
FAKULTÄT FÜR INFORMATIK

M.Sc. Arbeit

Generic Programing for Graph Problems
Using Tree Decompositions

ausgeführt am

Institut für Informationssysteme

Arbeitsgruppe Datenbanken und Artificial Intelligence

der Technischen Universität Wien

unter der Anleitung von

Priv.-Doz. Dr. Nysret Musliu
Dr. Fang Wei

durch

Emmanouil Paisios

Wien, 23. Juli 2008 .
Emmanouil Paisios Nysret Musliu

FAKULTÄT FÜR INFORMATIK

Master Thesis

Generic Programing for Graph Problems
Using Tree Decompositions

carried out at the

Institute of Information Systems

Database and Artificial Intelligence Group

of the Vienna University of Technology

under the instruction of

Priv.-Doz. Dr. Nysret Musliu
Dr. Fang Wei

by

Emmanouil Paisios

Vienna, July 23, 2008 .
Emmanouil Paisios Nysret Musliu

Contents

Kurzfassung v

Abstract vii

Acknowledgments ix

1 Introduction 1

2 Preliminaries 3
2.1 Basic Definitions . 3

2.1.1 Related Algorithms . 5
2.2 Tree Decompositions . 6

3 General Algorithms and Tree Decompositions 13
3.1 Structure . 13
3.2 Basic Notions . 14
3.3 Algorithm design . 15

3.3.1 Formal rules for notions 15
3.3.2 Complexity Issues . 16

4 Implementation 19
4.1 General Structure . 19
4.2 Basic Classes and Datatypes 20

4.2.1 The ugsGraph class 22
4.2.2 The treeDec class . 24
4.2.3 Other Operations . 29

4.3 Plug-in design . 29
4.3.1 The sg solver template 30
4.3.2 The sg visitor class . 31
4.3.3 Notions of the general algorithm 32
4.3.4 Property writers . 35

4.4 Other functionality . 35
4.4.1 Input and Output . 35
4.4.2 Profiling . 36

4.4.3 Registering the Plug-in 37

5 Reference Plug-ins 39
5.1 3 Colouring Algorithm . 39

5.1.1 Algorithm Description 39
5.1.2 Implementation . 43
5.1.3 Testing . 45

6 Experiments 51
6.1 Testing construction of basic objects 51

6.1.1 Nice tree decompositions 51
6.1.2 Terminal Subgraphs 52

7 Conclusion 55
7.1 Future work . 55

Kurzfassung

Tree decomposition hat eine zunehmende Bedeutung als Werkzeug zur Lösung
von Graphenproblemen, bedingt durch wichtige algorithmische Eigenschaften
der Klasse der Graphen mit beschränkter treewidth. Ein wichtiges Theo-
rem von Courcelle [Cou90] besagt, dass Eigenschaften eines Graphen die
in MSO Logik beschrieben werden können, in linearer Zeit für Graphen mit
beschränkter treewidth entschieden werden können. Dies gibt den theoretis-
chen Hintergrund für die tractability vieler Graphenprobleme, intractability
im Allgemeinen und für die oben erwähnte Graphenklasse regte es zu vie-
len Algorithmen für MSO-definierbaren Problemen an. Bodlaender schlägt
in [Bod97] einen Ansatz vor zum Design von Algorithmen mittels dynamis-
cher Programmierung unter der Verwendung von tree decomposition. Dieser
Ansatz stellt eine verallgemeinerte Methode vor, mittels der sich auch bereits
vor dieser Arbeit vorgestellte Algorithmen entwerfen hätten lassen, wichtiger
jedoch diese Methode kann verwendet werden um neue Algorithmen für eine
Vielzahl von Graphenproblemen zu konstruieren.

In dieser Diplomarbeit haben wir diesen Ansatz untersucht und imple-
mentiert. Das Ergebnis ist ein System, das Bodlaender’s Methode ver-
wendet und das es erlaubt spezifische Teile des Algorithmuses mittels Plu-
gins zu beschreiben. Um die Verwendbarkeit und Effizienz des Systems
einzuschätzen haben wir einen Algorithmus für Dreifärbung als Plugin im-
plementiert.

Abstract

Tree decompositions have been an increasingly useful tool for solving prob-
lems on graphs due to the important algorithmic properties of the class of
graphs of bounded treewidth. An important theorem by Courcelle [Cou90]
stated that properties definable in MSO logic can be decided in linear time
on graphs of bounded treewidth. This provided a theoretical base which re-
vealed tractability of many graph problems, intractable in the general case,
for the aforementioned class of graphs and instigated many algorithms solv-
ing MSO-definable problems. Bodlaender proposed a dynamic programming
approach to designing algorithms using tree decompositions [Bod97]. The
approach encompassed several of the algorithms already invented, but was
also used as a method for the construction of new ones for a variety of graph
problems.

In this thesis we studied and implemented this approach, delivering a sys-
tem that operates using plug-ins to describe the specific parts of algorithms
using Bodlaender’s method. Furthermore we implemented a 3 colouring
algorithm as a plug-in for the system in order to assess its usability and
efficiency.

General Terms Tree decompositions, Dynamic programming.

Keywords Graph theory, dynamic programming, parameterized complex-
ity, tree decomposition, bounded treewidth.

Acknowledgments

Upon the completion of this work, I would like to express my gratitude to
a number of kind friends and coworkers. My supervisor Fang Wei, helped
me not only with technical advice but also with her guidance and provided
me with the confidence I needed for my future pursuits. Professor Musliu,
helped me very much during last stage of my thesis, with his comments and
suggestions. My friends and fellow students Bruno, Katya, Tomer, Hannes
and the other students for their advice and help, and for making my life
at the university during my work, fruitful and pleasant. The whole EMCL
program and to Prof. Hölldobler and Prof. Pereira who helped me during
the unusual beginning of my studies. And to my dear friends Vadim, Sasha
and their son Misha, I am grateful, for making me a part of their beautiful
life. I am thankful to my parents who provided for me in my every step
with love and care, and to my sister who was there for me with a devotion
that I do not feel worthy of. Finally to my dear and lovely Ayşe, for all
those beautiful moments that were, and the ones that are to come, for her
unswerving love and the dreamy world she bestowed on me.

Chapter 1

Introduction

This thesis is concerned with the implementation of a general approach to
designing algorithms. This approach is presented in [Bod97] and describes
a way to design algorithms solving problems for a family of graphs called
graphs of bounded treewidth. This family of graphs has many important
algorithmic properties, chiefly due to a very important theorem by Courcelle
[Cou90] which stated that all problems expressible in Monadic Second Order
logic(MSO) can be decided in linear time on graphs of bounded treewidth1.
From the well known equivalence of MSO-logic formulas and finite automata
one can derive an automated approach to solving these problems using MSO
descriptions. Such efforts were made, (e.g. by [Mar06],[KMS02]), yet in
some cases proved to be rather difficult to use because of “state explosions”
of the generated automata as observed by [GPW07],[Mar06], which had as
a consequence either unstable or very lengthy executions. Thus, dedicated
algorithms for this class of problems seem to be still important. In [Bod97],
Bodlaender observed that many of the algorithms proposed shared a com-
mon underlying structure which he formulated and described and which we
endeavored to implement.

The result is a generic, pluggable system which provides the necessary
background for algorithms following the aforementioned design. The pur-
pose is to have a system on which this class of algorithms can be easily
implemented and several algorithms objectively compared. Furthermore, in
order to appraise the system, and exhibit its functionality, we implemented
an example algorithm solving the 3-colouring problem on this class of graphs.

The thesis is structured in the following way:

Chapter 2 Fundamentals of graph theory are presented briefly, followed by
background knowledge of tree decompositions. Some of the algorithms
implemented are presented in detail along with the related complexity
results.

1For a very interesting survey about this and other related meta-theorems see [Gro07]

2 Introduction

Chapter 3 The formal description of the generic algorithm approach is
presented. The relevant notions are explicated and there is a discussion
for further constructions.

Chapter 4 The general structure of the implemented system is presented.
Following the structure the implementations corresponding to basic
objects and notions of the algorithm are explained and complexity
related information for them is provided.

Chapter 5 Chapter 5 is composed of 2 parts. In the first part a 3 colouring
algorithm is presented according to the generic design. The necessary
notions are defined and their corresponding complexity is sketched.
The second part presents in brief the implementation details and pro-
ceeds with some test results to provide an example of the algorithm’s
behavior.

Chapter 6 In chapter 6, several test results regarding the system are made.
The measurements are independent of the plug-in and their purpose
is to show the overhead of the base system.

Conclusion There is a discussion regarding future work and several con-
clusions regarding the thesis.

Chapter 2

Preliminaries

In this chapter we cover several of the fundamental knowledge necessary
for the thesis. The first part of this chapter will cover some fundamental
graph-related topics. The latter part, will include definitions of the main
concepts of the generic algorithm approach such as tree decompositions and
nice tree decompositions. For a more thorough introduction to graph theory
the reader can consult [Die05].

2.1 Basic Definitions

Definition 2.1.1 (Graph). A graph G is a pair of sets (V,E) with E ⊆ V ×
V . The set V is the set of vertices and the set E the set of edges of the graph.
Throughout the thesis we consider only undirected graphs, that is, graphs
where the order of the vertices in each edge is not important.More formally,
for each e, e′ ∈ E, with e = (v, u) and e′ = (u, v), e′ = e. Two vertices u, v
are called adjacent if there is an edge (u, v) ∈ E. The neighborhood of a
vertex v, N (v) is the set of vertices adjacent to v. We will denote the set of
vertices/edges of a graph G with V (G)/E(G) respectively. Order of a graph
is the number of its vertices |V |.
Definition 2.1.2 (Subgraph). A subgraph of a graph G = (V,E) is a graph
G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. An induced subgraph of G is a
subgraph H = (V ′, E′) where each e = (v, u) ∈ E′ iff e ∈ E and v, u ∈ V ′.
We denote the induced subgraph of G, with a set of vertices V ′ as G[V ′].

Definition 2.1.3 (Path). Let G = (V,E) be a graph. For u, v ∈ V , a path
from u to v is a sequence of edges P = e1, . . . , en such that e1 = (u, v1),
en = (un, v), and for each ei = (ui, vi) 6= e1 we have ui = vi−1. The length
of the path is n. We call the distance d(u, v) between u and v the length
of the minimum path from u to v. A path from u to u is called a cycle. A
vertex is in a path if it is part of any of the edges of the path. Any edge
connecting two non-adjacent vertices in a cycle is called a chord.

4 Preliminaries

Definition 2.1.4 (Clique). A clique in a graph G = (V,E) is a set of
vertices C such that for each u, v ∈ C, (u, v) ∈ E. We will say that C is
k-clique if |C| = k.

Definition 2.1.5 (Connected Graph). A graph G = (V,E) is called con-
nected if for every pair u, v ∈ V there is a path from u to v. G is called
acyclic if it contains no cycles.

Definition 2.1.6 (Tree). A tree T = (V,E) is a connected acyclic graph.
A rooted tree is a tree where a vertex r ∈ V is distinguished to be the root
of the tree. This enables us to define a hierarchy w.r.t to the distance of
any vertex from the root. A vertex u is a child of a vertex v if (u, v) ∈ E
and d(u, r) = d(v, r) + 1. A leaf is a vertex that has no children. A tree is
called binary tree if each of its vertices has at most two children.

Definition 2.1.7 (k-tree). A graph G = (V,E) is called a k-tree if it can
be described by the following recursive definition:

• Any k + 1-clique is a k-tree.

• Given a k-tree with n nodes, a k-tree with n + 1 nodes can be con-
structed by creating a new node adjacent only to the vertices of a
k-clique of the k-tree.

Definition 2.1.8 (Triangulated Graph). A triangulated graph G = (V,E)
is a graph such that there is no cordless cycle of length greater than 3.

Definition 2.1.9 (Simplicial Vertex). A vertex v in G is called simplicial
if its neighborhood N (v) is a clique. Furthermore, we say that G has a
perfect elimination scheme or perfect elimination order if there is a sequence
of vertices e = v1, . . . , vn such that each vi ∈ e is a simplicial vertex in
G[vi, . . . , vn].

The following theorem can be found in [FG65] and [Ros70]. We will need
it later to show the correctness of the algorithm for constructing nice tree
decompositions.

Theorem 2.1.10. A graph is triangulated iff it has a perfect elimination
scheme. Furthermore for a triangulated graph G, any simplicial vertex can
start an elimination scheme.

Definition 2.1.11. A terminal graph H is a triple (V,E,X) such that
(V,E) is a graph, and X is a (possibly ordered) subset of the vertices in V .
Each v ∈ X is called a terminal of H.

The binary operation ⊕ is defined on terminal graphs as follows. Given
two terminal graphs H = (VH , EH , XH), H ′ = (VH′ , EH′ , XH′). We say
G = H ⊕H ′ if G is a graph (V,E) such that V is constructed by taking the

2.1 Basic Definitions 5

⊕ =

H = (VH , EH , XH)

XH = {vh1 , vh3 , vh4}
H′ = (VH′ , EH′ , XH′)

XH′ = {vh′1 , vh′3 , vh′4 , vh′5}

H H ′

vh2vh1

vh3 vh4
vh′

3

vh′
1

vh′
2

vh′
5

vh′
4

vh1

vh2

vh′
2

vh′
5

vh4vh3

Figure 2.1: Example of the operation H ⊕H ′ = G.

disjoint union of VH , VH′ and joining only those vertices common between
XH and XH′ . An example of the operation ⊕ can be seen in Figure 2.1.

A terminal graph H, is called terminal subgraph of a graph G, if there
exists a terminal graph H ′ such that H ⊕H ′ = G.

2.1.1 Related Algorithms

Calculating Perfect Elimination Schemes

AnO(|V ||E|) time algorithm for the calculation of perfect elimination schemes,
is described in [RT75] and is presented here. We need to define the following:

• A mapping a : {1, . . . , n} → |V |, where n = |V |.
• Labels of the form L(v) = [p1, . . . , pk], where p1, . . . , pk are natural

numbers. and

• An ordering of the labels such that L(v) < L(u), if for L(v) = [p1, . . . , pk]
and L(u) = [q1, . . . , ql] we have:

– k < l and p1 = q1, . . . , pk = qk, or

– There exists m ≤ min(k, l) such that p1 = q1, . . . , pim−1 = pjm−1

and pim < pjm .

We present the actual algorithm in Algorithm 1.

Constructing a k-tree

Given a triangulated graph GT a k-tree can be constructed in linear time for
k constant, using Algorithm 2 which was introduced in [Klo94]. The k-tree
produced by Algorithm 2 is also a triangulation of G.

It is important to note here that the assumption of k being constant
expresses the parameterized complexity of the algorithm with parameter k.
In the rest of the thesis almost all of the graph related complexity results we

6 Preliminaries

Algorithm 1 Perfect elimination scheme for triangulated graphs.
Require: An undirected triangulated graph G.

For each vertex u, assign a label L[u], empty.
for i = n down to i = 0 do

Select vertex um such that L[um] = max({L[u], u ∈ V }) and a(j) 6= u,
for all 1 ≤ j ≤ n.
a(i)← um.
for all w such that a(j) 6= w, for all 1 ≤ j ≤ n and there exists a path
[um, v1, . . . , vp, w] do

if for 1 ≤ k ≤ p, there exists no j with a(j) = vk and L[vk] ≤ L[w].
then

Append i to L[w].
end if

end for
end for
Return the array of vertices a(1), · · · , a(n).

present, refer to the parameterized complexity with parameter the width of
the tree decomposition which we will describe in the next section.

An example result of the algorithm 2 is shown in Figure 2.2.

v1

v2 v4 v7

v8

v9v6

v5v3

v10 v11

(a) Graph G.

v1

v4v2

v3

v6

v5

v7 v8 v9

v11 v10

(b) a 2-tree of G.

Figure 2.2: Example of a k-tree with k=2.

2.2 Tree Decompositions

Intuitively, a tree decomposition is a mapping from a graph G to a tree. An
important related notion we will describe below is the treewidth of a graph.
This is due to Courcelle’s theorem [Cou90] which states that all properties
expressible in monadic second order logic, can be decided in linear time, for
the class of graphs of bounded treewidth.

2.2 Tree Decompositions 7

Algorithm 2 k-tree construction from a triangulated graph.
Require: A triangulated graph GT and an integer k.

Using Algorithm 1 construct a perfect elimination scheme for GT ,
{v1, . . . , vn}.
Initialize Gk to be the k + 1 clique using vn−k, . . . , vn.
for i = n down to n− k − 1 do

Add vi to Gk.
for j = i to n do

Add edge (vi, vj) to Gk.
end for

end for
for i = n− k − 2 down to 1 do

for all w ∈ N (vi) and in Gk do
Add node vi to Gk.
Add edge (w, vi) to Gk.

end for
end for

Definition 2.2.1 (Tree Decomposition [Bod97]). Given a graph G = (V,E),
a tree decomposition is a pair D = (S, T) where T is a tree (I, F) and
S = {Xi|i ∈ I}, where each Xi corresponding to a vertex i of the tree, is
called bag of i, and we have Xi ⊆ V . The following conditions must hold:

•
⋃
i∈I

Xi = V

• For all edges (u, v) in E, there must be a node i in the tree T of the
tree decomposition such that u, v ∈ Xi.

• Given two vertices i, j ∈ I, let X∩ = Xi ∩ Xj . Then for any bag
Xk with k in the path between i and j, it must be X∩ ⊆ Xk. This
condition is known as the connectedness property.

The width w of the tree decomposition is the size of the largest of the bags
Xi minus 1, that is w = max{|Xi| |i ∈ I} − 1. Let D(G) be the set of all
tree decompositions Di of a graph G, we call treewidth of G the minimum
width over all Di in D(G). An obvious consequence of the above definition
is that given a graph and a tree decomposition of width tw for it, we know
that the treewidth of the graph is at most tw.

From here on we will follow the convention to call the members of I
nodes. An example of a tree decomposition is shown in Figure 2.3.

Observe that for each node i of the tree T with bag Xi, we can associate
a terminal graph Hi = (VH , EH , Xi), such that VH is the union of the bags
of the descendants of i and EH the edges of the induced subgraph G[VH].

8 Preliminaries

X3{v7, v8}

X2{v1, v7}

X1{v1, v4, v5}

X6{v1, v2, v5}

X7{v2, v5, v6}

X8{v2, v3, v6}X4{v8, v9, v11}

X5{v9, v10}

Figure 2.3: Example of a tree decomposition of graph in Figure 2.2 (a).

Notice also, that Hi is actually a terminal subgraph of G, since for the
graph H ′i = (V ′H , E

′
H , Xi) with V ′H = (V − VH) ∪Xi with E′H edges of the

induced subgraph G[V ′H], the relation H ⊕ H ′ = G holds. This is due to
the connectedness condition of tree decompositions. We will briefly show
this by contradiction. Let (v, w) be an edge such that v ∈ (VH − Xi) and
w ∈ (V − VH) then there must exist a bag Xi′ such that v ∈ Xi′ where i′ is
a descendant of i. Furthermore there must exist a bag Xj such that w ∈ Xj

and j not a descendant of i, and a bag Xk such that both v, w ∈ Xk. If k is
not a descendant of i then v must belong to all the bags in the path from
k to i′ and hence in Xi. If k is a descendant of i then w must belong to all
the bags in the path from k to j and hence in i.

Definition 2.2.2 (Triangulation induced by tree decomposition). Given a
tree decomposition D for a graph G = (V,E), the graph GT = (V,ET),
where (u, v) ∈ ET iff there exists a bag Xi such that u, v ∈ Xi. GT , is called
the triangulation of G induced or implied by D.

The graph GT is indeed a triangulated graph, this is proved in [Klo94].

Definition 2.2.3 (Nice Tree Decomposition). We call a nice tree decom-
position a tree decomposition that follows a certain structure as described
below. A nice tree decomposition may have four kinds of nodes.

1. Leaf node: A node that has no children.

2. Increase node: A node i whose bag Xi is a superset of at least one of
the bags of its children.

3. Reduce node: A node i whose bag Xi is a subset of the union of the
bags of its children

2.2 Tree Decompositions 9

4. Stable node: A node i such that the bags of i and its children are
equal.

There can be many kinds of nice tree decompositions, we shall discuss
three of them (also implemented in the system).

Definition 2.2.4 (Kloks-type nice tree decomposition). We shall call Kloks-
type nice tree decompositions binary tree decompositions with the following
types of nodes:

1. Join node: A stable node that has two children j, k, such that Xi =
Xj = Xk.

2. Introduce node: An increase node i that has one child j and |Xi| =
|Xj |+ 1.

3. Forget node: A reduce node i that has one child j and |Xi| = |Xj |−1.

Definition 2.2.5 (Bodlaender-type nice tree decomposition). We shall call
Bodlaender-type nice tree decompositions any Kloks-type nice tree decom-
position with the following extra restriction:

1. Leaf node: A leaf node χi with bag size |Xi| = 1.

Definition 2.2.6 (HN-type nice tree decomposition). We shall call an HN-
type nice tree decomposition, binary tree decompositions such that the nodes
are of the following types:

1. Leaf Nodes.

2. separator node: A reduce node i with one child.

3. join node: An increase node i with two children its bag is the union
of the bags of its children.

The following theorems are presented and proved in [Klo94], and them-
selves are used to show the existence of a nice tree decomposition of width
tw for a graph G given a tree decomposition for G of the same width. As
this is the foundation for creating nice tree decompositions in our implemen-
tation, we will also present the proof, which being constructive, naturally
describes an algorithm.

Theorem 2.2.7. Let D be a tree decomposition of width tw for G = (V,E)
and GT = (V,ET) is the triangulation for G induced by D. The tree decom-
position D is also a tree decomposition of GT .

From the above theorem we conclude that a tree decomposition for G
is also a tree decomposition for GT and any k-tree constructed from GT by
Algorithm 2.

The following proof shows that given a tree decomposition for a graph
G we can construct a HN-type nice tree decomposition of the same width.
The proof can be easily transformed to fit the other cases.

10 Preliminaries

Theorem 2.2.8. Let G be a graph and D = (S, T) a tree decomposition
for G, with width tw. There exists an HN-type nice tree decomposition
D′ = (S′, T ′) of G with width tw and V (T ′) = O(V (T)).

Proof. Initially we construct the triangulated graph GT induced from D.
This obviously takes linear time when the treewidth of the graph is bounded.
From the triangulated graph one can find a perfect elimination scheme in
linear time and thus construct a k-tree H in linear time using algorithm
2. The rest of the proof shows that a nice tree decomposition for H can
be constructed in linear time. Let n be the number of vertices in H. By
induction on the order of the graph, the base case being n = k + 1, a
nice-tree decomposition is possible by taking a tree decomposition of one
node with bag size k + 1. For the case of Bodlaender-type one needs to use
introduce nodes until bag size 1 is reached. Assuming that for any k-tree
with n > k+1 we can construct a nice tree decomposition, we show that the
same can be done for a k-tree of size n+ 1. Let H be the k-tree. Then there
must exist a simplicial vertex v in H. Let H ′ be the k-tree without v. Then
there exists a nice tree decomposition DH′ for H ′. Take the neighborhood
of v, N (v) which is a clique of size k. There must be a node χi in D′ such
that Xi ⊇ N (v). What is left at this point is to show that a nice tree
decomposition D′′ can be constructed from D′ such that there is a bag Xj

in D′′ that contains v. For the HN-type nice tree decomposition we have:

• If χi is a leaf node, we add two children χl, χr such that Xl = Xi and
Xr ⊂ Xi. Then we add a child χc to χr such that Xc = Xr ∪ {v}.
Observe that we only added three more nodes for this case.

• If χi is a unary node with child χc. It must be Xi ⊂ Xc. Thus we can
proceed to the child until we reach a leaf or a join node.

• If χi is a join node with children χl and χr. We remove the children
from χi and connect two others χcl, χcr such that:

– Xcl = Xi,

– Xcr = N (v).

Then add a child χc to χcr with Xc = Xcr ∪ {v}. Observe again that
we have added three nodes to the tree decomposition.

The construction clearly takes linear time since the modifications in all
the cases (leaf, unary, binary) can be performed in constant time and the
tree decomposition has at most 3(n− 1) nodes.

The proof for the Kloks-type nice tree decomposition can be found in
[Klo94] where it is also shown that the size is at most 4(n − 1). For the
Bodlaender-type the proof is the same while one should observe that the

2.2 Tree Decompositions 11

reduction of leaves to bags of size 1 causes the resulting tree decomposition
to be of size at most 4(n− 1) + (n/2 · (tw − 1)).

In general nice tree decompositions whose specification follows certain
rational restrictions, can be constructed in linear time. One restriction is
that the construction of the subset should be possible in linear time in the
case of increase nodes, and, correspondingly for the reduce nodes, that the
construction of the superset should also be possible in linear time. Further-
more, the specification of the largest size of the subset and the least size
of the superset, as well as the type of the reduce or increase nodes with
respect to the number of children (unary or binary), affect the size of the
tree decomposition and hence, the overall complexity of the construction.

In literature, nice tree decompositions are defined specifically for some
problems because they offer advantages in the design of algorithms in a
way which we will see in the next chapter. A relatively novel example
which we do not cover here, can be found in [DT06], where a semi-nice
tree decomposition is defined in aid to the design of an algorithm following
the general approach we will present in chapter 3, that solves the minimum
dominating set in linear time with respect to graphs of bounded treewidth,
pathwidth or branchwidth.

Chapter 3

General Algorithms and Tree
Decompositions

A very interesting observation regarding the design of algorithms for graphs
of bounded treewidth was made by Bodlaender in [Bod97]. Several of
the algorithms designed in order to solve problems for graphs of bounded
treewidth shared a common underlying structure [BLW87][AP89], [HN02].
Bodlaender expressed this underlying structure in a clear way, presenting
it as an approach which can be used as a general design method. In this
chapter we explain in detail this approach and define the necessary objects
which take part in the design process.

3.1 Structure

We begin with a general description of this underlying structure. Let G be
the input graph for which we want an algorithm solving a problem P. The
procedure consists of several steps enumerated below.

1. Construct a tree decomposition D for G

2. Construct a nice tree decomposition D′ from D.

3. For each node in D′ compute a set of structures called characteristics
for each node in the tree decomposition. Characteristics, in some sense,
describe the properties of possible partial solutions. This computation
step is done bottom up and thus, for each node, its set of characteristics
should be done effectively given the characteristics of its descendants.

4. If the set of characteristics of the root is not empty the problem is
solvable, otherwise there is no solution. If we only need a decision
procedure for the problem the algorithm can stop here.

14 General Algorithms and Tree Decompositions

5. Process the characteristics in top-down order to construct the solu-
tions.

In general finding the treewidth of a graph is known to be an NP-hard
problem, but when the graphs are known to be graphs of bounded treewidth,
their treewidth can be found in linear time using an algorithm presented in
[Bod93]. However the aforementioned algorithm is practical for very small
instances and therefore there is need for other approaches to the tree decom-
position construction. A relatively recent review of the various algorithmic
techniques for construction of tree decompositions can be found in [Bod05].
We have already shown that given a tree decomposition, a nice tree decom-
position with the same treewidth can be constructed in linear time. The
main idea here is that, since the number of nodes in the tree decomposition
is linear with respect to the nodes of the graph, then, if the characteristics
for a node given the characteristics of its ancestors can be calculated in
constant or linear time, we get respectively a linear or polynomial time al-
gorithm that decides the problem. Designing algorithms under this schema,
requires that this be considered for the basic notions we will present in the
following section.

3.2 Basic Notions

Let P be a problem we want to solve and G a graph that belongs in the class
of graphs of bounded treewidth. The notions we need to define in order to
provide a decision procedure for P are the following:

Solution This is a natural notion describing what kind of object describes
a solution for P. We can define a relation solP(G, s) which is true whenever
s is a term representing a solution for graph G. For example a solution for
a subgraph isomorphism problem from G to G′ could be a mapping from
some of the nodes of G to the nodes of G′. In Figure 3.1 the mapping
{φ1, φ2, φ3, φ4, φ5} is a solution for the subgraph isomorphism problem for
G,G′.

Partial Solution A partial solution defines the behaviour of a solution
with respect to a terminal graph. Thus, for a node in the tree decompo-
sition a partial solution for the terminal subgraph H related to that node
should describe the behaviour of a complete solution when restricted to H.
Similarly to the case of solutions we define a relation psolP(H, pPH) where
H is a terminal graph and pPH a term representing a partial solution, that is
true whenever pPH constitutes a partial solution for the problem. A partial
solution for an algorithm that solves the subgraph isomorphism problem can
be a mapping of some of the nodes of a terminal graph H of G to some of
the nodes of G′. In the example in Figure 3.1, assuming that there exists

3.3 Algorithm design 15

in our nice tree decomposition a node i with bag Xi = {v8, v9, v11} with a
successor j, leaf, with Xj = {v9, v10}, then the mapping {φ2, φ3, φ4, φ5} is a
partial solution for the terminal subgraph G[Xi].

Extension of a partial solution An extension need not be a specific
object. We need though a relation that describes in some way how a par-
tial solution can be extended to a solution. This relation can be defined as
exP(G, s,H, pPH) for a graph G, a solution s, a terminal graph H, and a par-
tial solution pPH , that is true if s is an extension of pPH for the given G,H. For
the example of subgraph isomorphism, the relation exP(G, s,H, pPH) should
be true if s is such that each mapping from nodes H to G in pPH is also in
s and s is a solution for G. For the partial solution in the previous exam-
ple, the solution {φ1, φ2, φ3, φ4, φ5} is an extension of the partial solution
{φ2, φ3, φ4, φ5}, such that the above predicate is true.

Characteristic of a partial solution The characteristic of a partial so-
lution, should provide minimal information to enable the algorithm to tell
whether and how a partial solution can be extended to a solution. An im-
portant property that should hold for characteristics is that if two partial
solutions psol1 and psol2 have the same characteristic, then psol1 can be ex-
tended to a solution if and only if psol2 can be extended to a solution. To
fulfill the aforementioned requirement for characteristics it is useful to de-
fine a function chP(H, pPH) that evaluates to the characteristic for the partial
solution pPH of terminal graph H. The characteristic is a more involved no-
tion compared to the ones described above and very important to the inner
workings of the algorithm. An example for the subgraph isomorphism prob-
lem, for a terminal subgraph H = (VH , EH , XH) and a partial solution psol
could be a mapping from the nodes of XH to a subset of the nodes of G′.
According to the this definition, a characteristic for G[Xi] for our specific
example in Figure 3.1, is the mapping φ2, φ3, φ5.

3.3 Algorithm design

When designing the algorithm, apart from defining the notions we described
previously, one needs to consider two more aspects.The first one involves
formal relationships that should hold between the notions in order to verify
the correctness of the algorithm and the second regards the construction of
characteristics, where assurances for complexity should be addressed.

3.3.1 Formal rules for notions

For the specific instances of the basic notions several relationships between
them can be formally characterized. More precisely the notions for the

16 General Algorithms and Tree Decompositions

v7

v5 v8

v6 v9

v10 v11

v4v2

v3

v1

φ3

u1

u2

u3

u4 u5

φ2

φ1

φ4 φ5

G G′

Figure 3.1: Example for basic notions for the subgraph isomorphism prob-
lem.

concrete algorithm for P should fulfill the following logical expressions.

exP(G, s,H, pH)→ ∃H ′ ((G = H ⊕H ′) ∧ solP(G, s) ∧ psolP(H, pH)
)
(3.1)

Relation 3.1 captures the notion of an extension of a partial solution. It
expresses that s is an extension of G implies that there exists a terminal
subgraph H of G,such that s is a solution for P on graph G and pH is a
partial solution for H.

∀G, s,H,H ′((solP(G, s) ∧ (G = H ⊕H ′))
→ ∃pH(psolP(H, pH) ∧ exP(G, s,H, pH))) (3.2)

Relation 3.2 expresses the requirement that for any terminal subgraph
H of G and any solution s for P on G, a partial solution pH such that s is
its extension, exists.

∀H,H ′, H ′′, pH , pH′((chP(H, pH) = chP(H ′, pH′))

→ (
(∃s(exP(H ⊕H ′′, s,H, pH)↔ (∃s′(exP(H ′ ⊕H ′′, s′, H ′, pH′)

)
(3.3)

Relation 3.3 expresses exactly the need that equal characteristics ensure
the mutual existence of solutions. That is, pH has an extension if and only
if pH′ has an extension.

3.3.2 Complexity Issues

As mentioned before the algorithm performs the calculation of characteris-
tics in bottom up order. One must define how these constructions should be
done with respect to the nodes in the nice tree decomposition. For example,

3.3 Algorithm design 17

assuming that our algorithm uses Bodlaender-type nice tree decompositions
and we would like to solve the subgraph isomorphism problem. We should
define how the characteristics are constructed for the leaf nodes and more-
over, how the construction of the characteristics takes place in the case of
forget, introduce and join nodes given the characteristics of their children.

When defining the above constructions one must keep in mind that the
complexity of the construction directly affects the complexity of the whole
algorithm. Hence if these constructions can be performed in constant time,
the algorithm, would have a linear complexity (under the assumption that
the tree decomposition we are using has O(n) nodes and that the input
graphs belong to the class of graphs of bounded treewidth).

One last remark regarding complexity is about the construction of solu-
tions. This usually is done in a top down manner, processing the character-
istics of the root, constructing partial solutions derived from characteristics
while moving towards the leafs until the desired solutions are calculated.
The construction of partial solutions should be feasible in constant or lin-
ear time for each type of node in our nice tree decomposition. In this case
though, since the construction is performed in a top down manner, the par-
tial solutions produced should reflect the behaviour of a candidate solution
for the graph G[Xi], where Xi is the bag of node i in our tree decomposition
and G[Xi] the terminal subgraph with vertices the union of all the bags in
the path from the root to i.

In practice a problem that should often be addressed is the memory
consumption of the algorithm which could grow exponentially in order to
keep all the characteristics. A very interesting approach that addresses this
problem is the anchor method [BNU04]. The method proposes an algorithm
that modifies the nice tree decomposition, approximating a solution to a
weighted set covering problem and adding some necessary connections for
consistency, with the intention of minimizing the redundant characteristics.

Chapter 4

Implementation

This chapter explicates the implementation of the generic algorithm which
will henceforth be referred to as gSolver. We will discuss the structure and
the interface of gSolver and provide a brief introduction on the way plug-ins
may be designed.

4.1 General Structure

The central idea of the implementation was to create a program that repre-
sents the generic graph algorithm described in the previous chapter, in order
to run the corresponding family of algorithms in a unified manner. Since the
construction of the algorithms is a non-trivial task and the involved objects
of possibly diverse kinds, the approach of a pluggable interface was consid-
ered and materialized. The implementation was made in C++ following the
generic programming paradigm. Under this perspective, we would require a
plug-in providing descriptions of the necessary notions of the algorithm and
implementations of the respective algorithmic parts. Given the implementa-
tions for these notions gSolver can follow the algorithm using their instances
and return the result.

The program flow is described briefly below and in Figure 4.1.

1. Load the selected plug-in.

2. Handle the necessary input, which should be in the minimal case a
graph G and its tree decomposition D.

3. From G and D, construct a nice tree decomposition T .

4. Given G and T , we construct the induced subgraphs for each node of
T .

5. Calculate the full set of characteristics for each node, bottom up.

20 Implementation

6. Construct a solution, if the appropriate information is provided in the
plug-in.

7. Output the result.

Loading of the plug-in corresponds the following:

• Checking whether the plug-in is complete, that is, whether the neces-
sary functions exist.

• Loading of the functions declaring the plug-in arguments, tree decom-
position type and the necessary algorithm parts.

Regarding the input, the minimal case is a graph instance, a tree decom-
position for it and the name of the plug-in chosen. Custom input sources
are also available through the option handling interface provided by gSolver.

Construction of the nice tree decomposition is done following the steps
described in the previous chapters. More precisely:

1. Construct the triangulated graph induced by the tree decomposition
of the input.

2. Extract a perfect elimination scheme for the triangulated graph.

3. Given the elimination scheme, construct a k-tree for the given graph.

4. Construct a nice tree decomposition either base on the descriptions
already existing in gSolver or the ones defined by the plug-in.

Finally we have the calculation of the characteristics. Where we call the
appropriate functions described by the plug-in w.r.t. the type of the node
considered at that moment. The nodes are processed in a bottom up order.

4.2 Basic Classes and Datatypes

The fundamental objects for all the algorithms under the considered schema
are graphs and tree decompositions. We will describe in detail their design
below.

For graph objects, we use the Boost Graph Library (BGL). The BGL
enables us to keep the graph structure as generic as possible and provides a
good foundation for the construction of the induced subgraphs. We extended
instances of these template classes in our ugsGraph class to provide the extra
functionality we needed.

For tree decompositions, in order to maintain coherence between our
graphs and the tree decomposition trees, we keep the use of BGL graphs
but extended in our treeDec class.

4.2 Basic Classes and Datatypes 21

Output Yes/
Construct
Solutions

Output
Solutions

Output No.

Check
the full set of

root

Graph Solver
Plugin

load plugin

Non-Empty

Empty

initialize
gSolver object

generator

Constuct nice tree
decompositions /

induced subgraphs.

Calculate full set
of characteristics.

graph object

tree decom-
position of

graph

Custom nice
tree decompo-

sition.

gSolver object

Loading
information.

Figure 4.1: General structure of the solver.

22 Implementation

4.2.1 The ugsGraph class

The top level graph structure used within the project is called ugGraph
and is an instance of the BGL subgraph template of an adjacency list using
STL lists for vertices and vectors for edges. The choice of lists and other
containers is done considering mainly the complexity of the operations used
in the algorithms, but also the need for a programmer friendly interface,
since plug-ins should be easy to construct. Vertex and edge descriptors
and iterators are provided for access to the graph objects by the BGL.
The ugGraph class is intended to be as simple as possible, thus it contains
only minimal properties for vertices using the bundled properties interface
provided by boost1, such as name and id. Properties for edges are defined
in a similar way. Further properties can be added as external properties per
vertex or edge descriptors.

The main class used in all the transformations is the ugsGraph class.
It is a child class of ugGraph and provides methods constructing many
of the objects needed for the transformations we perform. An important
property inherited from ugGraph is that of the subgraph. The graphs used
provide vertex creation and removal (accessed from vertex descriptors), edge
creation, and vertex existence in constant time. Edge existence and edge
removal is done in time O(V/E). Also all the operators used for traversal
(i.e. ++) take constant time. Each object of the class G may have induced
subgraphs easily defined from subsets of its vertices. Each subgraph is a
ugGraph and maintains a connection to its parent and the root G. When
building the output for these graph objects we can produce the complete
structure in graphviz format which produces a result as the one depicted in
Figure 4.2.

The common way to access specific information on nodes and edges is
using vertex/edge descriptors and iterators. That is if we have a ugsGraph
object G, the vertex descriptor v is used in the form G[v] to provide access
to the actual vertex information. Vertex descriptors for the ugsGraph class
are ugVertex objects. The following constructors are provided:

• ugsGraph(std::string filename):
Reads a graph encoded in the file indicated by the string filename. The
file should have a simple file format used by the Hypertree project.

• ugsGraph(const treeDec& TD):
Constructs the triangulated graph induced by a reference to a tree
decomposition TD.

• ugsGraph(ugsGraph& G, eliminationScheme& e, size t):
Constructs a ktree from a graph G a perfect elimination scheme e and

1For more information about bundled properties check http://www.boost.org/doc/

libs/1_35_0/libs/graph/doc/bundles.html

http://www.dbai.tuwien.ac.at/proj/hypertree/index.html
http://www.boost.org/doc/libs/1_35_0/libs/graph/doc/bundles.html
http://www.boost.org/doc/libs/1_35_0/libs/graph/doc/bundles.html

4.2 Basic Classes and Datatypes 23

X0 {V1, V3, V4}

X1 {V3, V4}

X2 {V3, V4, V5}

X3 {V1, V3, V4} X4 {V1, V3, V4}

X5 {V1, V3}

X6 {V1, V2, V3}

(a) Kloks-type nice tree decomposition.

V1

V2

V3

V4

V5

V1

V3

V4

V5

V3

V4

V5

V3

V4

V5

V1

V2

V3

V4

V1

V2

V3

V1

V2

V3

(b) Terminal subgraphs

Figure 4.2: Subgraph structures produced for a Kloks-type nice tree decom-
position.

a natural number for k.

The methods provided for the ugsGraph class address issues of connectivity
and information on the state of the graph. The most important are listed
below:

• bool getEliminationScheme(eliminationScheme& e):
Constructs a perfect elimination scheme for the graph object in the
object referred to by e. The construction of the perfect elimination
scheme can be done in linear time using Algorithm 1. A simpler algo-
rithm has been implemented which for the tested purposes produced
slightly better results for the tested instances. For this algorithm
we use to the property of triangulated graphs presented in Theorem
2.1.10, which states that any simplicial vertex can start a perfect elim-
ination scheme. Thus we iteratively look for simplicial vertices, in
graphs that are produced by removing the simplicial vertice found in
the previous step, adding it to the elimination scheme. The storage
type of the eliminationScheme objects is an std::vector which provides
insertion in constant time at the end and random access to elements.
Returns true if successful, false otherwise.

24 Implementation

• bool isClique(adj iter AdjS, adj iter AdjE):
Checks whether a set of vertex descriptors, given by two adjacency
iterators indicating the first and last of the adjacent nodes of a sim-
plicial vertex, constitute a clique. This check is done in time O(E/V)
w.r.t. parameterized complexity, since edge checking in our graphs is
performed in time O(E/V) and the cliques may never have size larger
than the treewidth of the graph which is bounded.

• isSimplicial (ugVertex v,eliminationScheme eS):
Returns true when vertex descriptor v describes a vertex that is sim-
plicial. The complexity corresponds to the above function.

• void connect(std::set<ugVertex> pc, ugVertex v):
Connects a vertex described by vertex descriptor v to each node in
the set pc.

• int constructConnectedComponents():
Builds a structure indexing the connected components of the graph
object, returns the total number of connected components. This is
a convenience function using the algorithm provided by boost which
computes this set in time O(V + E).

• int getVertexbyName(char∗ name):
Returns a vertex descriptor of the vertex whose name corresponds to
the argument name.

4.2.2 The treeDec class

Tree decompositions are implemented by the class treeDec. As in the case
of the ugsGraph class we have a general graph object called gen tree dec,
which is modeled as a directed graph by an adjacency list in a similar way
as in the ugGraph graphs. We only attach bundled properties for vertices.
The properties used are the minimal properties for a tree decomposition and
defined for vertices in the TDNodeProp structure shown in Listing 4.1.

// *************** General TreeDec Properties ****************//

typedef std::set<ugVertex > TDBag;

struct TDNodeProp

5 {

TDBag bag;

ugGraph* terminalSubgraph;

};

Listing 4.1: Vertex Properties for tree decompositions.

4.2 Basic Classes and Datatypes 25

The member bag represents the tree decomposition bags and are repre-
sented by STL sets of vertex descriptors for ugGraph objects. Every bag
of the tree decomposition will eventually define a terminal subgraph cor-
responding to the vertices of its bag and its ancestors. This connection
between the terminal subgraph is materialized by a pointer to terminal sub-
graphs that initially is set to NULL, but will point to the corresponding
subgraph when the induced subgraph structures are built.

The treeDec class is a child class of gen tree dec, providing several meth-
ods for the programmer of the plug-in. It is used as a base for the class
implementing all the types of nice tree decompositions supported by the
project, which are represented by the class niceTreeDec. An inheritance
diagram is shown in Figure 4.3.

A reference to a distinct graph object is also kept, meant to represent the
original input graph from which it was derived. The vertex descriptor for the
root node and the treewidth are also kept. Several methods providing set
operations for the bag contents are provided as well. Some of the important
member functions are mentioned below.

• treeDec(std ::string filename, ugsGraph& g):
Constructor, parses a file in gml format2, which is used by the Hyper-
tree project. If the graph g is empty it constructs g as the induced
triangulated graph of the tree decomposition read.

• void constructAllTerminalSubgraphs():
for each node of the tree decomposition its terminal subgraph. The
terminalSubgraph pointer for each node is set appropriately. All the
subgraphs created belong to the graph object indicated to by the ref-
erence kept in the structure.

• void getTerminalSubgraph(tdVertex v, TDBag& rS, ugGraph& p):
This method is used by the member function constructAllTerminal-
Subgraphs. It constructs the subgraph for the node indicated by the
node descriptor v, a set containing all the vertices in the bags of its
children and the parent subgraph p.

• void addNode(TDBag& n, tdVertex p):
Adds a node as a child of p with bag contents described by the bag n.

• TDBag getUnion(tdVertex& v1, tdVertex& v2):
Returns a bag containing the union of the bags attached to the nodes
indicated by v1 and v2.

2Information about the gml format can be found in http://www.infosun.fim.

uni-passau.de/Graphlet/GML/

http://www.dbai.tuwien.ac.at/proj/hypertree/index.html
http://www.dbai.tuwien.ac.at/proj/hypertree/index.html
http://www.infosun.fim.uni-passau.de/Graphlet/GML/
http://www.infosun.fim.uni-passau.de/Graphlet/GML/

26 Implementation

treeDec

niceTreeDec

HNNiceTreeDec TKNiceTreeDec

BDNiceTreeDec

Figure 4.3: treeDec inheritance tree.

• TDBag getIntersection(tdVertex& v1, tdVertex& v2):
Returns a bag containing the intersection of the bags attached to the
nodes indicated by v1 and v2.

• TDBag getDifference(tdVertex& v1, tdVertex& v2):
Returns a bag containing the difference of the bags attached to the
nodes indicated by v1 and v2.

• bool isSubset(tdVertex& vertexSupset, tdVertex& vertexSubset):
Returns true if the bag of the node vertexSupset is a superset of the
bag of vertexSubset.

• tdVertex findTDNodeWithClique(VertexVector c):
Returns the node descriptor of the node whose bag contains all the
nodes in a clique c.

The niceTreeDec class

The niceTreeDec class is the parent class of all the types of nice tree de-
compositions supported at the moment. The reasoning behind the design
stems from the constructive proof (Proof 2.2.8) of existence of a nice tree
decomposition. Due to the fact that the construction from type to type
changes only with respect to the way to insert the new nodes of the elimi-
nation scheme to the intermediate nice tree decomposition, a generic way to
design and construct various nice tree decomposition types, can be provided
using the visitor design pattern which allows functions to be defined called
in predefined control points. So, any custom nice tree decomposition should
define these functions which implement the way a vertex of the graph is
added to a nice tree decomposition, given a node whose bag contains the
neighbourhood of the vertex. The control points correspond to the kind of
node we come across.

4.2 Basic Classes and Datatypes 27

In our implementation, there are five virtual member functions available
for specifying the construction of the nice tree decomposition. The three
compulsory ones should define the way that an insertion of a vertex of the
elimination scheme in the tree decomposition takes place for leafs, unary
and binary nodes.

• virtual void LeafOp(VertexVector c, tdVertex Xp, ugVertex x):
Should define how the vertex indicated by x and clique c of its neigh-
bours in the so far constructed tree decomposition, is inserted in the
nice tree decomposition at leaf node Xp.

• virtual void UnaryOp(VertexVector c, tdVertex Xp, ugVertex x):
Similarly with the above member function, defines the insertion in the
case of a unary node.

• virtual void BinaryOp(VertexVector c, tdVertex Xp, ugVertex x):
Defines the insertion in the case of a binary node.

Note that we do not distinguish the functions with respect to the ac-
tual types of the tree decomposition, since these may vary essentially from
definition to definition. What we induced to be necessary, is the processing
information in the way that it is actually done during the construction which
is the actual time where the type of node is formed. This corresponds also
with the various related proofs we have come across.

Apart from these functions there are two more convenience functions
that are called before and after the construction to provide some pre- and
post-processing on the nice tree decomposition. Also pointers to the tri-
angulated graph and the k-tree constructed in the process as well as the
actual elimination scheme are provided to all descendants of niceTreeDec.
The collaboration graph for the class can be seen in

niceTreeDec

treeDec

ugsGraph

relTreeDecomposition

kTree
triangulatedGraph

relGraph

Figure 4.4: niceTreeDec collaboration graph.

• virtual void preProcessOp():
Preprocessing of the nice tree decomposition.

28 Implementation

• virtual void postProcessOp():
Post processing of the nice tree decomposition.

All three types of nice tree decompositions defined in chapter 2 have
been implemented already using this interface and in a very straightforward
and concise way. As an example of how something like this is performed
within the system we present a widely used type, Kloks-type, which is easily
implemented. The actual source code for the case of leafs is shown in List-
ing 4.2. The other two functions corresponding to unary and binary nodes
are implemented accordingly in the unaryOp and binaryOp functions. Fi-
nally, one needs to define the class as a child class of the some descendant of
the niceTreeDec class and define a constructor calling the compute member
function of niceTreeDec in its constructor.

void TKNiceTreeDec:: leafOp(VertexVector c, tdVertex Xp ,

ugVertex x) {

if (c.size() < (*this)[Xp].bag.size ()) {

/*

5 * If the c is smaller than the bag of the node Xp

* Add two nodes:

* 1) rtreeNode , child of Xp with bag equal to c

* 2) A child of rtreeNode with bag equal to c+x

*/

10 TDBag rBag(c.begin(),c.end ());

TDBag cBag = rBag + x;

tdVertex rtreeNode = addNode(rBag ,Xp);

addNode(cBag ,rtreeNode);

}

15 else {

/*

* If the c is equal to the bag of the node Xp

* Add one node:

* 1) child of Xp with bag equal to c+x

20 */

TDBag cBag(c.begin(),c.end ());

cBag = cBag + x;

addNode(cBag ,Xp);

}

25 }

Listing 4.2: Function handling the case of unary nodes in the implementation
of the Kloks-type nice tree decomposition.

The pre and post processing functions can be used to perform some ini-
tializations and modifications to the nice tree decomposition. In most cases
their functionality is natural with respect to the definition of the tree decom-
position. An obvious example is the way one can derive the Bodlaender-type
nice tree decomposition from the Kloks-type one by defining a post-process
function. The implementation should reduce the bags of the all the leaf

4.3 Plug-in design 29

nodes using “introduce” nodes until they bags of size 1 are constructed.
The actual implementation of the post-process function for the Bodlaender-
type nice tree decomposition is shown in Listing 4.3.

void BDNiceTreeDec:: postProcessOp () {

/* Check every node in the tree decomposition */

for(treeDec:: vertex_iterator PXp = vertices (*this). first ;

PXp!= vertices (*this). second;

5 PXp ++) {

/* If we have a leaf reduce its size until it is one */

if (countChildren (*PXp) == 0) {

tdVertex curXp = *PXp;

while ((*this)[curXp].bag.size() != 1) {

10 tdVertex pXp = curXp;

TDBag newBag = (*this)[pXp].bag;

/* Remove the first vertex from the bag */

newBag.erase (* newBag.begin ());

/* Add the new child as a leaf of pXp */

15 curXp = addNode(newBag ,pXp);

}

}

}

}

Listing 4.3: Post processing function to provide a Bodlaender type nice tree
decomposition.

4.2.3 Other Operations

There are several other operations implemented to aid in the manipulation
of graphs and provide tools for easier programming.

Regarding ugsGraph objects we have implemented the operation ⊕ de-
fined in chapter 2. The ⊕ operator is implemented using the operator “+”
between objects of the ugsGraph class and returns the graph corresponding
to the two terminal subgraphs provided. There is also some functionality
for finding specific cliques. The function a relevant clique, returns cliques
adjacent to a given node in a subgraph of the main graph object.

Finally a method for using power-sets is provided. It is called get next in powerset
and given a set and one of its subsets, it returns the next subset with respect
to an ordering provided by the binary representation of the elements in and
out of the set as a number.

4.3 Plug-in design

In this section, we will present a more precise description of the plug-in
interface. The plug-in defines various entities and options needed for the
calculation of the full sets, the solutions and their presentation. All these

30 Implementation

are defined by instances of a class template called sg solver. Each plug-in
should construct such an instance and export its constructor and destructor
functions via the plug-in interface.

4.3.1 The sg solver template

The plug-in needs to implement an object of the class template sg solver
which itself is a subclass of the general gen sg solver class. The collaboration
diagram is shown in Figure 4.5.

sg_solver< sg_niceTreeDec, sg_visitor, sg_full_set, sg_sol_object, prop_writer >

gen_sg_solver sg_full_set

cfs

prop_writer

pwriter

sg_visitor

vis

sg_sol_object

solutions

Figure 4.5: sg solver collaboration graph.

The template arguments are described below:

[sg niceTreeDec]: Type that represents the kind of nice tree decomposi-
tion we want to use. It may be one of the already implemented ones
or any subclass of the niceTreeDec class.

[sg visitor]: A class that corresponds to the visitor concept defining
the behaviour of the algorithm on the crucial control points. This
behaviour is derived directly from the proofs of correctness for the
algorithms as shown in chapter 3.

[sg full set]: A class that corresponds to the full set of characteristics
for all nodes. The classes implemented in the system providing this
functionality are mappings from nodes of the tree decomposition to
sets of characteristics. Of course other classes may be used when
defined in the plug-in.

[sg sol object]: A class that describes a set of solutions. It should im-
plement the size() method and provide an “[]” operator to access
elements. No restrictions are made on the type.

[prop writer]: Optional. A class that handles custom output options to
output a solution using graphviz.

The following methods are available:

• virtual size t solutionsReturned():
Returns the number of solutions found by the algorithm. This is done
by calling size() method for the solution object.

4.3 Plug-in design 31

• virtual bool existsSolution ():
Returns true if a solution exists, i.e. the full set of characteristics for
the root node is not empty. False otherwise.

• virtual void constructSolution(treeDec& TD, ugGraph& g):
By default no solution is constructed. And the algorithm returns a
yes or no answer to the problem. This method can be overloaded in
order to provide a construction of the solution object.

• virtual sg property writer solutionWriter():
By default, returns a reference to the sg property writer object pwriter.

• virtual treeDec getTreeDec(treeDec& T):
Returns a nice tree decomposition from the tree decomposition T,
according to the type sg niceTreeDec defined from the template ar-
guments. This method calls a constructor of the niceTreeDec class,
which we will describe later.

4.3.2 The sg visitor class

The sg visitor class template is one of the basic objects that a plug-in should
implement. It follows the visitor design pattern so that the algorithm can
abstract over the more specific structure of the plug-in. Any algorithm
following the pattern described in chapter 3, must specify the way the cal-
culation of characteristics is performed. This is always done with respect to
the nice tree decomposition node type. Yet the node types may vary from
one definition of a nice tree decomposition to another, thus we either need to
each time extend the visitor with respect to the defined tree decomposition,
or keep the definition of the visitor more abstract. In gSolver the second
choice was made, since extending the visitor with respect to each defini-
tion of a nice tree decomposition would make the programing of the plug-in
more complicated. Any sg visitor should specify how these characteristics
are calculated based on whether the node is a leaf, a unary node or a binary
node. Further specialization at the moment is not supported for the reasons
explained above and thus the plug-in must distinguish between more refined
types of nodes.

There are several methods to be implemented for an sg visitor, each one
specifying the behaviour of the algorithm at the specified control points,
in our case, the basic types of nodes in the nice tree decomposition. An
important type needed as a template argument is a type specifying the type
of container used as a mapping from each node descriptor of the nice tree
decomposition to its set of characteristics. This object is provided as a
template parameter for the visitor and is called sg full set. According to the
possible kinds of node we have:

32 Implementation

...

Xi
Ci = {αi1, . . . , α

i
n}

...

Xk
Ck = {αk1 , . . . , α

k
n}

...

Xj

Cj = {αj
1
, . . . , α

j
n}

(a) Binary case: handled by Bina-
ryOp .

...

...

Xi
Ci = {αi1, . . . , α

i
n}

Xj

Cj = {αj
1
, . . . , α

j
n}

(b) Unary case: handled by
UnaryOp

...

Xi
Ci = {αi1, . . . , α

i
n}

(c) Leaf case: handled by LeafOp

Figure 4.6: sg visitor member functions w.r.t. general node types.

• void LeafOp(tdVertex v, treeDec& T, ugsGraph& g, sg full set&):
Defines the behaviour of the algorithm on leaf nodes.

• void UnaryOp(tdVertex v, treeDec&, ugsGraph&, sg full set&):
Defines the behaviour of the algorithm on the nodes with one child.

• void BinaryOp(tdVertex v, treeDec&, ugsGraph&, sg full set&):
Defines the behaviour of the algorithm on binary nodes.

Further specialization of the behaviour can be done from within this
framework. For example if one would like to distinguish the behaviour from
unary introduce and forget nodes one could provide further methods for the
visitor called case-wise from within the aforementioned methods.

4.3.3 Notions of the general algorithm

The implementation of gSolver so far does not pose restrictions regarding
notions such as partial solutions and extensions. This stems from several
reasons. For the partial solutions it is obvious that the corresponding object
is no different than the object used for solutions. For example a partial
solution for a node in subgraph isomorphism could be a mapping of the

4.3 Plug-in design 33

vertices in the node’s bag to a subset of the isomorphic graph. Extensions
of partial solutions are themselves solutions as notions yet they have the
constraint of matching the partial solutions for the nodes in their terminal
graphs. More importantly though, for both cases the interface does not need
any information for them at any point since decidability stems only from
calculations of the characteristics. The extensions and partial solutions play
an important role in establishing the correctness of the algorithm and not
its actual implementation.

As described earlier, for each node in the nice tree decomposition a set
of characteristics is constructed. These characteristics need not be bound to
the tree decomposition structure itself and hence the design chosen appoints
a new object to manipulate them. Although characteristics may have a va-
riety of types and hence induced structures like their sets should be abstract
in order to encompass them, the visitor needs only the notion of the full set
of characteristics and some way to access its content, in order to provide it
to the control points (leaf, unary and binary nodes). This full set usually
corresponds to a mapping from a node descriptor to a set of characteristics
that belong to the indicated node. The object that represents the complete
set can be chosen in the template class sg solver but the underlying struc-
ture is not forced since the actual elements are used only within the visitor
functions. Yet in gSolver objects with these properties are implemented to
facilitate and speed up programming.

Characteristics

The most important of the implemented notions represents characteristics
and is called sg characteristic. It is a class template that has as a tem-
plate parameter a type representing the objects in the domain of solutions
for the problem we want to solve. For example, if one needs to solve a 3
coloring problem the domain would be the three colors, or, in the case of
subgraph isomorphism it would be vertices of the subgraph instance. The
sg characteristic contains a mapping from the nodes to objects of the do-
main and offers several convenience member functions that depend in some
ways on methods of the domain. The definition of the sg characteristic class
is shown in Listing 4.4.

The type s map in each characteristic represents the type of the map-
ping (i.e. from the vertices to the domain objects) and the member object
m sMap is the actual container. Objects of the actual container can be
reached by the “[]” operator that is defined as shown in Listing 4.4. An-
other implemented function is the set member function which given the start
and end iterators of a bag in the tree decomposition, and a domain object a,
initializes the mapping mappings from the vertices of the bag to the domain
object a.

34 Implementation

/* ********** sg_characteristics **************** */

template <typename sg_domain_object >

class sg_characteristic{

protected:

5 typedef std::map<ugVertex , sg_domain_object > s_map;

s_map m_sMap;

public:

s_map& get_s_map ();

virtual sg_domain_object& operator[](ugVertex v);

10 virtual bool operator <(const sg_characteristic& r) const;

virtual void operator++(int);

virtual sg_characteristic operator ++();

virtual size_t size ();

virtual bool operator==(sg_characteristic c){return (m_sMap ==c.m_sMap);}

15 void set(sg_domain_object& a, TDBag:: iterator vs,

TDBag:: iterator vend);

virtual ~sg_characteristic () {}

};

Listing 4.4: Definition of the sg characteristic class.

The operator “++”, can, given a domain for which a “++” operator is
defined as well, cycle through possible characteristics. This in some cases
provides an easy way to check the characteristics for extensions. For this
to work the domain must be finite and the operator “++” of the domain
should cycle through it. The advantage of this is that there is no need to
generate a big set of possible characteristics and copy the ones we need since
the memory consumption would be too large. In general the generating
characteristics (if it is possible and not too costly in comparison to the
construction of the full set) is more efficient.

Types for the set of characteristics corresponding to a node and the full
set can be defined by the following types:

s g p l ug i n ty pe s<customCstc > : : sgVertexCSet
sg p l ug i n ty pe s<customCstc > : : sgFul lCSet

The type sgVertexCset is an actual STL set of characteristics meant to be
a building block of the sgFullCSet. The type sgFullCSet would correspond
to the sg full set template argument for the sg solver class template. It
is a mapping from node descriptors to sgVertexCSet structures containing
eventually for each node of the nice tree decomposition its set of character-
istics.

Solution objects

In cases where a construction of the solution is necessary, the plug-in can
define its own objects in which to store solutions. The solution objects are
left on entirely on the plug-in and their construction should be implemented

4.4 Other functionality 35

within the constructSolution function. Direct handling of the object is not
performed from within gSolver. The actual results can be processed and
presented by property writers, which are described below.

4.3.4 Property writers

The purpose of property writers is to allow custom output for debugging and
presentation of the solutions. In the case of the solver the property writer
passed as an argument to the template is used to define the appearance of a
solution. If none is provided the solution will reproduce the graph provided
as input without any extra properties.

The string provided by the property writer can provide properties for
nodes, edges and for the graph itself. We present the definition of the
functor provided for vector properties.

void operator () (std : : ostream& out , ugVertex v , s ize t sn)

The properties should be passed to the output stream out given the
vertex descriptor v and the parameter sn specifying the solution we are
currently processing (if we are indeed processing one).

The output is produced in the Dot format of the graphviz project3, so
the options should be appropriately formatted in order to be parsed by the
dot parser.

4.4 Other functionality

In this section we present information regarding input and output file types
handled by gSolver and profiling functionality. The final part describes the
requirements for a plug-in to be loaded by gSolver.

4.4.1 Input and Output

As mentioned earlier, the input graphs can follow the simple file format
used by the Hypertree project. The graph is represented in a text file by a
series of comma separated edges of the form E(v1, v2), where E, v1, v2 are
the names of the edge and source, and target vertices, respectively, with the
last edge in the file ending with a period. The input graphs can be also in
graphml format, although gSolver does not use this format to read input at
the moment. Parsing specific properties of graphs can be done using special
property readers implemented in the plug-in.

The input graphs used for tree decompositions follow the gml file for-
mat used by the Hypertree project4 to output the hypertree decompositions

3More information about the format can be found at http://www.graphviz.org/
4Information on the Hypertree project can be found at http://www.dbai.tuwien.ac.

at/proj/hypertree/

http://www.dbai.tuwien.ac.at/proj/hypertree/index.html
http://www.dbai.tuwien.ac.at/proj/hypertree/index.html
http://www.graphviz.org/
http://www.dbai.tuwien.ac.at/proj/hypertree/
http://www.dbai.tuwien.ac.at/proj/hypertree/

36 Implementation

that are produced. More information on this format plus libraries for pars-
ing and output can be found in http://www.infosun.fim.uni-passau.
de/Graphlet/GML/. These libraries were also used by gSolver to parse the
files. An example of a gml file follows:

graph [
d i r e c t ed 0
node [

id 1
5 l a b e l ”{E3 , E4} {V1 , V3 , V4}”

vgj [
l a b e lP o s i t i o n ” in ”
shape ”Rectangle ”

]
10]

node [
id 2
l a b e l ”{E1 , E2} {V1 , V2 , V3}”
vgj [

15 l a b e lP o s i t i o n ” in ”
shape ”Rectangle ”

]
]
edge [

20 source 1
t a r g e t 2

]
]

Listing 4.5: Example gml input.

There are various methods constructed to facilitate output of the struc-
tures described in section 4.2. The output for graph objects can be either in
dot format or text format. All these functions can be found in the gSolveIO
namespace. The functions toDot can output graphs, tree decompositions,
and their properties as shown in subsection 4.3.4. For our ugsGraph objects
there is also the possibility to construct the whole subgraph structure as an
output as seen in Figure 4.2. In the case of solutions, currently the number
of solutions returned can be specified, and the graphs depicting the solutions
are exported all into one file. The text functions toAscii, apply to all the
aforementioned objects and several more, such as specific vertices and edges,
vertex sets and vertex vectors.

4.4.2 Profiling

Several functions to aid profiling of the algorithm are implemented.

• Timing: The timing function is called getcputime() and returns the
time in milliseconds spent by the system on the process. The function

http://www.infosun.fim.uni-passau.de/Graphlet/GML/
http://www.infosun.fim.uni-passau.de/Graphlet/GML/

4.4 Other functionality 37

uses as a base the system function getrusage, which must exist in the
system.

• Memory consumption monitoring. The function getResidentMemory()
returns the maximum memory size of the process that resides in the
main system memory.

4.4.3 Registering the Plug-in

In order for the plug-in to be used by gSolver, there are some interfacing
functions needed called class factories. Their names are defined beforehand
in favor of effective communication.

1. gen sg solver∗ sg solver create ()
Returns a pointer to an instance of the solver defined by the plug-in.

2. void sg solver destroy (gen sg solver∗ p)
Frees the memory of the solver pointed to by p.

Since these functions are dynamically loaded during runtime the interface
used to do so uses pure C functions and hence the declaration of these
functions should be done as presented in the following example:

extern "C" gen_sg_solver* sg_solver_create () {

return new colorSolver;

}

extern "C" void sg_solver_destroy(colorSolver * p) {

5 delete(p);

}

Listing 4.6: Class factories.

Chapter 5

Reference Plug-ins

In this section we will describe a simple algorithm for the 3 colouring problem
that follows this generic approach and show how it was implemented as a
plugin for gSolver.

5.1 3 Colouring Algorithm

The design of the algorithm follows simply from the generic definitions. We
present the corresponding notions and proofs below.

5.1.1 Algorithm Description

We start by defining the appropriate notions.

Nice tree decomposition: Bodlaender type nice tree decompositions are
used.

Solution: A solution s is a mapping from the set of vertices V of the input
graph to the set of colors C.

Partial Solution: Given a terminal graph H = (V ′, E′, X ′), a partial
solution pH associated to H is a mapping from the nodes in V ′ to the
set of colors C. For a node χi in the tree decomposition with bag Xi,
we denote a partial solution associated to its terminal subgraph G[χi]

with pχi .

Extension: An extension eH of a partial solution pH is a solution s such
that pH is its restriction to the set V ′ denoted by s|V ′ .

Characteristic: A characteristic αχi of a partial solution of a node χi is
the restriction of the partial solutions to the bag Xi. We will give a
similar proof to the one given in [Bod97] showing that this definition
of characteristic corresponds to the notion presented in chapter 3.

40 Reference Plug-ins

In order to show that the notion of characteristic we just presented is
correct we need to show that given two partial solutions with the same
characteristic one has an extension if and only if the other has an extension.

Lemma 5.1.1. Take two partial solutions pχ1 and pχ2 that have the same
set of characteristics Cχ. We show that pχ1 has an extension if and only if
pχ2 has an extension.

Proof. If pχ1 has an extension eχ1 then there must be a solution s whose
restriction to the nodes of G[χ1] is pχ1 and moreover its restriction to the
nodes of the bag X1 of χ1 will be Cχ. We know that the only vertices of
G[χ2] that are adjacent to vertices in any subset of V (G) − V (G[χ2]) are
those in X2. This is due to the fact that there must be some bag containing
both vertices, say v, u, and all the nodes in the path from this bag to any
successor of χ2 must contain v or u. Hence for χ1, χ2 all adjacent nodes
must be in X1 = X2

By the above observation, we have that for the nodes in Vd = V (G) −
(V (G[χ1]) ∪ V (G[χ2])), it must be pχ2 |Vd

= pχ1 |Vd
. And since the nodes in

G[χ2] −X2 are disjoint from the rest, the partial solution pχ2 is correct and
has as extension the union of the mappings pχ1 and eχ1 restricted to the
nodes not in V (G[χ2]).

What remains to be shown is that for each of the types of nodes in our
tree decomposition it is possible to efficiently calculate the set of character-
istics from its children. We can then proceed in describing the procedure
for constructing the solutions.

Decision procedure for the 3 colouring algorithm

The case of leaves is trivial since any partial solution is just a mapping
from the vertex of its bag to the set of colors and coincides with the set of
characteristics.

Definition 5.1.2. Let χi be an introduce node in a Bodlaender type nice
tree decomposition of G = (V,E). Furthermore, let (Xi, Eχi) be the induced
subgraph G[Xi] and χj be the child of χi such that Xi = Xj ∪ {v}. Then a
mapping α : Xi 7→ {1, 2, 3} belongs in C(χi) iff

1. for all u ∈ Xi \ {v}, u 7→ α(u) ∈ C(χj) and

2. for all u′ ∈ Xj , if (u, u′) ∈ Eχi then a(u) 6= a(u′).

Lemma 5.1.3. Definition 5.1.2 (i) is correct and (ii) can be constructed in
constant time.

Proof.

5.1 3 Colouring Algorithm 41

(i) For each partial solution pχj there is a partial solution of χi whose re-
striction to G[χj] is equal to pχj . Also, for any partial solution pχi , the
restriction pχi |G[Xj]

is a partial solution of pχj . Thus the characteristics
of χj correspond one to one to the restrictions of the characteristics of
χi to Xj .

Observe also that each characteristic of χi (as a restriction of a partial
solution) must also obey condition 2 since any partial solution is a valid
colouring. Finally any mapping of v to {1, 2, 3} obeying 2, must be
a valid colouring of the terminal subgraph and thus there is a partial
solution containing it.

(ii) Since the treewidth is bound, say by tw, the number of nodes to check
for adjacency is also bound by tw. Furthermore the size of the set of
characteristics for each node χi is also bound by 3tw.

The corresponding constructions and their proofs for forget and join
nodes follow.

Definition 5.1.4. Let χi be a forget node, (Xi, Eχi) the terminal subgraph
G[χi], and χj the child of χi such that Xj = Xi ∪ {v}. Then a mapping α :
Xi 7→ {1, 2, 3} belongs in C(χi) iff it is a restriction of a mapping α′ ∈ C(χj).
Lemma 5.1.5. Definition 5.1.4 is correct and the set can be constructed in
constant time.

Proof.

(i) It is obvious that α is a valid colouring, since it is a restriction of α′ to
Xi. Furthermore any partial solution of χj is a partial solution of χi
and vice versa since they are related to the same terminal subgraphs.

(ii) The restriction can be done in constant time w.r.t. tw since one vertex
is removed from each mapping and both the number of mappings as
well as the number of vertices are bound.

Definition 5.1.6. Let χi be a join node, (Xi, Eχi) the induced subgraph
G[Xi] and χj , χk children of χi. Then a mapping α : Xi 7→ {1, 2, 3} belongs
in C(χi) iff α ∈ C(χj) and α ∈ C(χk).
Lemma 5.1.7. Definition 5.1.6 is correct and the set of characteristics can
be constructed in constant time.

Proof.

42 Reference Plug-ins

(i) First, observe that any characteristic α belonging to the intersection
of C(χj) and C(χk) is a characteristic of χi, since there must be a
partial solution pχj and a partial solution pχk

, such that pψ|Xi is equal
to α. This is a consequence of the connectedness property of tree
decompositions, from which we can derive that for a node w belonging
to the terminal subgraph of χj but not in the terminal subgraph of
χk, there is no edge between w and any of the nodes in the terminal
subgraph of χj . Furthermore, observe that any partial solution of χi
restricted to the nodes of G[χj], or to the nodes of G[χk] is also a partial
solution of χj or χk respectively.

(ii) The intersection of the two sets, for this specific case, given the fact
that the size of each set is bound, can be considered to take place in
constant time.

Constructing the colourings

The construction of solutions is performed in a top down manner, deter-
mined by the kind of node we encounter while processing the tree decompo-
sition. Starting from the root we set as possible solutions all the character-
istics of the root node. Let Pχi be the set of partial solutions constructed
associated to the terminal subgraph of G, G[Xi], where Xi is the set of ver-
tices in the bags of all nodes in the tree decomposition that are not successors
of χ, then, for the various types we have:

Forget Node Let χi be a forget node, χj its child and v the vertex not
in χi. Assuming we have all partial solutions of the subgraph G[Xi], the set
of partial solutions of G[Xj] consists of partial solutions of G[Xi], extended
by a valid coloring of v. But from the construction of the characteristics this
condition was conserved for the nodes in Xi and from the connectedness
condition of tree decompositions, there is no node u ∈ Xi \ Xi such that
(u, v) ∈ E. Thus the partial solutions Pχj of G[Xj] can be constructed
from the partial solutions Pχi of G[Xi] by extending each p ∈ Pχi with any
restriction of Xi equal to ck|Xi , for ck ∈ {c1, . . . , cn} characteristics in χj of n
partial solutions p1 . . . pn, such that pk(u) = p(u), u ∈ Xi and pk(v) = ck(v).

To give an example, let pχ be a partial solution for node χ with bag
{v1, v2}, such that

pχ = {v1 7→ 1, v2 7→ 3, v3 7→ 2}

and characteristics

c1 = {v1 7→ 1, v2 7→ 3, v4 7→ 2} and c2 = {v1 7→ 1, v2 7→ 3, v4 7→ 3}.

5.1 3 Colouring Algorithm 43

The set of partial solutions should now be:

pχ1 = {v1 7→ 1, v2 7→ 3, v3 7→ 2, v4 7→ 2}

and
pχ2 = {v1 7→ 1, v2 7→ 3, v3 7→ 2, v4 7→ 3}

Introduce Node This case is much easier since if χi is an introduce
node and χj its child, then Xi = Xj ∪ {v}. Which means that the solutions
restricted to χi are a subset of χj and thus their valid partial solutions for
G[Xi] must be the same.

Join Node This case is similar to the above as we know for χi a join
node and χj , χk its children Xi = Xj = Xk. The solutions for the children
should clearly be those of the parent.

5.1.2 Implementation

The three coloring algorithm presented was implemented as a plug-in for
our system. We will present some information regarding its implementation
and several test results.

A first step is to create a class called colorSolver based on the sg solver
template. Its collaboration graph is shown in Figure 5.1. The details of the

colorSolver

sg_solver< TKNiceTreeDec, color3_visitor, colorFullSet, colorVertexFullSet, colorPropertyWriter >

sg_solver< BDNiceTreeDec, color3_visitor, colorFullSet, colorVertexFullSet, colorPropertyWriter >

Figure 5.1: Collaboration graph for the colorSolver class.

template parameters are given below:

1. The BDNiceTreeDec class, that represents Bodlaender type nice tree
decompositions. It is already implemented in gSolver.

2. A color visitor class, which is the implementation of an sg visitor.
The color visitor mainly implements the algorithms presented in the
previous subsection. That is, it only describes how the characteristics
should be constructed for the nodes of the tree decomposition. For
leaves the process is straightforward since we just have one vertex to
map to each of the three colors. For the rest of the nodes we follow
the approach described above using the set operations provided. An
observation one can make here is that the distinction between introduce
and forget nodes has to be done by the plug-in.

44 Reference Plug-ins

3. A colorFullSet class, for the full set of characteristics. In order to con-
struct this class we need to implement within the plug-in an object
for characteristics. That object is called colorCharacteristic and tem-
plates the sg characteristic class with a domain - also implemented -
which is comprised of a representation of the three colors and some
convenience methods to cycle between colors and compare them. Af-
ter implementing those two classes the colorFullSet class corresponds
directly to the predefined by the color characteristics type:
sg plugin types<colorCharacteristic>::sgFullCSet.

4. A colorVertexFullSet class, defines the set of characteristics for a node
in the tree decomposition. This class, corresponds directly to the type:
sg plugin types<colorCharacteristic>::sgVertexCSet.

5. A colorPropertyWriter class, extends the sg property writer and ar-
ranges the output of solutions with the colors found.

The implementation of the plugin takes about 600 lines of code. The
exact output of the plugin can be seen in Figure 5.2.

V1

V2 V4 V7

V3 V5

V6

V8

V9

V11V10

(a) Input graph in DOT language

V1

V2 V4 V7

V3 V5

V6

V8

V9

V11V10

(b) One of the possible colourings
found.

Figure 5.2: Example of input-output of the color plugin using properyWriter
to present the colourings found.

Notes

An important observation here regards the case of the introduce node, where
the additional vertex in the bag of the parent is disjoint from all other ver-

5.1 3 Colouring Algorithm 45

tices. The valid characteristics in this case would triple and several conse-
quent cases like this on the tree decomposition structure would make the
size of the colorings grow exponentially large thus inducing a correspond-
ingly large memory consumption. This may be handled by several ways
especially when the solutions need not be built. In our implementation we
simply add a new color which marks that the colouring of the vertex can be
any, and transformed slightly the algorithm in the unary and binary cases
as well as in the construction of solutions to reflect this.

Another observation is that the notions of partial solutions and exten-
sions are indeed not needed as separate types in this case, since they can
be encompassed with the mappings used for expressing characteristics of
colorings.

5.1.3 Testing

We did various tests to observe the three colouring algorithm with respect
to several parameters. What is of interest is the complexity with respect to
the order of the graph given graphs and their tree decompositions of certain
width. Of interest is also the behaviour with respect to the width of the
input tree decompositions given graphs of equal size. We tested about 9.000
instances of 3-colorable graphs of sizes from 20 nodes to 60 nodes and various
widths from 3 to 20 using Joseph Culberson’s graph generators1. There is a
certain variability in the sample size as there is no minimal guarantee on the
order of the graph from the generators (that is, requested graphs of order
40 had a maximal order of 40). The graphs were categorized by width as
computed using the software from the Hypertree project. The cases where
there is no colouring are in principle much lighter since the computation will
stop before the root of the tree decomposition. Figures 5.3, 5.4, 5.5, 5.6, show
the time needed to calculate the full set of characteristics for various ranges
of widths of the input tree decompositions. The time measured corresponds
only to the time needed for the calculation of the full set, the construction
of the nice tree decompositions and the terminal subgraph structure are not
included. The boxplot plots on the left side, provide information on the
differences of the results regarding the dispersion, the plots on the right side
present in more detail the median of the processing times calculated. We
should emphasize here that the calculations were not performed using tree
decompositions of width equal to the treewidth of the graph but rather an
approximation.

The first two graphs present a certain linearity when observing the me-
dian values though the dispersal of the results is expanding exponentially.
For larger tree decomposition widths this image changes, the distribution of

1More on the generators can be found in http://web.cs.ualberta.ca/~joe/

Coloring/Generators/generate.html

http://www.dbai.tuwien.ac.at/proj/hypertree/index.html
http://web.cs.ualberta.ca/~joe/Coloring/Generators/generate.html
http://web.cs.ualberta.ca/~joe/Coloring/Generators/generate.html

46 Reference Plug-ins

10 20 30 40

0.
00

0.
01

0.
02

0.
03

0.
04

#Nodes

T
im

e(
se

c)

●

● ●

●

10 15 20 25 30 35 40

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

#Nodes

T
im

e(
se

c)

Figure 5.3: Running time for tree decompositions of width 3 ≤ tw ≤ 5.

20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

#Nodes

T
im

e(
se

c)

●

●

●

●

20 25 30 35 40 45 50

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

#Nodes

T
im

e(
se

c)

Figure 5.4: Running time for tree decompositions of width 5 ≤ tw ≤ 9.

the calculation expands and for the medians one can observe a large vari-
ability. In some cases the median values for larger orders seem to drop. This
is due to a certain correlation between the number of edges of the graph and
the width of the tree decomposition. This observation can be seen clearly
in Figure 5.7. Graphs with a relatively large amount of edges will allow
less possible characteristics per node and thus the processing time will be
reduced.

An issue we would like to raise here is related to the amount of char-
acteristics per node. As mentioned earlier in the case where consecutive
introduce nodes occur and the additional nodes are disjoint the number of
characteristics triples by each occurrence. It is obvious that the construction
of the nice tree decomposition plays a very important role in reducing the
growth during construction rather than reducing the growth later. On the

5.1 3 Colouring Algorithm 47

20 30 40 50 60

0
5

10
15

#Nodes

T
im

e(
se

c)

●

●

●

●

●

20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

#Nodes

T
im

e(
se

c)

Figure 5.5: Running time for tree decompositions of width 10 ≤ tw ≤ 14.

30 40 50 60

0
10

0
20

0
30

0

#Nodes

T
im

e(
se

c)

●

●

●

●

30 35 40 45 50 55 60

0
5

10
15

20

#Nodes

T
im

e(
se

c)

Figure 5.6: Running time for tree decompositions of width 15 ≤ tw ≤ 19.

48 Reference Plug-ins

5 10 15 20 25 30 35
0

2
0
0

4
0
0

6
0
0

Width

#
E

d
g
es

Figure 5.7: Width of tree decompositions with respect to the number of
edges.

other hand, the number of characteristics of the root is, in the best case,
at least equal to the number of the solutions for the graph. That is, the
variation should be expected to be large for graphs with more solutions. Es-
pecially using Bodlaender type nice tree decompositions, which enables us
on one hand to easily start coloring leafs with one vertex in the bag, but on
the other hand is prone to the exponential growth unless the construction
is slightly altered.

Another perspective is the behaviour of the algorithm with respect to
the width of the tree decompositions. The results are presented in Figure 5.8
and Figure 5.9.

●

● ●

●

● ●

4 6 8 10 12 14 16 18

0.
00

0.
04

0.
08

0.
12

Width

T
im

e(
se

c)

● 15 ≤≤ |V| ≤≤ 20
25 ≤≤ |V| ≤≤ 30

(a) Order of graph: |V | ≈ 20, |V | ≈ 30

●
●

●
● ●

● ●

●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Width

T
im

e(
se

c)

● 25 ≤≤ |V| ≤≤ 30
35 ≤≤ |V| ≤≤ 40

(b) Order of graph: |V | ≈ 30, |V | ≈ 40

Figure 5.8: Processing time w.r.t. the width of the tree decomposition.

For these graphs we present the median values for the tests. Each width
that has been tested has approximately 100 graph instances and the values

5.1 3 Colouring Algorithm 49

● ● ●
● ●

● ●
● ●

5 10 15 20

0
5

10
15

20

Width

T
im

e(
se

c)

● 35 ≤≤ |V| ≤≤ 40
45 ≤≤ |V| ≤≤ 50

(a) Order of graph: |V | ≈ 40, |V | ≈ 50

● ● ● ●
●

●

●
●

6 8 10 12 14 16 18 20

0
20

40
60

80
10

0
12

0
14

0

Width
T

im
e(

se
c)

● 45 ≤≤ |V| ≤≤ 50
55 ≤≤ |V| ≤≤ 60

(b) Order of graph: |V | ≈ 60

Figure 5.9: Processing time w.r.t. the width of the tree decomposition.

in the figure represent the median of the calculation time. We can observe
that there is an exponential growth with respect to the width, until a point
where we observe a decrease. This confirms our earlier observation that the
calculation time decreases for larger widths due to the correlation between
the calculated width and the amount of edges of the instance.

Regarding the construction of solutions, even in graphs of order 40, the
sometimes excessive number of possible solutions exceeded the allocation
size of the STL containers leading to a abrupt stop of the calculation. Some
results were produced and are shown in Figure 5.10 for graphs of order up
to 20. The drop w.r.t. time and width is due to to effects. One is the
correlation between treewidth and the number of edges presented earlier,
which reduces the number of possible solutions. The other is due to the
fact that only a few instances were actually solved in the larger cases which
resulted in a rather small testing sample for these cases. The behaviour for
width up to 14 is depicted in Figure 5.10(b).

50 Reference Plug-ins

●

●

●

●

●
● ● ● ● ● ● ●

4 6 8 10 12 14

0
2

4
6

8

Width

T
im

e(
se

c)

(a)

● ● ●
●

●

●

●

●

●

●

●

8 10 12 14 16 18 20

0
2

4
6

8

#Nodes

T
im

e(
se

c)

(b)

Figure 5.10: Processing time for solutions.

Chapter 6

Experiments

In this chapter we present several experiments regarding the efficiency of
gSolver. It is of importance that the fundamental objects assumed in the
algorithm, such us nice tree decompositions and terminal subgraphs, are
constructed efficiently. We will focus on the time needed for construction
of the nice tree decomposition with respect to the width of the original
tree decomposition and the time needed for the constuction of the structure
of terminal subgraphs. The tests were performed on Mac OS X 10.4.11,
running on a MacBook with an Intel Core Duo at 2GHz with 2GB of RAM.
The graph instances are a superset of those tested in the 3 colouring example.
Graphs of order 20-90 were tested with treewidths ranging from 3 to 60
depending on the order. For each order and each treewidth, approximately
100 test cases were generated.

6.1 Testing construction of basic objects

6.1.1 Nice tree decompositions

The following tests regard the construction of the three implemented styles
of nice tree decompositions that is Bodlaender, Kloks and HN style nice
tree decompositions. The time measured includes the time for triangulation
of the initial graph, construction of the k-tree, and the actual construction
of the nice tree decomposition from the k-tree according to the algorithm
induced by the constructive proofs for each case as presented in 2.2.8. In
each plot the values depict the median of the test cases for each of the styles
considering the width as a parameter.

When considering the width as a fixed parameter one can observe that
the behaviour of the construction is linear, as shown figure 6.2(a). This is
also visible for greater widths. We had expected that for “small” values
of the parameter the algorithms behave in a linear fashion and this was
confirmed by the results. Another observation regarding the actual types of
nice tree decomposition is that the Bodlaender style is always higher than

52 Experiments

● ●
●

●

●

●

●

●

●

20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

#Nodes

N
T

D
 T

im
e(

se
c)

●

TK
BD
HN
1 ≤≤ w ≤≤ 70

(a)

●

●

●
● ●

20 30 40 50 60

60
70

80
90

10
0

#Nodes

T
im

e(
%

)

(b)

Figure 6.1: Comparisons between various tree decomposition styles (a), and
percentage of time used only for the computation of the characteristics w.r.t
the total time (b).

the other two types. This is due to the post processing step which also
increases the number of nodes in the tree decomposition. We also expect a
non-linear general complexity which is also the case considering the results
in Figure 6.1(a).

Another test that we deem important is how much time does the con-
struction of the tree decompositions need, compared to the computation of
the full set of characteristics. This is important since they are used in each
plug-in and should be efficient. The relation can be clearly seen in Figure
6.1(b), where the percentage of time spent in for the calculation of the full
set w.r.t to the total time is shown. For graphs larger than 40 nodes almost
100% of the total computation time is spent on the calculation of charac-
teristics. Observe also that for graphs of sizes 10-30 the calculation time is
anyway indeed very small. We thus can conclude that the overhead of the
base system would not hinder the actual calculations.

6.1.2 Terminal Subgraphs

Similar tests were done for the construction time needed for the terminal sub-
graph structure corresponding to the nice tree decomposition of the graph.
The results of the tests for small ranges of tree width are shown in Fig-
ure 6.3. The behaviour is clearly within linear bounds or less in all cases
tested.

What is different here is that the construction remains linear without
considering the width. This is visible in Figure 6.3(e).

6.1 Testing construction of basic objects 53

●

●

●

●

●

●

●

20 30 40 50 60 70 80

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

#Nodes

N
T

D
 T

im
e(

se
c)

●

TK
BD
HN
3 ≤≤ w ≤≤ 8

(a)

●

●

●

●

●

●

●
●

20 30 40 50 60 70 80 90

0.
00

5
0.

01
0

0.
01

5
0.

02
0

#Nodes

N
T

D
 T

im
e(

se
c)

●

TK
BD
HN
9 ≤≤ w ≤≤ 11

(b)

●

●

●

●

●
●

40 50 60 70 80 90

0.
01

0
0.

02
0

0.
03

0
0.

04
0

#Nodes

N
T

D
 T

im
e(

se
c)

●

TK
BD
HN
19 ≤≤ w ≤≤ 21

(c)

●

●

●

●

●

●

40 50 60 70 80 90

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

#Nodes

N
T

D
 T

im
e(

se
c)

●

TK
BD
HN
29 ≤≤ w ≤≤ 31

(d)

●

●

●

●

●

●

●

55 60 65 70 75 80 85 90

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

#Nodes

N
T

D
 T

im
e(

se
c)

●

TK
BD
HN
39 ≤≤ w ≤≤ 41

(e)

●

●

●
●

70 75 80 85 90

0.
04

0.
06

0.
08

0.
10

#Nodes

N
T

D
 T

im
e(

se
c)

●

TK
BD
HN
49 ≤≤ w ≤≤ 51

(f)

Figure 6.2: Construction time for the implemented nice tree decompositions.

54 Experiments

●

●

●

●

●

●

●

●

●

20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

#Nodes

T
im

e(
se

c)

● 3 ≤≤ width ≤≤ 8
9 ≤≤ width ≤≤ 11

(a)

●

●

● ●

●

●

●
●

20 30 40 50 60 70 80 90

0.
01

0.
02

0.
03

0.
04

0.
05

#Nodes

T
im

e(
se

c)

● 9 ≤≤ width ≤≤ 11
19 ≤≤ width ≤≤ 21

(b)

●

●

●

●

●

●

40 50 60 70 80 90

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

#Nodes

T
im

e(
se

c)

● 19 ≤≤ width ≤≤ 21
29 ≤≤ width ≤≤ 31

(c)

●

●
●

●

●

●

40 50 60 70 80 90

0.
04

0.
08

0.
12

0.
16

#Nodes

T
im

e(
se

c)
● 29 ≤≤ width ≤≤ 31

39 ≤≤ width ≤≤ 41

(d)

●

●

●

●

●

●

●

●

●

20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

#Nodes

T
im

e(
se

c)

● 1 ≤≤ width ≤≤ 20

(e)

Figure 6.3: Construction time for the terminal subgraph structure.

Chapter 7

Conclusion

We have implemented a generic system for algorithms designed for graphs
of bounded treewidth. The base implementation appears to be efficient
with respect to possible calculations of the full sets of characteristics and
generic enough to accept definitions of many kinds of algorithms for various
problems. Several issues related to efficiency of gSolver still remain though.

7.1 Future work

One important factor that inhibits the calculation of the full set of charac-
teristics is the redundancy of the nice tree decomposition with respect to
its structure. As observed during the experiments, several bags are kept
containing sets of instances of the same characteristics which need to be
processed, thus expanding both the memory needed and the calculation
time. A solution that we would be eager to implement in the system is the
anchor technique [BNU04] mentioned also in chapter 3, which tackles this
problem by calculating an approximate solution to a weighted set covering
problem of the bags of the nice tree decomposition, This, in turn, provides
an approximation to the necessary calculations for the full set.

Another important issue to be addressed is the reduction of the mem-
ory needed for the calculations, a problem even more prominent when the
construction of a solution is required. A general representation of charac-
teristics is performed with a mapping from the nodes of the graph to some
domain. It is usually the case, that many characteristics contain multiple
instances of the same mapping which in return leads to larger memory al-
location than necessary. This issue can be in some degree addressed using
more sophisticated containers using pointers instead of the actual mappings.

Regarding nice tree decompositions, a construction algorithm, should
possibly be derived using only its description. What is interesting at this
point is that using the description, a theorem prover could be used to prove
termination, then we can process the description and generate the appropri-

56 Conclusion

ate code. Something similar might be possible just to ensure correctness of
the algorithm, based on the formulas presented in chapter 3, yet complete
code generation should not be possible for this case.

Bibliography

[AP89] S. Arnborg and A. Proskurowski. Linear time algorithms for np-
hard problems restricted to partial k-trees. Discrete Appl. Math.,
23(1):11–24, 1989. 13

[BLW87] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computa-
tion of optimal subgraphs of decomposable graphs. J. Algorithms,
8(2):216–235, 1987. 13

[BNU04] N. Betzler, R. Niedermeier, and J. Uhlmann. Tree decompositions
of graphs: Saving memory in dynamic programming. Electronic
Notes in Discrete Mathematics, 17:57–62, 2004. 17, 55

[Bod93] H.L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing, pages 226–234,
1993. 14

[Bod97] H.L. Bodlaender. Treewidth: Algorithmic Techniques and Re-
sults. Mathematical Foundations of Computer Science 1997: 22nd
International Symposium, MFCS’97, Bratislava, Slovakia, August
25-29, 1997: Proceedings, 1997. v, vii, 1, 7, 13, 39

[Bod05] H.L. Bodlaender. Discovering treewidth. SOFSEM, pages 1–16,
2005. 14

[Cou90] B. Courcelle. Graph rewriting: An algebraic and logic approach.
Handbook of Theoretical Computer Science, 2:194–242, 1990. v,
vii, 1, 6

[Die05] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Math-
ematics. Springer, August 2005. 3

[DT06] F. Dorn and J. Telle. Two birds with one stone: The best of
branchwidth and treewidth with one algorithm. LATIN 2006:
Theoretical Informatics, pages 386–397, 2006. 11

[FG65] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval
graphs. Pacific J. Math, 15(3):835–855, 1965. 4

58 BIBLIOGRAPHY

[GPW07] G. Gottlob, R. Pichler, and F. Wei. Monadic datalog over finite
structures with bounded treewidth. In PODS ’07: Proceedings
of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 165–174, New York, NY,
USA, 2007. ACM. 1

[Gro07] M. Grohe. Logic, graphs, and algorithms. In J. Flum, E. Grädel,
and T. Wilke, editors, Logic and Automata: History and Per-
spectives, number 2 in Texts in Logic and Games. Amsterdam
University Press, Amsterdam, 2007. 1

[HN02] M. T. Hajiaghayi and N. Nishimura. Subgraph isomorphism,
log-bounded fragmentation and graphs of (locally) bounded
treewidth. Mathematical Foundations of Computer Science 2002,
pages 305–318, 2002. 13

[Klo94] T. Kloks. Treewidth: Computations And Approximations, volume
842/1994 of Lecture Notes in Computer Science. Springer, 1994.
5, 8, 9, 10

[KMS02] N. Klarlund, A. Möller, and Michael I. Schwartzbach. Mona im-
plementation secrets. Int. J. Found. Comput. Sci., 13(4):571–586,
2002. 1

[Mar06] H. Maryns. On the implementation of tree automata: Limitations
of the naive approach. Proc. 5th Int. Treebanks and Linguistic
Theories Conference (TLT 2006), pages 235–246, 2006. 1

[Ros70] D.J. Rose. Triangulated graphs and the elimination process. Jour-
nal of Mathematical Analysis and Applications, 32(3):597–609,
1970. 4

[RT75] D. Rose and R. Tarjan. Algorithmic aspects of vertex elimination.
In STOC ’75: Proceedings of seventh annual ACM symposium on
Theory of computing, pages 245–254, New York, NY, USA, 1975.
ACM. 5

Index

k-tree, 4, 5

Characteristic, 15
chord, 3
clique, 4

Extension, 15

graph, 3
acyclic, 4
connected, 4
triangulated, 4

nice tree decomposition, 8
Bodlaender-type, 9
HN-type, 9
Kloks-type, 9

niceTreeDec class, 26

Partial Solution, 14
path, 3

cycle, 3
perfect elimination scheme, 4, 5

sg solver class template, 30
sg visitor class template, 31
simplicial vertex, 4
Solution, 14
subgraph, 3

induced subgraph, 3

tree, 4
binary tree, 4

tree decomposition, 7
width, 7

treeDec class, 24
treewidth, 7

ugsGraph class, 22

	Kurzfassung
	Abstract
	Acknowledgments
	Introduction
	Preliminaries
	Basic Definitions
	Related Algorithms

	Tree Decompositions

	General Algorithms and Tree Decompositions
	Structure
	Basic Notions
	Algorithm design
	Formal rules for notions
	Complexity Issues

	Implementation
	General Structure
	Basic Classes and Datatypes
	The ugsGraph class
	The treeDec class
	Other Operations

	Plug-in design
	The sg_solver template
	The sg_visitor class
	Notions of the general algorithm
	Property writers

	Other functionality
	Input and Output
	Profiling
	Registering the Plug-in

	Reference Plug-ins
	3 Colouring Algorithm
	Algorithm Description
	Implementation
	Testing

	Experiments
	Testing construction of basic objects
	Nice tree decompositions
	Terminal Subgraphs

	Conclusion
	Future work

