318 5.49
SIZE AFC MIN -0.261∗∗∗ -0.375∗∗∗ 9113 4535 5.35
SIZE DEGREE MIN -0.232∗∗∗ -0.365∗∗∗ 7263 3611 5.12

Table 1: Statistics on the improvement attained by CP.

relation to the improvements attained. The first two columns show the correla-
tion between the improvement and the number of nodes explored, and the ratio
between the number of nodes explored and the number of failures, respectively.
We expected these two measures to be related to improvements, and actually we
found out that all the correlations are statistically significant (p < 0.01). How-
ever, unfortunately, these measures cannot be used to discriminate between the
different heuristics. The same applies to the remaining columns, that contain the
averages of the number of nodes explored, the average number of failures and
the average number of (improving) solutions found. Unfortunately they also do
not show any regularity that allows to discriminate.

Finally, in Table 2 we report the best results found by the different versions
of our algorithm on the benchmark instances.

6 Conclusions

We have investigated a real life shift design and break scheduling problem that
arises in different areas of industry. In the literature design of shifts and break
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Fig. 6: Distribution of the improvements attained by CP on break assignment.



Instance Shortage Excess # Shifts

2fc04a03 173 2636 23
2fc04a 182 2750 25
2fc04b 181 2892 21
3fc04a03 733 3168 20
3fc04a04 130 2732 21
3fc04a 256 3084 24
3si2ji2 137 2909 24
4fc04a03 94 2710 21
4fc04a 526 3064 19
4fc04b 200 2690 24
50fc04a03 175 2809 26
50fc04a04 180 2636 29
50fc04a 169 3150 20
50fc04b 200 2730 30
51fc04a03 410 2653 25
51fc04a04 209 2890 23
51fc04a 189 3051 25
51fc04b 250 3046 23

Random1-01 215 3355 28
Random1-02 405 4557 29
Random1-03 369 4800 34
Random1-04 421 5901 44
Random1-05 285 3713 23
Random1-06 246 2638 17
Random1-07 227 3046 28
Random1-08 330 4465 33
Random1-09 276 3930 25
Random1-10 389 4997 32
Random1-12 164 2850 17
Random1-13 303 3888 25
Random1-14 380 5763 47
Random1-15 179 1282 7
Random1-16 426 4610 39
Random1-17 373 5746 53
Random1-18 530 4724 32
Random1-19 368 3961 33
Random1-20 438 5247 32
Random1-21 242 3164 24

Instance Shortage Excess # Shifts

Random1-22 186 3288 23
Random1-23 265 4468 34
Random1-24 330 3585 21
Random1-25 452 5608 45
Random1-26 698 3723 31
Random1-27 718 4602 35
Random1-28 258 3086 20
Random1-29 336 3973 39
Random1-30 250 2512 18

Random2-01 375 4376 25
Random2-02 289 3968 34
Random2-03 288 4319 39
Random2-04 311 3935 30
Random2-05 260 4161 34
Random2-06 330 5197 42
Random2-07 427 5187 40
Random2-08 323 4357 29
Random2-09 391 4461 35
Random2-10 432 5566 42
Random2-12 365 4929 42
Random2-13 421 5148 49
Random2-14 410 5678 53
Random2-15 518 5696 41
Random2-16 350 6255 49
Random2-17 452 4537 36
Random2-18 557 5413 37
Random2-19 604 5418 43
Random2-20 475 5769 40
Random2-21 371 6150 48
Random2-22 430 6312 48
Random2-23 402 5288 44
Random2-24 427 5634 44
Random2-25 487 5754 47
Random2-26 517 5836 47
Random2-27 529 5835 54
Random2-28 340 5157 45
Random2-29 506 5407 45
Random2-30 678 7041 60

Table 2: Best results found by the hybrid algorithms on the benchmark instances.



assignment have been solved in two separated phases, because of their high com-
plexity. This required the application of an iterative process that usually could
be performed only by the staff scheduling experts. To automate the solution of
the whole problem and to minimize the need for domain experts, we proposed
an innovative hybrid method that combines features of LS and CP techniques.

This paper investigates for the first time the solution of the complete shift
design and break scheduling problem and the application of CP to the break
assignment subproblem. The CP model has shown to be very practical for the
local search to find legal break assignments that optimize over/under staffing.
Our solver has been applied successfully on the existing real life and random
instances in the literature. Obtained solutions fulfill all hard constraints and
the solver gives promising results considering the level of fulfillment of soft con-
straints.

For the future, we plan to further study the hybridization of the LS and CP
paradigms. In particular, we plan to investigate application of CP techniques for
design of shifts and local search for break scheduling within the hybrid algorithm.
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