
Solving High School Timetabling with Satisfiability
Modulo Theories

Emir Demirović · Nysret Musliu

Abstract High School Timetabling (HSTT) is a well known
and wide spread problem. The problem consists of coordinat-
ing resources (e.g. teachers, rooms), time slots and events (e.g.
lectures) with respect to various constraints. Unfortunately,
HSTT is hard to solve and just finding a feasible solution for
simple variants of HSTT has been proven to be NP-complete.
In addition, timetabling requirements vary from country to
country and because of this many variations of HSTT exist.
Recently, researchers have proposed a general HSTT problem
formulation in an attempt to standardize the problem from
different countries and school systems.

In this paper, for the first time we provide a new detailed
modeling of the general HSTT as a Satisfiability Modulo The-
ory (SMT) problem in the bit vector form. In addition, we
present preliminary experimental results and compare to the
winner of the Third International Timetabling Competition
2011 (ITC), using both artificial and real-world instances, all
of which were taken from ITC 2011 benchmark repository.
Our current approach provides feasible solutions for some ex-
amples, which in some cases could not have been obtained
with the competition winner algorithm within 24 hours.

Vienna University of Technology
Database and Artificial Intelliegence Group
E-mail: {musliu ∨ demirovic}@dbai.tuwien.ac.at

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

142

Keywords SMT · High School Timetabling · Modeling

1 Introduction

In this paper, we describe a modeling of the high school
timetabling problem (HSTT) as a Satisfiability Modulo The-
ory (SMT) problem. By doing so, we were able to find feasible
solutions to some problem instances, which were proposed by
the International Timetabling Competition 2011 [13], which
in some cases could not have been obtained using the win-
ning algorithm of the competition in 24 hours, GOAL. In
two smaller instances, optimization could also be performed,
rather than just finding a feasible solution, but optimization
is difficult for our method at its current state.

The problem of timetabling is to coordinate resources (e.g.
rooms, teachers, students) with time slots in order to fulfill
certain goals or events (e.g. lectures).

Timetabling is encountered in a number of different do-
mains. Every educational institution, airport, public trans-
port system, etc requires some form of timetabling. The dif-
ference between a good and a bad timetable can be significant,
but constructing timetables by hand can be time consuming,
very difficult, error prone and in some cases impossible. There-
fore, developing high quality algorithms which would auto-
matically do so is of great importance. Note that there are
many different timetabling problems and algorithms for one
type of problem (e.g. HSTT) might not directly be suitable
for another problem (e.g. University Timetabling), because of
their different requirements. In this work, we focus on HSTT.
Respecting constraints is very important, as timetables di-
rectly contribute to the quality of the educational system,
satisfaction of students and staff and other matters. Every
timetabling decision affects hundreds of students and teach-
ers for prolonged amounts of time, since each timetable is
usually used for at least a semester.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

143

Unfortunately, High School Timetabling is hard to solve
and just finding a feasible solution of simple variants of High
School Timetabling has been proven to be NP-complete [7].

Apart from the fact that problems that need to be solved
can be very large and have many different constraints, high
school timetabling requirements vary from country to coun-
try and because of this many variations of the timetabling
problem exist. Because of this, it was unclear what the state
of the art was, as comparing algorithms was difficult.

Recently have researchers proposed a general high school
timetabling problem formulation [14] in an attempt to stan-
dardize the problem from different countries and school sys-
tems and this formulation has been endorsed by the Third In-
ternational Timetabling Competition 2011 (ITC 2011) [13] [14].
This was a significant contribution, as now algorithms can be
compared on standardized instances, that were proposed from
different researchers [12].

The winner of the competition was the group GOAL, fol-
lowed by Lectio and HySST. All of the algorithms were based
on heuristics. In GOAL, an initial solution is generated, which
is further improved by using Simulated Annealing and Iter-
ated Local Search, using seven different neighborhoods [8].
Lectio uses an Adaptive Large Neighborhood Search [16],
while HySST uses a Hyper-Heuristic Search [9]. Recently, [17]
used Integer Programming (IP) in a Large Neighborhood Search
algorithm and [15] introduced a two phase IP algorithm for
a different timetabling problem, but have managed to adjust
the method for a number of high school timetabling instances.

All of the best algorithms on the competition were heuristic
algorithms and this is why introducing a new exact method
(our approach) is important. Some advantages are being able
to provide proofs of optimality or infeasibility, calculate lower
bounds as well as an opportunity to hybridize algorithms, as
well as create valuable benchmarks for SMT solvers. Even
though significant work has been put into HSTT, optimal
solutions for most instances are still not known and this is
still an active research area.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

144

In this paper, we investigate the formulation of HSTT as
SMT. A SMT problem is a decision problem for logical for-
mulas with respect to combinations of background theories
expressed in classical first-order logic with equality. It is a
generalization of the Satisfiability problem (SAT) in which
sets of variables are allowed to be replaced by predicates from
a variety of underlying theories. SMT is usually used for ver-
ification and program analysis, but researchers have recently
been investigating solving Constraint Satisfaction Problems
with SMT [3] and other optimization problems [11]. There is
a natural connection between timetabling and logical formu-
las. HSTT as itself has many logic based characteristics and
as such some of its constraints can easily be encoded as SMT.
This has motivated us to investigate how efficient can a SMT
formulation for HSTT be. However, due to the generality of
the specification that we use, devising a complete model is
not a trivial task, because as we will see later, some of the
constraints are cumbersome. In addition to formulating a gen-
eral formulation, one needs to take care of important special
cases which arise in practice and can significantly simplify the
encoding.

The main contributions of this paper are as follows:

– We show that HSTT can be modeled as a SMT problem,
despite the fact that HSTT is very general and has many
different constraints, both hard and soft versions. All con-
straints are included in their general formulations, as well
as important alternative encodings for special cases.

– We give preliminary experimental evaluation of our model
using both artificial and real-world instances, all of which
were taken from the Third International Timetabling Com-
petition 2011 benchmark repository. A comparison with
the winning algorithm from ITC 2011 is given.

The rest of the paper is organized as follows: in the next
section, we give a more detailed look into the problem descrip-
tion which serves as an introduction for Section 3, where the
detailed presentation of our approach in modeling HSTT as

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

145

SMT is given. In Section 4, we provide computational results
obtained on artificial and real life problems. Finally, we give
concluding remarks and ideas for future work.

2 Problem Description

In our research we consider the general formulation of the
High School Timetabling problem, as described in [14].

The general High School Timetabling formulation specifies
three main entities: times, resources and events. Times refer
to time slots which are available, such as Monday 9:00-10:00,
Monday 10:00-11:00, etc. Resources correspond to available
rooms, teachers, students, etc. The main entities are the events,
which in order to take place require certain times and re-
sources. An event could be a Mathematics lecture, which re-
quires a math teacher and a specific student group (both con-
sidered resources) and two time slots.

Constraints impose limits on what kind of assignments are
legal. These may constraint that a teacher can teach no more
than five lessons per day, that younger students should attend
more demanding subjects (e.g. Mathematics) in the morning,
etc. We describe the constraints in the next section when we
present the SMT formulations.

Each constraint has a nonnegative cost function associated
with it, which penalizes assignments that violate it. It is im-
portant to differentiate between hard and soft constraints.
Hard constraints are constraints that define the feasibility of
the solution and are required for the solution to make sense,
while soft constraints define desirable situations, which define
the quality of the solution. Therefore, the cost function con-
sists of two parts: infeasibility value and objective value. The
goal is to first minimize the infeasibility and then minimize
the objective function value part. The exact way these two
are calculated will be discussed in the next section.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

146

3 Our Approach - Modeling HSTT for SMTs

Modern SMT solvers (e.g. z3 [5], Yices [6]) offer a number
of underlying theories to choose from, which are described in
detail in the standardization SMT-LIB [2]. Modeling of the
problem at hand depends heavily on which theory we have
chosen. In our initial phase, we used two different theories:
linear integer arithmetic and bit vector. In the following, we
present a bit vector formulation for HSTT, as it was more
successful in initial experiments and afterwards discuss briefly
the problems encountered with linear integer arithmetic.

3.1 Bitvector Theory

A bitvector is a vector of bits. The size of the vector is ar-
bitrary, but fixed. A number of standard operations (e.g.
addition, and, or operations on bitvectors) and predicates
(e.g. equality) are defined over bitvectors and an instance con-
sists of a conjunction of predicates. Most SMT solvers accept
formulas written in SMT-LIB file format, but can have their
own formats, like Yices. Since these files use prefix notation,
we will do so as well in the description of the constraints with
the addition of brackets and comas in order to ease reading.
E.g. In infix notation one would write (a = b), while in prefix
notation the same expression would be written as (= a b),
while we choose to write (= (a, b)).

Most operations are interpreted as usual and all bitvector
operands are of the same length. In the following we present
some of the notations we will use in which bva and bvb are
bitvectors and k is a constant integer:

– inv(bva) - inverts bva bits (e.g. inv(1011001) = 0100110).
– add(bva, bvb) - adds two bitvectors in the same way two

unsigned integers would be added (overflow might occur).
– or(bva, bvb) - performs bitwise or on its operands.
– lshift(bva, k) - applies noncyclic left shift by k operation

on bva (e.g. lshift(10011, 2) = 01100).
– rshift(bva, k) - similar to lshift, but uses right shifting.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

147

– extract(bva, k) - returns the k − th bit of bva

An example SMT instance would be the following:

(= (1010, lshift(bva, 1)) ∧ (< (bva, 1000)) (1)

The problem is to determine whether there exists a bitvec-
tor bva for which the above formula holds. It states that bva
must be equal to 1010 after it is shifted to the left by one
place (first clause) and bva must be less than (in the standard
way binary numbers are compared) 1000 (second clause). The
formula is satisfiable and bva = 0101 is a model since it satis-
fied both clauses, while bva = 1101 is not due to not satisfying
the second clause. Note that this is a decision problem.

In the optimization variant, weights may be assigned to
clauses and the goal is to find a model which will satisfy all
clauses without weights and will minimize the sum of weights
of unsatisfied clauses. Optimization is not part of standard
SMT solvers by default, although Yices [6] supports it. E.g.
if we assigned a weight of 10 to the second clause in the pre-
vious example, both bva = 1101 and bva = 0101 would be
considered solutions to the problem, but the latter would be
considered a better solution.

3.1.1 Variables and Definitions

For each event e (e.g. a lesson), we create a number of bit
vectors all of length n, where n is the number of time slots
available in the instance. The vectors along with their mean-
ings are as follows:

– Ye - the i− th bit is set (a bit is set if it has value 1) if the
event is taking place at time slot i and is not set otherwise.
In xHSTT terminology, Ye covers all subevents of event
e. This implies that two subevents of the same event can
never clash in this representation.

– Se - the i − th bit is set if the i − th time slot is declared
as a starting time for event e and is not set otherwise.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

148

– Ke,d - the i− th bit is set if the i− th time slot is declared
as a starting time of duration d for event e and is not set
otherwise.

As an example of the above variables, take the following
bitvectors:

7 6 5 4 3 2 1 0 (time slot)
0 1 1 0 0 1 1 0 (Ye)
0 1 1 0 0 0 1 0 (Se)
0 1 1 0 0 0 0 0 (Ke,1)
0 0 0 0 0 0 1 0 (Ke,2)

(2)

From Ye, we see that event e (e.g. a Math lesson) is taking
place at time slot 1, 2, 5 and 6, because those bits are set
within Ye. Similarly, time slots 1, 5 and 6 are labeled as start-
ing times from Se, meaning event e has been split into three
subevents. Time slot 1 is labeled as a double lesson by Ke,2,
while 5 and 6 as lessons of duration 1 by Ke,1. Note that time
slot 5 could have also been labeled as a double lesson instead
of having two lessons of duration 1. Reasons for choice one
possibility over the other is regulated by constraints.

In the formal specification of HSTT, there are no restric-
tions on what can be defined as a starting point. One could
regard a starting point as a time t where a lecture takes place,
but has not took place at t − 1. However, while this is true,
this cannot be the only case when a time would be regarded
as a starting time, since e.g. time t = 5 and t = 6 might
be interpreted as last time slot of Monday and first time slot
of Tuesday and an event could be scheduled on both of these
times, but clearly we must regard both times as starting times,
since a double lecture does not extend over such long periods
of time. Therefore, any time can in general be regarded as a
starting time. It is of interest to note that the previous as-
signment, by the general formulation, could also be treated
as a double lesson for the purpose of constraints, even though
it extends over two days. Constraints give more control over
these kind of assignments.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

149

Formalities that are tied to starting times with regard to
the specification are expressed as follows:

If a starting time for event e has been assigned at time
t, then the corresponding event must also take place at that
time:

∧
∀e∈E

(= (or(Se, Ye), Ye)) (3)

The or and = statements are required to ensure that Ye has
bits set at least in the same positions as Se. This type of en-
coding is used frequently and one should become accustomed
to it.

Event e starts at time t if e is taking place at time t and
it is not taking place at time (t− 1):∧

∀e∈Espec)

= (or(and(Ye, lshift(inv(Ye, 1)), Se), Se) (4)

Note that the ordering of the application of inv and lshift
is important.

Let K+
e be the bit vector which i − th bit is set if any of

Ke,d vectors have an i− th bit set. This is obtained by taking
the or of all of the Ke,d. If time t has been set as a starting
time, associate a duration with it:

∧
∀e∈Espec

(= (K+
e,d, or(Se,t, K

+
e,d)) (5)

Let Sd
e be the vector obtained as rshift(Se, d). If a subevent

of duration d has been assigned and immediately after the
event is still taking place, then assign that time as a starting
time:

∧
∀e∈Espec

∀d∈D

(= (or(and(rshift(Ye, d), Ke,d), S
d
e), Sd

e)) (6)

Let K∗e,d be the vector obtained by taking the and of all of

Sek for k = 1..d and Ye. When a bit in Ke,d is set, ensure that

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

150

the event in question must take place for d consecutive hours
during this specified time:

∧
∀e∈Espec

∀d∈D

(= (or(K∗e,d, Ke,d), K
∗
e,d)) (7)

Let K
inv(k)
e,d be the vector obtained as rshift(inv(Ke,d), k),

K#k
e,d be the vector obtained by taking and of all Kj

e,d for j =

1..(k− 1) and K&k
e,d be the vector obtained by taking the and

of all K
#i)
e,d for i 6= k. If a duration has been specified for time

t, make sure that no other starting point other appropriate
Ke,t,d variables must be false:

∧
∀e∈Espec atopd∈D

(= (or(Ke,d, K
#d
e,d), Ke,d)) (8)

3.2 Cardinality Encodings

An important constraint that arises often is to determine the
number of set bits in a bit vector, as well as to impose penal-
ties if the appropriate number of bits are not set. E.g. if an
event must take place for two hours, then exactly two bits in
its Ye must be set.

Let us define a unary operation reduceBit(bva) = bva ∧
sub(bva, 1). When applied to bva, as the name suggests, it
produces a new bitvector which has one less bit set then bva.
For example:

∧ 1 1 0 1 0 0 (bva)
1 1 0 0 1 1 (sub(bva, 1))
1 1 0 0 0 0 (reduceBit(bva))

(9)

The original bitvector had three bits set, while the pro-
duced one was two set. The reduceBit operations is an im-
portant part for defining cardinality constraints.

In order to ensure that at least k bits are set in a bitvector,
we apply reduceBit k−1 times and require that the resulting

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

151

bitvector must be different from zero. For at most k, we apply
reduceBit k times and constrain that the resulting bitvector
must be equal to zero. For exactly k we encode at least k and
at most k. For example, asserting that at least 2 bits are set
is done in the following way:

∧ 1 1 0 1 0 0 (bva)
1 1 0 0 1 1 (sub(bva, 1))

∧ 1 1 0 0 0 0 (reduceBit(bva))
1 0 1 1 1 1 (sub(reduceBit(bva)), 1)
1 0 0 0 0 0 (reduceBit(reduceBit(bva)))

(10)
Since the final bitvector is different from the zero bitvector,

we conclude that at least 2 bits are set in bva.
For the soft cardinality constraints which penalize the ob-

jective value if a certain number of bits is set rather than for-
bidding their assignments, a similar technique. For at least k,
it is asserted before each i− th application of reduceBit that
the current bitvector is different from zero and is penalized
by some weight if it is not the case. For example, asserting
that at least 2 bits are set is done in the following way for
the soft version:

∧ 0 1 0 0 0 0 (bva 6= 0, no penalty)
0 0 1 1 1 1 (sub(bva, 1))
0 0 0 0 0 0 (reduceBit(bva) = 0, penalize)

(11)
Note that we checked for penalties in two cases (for the

initial bitvector bva and reduceBit(bva)), but only one case
was penalized. For at most k, a similar algorithm is used.
First, bitReduce is applied k times as in the regular cardinality
constraint version. Then, bitReduce is applied n− k times to
this bitvector (n is the size of bva) and before each application
it is asserted that the current bitvector is zero and is penalized
by some weight if it is not the case. Note that if we have some
hard constraint limiting the maximum number of bits that

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

152

may be set in a bitvector to some kmax, we do not perform the
second part of the algorithm n−k times, but rather just kmax−
k times. This was used frequently in the implementation.

3.3 Constraints

Each constraint has its points of application and each point
generates a number of deviations. Cost of the constraint is
obtained by applying a cost function on the set of deviations
produced and multiplying it by a weight. A cost function may
simply be the sum of all deviations. Our current implementa-
tion supports cost functions of sums of deviations, while cost
function sum of squares of deviations is supported by the
model but not implemented. The HSTT specification allows
for other cost functions as well, such as square of sums, but
we do not have an encoding for them currently. Fortunately,
only two instances use nonsupported cost functions (Koso-
vaInstance1 and StPaulEngland instances). Some constraints
are always encoded as hard (e.g. Avoid Clashes Constraints,
Assign Times Constraints) and because of this we avoid dis-
cussing their soft constraint variants.

We simplify the objective function by not tracking the
infeasibility value, rather regarding it was zero or nonzero.
By doing so we simplify the computation, possibly offering a
faster algorithm.

E, T and R are sets of events, times and resources, re-
spectively. Each constraint is applied to some subset of those
three and will be denoted by Espec, Tspec and Rspec. These
subsets are naturally in general different from constraint to
constraint. Note that it is possible to have several constraints
of the same type, but with different subsets defined for them.

We present encodings used in the experimental results, in
which we assume that all resources are already assigned to
events. We make this assumption as this eases the modeling
and readability of the constraints. Later on we provide a de-
scription on how this limitation can be overcome.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

153

3.3.1 Assign Time Constraints

Every event must be assigned a given amount of times. For
example, if a lecture lasts for two hours, two time slots must
be assigned to it.

Each event’s Ye vector must have exactly d bits set, where
d is the duration of the event:

∧
∀e∈E

(exactly d[Ye,t : t ∈ T]) (12)

3.3.2 Avoid Clashes Constraint

Specified resources can only be used at most by one event at a
time. For example, a student may attend at most one lecture
at any given time.

Let E(r) be the set of event which require resource r. For
each resource r, each time slot i and each combination of
two Ye vectors of events from E(r) at most one bit at i − th
location may be set.

∧
∀r∈R∀e1,e2∈E(r)e1 6=e2

(= (and(Ye1, Ye2), 0)) (13)

For example, for resource r let E(r) = {Ye1, Ye2, Ye3} and
let this constraint be defined for r.

∧ 0 0 1 1 1 1 (Ye1)
0 1 0 0 0 0 (Ye2)
0 0 0 0 0 0 (= 0)

(14)

The previous check ensures that there are no clashes for
Ye1 and Ye2.

∧ 0 0 1 1 1 1 (Ye1)
0 0 0 0 1 0 (Ye3)
0 0 0 0 1 0 (6= 0, violated)

(15)

However, since a clash exists between Ye1 and Ye3, the con-
straint is detected to be violated and some changes to the Ye1,
Ye2, Ye3 bitvectors must be made.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

154

3.3.3 Avoid Unavailable Times Constraints

Specified resources are unavailable at certain times. For ex-
ample, a teacher might be unable to work on Friday.

For each resource r, each unavailable time slot i and each
Ye vector of events from E(r) we force the i− th bit to be set
to zero.

∧
∀r∈Rspec∀e∈E(r)∀i∈Tspec

(= (extract(Ye, i), 0)) (16)

If this constraint is used as a soft constraint, all of the
above clauses would be assigned the given weight, as points
of application are resources and deviations are calculated as
the number of times a resource is assigned to an unavailable
time.

For example, if time slots 1 and 4 are unavailable for re-
source r and event e requires r:

7 6 5 4 3 2 1 0 (time slot)
0 1 1 0 0 1 1 0 (Ye)

(17)

Ye would violate this constraint, as Ye is taking place on
time slot 1, which is a unavailable one, meaning that a differ-
ent bitvector needs to be assigned to Ye.

3.3.4 Split Events Constraints

This constraint has two parts.
The first part limits the number of starting times an event

may have within certain time frames. For example, an event
may have at most one starting time during each day, prevent-
ing it from being fragmented within days.

The second part limits the duration of the event for a single
subevent. For example, if four time slot must be assigned to
a Mathematics lecture, we may limit that the minimum and
maximum duration of a subevent is equal to 2, thus ensuring
that the lecture will take place as two blocks of two hours,
forbidding having the lecture performed as one block of four
hours.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

155

This constraint specifies the minimum Amin and maximum
Amax amount of starting times for the specified events:

∧
∀e∈Espec

(atLeast Amin[Se,t] ∧ atMost Amax[Se,t) (18)

In addition, this constraint also imposes the minimum dmin

and maximum dmax duration for each subevent.

∧
∀e∈Espec∀d∈ili<dmin∨i>dmax

(atMost 0[Ke,d]) (19)

If the constraint is specified as soft, then the soft cardinality
encodings are used instead. Points of applications are events
and deviations are calculated as the number of times an event
has been assigned a duration which is less than dmin or greater
than dmax, plus the amount by which the number of starting
times for the event event falls short of Amin or exceeds Amax.

3.3.5 Spread Events Constraints

Certain events must be spread across the timetable, e.g. in
order to avoid situations in which an event would completely
be scheduled only in one day.

An event group eg is a set of events. Let vector Zeg be a
bit vector which has its i − th bit set iff an event e ∈ eg is
taking place at time i. This is obtained by applying or to all
of the appropriate Ye vectors.

This constraint specifies event groups to which it applies,
as well as a number of time groups (sets of times) and for
each such time group the minimum and maximum number
of starting times an event must have within times of that
time group. Let TGspec denote this set of sets of times and let
masktg be the bit vector which has its i− th bit set iff i is a
time slot of time group tg:

There must be at least dmin
i starting times within the given

time groups (min is a subscript, not exponentiation):

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

156

∧
∀tgi∈TGspec
eg∈EGspec

(atLeast dmin
i [and(Zeg,masktg)]) (20)

A similar encoding to the one above is also used, but with
atMost dmax.

If this constraint is used as a soft constraint, the soft car-
dinality constraint is used instead. Points of application are
event groups (not events) and deviations are calculated as the
number by which the events group falls short of the minimum
or exceeds the maximum.

3.3.6 Distribute Split Events Constraint

This constraint specifies the minimal and maximum num-
ber of starting times of a specified duration. For example,
if duration(e) = 10, we may impose that the lecture should
be split so that at least two starting times must have duration
three. Formally:

There must be at least dmin starting times with given du-
ration d:

∧
∀e∈Espec

(atLeast dmin[Ke,d] ∧ atMost dmax[Ke,d]) (21)

3.3.7 Limit Busy Times Constraints

This constraints imposes limits on the number of times a re-
source can become busy within certain a time group, if the
resource is busy at all during that time group. For example, if
a teacher teaches on Monday, he or she must teach at least for
three hours. This is useful in preventing situations in which
teachers or students would need to come to school for only to
have a lesson or two.

A resource is busy at a time group tg iff it is busy in at
least one of the time slots of the tg. Let TGspec denote this
set of sets of times:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

157

∧
∀r∈Rspec

∀tg∈TGspec

(or(atLeast bmin[and(Ye,masktg)], (= (and(Ye,masktg)), 0)))

(22)

A similar encoding to the one above is also used, but with
atMost bmax. Note that in this case or represents logical or,
rather than bitvectoror.

If this constraint is used as a soft constraint, the soft cardi-
nality constraint is used instead, although special care must
be given as this is a conditional cardinality constraint: if the
calculated vector is different from zero then the cardinality
constraints need to be fulfilled. Points of application are re-
sources and each resource generates multiple deviations (one
for each time group) which calculated as the number by which
the events group falls short of the minimum or exceeds the
maximum.

3.3.8 Limit Idle Times Constraints

This constraint specifies the minimal and maximum number
of times in which a resource can be idle during the times in
the specified time groups. For example, a typical constraint
is to impose that teachers must not have any idle times.

A time slot t is idle with respect to time group tg (set
of times) if it is not busy at time t, but is busy at an early
time and at a later time of the time group tg. For example,
if a teacher teaches classes Wednesdays at Wed2 and Wed5,
he or she is idle at Wed3 and Wed4, but is not idle at Wed1
and Wed6. This constraint places limits on the number of idle
times for each resource. Let vector Ge,tg be the vector obtained
by taking or of bitvectors and(and(Ye,masktg), rshift((Ye,masktg), k))
where k = 1..n and n is the number of times in time group
tg. Let vector He,tg be similar, except using lshift instead of
rshift. We then encode the constraint as follows:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

158

There must be at least idlemin idle times during a time
group:∧

∀tg∈TGspec
r∈Rspec

(atLeast idlemin[and(inv(Ye), and(He,tg, Ge,tg))])

(23)
A similar encoding to the one above is also used, but with

atMost idlemax. If this constraint is used as a soft constraint,
the soft cardinality constraint is used instead.

3.3.9 Cluster Busy Times Constraints

This constraint specifies the minimal and maximum number
of specified time groups in which a specified resource can be
busy. For example, we may specify that a teacher must fulfill
all of his or her duties in at most three days of the week.

We first define a helper bitvector Br for each resource, in
which i− th bit is set iff the resource is busy at the i− th time
group. Therefore, i− th bit in Br is equal to the or operation
on all of the i− th bits of bitvectors in E(r). With this helper
bitvector, we may now encode the constraint as:

There must be at least bmin
tg busy time groups:

∧
∀r∈Rspec

(atLeast bmin
tg [Br]) (24)

A similar encoding to the one above is also used, but with
atMost bmax. If this constraint is used as a soft constraint,
the soft cardinality constraint is used instead.

3.3.10 Prefer Times Constraints

This constraint specified that certain events should be held
at certain times. If an optional parameter d is given, then
this constraint only applies to subevents assigned duration
d. For example, a lesson of duration 2 must be scheduled on
Monday, excluding the last time slot on Monday.

Let Pe be the bitvector in which i − th bit is set iff i is a
preferred time. We then encode:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

159

∧
∀e∈Espec

(atMost 0[and(?, inv(Pe))]) (25)

where ? is either Ye or Ke,d, depending on whether the
optional parameter d is given. Note that this constraint is not
the same when the optional parameter is not given and when
d = 1.

3.3.11 Order Events Constraints

This constraint specifies that one event can start only after
another one has finished. In addition to this, parameters Bmin

and Bmax are given which define the minimum and maximal
separations between the two events and are by default set to
zero and the number of time slots, respectively. The constraint
specifies a set of pairs of events to which it applies.

If the first event in a pair is taking place at time t, then
the second event cannot take place at time t + Bmin nor at
any previous times:

∧
∀(e1,e2)∈E2

spec

(< (lshift(ei, Bmin), ej)) (26)

A similar encoding to the one above is also used, but with
> and Bmax. Special care must be taken as overflows may
happen during the shift operations.

3.3.12 Link Events Constraints

Certain events must be held at the same time. For example,
physical education lessons for all classes of the same year must
be held together. This constraint specifies a certain number
of event groups and imposes that all events within an event
group must be held simultaneously. Let EGspec denote this
set of sets of events. All events within an event group must
be held at the same times:

∧
∀eg∈EGspec

ej∈eg

(atMost 0[and(Zeg, inv(Yej))]) (27)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

160

If the constraint is declared a soft one, the soft cardinal-
ity constraint is used instead. Points of application are event
groups (not events) and deviations are calculated as the num-
ber of times in which at least one of the events within the
event group is taking place, but not all of them.

3.3.13 Extending the Model

As mentioned in the beginning, we made the assumption that
all resources have been already assigned to events, as it is eas-
ier to model, implement and present the formulation. This is
a reasonable assumption, as most instances are of this form.
Still, a significant part of the instances require assignments
of resource to events. Our model is easy to extend with these
requirements by introducing new bitvectors: for each event e
and resource r, a bitvector is created in which i − th bit is
set iff resource r has been assigned to event e at time i. With
these bitvectors, the other resource assigning constraints (we
direct interested readers to [14]) can be encoded in a similar
fashion as the ones already presented, along with certain mod-
ifications need to be made to Assign Time and Avoid Clash
constraints.

However, special care needs to be given when doing so to
concrete instances, as requirements for resource assignments
can be diverse. For example, in instance SpainInstance given
in the ITC repository, assignments consist of assigning one
gym room out of two available. For instance EnglashStPaul,
room need to be assigned and many symmetries appear be-
cause all rooms are identical. Hence, it might be a better idea
to restrict the number of events at each time to the number
of rooms, rather than assigning rooms directly to events.

In addition, it may be of interest to simplify the Ke,d and Se

encodings which would simply state that if an event has three
consecutive bits set it is treated as a subevent of duration
3 rather than of the complicated formulation given or that
only the first constraint regarding Se should be used. The
reason the encoding is so complicated is because of the way

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

161

the general formulation specifies starting times, but this is
not necessary for all instances.

3.3.14 Other Theories

We have done some initial experiments with linear integer
arithmetic theories in two different formulations. One of the
formulations had variables which were restricted to binary val-
ues and the encodings were similar to a pure SAT formulation,
except that the cardinality constraints could be encoded more
elegantly. The second encoding took more advantage of the
integer arithmetic in which for each event we create a number
of variables equal to its duration. The value of the variable de-
termines which time slot the event takes place. This reduced
the number of variables significantly when compared to the
binary version, but some constraints were harder to encode.
However, regardless of that, both modeling options failed to
produce any solutions to problem instances, even when only
Assign Time, Avoid Clashes and Prefer Times constraints
were used. Therefore, we did not continue with these mod-
elings and continued with the bitvector formulation, which
performed better in these initial experiments.

4 Computational Results

In our current experiments we evaluated our approach on
some benchmark instances from HSTT which can be found on
the repository of the International Timetabling Competition
2011 [1]. A subset of instances which were suggested by the
competition as test beds, as well as the ones used in the com-
petition have been chosen (these two sets intersect). All tests
were performed on (Intel Core i3-2120 CPU @ 3.30GHz with
4 GB RAM) and each instance was given a single core. We
restricted the computational time to 24 hours per instance.

In the instances, the number of time slots ranges from 25
to 142, number of resources from 8 to 99, number of events
from 21 to about 350 (exception is the Italy4 instance with

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

162

748 events) with total event duration from 75 to around 1000.
These numbers are approximations and vary heavily from in-
stance to instance. We do not provide detailed information,
but direct the interested reader to [12] [1] [14].

In the tables below, we denote the objective function cost
by (x, y), where x is the infeasibility value and y is the objec-
tive value. If a dash is used, that means that the solver failed
to produce a solution. If an x is used, that means that we had
not provided an objective value, as in initial solution has been
generate in which only hard constraints had been considered
and the resulting objective value is essentially random.

We experimented with the SMT solver Yices 1.0.40 (re-
leased December 4, 2013) [6]. It was chosen because it is the
only SMT solver to our knowledge which directly supports
optimization, rather than just checking for satisfiability.

4.1 Comparisons of Results

We compare results we had obtained with our approach and
GOAL (the winning team of the competition). GOAL’s algo-
rithm first generates an initial solution using KHE [10] and
then performs its heuristic search algorithm. Note that the
initial solution generated can be unfeasible and in some cases
the algorithm fails to improve this solution to a feasible one.

In the table below we present the computational results. To
make our comparison fair, we ran our approach and GOAL on
the same computer platform and each solver was restricted to
24 hours and was given one core. The source code of GOAL
was provided by their authors [4]. The time to convert an
instance from xHSTT to a SMT instance is negligible (a few
seconds at most) when compared to the SMT solution process.

As we see in the table, we provide experimental results for
11 instances. Other instances were not included because the
current implementation does not support them. The reasons
for this are either that we did not yet implement constraints
which allow resource assignments (e.g. Assign Resource Con-
straints), use the square of sums (we currently do not have a

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

163

model for this cost function) or the sum of squares cost func-
tion (we have a model for this cost function but is not yet
implemented).

The abbreviations used in the columns are as follows: OA
is our approach, GOAL is the winning team algorithm:

Name OA GOAL

BrazilianInstance1 (0, 47) (0, 54)

BrazilianInstance2 (0, 60) (1, 42)

BrazilianInstance4 (0, x) (16, 95)

BrazilianInstance5 (0, x) (4, 121)

BrazilianInstance6 (0, x) (4, 195)

BrazilianInstance7 (0, x) (11, 230)

SouthAfricaLewitt2009 (0, x) (0, 18)

SouthAfricaWoodlands (-, -) (2, 13)

GreeceHighSchool (0, 0) (0, 0)

ItalyInstance1 (-, -) (0, 19)

ItalyInstance4 (-, -) (0, 57)

Table 1 Results obtained after 24 hours.

There might be differences in the results obtained by GOAL
in the competition and obtained by our 24 hour runs, because
in the competition competitors in the final phase were given
one month to use whatever available resources to provide the
best results. We focus here on the comparison with the winner
of ITC competition, because we think that this gives a good
idea how good our approach performs in a limited amount of
time compare to one of best existing approaches for this prob-
lem. For some of the instances, better upper bounds were ob-
tained after the competition by GOAL and other approaches
without time or resource limitations.

It is interesting to note that Yices found an initial solu-
tion for all instance except three quickly (within 10 minutes
for all but SouthAfricaLewitt which took several hours), but
had not managed to perform any optimization for most in-
stances within the given time limit. Even so, as we can see
from Table 1, from the examples in which our encoding was

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

164

done successfully, our approach could find feasible solutions
in which GOAL could not in seven instances within the given
time limit. A feasible solution has been found for all except
for three instances. In the case of the Italy4 instance, the
program ran out of memory.

Overall, we conclude that the SMT approach can provide
feasible solutions in short time for several instances. Fur-
ther research is needed to successfully apply this technique
for the optimization variant. In general, it seems that SMT
strengths are in satisfiabiliy rather than optimization, while
GOAL could be used for optimizing solutions which are (near)
feasibility.

5 Conclusion

High school timetabling is a wide spread and important prob-
lem and because of this, developing algorithms to solve the
problem are of great importance.

In this paper, we have shown that the general HSTT prob-
lem [14] can indeed be modeled as a SMT problem, despite
the generality of the specification, with the exception of not
being able to model the square of sums of deviation cost func-
tion. We presented a complete and detailed encoding using
theory of bitvectors in the general sense as required by the
specification under the assumption that resources had been
preassigned to events, but have sketched how the model can
be extended and discussed some important special cases.

We implemented and evaluated our approach on a sub-
set of benchmark instances suggested and used by the Third
International Timetabling Competition 2011 and compared
our results with GOAL, the winning team of the Third In-
ternational Timetabling Competition 2011. For some of the
tested instance, our approach managed to find feasible solu-
tions within a given time limit and there is space for further
improvements. Generated encodings solve practical problems
and as such can be used as benchmarks for the evaluation of
SMT solvers.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

165

Furthermore, we plan on to investigate hybridization of
our approach with heuristic techniques (e.g. develop a large
neighborhood search algorithm) that will utilize SMT.

Acknowledgements The work was supported by the Vienna PhD School of Informatics
and the Austrian Science Fund (FWF): P24814-N23.

References

1. International timetabling competition 2011. http://www.utwente.nl/ctit/hstt/itc2011/welcome/.
Accessed: 2014-1-30

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Proceed-
ings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
England), vol. 13, p. 14 (2010)

3. Bofill, M., Suy, J., Villaret, M.: A system for solving constraint satisfaction problems
with SMT. In: Theory and Applications of Satisfiability Testing–SAT 2010, pp. 300–305.
Springer (2010)

4. Brito, S.S., Fonseca, G.H.G., Toffolo, T.A.M., Santos, H.G., Souza, M.J.F.: A SA-VNS
approach for the high school timetabling problem. Electronic Notes in Discrete Math-
ematics 39, 169–176 (2012)

5. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems, pp. 337–340. Springer (2008)

6. Dutertre, B., De Moura, L.: The Yices SMT solver. Tool paper at http://yices. csl. sri.
com/tool-paper. pdf 2, 2 (2006)

7. Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-commodity
flow problems. In: Foundations of Computer Science, 1975., 16th Annual Symposium
on, pp. 184–193. IEEE (1975)

8. Fonseca G. H. G., S.H.G.T.T.A.M.B.S.S.S.M.J.F.: A SA-ILS approach for the high
school timetabling problem. In: In Proceedings of the ninth international conference on
the practice and theory of automated timetabling, PATAT (2012)

9. Kheiri, A., Ozcan, E., Parkes, A.J.: HySST: hyper-heuristic search strategies and
timetabling. In: Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012) (2012)

10. Kingston, J.H.: The KHE high school timetabling engine (2010)
11. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.

In: Theory and Applications of Satisfiability Testing-SAT 2006, pp. 156–169. Springer
(2006)

12. Post, G., Ahmadi, S., Daskalaki, S., Kingston, J., Kyngas, J., Nurmi, C., Ranson,
D.: An XML format for benchmarks in high school timetabling. Annals of Op-
erations Research 194(1), 385–397 (2012). DOI 10.1007/s10479-010-0699-9. URL
http://dx.doi.org/10.1007/s10479-010-0699-9

13. Post, G., Di Gaspero, L., Kingston, J.H., McCollum, B., Schaerf, A.: The third inter-
national timetabling competition. Annals of Operations Research pp. 1–7 (2012)

14. Post, G., Kingston, J.H., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., Nurmi,
C., Musliu, N., Pillay, N., Santos, H., et al.: XHSTT: an XML archive for high school
timetabling problems in different countries. Annals of Operations Research pp. 1–7
(2011)

15. Sørensen, M., Dahms, F.H.: A two-stage decomposition of high school timetabling ap-
plied to cases in Denmark. Computers & Operations Research 43, 36–49 (2014)

16. Sørensen, M., Kristiansen, S., Stidsen, T.R.: International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In: Proceedings of the Ninth Inter-
national Conference on the Practice and Theory of Automated Timetabling (PATAT
2012), p. 489 (2012)

17. Sørensen, M., Stidsen, T.R.: Comparing solution approaches for a complete model of
high school timetabling. Tech. rep., DTU Management Engineering (2013)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

166

