
. .

Dr. Nysret Musliu

M.Sc. Arbeit

Data Mining on
Empty Result Queries

ausgeführt am

Institut für Informationssysteme

Abteilung für Datenbanken und Artificial Intelligence

der Technischen Universität Wien

unter der Anleitung von

Priv.Doz. Dr.techn. Nysret Musliu
und Dr.rer.nat Fang Wei

durch

Lee Mei Sin

Wien, 9. Mai 2008 .

Lee Mei Sin

. .

Dr. Nysret Musliu

Master Thesis

Data Mining on
Empty Result Queries

carried out at the

Institute of Information Systems

Database and Artificial Intelligence Group

of the Vienna University of Technology

under the instruction of

Priv.Doz. Dr.techn. Nysret Musliu
and Dr.rer.nat Fang Wei

by

Lee Mei Sin

Vienna, May 9, 2008 .

Lee Mei Sin

Abstract

A database query could return an empty result. According to statistics, empty results
are frequently encountered in query processing. This situation happens when the user is
new to the database and has no knowledge about the data. Accordingly, one wishes to
detect such a query from the beginning in the DBMS, before any real query evaluation
is executed. This will not only provide a quick answer, but it also reduces the load on
a busy DBMS. Many data mining approaches deal with mining high density regions (eg:
discovering cluster), or frequent data values. A complimentary approach is presented here,
in which we search for empty regions or holes in the data. More specifically, we are mining
for combination of values or range of values that do not appear together, resulting in
empty result queries. We focus our attention on mining not just simple two dimensional
subspace, but also in multi-dimensional space. We are able to mine heterogeneous data
values, including combinations of discrete and continuous values. Our goal is to find the
maximal empty hyper-rectangle. Our method mines query selection criteria that returns
empty results, without using any prior domain knowledge.

Mined results can be used in a few potential applications in query processing. In the
first application, queries that has selection criteria that matches the mined rules will surely
be empty, returning an empty result. These queries are not processed to save execution.
In the second application, these mined rules can be used in query optimization. It can
also be used in detecting anomalies in query update. We study the experimental results
obtained by applying our algorithm to both synthetic and real life datasets. Finally, with
the mined rules, an application of how to use the rules to detect empty result queries is
proposed.

Category and Subject Descriptors:

General terms:

Data Mining, Query, Database, Empty Result Queries

Additional Keywords and Phrases:

Holes, empty combinations, empty regions

iii

Contents

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Background . 2
1.2 Motivation . 3
1.3 Organization . 3

2 Related Work 4
2.1 Different definitions used . 4
2.2 Existing Techniques for discovering empty result queries 4

2.2.1 Incremental Solution . 4
2.2.2 Data Mining Solutions . 5
2.2.3 Analysis . 9

3 Proposed Solution 10
3.1 General Overview . 10
3.2 Terms and definition . 11

3.2.1 Semantics of an empty region . 12
3.3 Method . 13

3.3.1 Duality concept . 13

4 Algorithm 15
4.1 Preliminaries . 15

4.1.1 Input Parameters . 15
4.1.2 Attribute Selection . 16
4.1.3 Maximal set, max set . 16
4.1.4 Example . 16

4.2 Step 1: Data Preprocessing . 17
4.3 Step 2: Encode database in a simplified form 22
4.4 Step 3 - Method 1: . 25

4.4.1 Generating 1-dimension candidate: 25
4.4.2 Generating k-dimension candidate 26
4.4.3 Joining adjacent hyper-rectangles . 27
4.4.4 Anti-monotonic Pruning . 30

4.5 Step 3 - Method 2: . 31

iv

CONTENTS v

4.5.1 Generating n-itemset . 32
4.5.2 Generating k-1 itemset . 32
4.5.3 Monotonic Pruning . 35

4.6 Comparison between Method 1 & Method 2 35
4.7 Data Structure . 36

5 Mining in Multiple Database Relations 37
5.1 Holes in Joins . 37
5.2 Unjoinable parts . 39

6 Test and Evaluation 41
6.1 Performance on Synthetic Datasets . 41
6.2 Performance on Real Life Datasets . 44
6.3 Granularity . 46
6.4 Varying Distribution Size . 48
6.5 Different Data Types . 48
6.6 Accuracy . 49
6.7 Performance Analysis and Summary . 52

6.7.1 Comparison to existing methods . 52
6.7.2 Storage and Scalability . 52
6.7.3 Buffer Management . 53
6.7.4 Time Performance . 54
6.7.5 Summary . 54
6.7.6 Practical Analysis . 55
6.7.7 Drawbacks and Limitations . 55

7 Integration of the algorithms into query processing 56
7.1 Different forms of EHR . 56
7.2 Avoid execution of empty result queries . 57
7.3 Interesting Data Discovery . 59
7.4 Other applications . 59

8 Conclusion 60
8.1 Future Work . 60

Bibliography 61

Appendices

A More Test Results 63
A.1 Synthetic Dataset . 63
A.2 Real Life Dataset . 65

List of Figures

2.1 Staircase . 6
2.2 Constructing empty rectangles . 6
2.3 Splitting of the rectangles . 7
2.4 Empty rectangles and decision trees . 9

3.1 Query and empty region . 10
3.2 The lattice that forms the search space . 14

4.1 Main process flow . 17
4.2 Clusters formed on X and Y respectively . 18
4.3 Joining adjacent hyper-rectangle . 28
4.4 Example of top-down tree traversal . 29
4.5 Anti-Monotone Pruning . 31
4.6 Splitting of adjacent rectangles . 34
4.7 Example of generating C2 . 34
4.8 Monotone Pruning . 35

5.1 Star schema . 38

6.1 TPCH: Result charts . 43
6.2 California House Survey: Result charts . 45
6.3 Results for varying threshold, τ . 46
6.4 Mined EHR based on different threshold, τ 47
6.5 Results for varying distribution size . 48
6.6 Point distribtion I . 50
6.7 Point distribtion II . 51
6.8 Point distribtion III . 51

7.1 Implementation for online queries . 57

vi

List of Tables

1.1 Schema and Data of a Flight Insurance database 2

4.1 Flight information table . 16
4.2 Attribute price is labeled with their respective clusters 22
4.3 The simplified version of the Flight information table 23
4.4 Notations used in this section . 24
4.5 Partitions for L1 . 26

5.1 Fact table: Orders . 39
5.2 Tuple ID propagation . 39
5.3 dimension table: Product . 39

6.1 TPCH . 42
6.2 California House Survey . 44
6.3 Synthetic datasets . 48

7.1 DTD . 58
7.2 An example of an XML file . 58
7.3 XQuery . 59

A.1 Testset #1 . 63
A.2 Testset #2 . 64
A.3 Ailerons . 65
A.4 KDD Internet Usage Survey . 66
A.5 Credit Card Scoring . 67

vii

We are drowning in information,
but starving for knowledge.

— John Naisbett

A special dedication to everyone who has helped make this a reality.

Acknowledgments

I would like to express my heartfelt appreciation to my supervisor, Dr. Fang Wei, for the
support, advice and assistance. I am truly grateful to her for all the time and effort he
invested in this work. I would also like to thank Dr. Nysret Musliu for being the official
supervisor and for all the help he has provided.

My Master’s studies were funded by the generous Erasmus Mundus Scholarship, which
I was awarded as a member of European Master’s Program in Computational Logic. I
would like to thank the Head of the Program, Prof. Steffen Holldobler, for giving me this
opportunity, and the Program coordinator in Vienna, Prof. Alexander Leitsch for kind
support in all academic and organizational issues.

Finally, I am grateful to all my friends and colleagues who have made these last two
years abroad a truly enjoyable stay and an enriching experience for me.

ix

1
Introduction

Empty result queries are frequently encountered in query processing. Mining empty result
queries can be seen as mining empty regions in the dataset. This also can be seen as
a complimentary approach to existing mining strategies. Much work in data mining are
focused in finding dense regions, characterizing the similarity between values, correlation
between values and etc. It is therefore a challenge to mine empty regions in the dataset.
In contrast to data mining, the following are interesting to us: outliers, sparse/negative
clusters, holes and infrequent items. In a way, determining empty regions in the data can
be seen as an alternative way of characterizing data.

It is observed that in [Gryz and Liang, 2006], a join of relations in real databases is
usually much smaller than their Cartesian product. Empty region exist within the table
itself, this is evident when ploting a graph between two attributes in a table reveals a
lot of empty regions. Therefore it is reasonable to say that empty regions exist, as it is
impossible to have a table or join of tables that are completely packed. In general, high
dimensional data and attributes with large domains are bound to have an extremely high
number of empty and low density regions.

Empty regions formed by categorical values means that certain combination of values
are not possible. As for continuous values, this indicates that certain ranges of attributes
never appear together. Semantically, the empty region implies the negative correlation
between domains or attributes. Hence, these regions have been exploited in semantic
query optimization in [Cheng et al., 1999].

1

1.1 Background 2

Consider the following example:

Flight Insurance
FID CID Travel Date Airline Destination Full Insurance
119 XDS003 1/1/2007 SkyEurope Madrid Y
249 SDS039 2/10/2006 AirBerlin Berlin N
. . .

Customer
CID Name DOB . . .
XDS003 Smith 22/3/1978 . . .
SDS039 Murray 1/2/1992 . . .
. . .

Flight Company
Airline Year of Establishment . . .
SkyEurope 2001 . . .
AirBerlin 1978 . . .
. . .

Table 1.1: Schema and Data of a Flight Insurance database

In the above data set, we would like to discover if there are certain ranges of the attributes
that never appear together. For example, it may be the case that no flight insurance for
SkyEurope flight before 2001, SkyEurope does not fly to destinations other than European
countries or Full Insurance are not issues to customers younger than 18. Some of these
empty regions may be foreseeable and logical, for example, SkyEurope was established in
2001. Others may have more complex and uncertain causes.

1.1 Background

Empty result queries are queries sent to a RDBMS but after being evaluated, return the
empty result. Before execution, if a RDBMS is unable to detect an empty result queries,
it will execute the query and thus waste execution time and resources. Queries that join
two or more tables will take up a lot of processing time and resources even if the result
is empty, because time and resoures has to be allocated for doing the join. According
to [Luo, 2006], empty results are frequently encountered in query processing. eg: in a
query trace that contains 18,793 SQL queries and is collected in a Customer Relationship
Management (CRM) database application developed by IBM, 18.07% (3,396) queries are
empty-result ones.

The empty-result problem has been studied in the research literature. It is known as
empty-result problem in [Kießling and Köstler, 2002]. According to [Luo, 2006], existing
solutions fall into two category:

1. Explain what leads to the empty result set

2. Automatically generalize the query so that the generalized query will return some
answers

Besides being used in the form of query processing, empty results can also be charac-
terized in terms of data mining. Empty result happens when ranges of attributes do not
appear together [Gryz and Liang, 2006] or the combination of attribute values do not exist
in a tuple of a database. Empty results can be seen as a negative correlation between two
attribute values. Empty regions can be thought of as an alternative characteristic of data

1.2 Motivation 3

skew. We can use the mined results to provide another description of data distribution in
a universal relation.

The causes that lead to an empty result query are:

1. Values do not appear in the database
This refers to values that do not appear in the domain of the attributes.

2. Combination or certain ranges of values do not appear together
These are individual values that appear in the database, however do not appear
together with other attribute values.

1.2 Motivation

By identifying empty result queries, DBMS can avoid executing them, thus reducing un-
favorable delay and reducing the load on the DBMS, and thus further improving system
performance. The results can help facilitate the exploration of massive datasets.

Mining empty hyper-rectangles can be used in the following cases:

1. Detection of empty-result queries.
One might think that empty-result queries can finish in a short amount of time.
However, this is often not the case. For example, consider a query that joins two
relations. Regardless of whether the query result set is empty, the query execution
time will be longer than the time required to do the join. This can cause unnecessary
load on a heavily loaded RDBMS. In general, it is desirable to quickly detect empty-
result queries. Not only does it facilitate the exploration of massive dataset but
also it provides important benefits to users. First, users do need to wait for queries
to be processed, but in the end, turned out to be empty. Second, by avoiding
the unnecessary execution of empty-result queries, the load on the RDBMS can be
reduced , thus further improving the system performance.

2. Query Optimizaion
Queries can be rewritten based on the mined empty regions, so that query processing
can be optimized.

1.3 Organization

The thesis is organized as follows: Chapter 2 explores the existing algorithms and tech-
niques in mining empty regions. In Chapter 3, the proposed Solution is discussed and
in Chapter 4, the algorithm is presented in detail. Chapter 5 outlines an extension to
the existing algorithm for mining multiple relations. Results and algorithm evaluation
are presented in Chapter 6. We discuss the potential application for the mined result in
chapter 7. And lastly, we present our conclusion in Chapter 8.

2
Related Work

2.1 Different definitions used

In previous research literature, many different definitions of empty regions have been used.
It is known as holes in [Liu et al., 1997] and Maximal empty Hyper-rectangle(MHR) in
[Edmonds et al., 2001]. However, in [Liu et al., 1998], the definition of a hole is relaxed,
where regions with low density is considered ’empty’. In this context, our definition of
a hole or empty hyper-rectangle is simply a region in the space that contains no data
point. They exist because certain value combinations are not possible. In a continuous
space, there always exist a large number of holes because it is not possible to fill up the
continuous space with data points.

In [Liu et al., 1997], they argued that not all holes are interesting, as they wish to
discover only holes that assist them in decision making or discovery of interesting data
correlation. However in our case, we aim to mine holes to assist in query processing,
regardless of their ’interestingness’.

2.2 Existing Techniques for discovering empty result queries

2.2.1 Incremental Solution

In [Luo, 2006], Luo proposed an incremental solution for detecting empty-result queries.
The key idea is to remember and reuse the results from previously executed empty-result
queries. Whenever empty-result queries are encountered, the query is analysed and the
lowest-level of empty result query parts are stored in Caqp, known as the collection of
atomic query parts. It claims that the coverage detection capability in this method is
more powerful than that of the traditional materialized view method. Consequently, with
stored atomic query parts, it can handle empty result queries based on two following
scenarios:

1. a more specific query
It is able to identify using the stored atomic query part, queries that are more
specific. In this case, the query will not be evaluated at all.

2. a more general query
However, if a more general query is encountered, the query will be executed to

4

2.2 Existing Techniques for discovering empty result queries 5

determine whether it returns empty. If it does, the new atomic query parts that are
more general will replace the old ones.

Below are the main steps of breaking a lowest-level query part P whose output is empty
into one or more atomic query parts:

1. Step 1: P is transformed into a simplified query part Ps.

2. Step 2: Ps is broken into one or more atomic query parts.

3. Step 3: The atomic query parts are stored in Caqp.

This method is not specific to any data types, as the atomic queries parts are directly
extracted from queries issued by users. Queries considered here can contain point-based
comparisons and unbounded-interval-based comparison.

• point-based comparisons: (A.c =′ x′)

• unbounded-interval-based comparisons: (10 < A.a < 100, B.e < 40)

Unlike other data mining approaches, this method is built into a RDBMS and is imple-
mented at the query execution level. First, the query execution plan is generated and the
lowest-level query part whose output is empty is identified. These parts are then stored
in Caqp and kept in memory for efficient checking.

One of main disadvantage of this solution is that it may need to take a long time to
obtain a good set of Caqp, due to its incremental nature. Many empty result queries need
to be executed first before the RDBMS can have a good detection of empty result queries.

2.2.2 Data Mining Solutions

Mining empty regions or holes is seen to be the complementary approach to existing data
mining techniques that focuses on the discovery of dense regions, interesting groupings of
data and similiarity between values. There mining methods however can be applied to
discover empty regions in the data. There have been studies on mining of such regions, and
they can be categorized into the following groups, described individually in each subsection
below.

Discovering Holes by Geometry

There are two algorithms that discover holes by using geometrical structure.

(1) Constructing empty rectangles

The algorithm proposed in [Edmonds et al., 2001] aims at constructing or ’growing’ empty
cells and output all maximal rectangles. This method requires a single scan of a sorted
data set. This method works well in two dimension space, and can be generalized to high
dimensions, however it might be complicated. The dataset is depicted as an |X| × |Y |
matrix of 0’s and 1’s. 1 represents the presence of a value and 0 for non-existence of a
value, as shown in Figure 2.2(a). First it is assumed that the set X of distinct values (the
smaller) in the dimension is small enough to be stored in memory.

2.2 Existing Techniques for discovering empty result queries 6

Tuples from the database D will be read sequentially from the disk . When 0-entry
〈x, y〉 is encountered, the algorithm looks ahead by querying the matrix entries 〈x + 1, y〉
and 〈x, y + 1〉. The resulting area resembles a staircase. Then all maximal rectangles that
lie entirely within that staircase (Fig 2.1) is extracted. This can be summarized by the
algorithm structure below:

loop y = 1 n
loop x = 1 m

1. Construct staircase (x, y)
2. Output all maximal 0-rectangles with <x, y>

as the bottom-right corner.

0
1

1
1

1

1

1

Figure 2.1: Staircase

Consider the following example:

Example 2.1. Let A be an attribute of R with the domain X = (1, 2, 3) and let B be an
attribute with domain Y = (7, 8, 9). The matrix M for the data set is shown in Fig 2.2(a).
Figure 2.2(b) shows all maximal empty rectangles.

0 0

0 0

0 0

1

1

1

1 2 3

7

8

9

(a) Matrix table

0 0

0 0

0 0

1

1

1

1 2 3

7

8

9

(b) Overlapping empty rectan-
gles(marked with thick lines)

Figure 2.2: The matrix and the corresponding empty rectangles

This algorithm was extended to mine empty regions in the non-joining portion of two
relational tables in [Gryz and Liang, 2006]. It is observed that the join of two relations

2.2 Existing Techniques for discovering empty result queries 7

in real databases are usually much smaller than their Cartesian product. The ranges and
values that do not appear together are characterized as empty regions. It is observed
that this method generates a lot of overlapping rectangles, as shown in Figure 2.2(b).
Even though it is shown that the number of overlapping rectangles is at most O(|X| |Y |),
there are still a lot of redundant results and the number of empty rectangles might not
accurately show the empty regions in the data.

The number of maximal hyper-rectangles in a d-dimensional matrix is O(n2d−2) where
n = |X| × |Y |. The complexity of an algorithm to produce them increases exponentially
with d. When d = 2 dimensions, the number of maximal hyper-rectangles is O(n2), which
is linear in the size O(n2) of the input matrix. As for d = 3 dimensions, the number
increases to O(n4), which is not likely to be practical for large datasets.

(2)Splitting hyper-rectangles.

The second method introduced in [Liu et al., 1997] Maximal Hyper-rectangle(MHR) is
formed by splitting existing MHR when a data point is added.

Given k-dimensional continuous space S, and n points in S, they first start with one
MHR, which occupies the entire space S. Then each point is incrementally added to
S. When a new point is added, they identify all the existing MHRs that contain that
point. Using the newly added point as reference, a new lower and upper bound for each
dimension is formed to result in 2 new hyper-rectangles along that dimension. If the new
hyper-rectangles are found to be sufficiently large, they are inserted into the list of MHRs
to be considered. At each insertion, they update the set of MHRs.

1

2
A K E B

G

Q

C
FMD

max2

max1min1

min2

Figure 2.3: Splitting of the rectangles

As shown in Figure 2.3, the new rectangles formed after points P1 and P2 are inserted.
The rectangles are split along dimension 1 and dimension 2, resulting in new smaller
rectangles. Only sufficiently large ones are kept. The proposed algorithm is memory-
based and is not optimized for large datasets. As the data is scanned, a data structure is
kept storing all maximal hyper-rectangles. The algorithm runs in O(|D|2(d−1) d3(log |D|)2)
where d is the number of dimensions in the dataset. Even in two dimensions (d = 2), this
algorithm is impractical for large datasets. In an attempt to address both the time and
space complexity, the authors proposed to maintain only maximal empty hyper-rectangles
that exceed an a user defined minimum size.

The disadvantage of this method is that it is impractical for large dataset. Besides that,
results might not be desirable if the dataset is dense. In this case, a lot of small empty

2.2 Existing Techniques for discovering empty result queries 8

regions will be mined. This solution only works for continuous attributes and it does not
handle discrete attributes.

Discovering Holes by Decision Trees Classifiers

In [Liu et al., 1998], Liu et. alproposed to use decision tree classifiers to (approximately)
separate occupied from unoccupied space. They then post-process the discovered regions
to determine maximal empty rectangles. It relaxes the definition of a hole, to that of a
region with count or density below a certain threshold is considered a hole. However, they
do not guarantee that all maximal empty rectangles are found. Their approach transforms
the holes-discovery problem into a supervised learning task, and then uses the decision
tree induction technique for discovering holes in data. Since decision trees can handle both
numeric and categorical values, this method is able to discover empty regions in mixed
dimensions. This is an advantage over the other methods as they are not only able to
mine empty rectangles in numeric dimensions, but also in mixed dimensions of continuous
and discrete attributes.

This method is built upon the method in [Liu et al., 1997] (discussed above under
Discovering Holes by Geometry - Splitting hyper-rectangles). Instead of using points as
input to split the hyper-rectangle space, this method uses filled regions, FR as input to
produce maximal holes.

This method consists of the following three steps:

1. Partitioning the space into cells.
Each continuous attribute is first partitioned into a number of equal-length intervals
(or units). Values have to be carefully chosen to ensure that the space is partitioned
into suitable cell size.

2. Classifying the empty and filled regions.
A modified version of decision tree engine in C4.5 is used to carve the space into
filled and empty regions. With the existing points, the number of empty cells are
calculated by minusing the filled cells from the total number of cells. With this
information, C4.5 will be able to compute the information gain ratio and use it to
decide the best split. A decision tree is constructed, with tree leafs labeled empty,
representing empty regions, and the others the filled region, FR.

3. Producing all the maximal holes.
In this post-processing step, all the maximal holes are produced. Given a k-dimensional
continuous space S and n FRs in S, they first start with one MHR which occupies
the entire space S. Then each FD is incrementally added to S. At each insertion, the
set of MRHs found is updated. When a new FR is added, they identify all the exist-
ing NHRs that intersect with this FR. These hyper-rectangles are no longer MHRs
since they now contain part of the FR within their interior. They are then removed
from the set of existing MHRs. Using the newly added FR as reference, a new lower
and upper bound for each dimension are formed to result in 2 new hyper-rectangles
along that dimension. If these new hyper-rectangles are found to be MHRs and are
sufficiently large, they are inserted into the list of existing MHRs, otherwise they are
discarded.

As shown in Figure 2.4, the new rectangles are formed after FRs H1 and H2 are inserted.
The hyper-rectangles are split, forming smaller MHRs. Only sufficiently large ones are

2.2 Existing Techniques for discovering empty result queries 9

kept. The final set of MHRs are GQNH, RBCS, GBUT, IMND, OPCD, AEFD and ABLK
respectively.

1

2

A

K

E BG Q

C
F

M

D

max2

max1min1

min2

R

L

U
J

P

H N S

T

O

I

H1

H2

Figure 2.4: Carving out the empty rectangles using decision tree

2.2.3 Analysis

It is true that mining empty regions is not an easy task. As some of the mining methods
produce a large number of empty rectangles. To counter this problem, a user input is
required and mining is done only on regions with size larger than the user’s specification.
Another difficulty is the inability of existing methods to mine discrete attributes or the
combination of continuous and discrete values. Most of the algorithms scale well only in
low-dimensional space, eg: 2 or 3 dimension. They immediately become impractical if
mining is needed to be done high dimensional space.

It is stated that not all holes are important in [Liu et al., 1997], however our task is
to store as many large discovered empty hyper-rectangles. It is noticed that there are no
clustering techniques used. Simple observation is that existing clustering methods find
high density data and ignore low density regions. Existing clustering techniques such as
CLIQUE [Agrawal et al., 1998] find clusters in subspaces of high dimensional data, but
only works for continuous values and only works for high density data and ignore low
density ones. In this, we want to explore the usage of clustering in finding empty regions
of the data.

3
Proposed Solution

3.1 General Overview

In view of the goal of mining for empty result queries, we propose to mine empty regions
in the dataset to achieve that purpose. Empty result queries happens when the required
region turns out to be empty, containing no points. Henceforth, we will focus on mining
empty region, which is seen as equivalent to mining empty result queries. More specifically,
empty regions here mean empty hyper-rectangles. We concentrate on hyper-rectangular
regions instead of finding irregular regions described by some of the earlier mining methods,
like the staircase-like region [Edmonds et al., 2001] or irregular shaped regions due to
overlapping rectangles.

V
Q

x1

xj

x0

xi

y1y0 yi yj

Figure 3.1: Query and empty region

SELECT * FROM table
WHERE X BETWEEN x_i AND x_j
AND Y BETWEEN y_i AND y_j;

To illustrate the relation between empty result queries and empty regions in database
views, consider Figure 3.1 and the SQL query above. The shaded region V is a materialized
view depicting an empty region in the dataset and the rectangle box Q with thick lines
depicts the query. It is clear the given SQL query is an empty result query since the query
falls within the empty region of the view.

10

3.2 Terms and definition 11

To mine these empty regions, the proposed solution uses the clustering method. In a
nutshell, all existing points are clustered into clusters, and empty spaces are inferred from
them. For this method, no prior domain knowledge is required. With the clustered data,
we use the itemset lattice and a levelwise search to permutate and mine for empty regions.

Here are the characteristics of the proposed solution:

• works for both categorical and continuous values.

• allows user can choose the granularity of the mined rules based on their requirement
and the available memory.

• characterize regions strictly as rectangles, unlike in [Gryz and Liang, 2006], which
has overlapping rectangles and odd-shaped regions.

• implements independently on the size of the dataset, just dependent on the Cartesian
product of the size of each attribute domain.

• operates with the running time that is linear in the size of the attributes.

3.2 Terms and definition

Throughout the whole thesis, the following terms and definitions are used.

Database and attributes:

Let D be a database of N tuples, and let A be the set of attributes, A = {A1, ...An},
with n distinct attributes. Some attributes take continuous values, and other attributes
take discrete values. For a continuous attribute Ai, we use mini and maxi to denote the
bounding (minimum and maximum) values. For a discrete attribute Ai, we use dom(Ai)
to denote its domain.

Empty result queries

Empty result queries are queries that are processed by a DBMS and returns 0 tuples.
The basic assumption is that all relations are non-empty. All tuples in the dataset are
complete and contains no missing values. From this, we can assert that all plain projection
queries are not empty. Therefore we only consider selection-projection queries, which may
potentially evaluates to empty.

1. Projection queries:
q = πX(R) is not empty if relation R is not empty.

2. Selection-projection queries with one selection:
q = πX(σAi=ai(R)) is not empty since Ai ∈ A and ai ∈ dom(Ai).

It is noted that the more specific the query (i.e: a query that has more selection clauses),
the more chances that it might evaluate to empty. By using a levelwise method, this
solution mines such selection combinations from each possible combination of attributes.
In the domain of our testing, we only consider values that are in the domain, as for numeric
values, the domain is the set of clusters formed by the continuous values.

3.2 Terms and definition 12

Query selection criteria

Query selection criteria can have the following format:

• for discrete attributes: {(Ai = ai)|(Ai ∈ A) and ai ∈ dom(Ai))}

• for continuous attributes: {Aj op x|x, y ∈ R, op ∈ {=, <,>,≤,≥}}

Minimal empty selection criteria

We are interested in mining only the minimal empty selection criteria that makes a query
empty. We have established that empty result may only appear in selection-projection
queries. Therefore we focus our attention to the selection criteria of a query. The property
of being empty is monotonic, in which if a set of selection criteria causes a query to be
empty, then any superset of it will also be empty.

Definition 3.1. Monotone. Given a set M , E denotes the property of being empty, and
E is defined over the powerset of M is monotone if

∀S, J : (S ⊆ J ⊆ M ∧ E(S)) ⇒ E(J).

Monotonicity of empty queries:
Let q = πX(σs(R)) where X ⊆ A. The selection criteria s = {Ai = ai, Aj = aj} where
i 6= j, Ai 6= Aj and Ai, Aj ∈ A. If we know that ans(q) = ∅, then any selection s′, where
s ⊆ s′, will produce an empty result too.

Hence, our task is to mine only minimal selection criteria that makes a query empty.

Hyper-rectangle

Based on the above database and query selection criteria definitions, we further define the
syntax of empty hyper-rectangles, EHR:

1. (Aij = vij) with vij ∈ aij if Aij is a discrete attribute, or

2. (Aij , lij , uij) with minij ≤ lij ≤ maxij if Aij is a continuous attribute.

EHRs have the following properties:

1. Rectilinear: All sides of EHR are parallel to the respective axis, and orthogonal to
the others.

2. Empty: EHR does not have any points in its interior.

Multidimensional space and subspace:

We have that A = {A1, A2, . . . , An}, let S = A1 ×A2 ××An be a n-dimensional space
where each dimension Ai is of two possible types: discrete and continuous. Any space
whose dimensions are a subset of A1, A2, ..., An is known as the subspace of S. we will
refer to A1, . . . , An as the dimensions of S.

3.2.1 Semantics of an empty region

This solution works on heterogeneous attributes, and here we focuses on two common
types of attributes, namely discrete and continuous valued attributes. With this, we have
three different combinations of attribute types, forming three different types of subspaces.
Below we give the semantic definitions of an empty region of each such subspaces:

3.3 Method 13

Discrete attributes:

We search for the combination of attribute-value pairs that does not exist in the database.
Consider the following illustration:
A1: dom(A1) = {a11 , a12 ,, a1m}, where |A1| = m.
A2: dom(A2) = {a21 , a22 ,, a2n}, where |A2| = n.
Selection criteria, σ: A1 = ai ∧ A2 = bj

where a1i ∈ dom(A1) and a2j ∈ dom(A2), but this combination, A1 = ai ∧ A2 = bj does
not exist in any tuple in the database.

Continuous attributes:

An empty hyper-rectangle is a subspace that consist of only connected empty cells. Given
a k-dimensional continuous space S bounded in each dimension i (1 ≤ i ≤ k) by a mini-
mum and a maximum value (denoted by mini and maxi), a hyper-rectangle in S is defined
as the region that is bounded on each dimension i by a minimum and a maximum bound.
A hyper-rectangle has 2k bounding surfaces, 2 on each dimension. The two bounding
surfaces on dimension i are parallel to axis i and orthogonal to all others.

Mixture of continuous and discrete attributes:

Without loss of generality, we assume that the first k attributes are discrete attributes,
A1, ...Ak, and the rest are continuous attributes, Ak+1,Am. A cell description is as
follows:

(discrete− cell, continuous− cell)

which discrete− cell is a cell in the discrete subspace, which is ((A1 = a1),) with ai

∈ dom(Ai), and continuous− cell is a cell in the continuous subspace for Ak+1, ...Am. An
hyper-rectangle is represented with

(discrete− region, continuous− region)

It is a region consisting of a set of empty cells, where discrete− region is a combination
of attribute-value pairs and continuous − region is a set of connected empty cells in the
continuous subspace.

In theory, an empty region can be of any shape. However, we focus only on hyper-
rectangle regions instead of irregular regions as described by a long disjunction of con-
junctions (Disjunctive Normal Form used in [Agrawal et al., 1998]), or as x-monotone
regions described in [Fukuda et al., 1996].

3.3 Method

3.3.1 Duality concept

We present here the duality concept of the itemset lattice in a levelwise search. Consider
the lattice illustrated in Figure 3.2, (with the set of attributes A = {A, B, C, D}). A
typical frequent itemset algorithm looks at one level of the lattice at a time, starting from
the empty itemset at the top. In this example, we discover that the itemset {D} is not
1-frequent (it is empty). Therefore, when we move on to successive levels of lattice, we do

3.3 Method 14

Figure 3.2: The lattice that forms the search space

not have to look at any supersets of {D}. Since half of the lattice is composed of supersets
of {D}, this is a dramatic reduction of the search space.

Figure 3.2 illustrates this duality. Supposed we want to find the combinations that are
empty. We can again use the level-wise algorithm, this time starting from the maximal
combination set = {A, B, C, D} at the bottom. As we move up levels in the lattice by
removing elements from the combination set, we can eliminate all subset of a non-empty
combination. For example, the itemset {A, B, C} is empty, so we can remove half of the
algebra from our search space just by inspecting this one node.

There are two trivial observations here:

1. Apriori can be applied to any constraint P that is antimonotone. We start from the
empty set and prune supersets of sets that do not satisfy P.

2. Since itemset lattice can be seen as a boolean algebra, so Apriori also applies to a
monotone Q. We start from the set of all items instead of the empty set. Then prune
subsets of sets that do not satisfy Q.

The concept of duality is useful in this context, as the proposed solution is formulated
based on it. Further discussion of the usage of this duality is found in the next chapter,
where the implementation of the solution is also discussed in detail.

4
Algorithm

From the duality concept defined earlier, we could tackle the problem of mining empty
hyper-rectangles, known as EHR using either the positive pruning or the negative pruning
approach. This is further elaborated in the following:

1. Monotonicy of empty itemset
We have seen that the property of being empty is monotonic, and we could make
use of negative pruning in the lattice. If k-combination is empty, then all k + 1-
combination is also empty. Starting from the largest combination, any combination
proven not to produce an empty query, is pruned off from the lattice, and subse-
quently all of its subset are not considered. This is known as negative pruning.

2. Anti-monotonicity of 1-frequent itemset
Interestingly, this property can be characterized in the form of its duality. A k-
combination is empty also means that that particular combination does not have a
frequency of at least 1. Therefore, this problem can bee seen as mining all 1-frequent
combination. This in turn is anti-monotonic. If k-combination is not 1-frequent, then
all k + 1-combination cannot be 1-frequent. In this case, we can use the positive
pruning in the lattice. Candidate itemset that are pruned away are the empty
combinations that we are interested in.

A selection criteria will be used to determine which method would evaluate best for
the given circumstances. This will be discussed in Section 4.3. In this chapter, we focus
mainly on mining for EHR, empty regions bounded by continuous values. As we shall see
that the same method can be generalized and be applied to mine empty heterogeneous
itemsets. All mined results are presented in the form of rules.

4.1 Preliminaries

4.1.1 Input Parameters

We require user to input parameters for this algorithm, however input parameters are
limited to the minimum, because the more input parameters we have, the harder it is to
provide the right combination for an optimum performance of the algorithm. User can
input the coverage parameter, τ . This will determine how fine grain the empty rectangles
will be. The possible values of τ ranges between 0 and 1. The detail usage of this parameter
is discussed in Section 4.4.3.

15

4.1 Preliminaries 16

4.1.2 Attribute Selection

As mentioned earlier, mining empty result queries are restricted only on attributes that
are frequently referenced together in the queries. They can also be set of attributes
selected and specified by the user. Statistical techniques for identifying the most influential
attributes for a given dataset, such as factor analysis and principal component analysis
stated in [Lent et al., 1997] could also be used. In this algorithm, we consider both discrete
and continuous attributes.

1. Discrete Attributes:
Only discrete attributes with low cardinality are considered. As it makes no sense to
mine attributes with large domains like ’address’ and ’names’. We limit the maximal
cardinality of each domain to be 10.

2. Continuous Attributes:
Continuous values are unrestricted, they can have an unbounded range. They will
be clustered and we limit the maximum number of clusters or bins to be 100.

4.1.3 Maximal set, max set

The maximal set is the Cartesian product of the values in the domain of each attribute. It
makes up the largest possible search space for the algorithm. It represents all the possible
permutations of the values. The maximal attribute set, max set .

max set = {dom(A1) × dom(A2) × . . .× dom(An)} (4.1)

and the size of max set is:

|max set| = |dom(A1)| × |dom(A2)| × . . . |dom(An)| (4.2)

4.1.4 Example

Consider Table 4.1, it contains the the flight information. This toy example will be used
throughout this chapter.

Flight
Flight No airline destination price
F01 SkyEurope Athens 0.99
F02 SkyEurope Athens 1.99
F03 SkyEurope Athens 0.99
F04 SkyEurope Vienna 49.99
F05 SkyEurope London 299.99
F06 SkyEurope London 48.99
F07 SkyEurope London 49.99
F08 EasyJet Dublin 299.99
F09 EasyJet Dublin 300.00
F10 EasyJet Dublin 300.99

Table 4.1: Flight information table

4.2 Step 1: Data Preprocessing 17

Main Algorithm:

Here are the main steps of the algorithm (shown in a form of a flowchart below):

1. Data Preprocessing

2. Encoding of database into a simplified form.

3. Selection of method based on size criteria

a) method 1: anti-monotone pruning

b) method 2: monotone pruning

Data Preprocessing

Encode database into simplified form

Calculate coverage_size

Coverage_size > 50%

Method 1 (Positive Pruning) Method 2 (Negative Pruning)

Eliminate non-minimal Lk-empty

Output Lk-empty

Figure 4.1: Main process flow

4.2 Step 1: Data Preprocessing

In this phase, numeric attributes are clustered, by grouping them according to their dis-
tance. Data points that are located close to each other are clustered into the same cluster.
Our goal is to find clusters or data groups that are compact (the distance between points
within a cluster is small) and isolated (relatively separated from other data groups). In a
generalized manner, this can be seen as discretizing the continuous values into meaningful

4.2 Step 1: Data Preprocessing 18

ranges based on the data distribution. Existing methods include equi-depth, equi-width
and distance-based that partitions continuous values into intervals. However, both equi-
depth and equi-width are found not to be able to capture the actual data distribution, thus
are not suitable to be used in the discovery of empty regions. Here, an approach that is
similar to distance-based partitioning as described in [Miller and Yang, 1997] is used.

Existing clustering strategies aims at finding densely populated region in a multi-
dimensional dataset. Here we only consider finding clusters in one dimension. As explained
in [Srikant and Agrawal, 1996], one dimensional cluster is the range of smallest interval
containing all closely located points. We employ an agglomerative hierarchical cluster-
ing method to cluster points in one dimension. An agglomerative, hierarchical clustering
starts by placing each object in its own cluster and then merges these atomic clusters into
larger and larger clusters until all objects are in a single cluster.

The purpose of using hierarchical clustering is to identify groups of clustered points
without recourse to the individual objects. In our case, it is desirable to identify as
large clustered size as possible because these maximal clusters are able to assist in finding
larger region of empty hyper-rectangles. We shall see the implementation of this idea in
the coming sections.

Y

X

CX1

Y

CX2 CX3
X

CY1

CY2

CY3

Figure 4.2: Clusters formed on X and Y respectively

Figure 4.2 shows a graph with points plotted with respect to two attributes, X and Y.
These points are clustered into two sets of clusters, one in dimension X, and the other in
dimension Y. When the dataset is projected on the X-axis, 3 clusters are formed, namely
CX1, CX2 and CX3. Similarly, CY 1, CY 2 and CY 3 are 3 clusters formed when the dataset
is projected on the Y-axis.

The clustering method used here is an modification to the BIRCH(Balanced Iterative
Reducing and Clustering using Hierarchies) clustering algorithm introduced by Zhang et
al. in [Zhang et al., 1996]. It is an adaptive algorithm that has linear IO cost and is able
to handle large datasets.

The clustering technique used here shares some similarities with BIRCH. First they
both uses the distance-based approach. Since data space is usually not uniformly occupied,
hence, not every data point is equally important for the clustering purpose. A dense region
of points is treated collectively as a single cluster. In both techniques, clusters are organised
and characterized by the use of an in-memory, height-balance tree structure (similar to a
B+-tree). This tree structure is known as CF-tree in BIRCH, while here it is referred as
Range Tree. The fundamental idea here is that clusters can be incrementally identified

4.2 Step 1: Data Preprocessing 19

and refined in a single pass over the data. Therefore, the tree structure is dynamically
built, and only requires a single scan of the dataset. Generally, these two approaches
share the same basic idea, but differs only in two minor portions: First, the CF Tree uses
Clustering Feature(CF) for storage of information while the Range tree stores information
in the leaf nodes. Second, CF tree is rebuilt when it runs out of memory, Range Tree on
the other hand is fixed with a maximum size, hence will not be rebuilt. The difference
between this two approach will be highlighted in detail as each task of forming the tree is
described.

Storage of information

In BIRCH, each cluster is represented by a Clustering Feature (CF) that holds the sum-
mary of the properties of the cluster. The clustering process is guided by a height-balanced
tree of CF vectors. A Clustering Feature is s a triple summarizing the information about
a cluster. For Cx = {t1, . . . , tN}, the CF is defined as:

CF (Cx) = (N,
N∑

i=1

ti[~X],
N∑

i=1

ti[X]2)

where N is the number of points in the cluster, second being the linear sum of N data
points, and third, the squared sum of the N data points. BIRCH is a clustering method
for multidimensional and it uses the linear sum and square sum to calculate the distance
between a point to the clusters. Based on the distance, a point is placed in the nearest
cluster.

The Range-tree stores information in it’s leaf nodes instead of using Clustering Feature.
Each leaf node represents a cluster, and they store summary of information of that cluster.
Clusters are created incrementally and represented by a compact summary at every level
of the tree. Let the root of the hierarchy be at level 1, it’s children at level 2 and so on.
A node in level i corresponds to the union of range formed by its children at level i + 1.
For each leaf node in the Range tree, it has the following attributes:

LeafNode(min,max, N, sum)

• min: the minimum value in the cluster

• max: the maximum value in the cluster

• N : the number of points in the cluster

• sum:
∑N

i=1 Xi

The centroid of a cluster is the mean of the points in the cluster. It is calculated as
follows:

centroid =
∑N

i=1 Xi

N
(4.3)

The distance between clusters can be calculated using the centroid Euclidean distance,
Dist. It is calculated as follows:

Dist =
√

(centroid1 − centroid2)2 (4.4)

Together, min and max defines the left and right boundaries of the cluster. The distance
of a point to a cluster is the distance of the point from the centroid of that cluster. A new

4.2 Step 1: Data Preprocessing 20

point is placed in the nearest cluster, i.e. the centroid with the smallest distance to the
point.

From the leaf nodes, the summary of information can be derived and stored by their
respective parent node (non-leaf node). So a non-leaf node represents a cluster made up
of all the subcluster represented by its entry. Each non-leaf node can be seen as providing
a summary of all the subcluster connected to it. The parent nodes, nodei in the Range
tree, contains the summary information of their children node, nodei+1:

Non− leafNode(mini,maxi, Ni, sumi)

where mini = MIN(mini+1), maxi = MAX(maxi+1), Ni =
∑

Ni+1 and sumi =∑
sumi+1

Range Tree

The Range-tree is built incrementally by inserting new data points individually. Each
data point is inserted by locating the closest node. At each level, the closest node is
updated to reflect the insertion of the new point. At the lowest level, the point is added
to the closest leaf node. Each node in the Range-Tree is used to guide a new insertion
into the correct subcluster for clustering purposes, just the same as a B+-tree is used to
guide a new insertion into the correct position for sorting purposes. The range tree is a
height-balanced tree with two parameters: branching factor B and size threshold T .

In BIRCH, the threshold T is initially set to 0 and the B is set based on the size of
the page. As data values are inserted into the CF-tree, if a cluster’s diameter exceeds the
threshold, it is split. This split may increase the size of the tree. If the memory is full,
a smaller tree is rebuilt by increasing the diameter threshold. The rebuilding is done by
re-inserting leaf CF nodes into the tree. Hence, the data or the portion of the data that
has already been scanned does not need to be rescanned. With the higher threshold, some
clusters are likely to be merged, reducing the space required by the tree.

In our case, the maximum size of the Range-tree is bounded, and therefore will not have
the problem of running out of memory. We have placed a limit on the size of the tree by
predefining the threshold T with the following calculation:

T =
(maximum value−minimum value)

max cluster
(4.5)

where maximum value and minimum value are the largest and the smallest value re-
spectively for an attribute.

The maximum number of cluster, max cluster for each continuous value is set to be
100. We have set the branching factor B = 4, where each nonleaf node contains at most
4 children. A leaf node must satisfy a threshold requirement, in which the interval size
of the cluster has to be less than the threshold T . The interval size of each clustering is
the range or interval bounded by between the min and the max.

interval size = max−min (4.6)

Insertion into a Range Tree

When a new point is inserted, it is added into the Range-tree as follows:

1. Identifying the appropriate leaf: Starting from the root, it recursively descends the
Range-tree by choosing the closest node where the point is located within the min
and max boundary of a node.

4.2 Step 1: Data Preprocessing 21

2. Modifying the leaf: When it reaches a leaf node, and if the new point falls within the
min and max boundary, it is ’absorbed’ into the cluster, values of N and sum are
then updated. If a point does not fall within the min and max boundary of a leaf
node, it first finds the closest leaf entry, say Li, and then test whether interval size
of the augmented cluster satisfy the threshold condition. If so, the new point is
inserted into Li. All values in Li: (min, max and N , sum) are updated accordingly.
Otherwise, a new leaf node will be formed.

3. Splitting the leaf: If the number of branch reaches the limit of B, the branching
factor, then we have to split the leaf node. Node splitting is done by choosing the
farthest pair of entries as seeds, and redistributing the remaining entries. Distance
between the clusters are calculated using the centroid Euclidean distance, Dist in
Equation 4.4. The levels in the Range tree will be balanced since it is a height-
balanced tree, much in the way a B+-tree is adjusted in response to the insertion of
a new tuple.

In the Range-tree, the smallest clusters are stored in the leaf nodes, while non-leaf nodes
stores the summary of the union of a few leaf nodes. The process of clustering can be seen
as a form of discretizing the values into meaningful ranges.

In the last step of data preprocessing, the values in a continuous domain are replaced
with their respective clusters. The domain of the continuous attribute now consist of the
smallest clusters. Let Ai be an attribute with continuous values, and it is partitioned into
m clusters, ci1, . . . cim. Now dom(Ai) = {ci1, ci2, . . . cim}.

Example 4.1. In the Flight Information example, the attribute price is a continuous
attribute, with values ranging from 0.99 to 300.99.
minimum value = 0.99, maximum value = 300.99, and we have set max cluster = 100.
T is calculated as follows:

T =
(300.99 − 0.99)

100
= 3

Any points that falls within the distance threshold of T is absorbed into a cluster, while
all points with the interval size larger than T will form a cluster of its own. So all clusters
have the maximum interval size of less than T . The values in price are clustered in the
following clusters:
C1: [0.99, 1.99], C2: [48.99, 49.99], C3: [299.99, 300.99].
Now the domain of price is defined in terms of these clusters, dom(price) = {[0.99, 1.99],
[48.99, 49.99], [299.99, 300.99]}. The values in price are replaced with their corresponding
clusters, as shown in Table 4.2.

Calculation of the size of the maximal set

After all the continuous attributes are clustered, now the domain of the continuous at-
tributes are represented by the clusters. The cardinality of the domain is simply the num-
ber of clusters. With these information, we are able to obtain the count of the maximal set
defined in Section 4.1. Recall that maximal set is obtained by doing the permutation of
values in the domain. From there, we can obtain the maximal set simply by permutating
the values in the domain for each attributes. This information will be used in determining
which method to use, discussed in detail in Section 4.3.

4.3 Step 2: Encode database in a simplified form 22

Flight
Flight No airline destination price
F01 SkyEurope Athens [0.99, 1.99]
F02 SkyEurope Athens [0.99, 1.99]
F03 SkyEurope Athens [0.99, 1.99]
F04 SkyEurope Vienna [48.99, 49.99]
F05 SkyEurope London [299.99, 300.99]
F06 SkyEurope London [48.99, 49.99]
F07 SkyEurope London [48.99, 49.99]
F08 EasyJet Dublin [299.99, 300.99]
F09 EasyJet Dublin [299.99, 300.99]
F10 EasyJet Dublin [299.99, 300.99]

Table 4.2: Attribute price is labeled with their respective clusters

Example 4.2. Based on the Flight example, the size of the maximal set is calculated as
follows:
dom(airline) = {SkyEurope, EasyJet}
dom(destination) = {Athens, Vienna, London, Dublin}
dom(age) = {[0.99, 1.99], [48.99, 49.99], [299.99, 300.99]}

|max set| = |dom(airline)| × |dom(destination)| × |dom(age)|
= 24

4.3 Step 2: Encode database in a simplified form

In step 1, each continuous values are replaced with their corresponding cluster. The
original dataset can then be encoded into a simplified form. The process of simplifying is
to get a reduced representation of the original dataset, where only the distinct combination
of values are taken into consideration. Then we assign a tuple ID, known as the TID to
each distinct tuples. By doing this, we are reducing the size of the dataset, thus improving
the runtime performance and the space requirement of the algorithm.

Since in essence, we are only interested in whether or not the combination exist, we do
not need other information like the actual frequency of the occurence of those values. It
is the same like encoding the values in 1 and 0, with 1 to show that a value exist and
0 otherwise. Unlike the usual data mining task, eg: finding densed region, clusters or
frequent itemset, in our case we do not need to know the actual frequency or density of
the data. The main goal is to have a reduction in the size of the original database. The
resulting simplified database Ds will have only distinct values for each tuple.

ti = 〈a1i , a2i , . . . , ani〉

tj = 〈a1j , a2j , . . . , anj 〉

such that if i 6= j, then ti 6= tj , where i, j ∈ {1, . . . , n}.
We sequentially assign a unique positive integer to Ds as an identifier for each tuple t.

Example 4.3. Consider the Table 4.2. It can be simplified into Table 4.3, Ds where it
is the set of unique tuples with respect to the attributes airline, destination and price.
These unique tuples are assigned an identifier, called TID.

4.3 Step 2: Encode database in a simplified form 23

Flight
TID airline destination price
1 SkyEurope Athens [0.99, 1.99]
2 SkyEurope Vienna [48.99, 49.99]
3 SkyEurope London [299.99, 300.99]
4 SkyEurope London [48.99, 49.99]
5 EasyJet Dublin [299.99, 300.99]

Table 4.3: The simplified version of the Flight information table

|Ds| = 5. In this example, Ds is 50% smaller than the original dataset.

Correctness

Ds is a smaller representation of the original dataset. Information is preserved in this
process of shrinking. Each point in a continuous attribute is grouped and represented
by their respective clusters. Therefore Ds is just a coarser representation of the original
dataset, where the shape of the original data distribution is preserved. This simplification
does not change or affect the mining of EHR.

Distribution size

Next we calculate the percentage of the data distribution with the following equation:

distribution size =
|Ds|

|max set|
(4.7)

Example 4.4. In our example, we have |Ds| = 5, and |max set| = 24

distribution size =
5
24

= 0.208

Trivial observation: only 21% of the value combination exist. The rest of them, with 79%
are empty combinations, i.e: value combinations that does not exist in the dataset.

Method selection

distribution size is used to determine which of the two methods to use. If distribution size
≤ 0.5, we will choose method 1. On the other hand method 2 will be chosen if distribution size
is > 0.5. Observation on the value of distribution size are as follows:

• distribution size = 1: For this case, data distribution covers all the possible combi-
nation of n-dimensions. In this situation, mining of EHR will not be done.

• 0 < distribution size ≤ 0.5: Data distribution covers less than half of the combina-
tion. Data distribution is characterized as sparse.

• 0.5 < distribution size < 1: Data distribution covers more than half of the combi-
nation. Data distribution is characterized as dense.

4.3 Step 2: Encode database in a simplified form 24

Based on the above observation, we justify the selection of each method as follows. In
Levelwise Search and Borders of Theories in Knowledge Discovery, the concept of negative
border discussed is useful in analysing the levelwise algorithm, like the Apriori algorithm.
It is stated that in Thoerem 1, the Apriori algorithm uses |Th(L, r, q) ∪Bd−(Th(L, r, q))|
evaluations of being frequent.

Example 4.5. Consider the discovery 1-frequent sets with attributes R=A,. . . , F. Assume
the collection Th of frequent sets is

Th = {{A}, {B}, {C}, {F}, {A,B}, {A,C}, {A,F}, {C,F}, {A,C, F}}

The positive border of this collection contains the maximal 1-frequent sets, i.e

Bd+ = {{A,B}, {A,C, F}}

The negative border, in turn, contains minimal empty sets. The negative border is thus

Bd−(Th) = {{D}, {E}, {B,C}, {B,F}}

The simplified dataset, Ds is the maximal 1-frequent sets. If the size of Ds is small,
then that would mean a lot of candidate itemset has been pruned off along the lattice,
indicating that the negative border of the itemset is low. Since the evaluation is related
to the negative border, it is desirable to have a relatively low negative border. Therefore,
method 1 works well in this situation.

If the size of Ds is large, the levelwise method that starts the search from small combi-
nations obviously is further from the optimum. In this case, the levelwise search can start
from the large combinations. In method 2, the complement is Ds is used instead. The
complement set obtained here is the maximal empty sets (the largest or the most specific
combination of attributes). A large Ds would generate a small complement set. Since
the complement set is not large, therefore method 2 is more suitable. Starting from the
bottom of the lattice, we move levelwise upwards.

Notation Description

itemset Since we are using the We follow the notation used in the Apriori algorithm for
mining association rules. In this context, itemset is analogous to dimension.

k-itemset A set with k-dimensions.
Ck Set of candidate k-itemset.
TID The identifier associted with each unique tuple in Ds.
idlist The list of TIDs
Ds The simplified database.
Lk−empty The minimal empty combination of size k
Lempty The union of all minimal empty combination,

⋃
k Lk−empty

max set The set of possible permutation of values in each domain.
n Number of dimensions.

Table 4.4: Notations used in this section

4.4 Step 3 - Method 1: 25

4.4 Step 3 - Method 1:

Method 1 uses the ’top-down’ approach, both in the itemset lattice and in the Range-tree
traversal. We start our search from the top of the lattice with the Apriori algorithm
[Agrawal and Srikant, 1994]. The interesting feature of this algorithm is that the database
Ds is not used for counting support after the first pass. In the phase of generating 1-
itemset, Ds is scanned and partitions for each attribute is created. (The idea partition is
described in Section 4.4.1). At each level of the lattice, candidate itemsets are association
with an array called idlist, which stores the list of TIDs. In the subsequent phases for
generating k + 1-itemset, we do not need to rescan Ds, as we can mine EHR in the
’offline’ mode, by just using k-itemset and their idlist stored in their partition. Similar
to the Apriori algorithm of generating large-itemset, k + 1-candidate itemset is formed
by self-joining k-itemset, and the new idlistk+1 is the set intersection of idlistk. Mining
EHR is done through the set manipulation of the list of TIDs.

Algorithm 1: Method 1
input : Ds, the simplified database
output: Lk−empty,the minimal empty combination set

forall tuple t ∈ Ds do /* see Section 4.4.1 */1

constructPartition()2

for (k = 2; Lk−1 6= ∅; k++) do3

ck = joinSubspace(Lk−1)4

Lk = { c ∈ ck where (c.idlist 6= ∅)}5

ck−empty = { c ∈ ck where (c.idlist = ∅)}6

if hasEmptySubset(ck−empty, Lk−1) then /* anti-monotonic pruning */7

delete ck−empty8

else9

Lk−empty = ck−empty10

ouput Lk−empty11

Procedure hasEmptySubset(ck−empty: candidate k-itemset, Lk−1: k − 1-itemset:)
input : ck−empty: candidate k-itemset, Lk−1: k − 1-itemset
output: Boolean: TRUE, FALSE

foreach k − 1-subset s of ck−empty do1

if s /∈ Lk−1 then2

return TRUE3

return FALSE4

4.4.1 Generating 1-dimension candidate:

In the 1-itemset generating phase, we start off with constructing the partitions for each
attribute, in the procedure of constructPartition(), described as follows:

4.4 Step 3 - Method 1: 26

Set partition

Each object in the domain is associated with their TID. The TID are stored in the form
of set partition, a set of non-empty subsets of x such that every element xi ∈ X is exactly
one of the subset. The fundamental idea underlying our approach is to provide a reduced
representation of a relation. This can be achieved using the idea of partitions [Spyratos,
1987, Huhtala et al., 1998]. Semantically, this has been explained in [Cosmadakis et al.,
1986, Spyratos, 1987].

Definition 4.1. Partition. Two tuples ti and tj are equivalent with respect to a given
attribute set X if ti[A] = tj [A], for ∀ A ∈ X. the equivalance class of a tuple ti ∈ r with
respect to a given set X ⊆ R is defined by [ti]X = {tj ∈ r / ti[A] = tj [A], ∀ A ∈ X}. The
set πX = {[t]X / t ∈ r} of equivalance classes is a partition of r under X. That is, πX is a
collection of disjoint sets of rows, such that each set has a unique value for the attribute
set S, and the union of the sets equals the relation.

Example 4.6. Consider the simplified dataset in Table 4.3.
Attribute airline has value ’SkyEurope’ in rows t1, t2, t3 and t4, so they form an equivalence
class [t1]airline = [t2]airline = [t3]airline = [t4]airline = {1, 2, 3, 4}. The whole partition with
respect to attribute airline is πairline = {{1, 2, 3, 4}, {5}}. The table below summarizes
the partitions for L1, the 1-itemset.

Attribute Domain Partition

airline dom(airline) = {SkyEurope,
EasyJet}

πairline = {{1, 2, 3, 4}, {5}}

destination dom(destination) = {Athens,
Vienna, London, Dublin}

πdestination = {{1}, {2}, {3, 4}, {5}}

price dom(price) = {[0.99, 1.99],
[48.99, 49.99], [299.99,
300.99]}

range tree(price).child1 = {1},
range tree(price).child2 = {2, 4},
range tree(price).child3 = {3, 5}

Table 4.5: Partitions for L1

We store idlist with respect to the partitions in the following form:

• discrete values: set partitions are stored in a vector list called idlist.

• continuous values: set partitions are stored only in the leaf node of the Range-tree.
The leaf nodes in a Range tree represents the smallest clusters. A nonleaf node, or
known as a parent node represents a cluster made up of all the subclusters of it’s
children node. The idlisti of a non-leaf node in level i are the union of all idlisti+1

of its child nodes are level i+1. To conserve space, idlist are only stored on the leaf
nodes. The idlist at a parent node are collected dynamically when needed by doing
post-order traversal on the Range-tree.

4.4.2 Generating k-dimension candidate

Subspace Clustering

First we start with low dimensionality, eliminating as many empty combinations as possible
before continuing with a higher dimension. The concept of candidate generation for each

4.4 Step 3 - Method 1: 27

Procedure joinSubspace(Lk−1): k − 1-itemset
input : Lk−1, k − 1-itesetm
output: ck, k candidate itemset

foreach (itemset l1 ∈ Lk−1) do1

foreach (itemset l2 ∈ Lk−1) do2

if (l1[1] = l2[1]) ∧ . . . (l1[k − 2] = l2[k − 2]) then3

c = l1 ./ l24

c.idlist = l1.idlist ∩ l2.idlist5

return ck6

level in is similar to that of Apriori algorithm [Agrawal and Srikant, 1994]. Candidate
k-dimension are generated by self-joining k-1 dimensions. The new set partition for a
candidate k-itemset is generated by obtaining the set intersection of the idlist of two
(k − 1)-itemset (refer to line 5 in Procedure joinSubspace()).

A candidate is said to agree on the new set partition if its resulting idlist is not empty.
Empty combinations on the other hand are the combination of attributes disagree on a
partition, where their resulting idlist is empty. These empty combinations are pruned
away and output as results.

Example 4.7. Continuing from the example in 4.6, we generate candidate-2, C2 from
existing itemset, L1 that are listed in Table 4.5. Below here is a portion of C2 generation:

{SkyEurope,Athens} : {{1, 2, 3, 4} ∩ {1}} = {1}
{SkyEurope, V ienna} : {{1, 2, 3, 4} ∩ {2}} = {2}
{SkyEurope, London} : {{1, 2, 3, 4} ∩ {3, 4}} = {3, 4}
{SkyEurope,Dublin} : {{1, 2, 3, 4} ∩ {5}} = ∅
. . .

The new partition is π{airline,destination} {{1}, {2}, {3, 4}, {5}}. The other combinations
with empty set intersection are output as results.

4.4.3 Joining adjacent hyper-rectangles

The idea of joining adjacent hyper-rectangles is illustrated in the procedure joinSubspace().
We merge adjacent hyper-rectangles on each k-1 dimension. Joining adjacent hyper-
rectangle is seen as finding the connected component in the common face. The Range-tree
is traversed in the top-down, depth-first fashion, starting from the big cluster, and then to
smaller clusters. Users can specify the granularity of the size of the empty hyper-rectangle.
This will determine how to deep to traverse the tree.

We merge the common k-2 dimension by finding the new set partition, testing the set
intersection of their idlist. If the set intersection is not empty, then the hyper-rectangles
are formed as a cluster with a higher dimension. On the other hand, if the set intersection
is empty, then an EHR is formed. This is illustrated in Figure 4.3.

4.4 Step 3 - Method 1: 28

(a) A filled rectangle
in 2-dimension

(b) A filled rectangle in 2-dimension

(c) Joining at a connected component (d) Forming of an EHR

Figure 4.3: Joining adjacent hyper-rectangle

4.4 Step 3 - Method 1: 29

Joining of continous attributes:

In this case, Range-trees are compared in a top-down approach. The tree is travered depth
first based on the user’s threshold input, τ . If the threshold is low, a bigger chunks of the of
empty region will be identified. Low threshold has better performance, however accuracy
will be sacrificed. On the contrary, if the threshold is high, more empty hyper-rectangle
will be mined, but with finer granularity (i.e: size is smaller). More processing time will
be needed, as the tree needs to be traversed deeper.

Tree traversal

The Range-tree is traversed top-down, where we start with a bigger range and restrict
the range as we move down level of the tree. The tree traversal starts at level 1 and the
finding of the suitable node is done by comparing ratioAi and the user input parameter τ .
If ratioAi < τ , then we traverse down one level of the Range tree of attribute Ai to find
the closer set intersection. Now the children of the node will be candidate itemset. On
the other hand, if ratioAi ≥ τ , we do not traverse the tree.

ratioAi =
|idlistnew|
|idlist|

(4.8)

The concept of tree traversal is illustrated using the example below with reference to
Figure 4.4:

Example 4.8. Joining attributes A and B.

Figure 4.4: Example of top-down tree traversal

C2: {A:[0, 400], B:[0, 20]}

idlistnew = {1, 2, 3, 4} ∩ {1, 2}
{1, 2}

ratioA = 0.5

1. Case 1: τ = 0.5, ratioA = 0.5.
Since this satisfies the condition that ratioA ≥ τ , therefore the new itemset is {A:[0,

4.4 Step 3 - Method 1: 30

400], B:[0, 20]}.

2. Case 2: τ = 0.75, ratioA = 0.5.
ratioA < τ , therefore we need to traverse down the subtree of salary [0, 400]. The
new candidate set is now {A:[0, 200], B:[0, 20]}.

idlistnew = {1, 2} ∩ {1, 2}
{1, 2}

ratioA = 1.0

The condition of ratioA ≥ τ is satisfied, the new itemset is {A:[0, 200], B:[0, 20]}.

Mixture of discrete and continuous attributes:

The method discussed so far focused on mining EHR, however the method can be used
to mine heterogeneous types of attributes. In the case of combination of a continuous and
a discrete attribute, instead of traversing two tree, here we are only traversing only one
tree. We use a top-down approach to find the combination of empty results. The tree will
be traversed depth first based on user’s threshold input, τ . The higher the threshold, the
more fine-grain the results. Each branch will traverse in a depth-first search manner until
either empty result is reached or count is above threshold. Here the EHR are represented
as ’strips’.

For cases where it involves combination of only discrete attributes, the process of joining
the attribute is straight forward, as it works just the same as itemset generation in Apriori
algorithm.

To mine for empty combinations, the same technique still applies. EHR or empty
combinations are candidates that have an empty set intersection in idlist.

4.4.4 Anti-monotonic Pruning

Anti-monotonic pruning, also known as positive pruning is used to reduce the number
of combinations we have to consider. Our aim is to mine 1-frequent combination which
has the anti-monotonicity property. If k-combination is not 1-frequent, then all k + 1-
combinations cannot be 1-frequent. Using this property, all superset of empty combina-
tions will be pruned from the search space. Although pruned from the search space, these
are the results that we are interested in, so they are output and stored on disk as results.

The concept of anti-monotonic pruning is illustrated in Figure 4.5. A4 is found to be
empty, and all supersets of A4 are pruned away from the search space.

4.5 Step 3 - Method 2: 31

{ }

{A1} {A2} {A3} {A4}

{A1A2} {A1A3} {A1A4}{A2A3} {A2A4} {A3A4}

{A1A2A3} {A1A2A4} {A1A3A4} {A2A3A4}

{A1A2A3A4}

Figure 4.5: Anti-Monotone Pruning

4.5 Step 3 - Method 2:

Algorithm 4: Method 2
input : Ds, the simplified dataset
output: Lk−empty, the minimal empty combination set

Ln = max set \Ds1

 Lk = Ln2

while (k ≥ 2 OR Lk 6= ∅) do3

Ck−1 = splitHyperspace(Lk)4

foreach (transaction t ∈ Ds) do /* scan dataset */5

if for each c ∈ ck ⊆ t then /* monotonic pruning */6

delete c;7

 Lk−1 = {c ∈ ck where c is not found in each transaction of Ds}8

k–9

Lempty =
⋃

k Lk−empty10

foreach Lk−empty ∈ Lempty do11

if isMinimal(Lk−empty), Lempty then /* eliminate non-minimal Lk−empty */12

output Lk−empty13

else14

delete Lk−empty from Lempty15

Contrary to method 1, method 2 uses the ’bottom-up’ approach, both in the itemset
lattice and in the Range Tree traversal. It starts with the most specific combination,
and then find the more general combination as it moves up the lattice. Method 2 is
chosen when the distribution size > 0.5, when the data distribution is relatively dense.
Therefore, empty hyper-rectangles are not likely to appear in low dimensional subspaces.
We start our search at the bottom of the itemset lattice, with the combination of all
the attributets. As a duality to method 1, in method 2 we use monotonic pruning. We
start from Ln, with the full set of n-dimensions at the bottom. When Lk is found to be

4.5 Step 3 - Method 2: 32

Procedure isMinimal(Lk−empty: k-empty itemset, Lempty: the full set of Lk−empty)

input : Lk−empty: k-empty itemset, Lempty: the full set of Lk−empty

output: Boolean: TRUE, FALSE

foreach k − 1-subset to 2-subset s of Lempty do1

if s /∈ Lempty then2

return TRUE3

return FALSE4

non-empty, we prune off this itemset. As we move levelwise upwards in the lattice, we
generate candidate k − 1 from existing Lk. Instead of joining subspaces to form a higher
dimension subspace, now we start with high dimension subspace and split the itemset to
obtain candidates of lower subspaces.

4.5.1 Generating n-itemset

n-itemset is the biggest or the most specific combination that returns an empty result. In
Method 2, we start with n-itemset at the bottom level in the itemset lattice and work our
way up levelwise upwards. Recall that in step 2, the simplified database, Ds is obtained.
Consequently, with the available information, n-itemset can be obtained by doing the set
complement.

n− itemset = max set \Ds (4.9)

4.5.2 Generating k-1 itemset

Procedure splitHyperspace(k-itemset: Lk)

input : Lk, k-itemset
output: ck−1, k − 1-candidate itemset

foreach (itemset l ∈ Lk) do /* findCombination =
(

k
k−1

)
*/1

csubset = findCombination(l, k-1)2

if for each c ∈ csubset /∈ ck−1 then /* keep unique candidate itemset */3

add c to ck−14

return ck−15

Splitting adjacent rectangles

This is the reverse of joining adjacent rectangles in method 1. At every level of the of
itemset lattice, the empty hyper-rectangles are split into smaller subspaces. Candidates of
size k−1 is generated from k-itemset. At every level, the database will be scanned once to
check whether the candidate itemsets are empty. If they are not, they will be pruned off
from the search space. Candidate generation and dataset scan to evaluate the candidate
itemset alternates until either the size of itemset reaches two, or no more candidates are
generated.

4.5 Step 3 - Method 2: 33

Splitting of continuous attributes:

Tree traversal

Here we traverse the tree bottom up, starting with the smallest cluster at the leaf node
and then generalize to a bigger one as we move up to the parent node. As we move up the
lattice, we generate k − 1-itemset and ’generalize’ the ranges to a larger bounding range.
At the bottom, we have the leaves of the tree, and as we generate the subset, we take
values from the parents from the range tree. Since the Range-tree is a hierarchical tree, as
many as B (branching factor)leaves share the same parent. As shown in Figure 4.6, as the
3-dimensional rectangle is split into 2-dimensional rectangle, we ’generalize’ and expand
the size of the region. To generate Ck−1, we traverse up the Range-tree of F levels. The
value FA for attribute A is calculated as follows:

FA =
tree− depthA

n− 2
(4.10)

where tree − depthA is the depth of Range-tree for attribute A and n is the number of
dimensions. Each time a candidate Ck is generated from Lk+1, the range for Ck is obtained
by traversing up the Range-tree by F levels. This is a faster option than to traverse the
tree level by level, and this will correspond to the level of itemset lattice we have. Starting
with bottom of the lattice, we start off with the leaf nodes in the Range-tree, which are
the most specific ranges. As we traverse up the lattice by one level, correspondingly the
Range-tree is traversed up F levels, providing more general ranges. When the lattice
reaches candidate of size 2, we will also reach the general range in the tree. Consider
Example 4.9 for the illustration of generating C2 from L3.

Example 4.9. Figure 4.7 show the respective Range-tree for attributes A, B and C.
Candidate C2 is generated by obtaining their respective ancestor’s value, which is a more
general range. Each range-tree is traversed up F-levels (calculated individually using
equation 4.10).
As shown in the figure,
L3 = {A : [0, 5], B : [0.5, 0.7], C : [10, 15]}
C2 = {{A : [0, 10], B : [0.33, 0.90]},

{A : [0, 10], C : [0, 50]},
{B : [0.33, 0.90], C : [0, 50]}}

Mixture of discrete and continuous attributes:

The method discussed so far focused on mining EHR, however the method can be used to
mine heterogeneous types of attributes. In the case of combination of a continuous and a
discrete attribute, instead of traversing two tree, here we are only traversing only one tree.
We use a bottom-up approach to generate candidate sets. Here the EHR are represented
as ’strips’.

For cases where it involves combination of only discrete attributes, the process of gen-
erating the candidate sets is straight forward, as it involves only getting the subset of the
current itemset.

To mine for empty combinations, the same technique still applies, at each level the Ds

will be scanned to eliminate non-empty candidates.

4.5 Step 3 - Method 2: 34

(a) Empty rectangle in 3 dimensional space

(b) Increasing
the size of the
region

(c) Increasing the size of the re-
gion

Figure 4.6: Splitting of adjacent rectangles

Figure 4.7: Example of generating C2

4.6 Comparison between Method 1 & Method 2 35

4.5.3 Monotonic Pruning

Monotonic pruning is also known as the negative pruning, using it to prune off itemset that
does not satisfy the property of being empty. Once the itemset reaches size 2, searching
will be terminated. All mined EHR will be accumulated and tested for minimality. As
our goal is to mine only keep the mininal empty combination, all non-minimal empty
combinations are deleted. We know that if k-itemset is not empty, then all k − 1-itemset
is not empty either. As shown in Figure 4.8, A2A3A4 is found to be non-empty, and all
subsets of A2A3A4 are pruned away.

{ }

{A1} {A2} {A3} {A4}

{A1A2} {A1A3} {A1A4} {A2A3} {A2A4} {A3A4}

{A1A2A3} {A1A2A4} {A1A3A4} {A2A3A4}

{A1A2A3A4}

Figure 4.8: Monotone Pruning

4.6 Comparison between Method 1 & Method 2

Method 1 works well if the data distribution is sparse. It offers fast detection of minimal
empty combinations. Since it uses the idea of storing and comparing the idlist associated
to each element in the domain, a substantial amount of storage is needed. However, the
advantage of this method is there is no need to scan the database to check whether the k-
itemset exist in the database. Instead this can be done efficiently by using set manipulation
on the TID, as it uses the concept of partitions, and to test whether k-itemset is empty,
it is tested for set intersection. The main drawback of this method is that a big storage
space is needed. Storages space is needed not only to store k-itemset, but we also store
up the empty combinations that were pruned away from the search space.

Method 2 performs better if data is relatively dense. We start from the bottom of the
itemset lattice and proceed levelwise upwards. Since the size of Ds covers more than half
of max set, we only work on the complement set of Ds, which is less than half the size of
max set. This will ensure that the size of the itemset is managable in terms of memory
space. However, the disadvantage of this method is that it needs n number of database
scans for n-dimensions. The main drawback of this method is that mining for minimal
empty combinations is not easy. A lot of comparisons need to be made to prune of the
non-minimal combinations.

In view of the strength and weaknesses of these two methods, it is proposed to use
both method 1 and method 2 as a more robust method for mining EHR in different data
distribution.

4.7 Data Structure 36

4.7 Data Structure

In this section, we describe the data structures used in the implementation of the algo-
rithm.

1. Range tree: This tree structure is used to store the hierarchical clustering of the
continuous attributes

2. Minimal empty combination: To efficiently mine these minimal combination, they
are stored in hash table for fast comparison to trim off non-minimal empty combi-
nations

3. Range tree traversal: Itemsets are stored in a stack. The range tree is traversed in a
Depth-First Search manner to generate the candidate itemset. The traversal of the
tree is determined by the user specified threshold τ . Once a subtree is traverse, the
parent node is poped from the stack and children nodes are pushed into the stack.

4. An array to store bit fields: In order to speed up the comparison of two idlist to get
the corresponding set intersection, an alternative implementation with fixed length
bit fields can be used in place of the TID. The bits are set by hashing on the TID of
the transaction. Intersection is accomplish by the logical AND of the corresponding
bit fields.

5
Mining in Multiple Database Relations

In previous chapters, we have focused only in mining empty regions in a single table. In
this chapter, we will explore generalizing the methods in the previous chapters for mining
over a multi-relation database. Maximal empty joins represent the ranges of the two
attributes for which the join is empty and such that they cannot be extended without
making the join non-empty.

Relational databases are the most popular format for structured data, and is thus one
of the riches sources of knowledge in the world. As most of the user queries are issued for
multi-relational database, therefore it is only useful if we can mine empty result queries
in multi-relational databases. However, data mining in multi-relation database is a long
standing problem and is highly intractable. Therefore, currently data mining are mostly
done in data represented in single ’flat’ relations. It is counterproductive to simply con-
vert multirelational data into a single flat table because such conversion may lead to the
generation of a huge universal relation, making mining data difficult.

5.1 Holes in Joins

Currently no work has been done in mining empty region in multi-relational database. The
closest is the work of Gryz and Liang, in ’Holes in Joins’ [Gryz and Liang, 2006]. They
consider mining empty regions in a join of two relations, more specifically the non-joining
portions of two relations. In a join of two relations R ./ S, they are interested in finding
empty region in the projection of ΠR.A,S.B(R ./ S), where attributes A and B are not the
join attributes. This method however, still does not fully achieve the purpose of mining
empty regions in a multirelational database.

We identify that mining queries over multi-relation database is highly intractable. Nev-
ertheless, we propose a method that can mine a group of low cardinality attributes from
different relations. Method 1 described over a single relation can be slightly modified to be
used in the context of a multi-relational database. Recall that in method 1, each attribute
is partitioned and grouped into respective categories and a list of TIDs are assigned to
each such group. By using tuple ID linkage as suggested in [Yin et al., 2004], we can
virtually join relations efficiently and flexibly. Unlike in [Yin et al., 2004] where tuple ID
linkage is used Classification problem, here it is used to conveniently to test for empty
combinations. Multiple relations in a database are connected via entity-relationship links
of ER models in a database design. Among the many relations, we identify a target rela-
tion Rt, whose tuples are called target tuples. It is usually the fact table or the transaction

37

5.1 Holes in Joins 38

table. With the use of TID, empty result queries formed by attributes of different relations
can be mined independently, as in a single table. Without joining the tables, we are able
to do mining by using the idea of partitions formed for each different relations.

We focus only on one-to-many relationships, specifically the star schema. An N-dimensional
star schema consist of a fact table and N dimensional tables, DN . Every dimension table
Di has a primary key, Ki for i = {1, 2, . . . N}. Each dimension has a reference key in the
fact table where each Ki forms a foreign key in the fact table. The main idea here is to
assign each tuple in DN with a TID, and then these TID are propagated back to the
respective dimension table, Di.

The algorithm of mining in a multi-relation database is as follows::

1. Simplify and encode the fact table with respect to the distinct foreign keys involed.

2. Create partitions on each individual foreign key.

3. Propagate the TID back to the dimension table.

4. Proceed as method 1.

The algorithm is presented and illustrated in the following example:

Example 5.1. Figure 5.1 shows a simple star schema, with one fact table and two di-
mension tables. In step 1, the fact table simplified and is encoded into a smaller table, as

Customer

C_ID
name
address
phone
age

Orders

Order_ID
C_ID
P_ID
amount

Product

P_ID
description
types
manufacturer
price

Figure 5.1: Star schema

shown in the tables below. Table 5.1(a) shows the original transactions for table Orders,
while table 5.1(b) is a simplified version with respect to C ID and P ID. C ID and
P ID are the primary key for Customer and Product table respectively. Each tuple in
the simplified Orders are now distinct in terms of C ID and P ID. A distinct TID is
assigned to each such tuples.

In step 3, TIDs are then propagated to the dimension tables, as shown in Table 5.2(a)
and 5.2(b). Mining for empty queries between these tables can be done using method 1
described in Section 4.4 in Chapter 4.

5.2 Unjoinable parts 39

Orders
Order ID C ID P ID amount
O1 0100 p01 500
O2 0200 p01 1000
O3 0300 p02 2000
O4 0100 p01 800
O5 0300 p02 2000
O6 0200 p02 1500

(a) Original table

Orders
TID Order ID C ID P ID
1 O1, O4 0100 p01
2 O2 0200 p01
3 O3, O5 0300 p02
4 O6 0200 p02

(b) Simplified table

Table 5.1: Fact table: Orders

Customer
C ID name ... age TID

0100 Petersen 20 1
0200 Schmitt 25 2,4
0300 Victorino 35 3

(a) Dimension table: Customer

Product
P ID description type ... TID

0100 Chevy Trucks 1,2
0200 XREO Motorcycles 3,4

(b) Dimension table: Product

Table 5.2: Tuple ID propagation

5.2 Unjoinable parts

In the previous section, we searched for holes that appear in joins, in that two relations are
joinable, but their non-joinable attributes are empty. In this section, we focus our attention
on non-joinable part of two relations. Another reason that causes a multi-relation query
to return an empty result is due the fact that given the selection criteria, the relations are
simply non-joinable. In the context of a star schema, there may be parts where the values
from a dimension that does not exist in the fact table. After tuple ID is being propagated
back into the dimension tables, a tuple that does not exist in the fact table will have an
empty value for the TID column. Consider the example below:

Example 5.2. As shown in Table 5.3, TID value is blank for the tuple: 〈0300, . . . , Car〉.
This indicates that this particular tuple does not appear in the fact table Orders and is
not joinable. These non-joinable parts can be seen as tuples that appear only in an outer
join between the Product and Orders but not in a natural join between between the two
tables.

Product
P ID description type ... TID

0100 Chevy Trucks 1,2
0200 XREO Motorcycles 3,4
0300 XDKEJ Car -

Table 5.3: dimension table: Product

5.2 Unjoinable parts 40

Based on the above illustration, we now introduce the definition of the target domain.

Definition 5.1. Target domain. Target domain, target domain is the domain of an
attribute based on the values that appear in the target table.

target dom(Ai) = t[i], t ∈ target table.

In a star schema, the target table is the fact table. The extended definition of an empty
value in the context of a star schema is:

Empty values : ai ∈ dom(Ai), ai /∈ target dom(Ai).

Example 5.3. Based on Example 5.2, the empty value for attribute type with respect to
the fact table Orders is ’Car’. The value ’Car’ belongs to dom(type) for dimension table
Product, but does not exist in target dom(type). Any query to the fact table that has the
selection criteria type =′ Car′ evaluates to empty.

6
Test and Evaluation

In this section, we describe the experiments and the evaluation of the performance of the
proposed solution. To get a more accurate evaluation, we evaluated the algorithm using
both synthetic and real life datasets. They were obtained from WEKA machine learning
homepage [Witten and Frank, 2005]. Larger datasets were chosen to demonstrate the
scalability of the proposed solution. A subset of all the attributes in each dataset were
selected, and the selection were based on the following criteria:

• discrete attributes: low cardinality (with cardinality below 10)

• continuous attributes: unrestricted range but different value distribution were chosen
to demonstrate the mining of EHR.

More description about each individual test can be found in the following sections.
Besides that, we have conducted tests based on other factors, such as using different

values for threshold τ , varying distribution size and using the different combination of
data types. In Chapter 4, we have focused mainly on mining EHR, but it is also shown
that the method can be used mine heterogeneous itemsets. All mined results are presented
in the form of rules. For rules that involves continuous attributes, they can be presented
in the form of empty rectangles. The visualization of some of the results in the form of
empty rectangles in two dimensional space will be presented in the result section.

Experimental Setup

The tests were ran on a personal computer with 1.6GHz processor, 1GB main memory
and Pentium 4 PC with Windows 2000. The proposed algorithm is implemented in Java.
It is assumed that for all test cases, the simplified database Ds fits into the main memory.

6.1 Performance on Synthetic Datasets

TPCH

The TPC Benchmark H (TPC-H) is a decision support benchmark and it is a publicly
available workload, which allows for replication and for experiments. The attributes were
chosen from two tables, namely orders and lineitems. This testset is stored in a DBMS.
The join of these two tables has the size of 6,000,000 tuples and the initial dataset does
not fit into the main memory. For the simplicity of the testing, the simplified database Ds

41

6.1 Performance on Synthetic Datasets 42

with respect to the chosen attributes were generated directly from the DBMS. Table 6.1(b)
shows the result based on the different sets of attributes. Since we started the program
execution directly with Ds, the processing time taken is much lower.

Table 6.1(a) shows the set of attributes selected while Table 6.1(b) and Figure 6.1 show
the results with respect to different sets of attributes.

Description Type Domain Cardinality Min Max
l shipmode Low-card. 7
l returnflag Low-card. 3
l linestatue low-card. 2
o orderstatus low-card. 3
o priority low-card. 5
l discount Numeric 11 clusters 0 0.1

(a) Selected attributes

Dimension distribution size # rules time (in seconds)
first 2 attributes 1 - -
first 3 attributes 0.67 2 20
first 4 attributes 0.44 5 45
first 5 attributes 0.44 5 77
all attributes 0.44 9 704

(b) Results

Table 6.1: TPCH

Other synthetic datasets

Detailed description about each test can be found in Appendix A.

• Testset #1

• Testset #2

6.1 Performance on Synthetic Datasets 43

(a) Distribution size versus Number of Dimen-
sions

(b) Time versus Number of Dimensions

(c) Number of Rules versus Number of Dimen-
sions

(d) Number of Rules versus Distribution size

Figure 6.1: TPCH: Result charts

6.2 Performance on Real Life Datasets 44

6.2 Performance on Real Life Datasets

Table 6.2 below is the testset for California Housing Survey, with the size of 20,640 tuples,
obtained from the StatLib repository (http://lib.stat.cmu.edu/datasets/). It contains in-
formation on housing survey on all the block groups in California from the 1990 Census.

Description Type Domain Cardinality min max
Median Age Numeric 52 clusters 1 52
Total # rooms Numeric 56 clusters 2 39320
total # bedrooms Numeric 59 clusters 1 6445
Household Numeric 65 clusters 1 6,082
Median Income Numeric 76 clusters 0.5 15
Median House Value Numeric 86 clusters 14,999 500,001

(a) Selected attributes

Dimension distribution size # rules time (in seconds)
first 2 attributes 0.53 106 218
first 3 attributes 0.38 389 532
first 4 attributes 0.2 1,825 645
first 5 attributes 0.17 2,180 3268
all attributes 0.08 6,686 4,842

(b) Results

Table 6.2: California House Survey

Other real life datasets

Detailed description about each test can be found in Appendix A.

• Ailerons

• Credit Card Approval

• KDD Internet usage survey

6.2 Performance on Real Life Datasets 45

(a) Distribution size versus Number of Dimen-
sions

(b) Time versus Number of Dimensions

(c) Number of Rules versus Number of Dimen-
sions

(d) Number of Rules versus Distribution size

Figure 6.2: California House Survey: Result charts

6.3 Granularity 46

6.3 Granularity

As described in Section 4.1.1 in Chapter 4, users can determine the granularity of the
result, by assigning an appropriate value to the threshold parameter τ . Tests have been
conducted based on varying threshold value over Testset #1 (refer to Appendix A). If τ
is small, then bigger ’chunks’ of empty regions are considered at one time. Bigger τ , on
the other hand, splits the empty spaces into small ’chunks’ for processing. Figure 6.3(a)
shows the number of mined rules with respect of the different threshold value, while
Figure 6.3(b) shows the processing time needed for each different threshold. Figure 6.4
shows the visualization the different size and the different number of the rectangles based
on the value of τ .

(a) Number of rules versus Threshold τ (b) Time versus Threshold τ

Figure 6.3: Results for varying threshold, τ

Analysis

Higher value of τ produces higher number of finer grain (smaller size) of rectangles. Based
on the charts in Figure 6.3, processing time increases proportionally with the value of
τ . This is because with a higher τ , Range-trees are traversed deeper and more rules are
compared and generated.

6.3 Granularity 47

(a) τ = 0.5, x-axis: X6, y-axis: X4

(b) τ = 0.75, x-axis: X6, y-axis: X4

Figure 6.4: Mined EHR based on different threshold, τ

6.4 Varying Distribution Size 48

6.4 Varying Distribution Size

Recall that in Section 4.3 in Chapter 4, data distribution is measured in terms of distribution size.
The choice of running method 1 or method 2 is determined by the distribution size. A
synthetic dataset was generated based on a fixed set of attributes, but with varying dis-
tribution size. The list of attributes are listed in Table 6.3.

Description Type Domain Cardinality
att1 low-card. 5
att2 low-card. 5
att3 numeric 25 clusters
att4 numeric 15 clusters
att5 low-card. 5

Table 6.3: Synthetic datasets

Analysis

The result for different distribution size is displayed in Figure 6.5. From the results
shown in Figure 6.5(a), we are able to draw the conclusion that the time is proportional
to distribution size. As for the number of mined rules, it does not depend on data
distribution, as displayed in Figure 6.5(b).

(a) Time versus Distribution Size (b) Number of Rules versus Distribu-
tion Size

Figure 6.5: Results for varying distribution size over a fixed set of attributes

6.5 Different Data Types

These test datasets are chosen to show the working for the algorithm in the case of ho-
mogeneous and heterogeneous data types (a mixture of categorical and numerical values).
For categorical values, they are of low cardinality domain, while for numeric values, they

6.6 Accuracy 49

have different ranges and different size of ranges. The results show that the proposed
solution is able to mine efficiently on different data types. The testsets chosen can be
categorized into the following groups:

• Low cardinality discrete attributes:
KDD Internet Usage Survey.

• Unbounded continuous attributes:
California Housing Survey, Ailerons, Testset #2 .

• Mixed attributes:
TPCH, Testset #1, Credit Card Scoring.

6.6 Accuracy

In this section, we investigate the accuracy of the mined rules. Figures 6.6, 6.7 and 6.8
shows empty rectangles identified in 2 dimensional space. For simple illustration purpose,
we only plot rectangles in 2 dimensional space. Higher dimension results are also generated,
but visualizing them is difficult.

6.6 Accuracy 50

(a) (x-axis: median house value, y-axis: total # rooms)

(b) (x-axis: Median Age, y-axis: Median Income)

Figure 6.6: Point distribution and EHR [California Housing Survey]

6.6 Accuracy 51

Figure 6.7: Point distribution and EHR [Testset #1 (x-axis: X6, y-axis: Y)]

Figure 6.8: Point distribution and EHR [Ailerons (x-axis: curPitch, y-axis: climbRate)]

6.7 Performance Analysis and Summary 52

6.7 Performance Analysis and Summary

In this method, false positives are not allowed while false negatives are tolerable. That is,
all mined rules are guaranteed to be empty, but there may be empty regions in the dataset
which are not mined. This is due to two factors:

1. User defined coverage, τ . This parameter determines the granularity of the mined
hyper-rectangles. The bigger the value of τ , the more accurate the results will be.
If the value of τ is small, lesser rules are obtained and the accuracy of the mined
result will be sacrificed.

2. Clusters are defined to be as small as possible, but since it is not feasible to have
a cluster for each and every individual point, there will be empty region within the
cluster itself. In this case, we treat a cluster as a totally filled region, and therefore
misses the empty spaces within the cluster. However, since the points in a cluster
falls within the interval threshold T , the empty spaces within the cluster will have
the size of less than T . Therefore these regions are small enough to be ignored.

6.7.1 Comparison to existing methods

Since the approach of this method is different from any existing method, there is no direct
and clear cut comparison to any of the existing methods. Nevertheless, comparisons can
still be made in terms of strengths and limitations. The existing methods mentioned here
are with reference to ones discussed in detail in Chapter 2.

In the method outlined in [Edmonds et al., 2001], uses the concept of growing empty
rectangles. They depict the dataset as an |X| × |Y | matrix of 0’s and 1’s. To obtain
the largest possible rectangles or maximal rectangles, the data has to be sorted first, so
that all 0’s are in the adjacent position. Many smaller isolated holes are not taken into
consideration. In our case, isolated empty regions can be mined without sorting the data
points first. With just one pass of the database, the Range-trees can be constructed. As
shown in Section 6.6, it is evident that the algorithm is able to detect empty spaces of
different shapes and sizes.

From the test results, we demonstrated that the algorithm works well for both discrete
and continuous attributes. Both methods that discover holes by geometry ([Edmonds
et al., 2001] and [Liu et al., 1997])has the limitation of working only on continuous values.
The method using Decision Tree induction [Liu et al., 1998] is able to cater for both
discrete and continuous attributes, but focuses only on the latter.

All existing methods (except [Luo, 2006]) focus only finding empty rectangles in two
dimensional spaces, and they do not perform well in higher dimensional spaces because
of high time and space complexity. In this case, we have shown that this method scales
well in higher dimension spaces. Here tests and experiments of 4 to 7 dimensions were
conducted. The method can be accommodated to mine higher dimensional by storing and
writing data on disk as suggested in Section 6.7.3.

6.7.2 Storage and Scalability

This method scales well to large database as the algorithm runs independently on the
size of the original dataset, but dependent only on max set, which is determined by the
domains of the set of chosen attributes. The description and calculation of max set is
found in 4.1.3 in Chapter 4. First we do a simplification encoding of the database, to
obtain Ds. The size of the simplified database Ds has the upper bound of the size of

6.7 Performance Analysis and Summary 53

max set. In most cases, |Ds| is much smaller than |max set| unless the dataset is densely
populated and evenly spread out.

Both method 1 an 2 uses the levelwise search, they can be analaysed as follows: In the
worst case analysis, the time and space complexity depends on the number of sets in the
levels Ll, called the size of a level. Let n be the number of dimensions and s be the sum
of the sizes of the levels. In the worst case, s = O(2n).

During the generation of Ck, we need storage for Lk−1 and the candidates Ck (In the
case of method 2, for the generation of Ck, we need storage for Lk+1). Memory needs to
be managed carefully as the candidates generation phase may occupy and take up all the
available buffer. When the distribution size is large, candidate generation may run into
the problem of insufficient main memory. To overcome this problem, method 2 is proposed
as an alternative to deal with datasets with large distribution size.

The two main differences between method 1 and 2 are outlined as follows:

• Disk Access: In method 1, it needs O(|Ds|) access, while for method 2, it needs O(s)
accesses of size O(|Ds|).

• Main Memory Requirement: Method 1 requires higher storage space, because besides
storing the Lk and Ck+1, extra storage space are needed for idlist. In the worst case,
the space complexity is O(2n |idlist|). As for method 2, it needs storage space of Lk

and Ck−1. In the worst case, the space complexity is O(2n).

6.7.3 Buffer Management

The method employed here is independent of the dataset size, but with a upper bound
of the maximal set, max set (the cross product of the attribute domains.) Therefore this
algorithm works well for attributes with low cardinality domains.

Method 1:

In the candidate generation phase of pass k, we need storage for itemset Lk−1 (including
their TID)and the candidate itemset Ck. If Lk−1 does not fit into the memory, we exter-
nally sort Lk−1. We bring into memory a block of Lk−1 in which the first k − 2 items are
the same. We now generate candidates using this block. We are interested in the pruned
off itemsets, those itemset where their combination of Lk−1 does not have any common
TID and produces an empty set intersection. They are paged out onto disk as results.

Method 2:

We start off with Ln, with n dimensions. In the candidate generation phase of pass k, we
need storage for itemsets Lk and the candidate Ck−1. In the dataset scanning phase, we
need storage for Ck and at least one page to buffer the database transaction. Lk are stored
and paged out onto disk if memory is insufficient. Testing for minimality and pruning will
be done once the levelwise algorithm is finished. An efficient test for minimality can be
done using a hashtable.

6.7 Performance Analysis and Summary 54

6.7.4 Time Performance

Time performance in each step of the methods are analyzed as follows:

Step 1: Data Preprocessing

In the data preprocessing phase, values in continuous attributes are clustered. Let m be
the number of continuous attributes. In the data preparation phase, the algorithm needs
to scan through the original dataset, D with |D| tuples. Each data tuple may travel at
most logB |D| steps down a Range-tree, where B is the branching factor of an internal node
in the Range tree. All the above operations are duplicated for each of the m dimensions
giving a time complexity of O(m |D| (logB |D|)).

Step 2: Simplify Database

In this step, we simplify the database into a smaller dataset Ds. We need to access the
original dataset, the time complexity is linear to the number of tuples in the original
dataset, which is O(|D|). The process of simplifying the database is done using the hash
table. Each unique tuples is stored in a hashtable, while non-unique tuples are ignored.
The process of checking whether a tuple is unique can be done in constant time by checking
for the entries in the hashtable.

Step 3: Method 1

In method 1, candidates Ck are created by testing for non-empty set intersection idlist of
Lk−1. The checking of set intersection between two idlist is polynomial. Let l1 be |idlist1|
and l2 be |idlist2|, the time complexity is O(l1l2). Since we store the TID in main memory,
there is no need to scan the database for each level, thus it is faster. However the downside
of this method is that it incurs a higher storage space.

Step 3: Method 2

For this, we need to scan the database for every level in the lattice, hence the access time
is slow. One of the main advantages is the linear dependency of the algorithm on the
number of rows in the relation and linear to the size of the number of attributes. After
that, all non-minimal empty combinations are eliminated. Method 2 does not incur high
storage space, but requires a longer run time.

6.7.5 Summary

The method is at its best when the number of attribute in an Lempty are relatively small.
When the size of the empty rules is roughly one half of the number of attributes, the
number of itemset is exponential in the number of attributes. When the attribute com-
binations are larger than that, the levelwise method that starts the search from small
dependencies obviously is further from the optimum. In this situation, we apply method
2, which starts from the largest combination and work our way to smaller combinations.

Here is the observation made, the distribution size is inversely proportional to the
number of dimension. It is found that distribution size decreases as more attributes
are being considered. This is consistent with the observation made in [Agrawal et al.,
1998], where it is stated that the average density of points in a high dimensional space
is likely to be quite low. Therefore, they propose first to mine dense region in lower
subspace, before proceeding higher dimensional spaces. From all the expriments and the

6.7 Performance Analysis and Summary 55

corresponding results, it is found that distribution size is generally quite small when it
involves continuous attributes. Consequently in most cases, method 1 is used.

In view of the time and space complexity of both method 1 and 2, it is therefore
justifiable to use both methods as a more robust method for mining EHR in different
data distribution. By taking into consideration of the data distribution, we can find
a suitable method that will ensure a method that has an efficient runtime and storage
space.

6.7.6 Practical Analysis

Due to pruning, s can be significantly smaller than the worst case analysis. In the can-
didate generation phase, Lk are stored in hashtable, making pruning of Ck+1 at constant
time. For the elimination of non-minimal empty combination, mined rules are stored in
hashtables. Therefore, in practice, the retrieval and pruning of rules takes constant time.

6.7.7 Drawbacks and Limitations

One of the drawbacks of the algorithm is that for some cases, a large number of rules are
produced. In cases like these, it will simply be counter-productive if the number of rules
are almost equal or close to the size of the dataset. This is because a large amount of
time has to be devoted to check through the rules to determine whether any given query is
empty. Besides that, a large storage space is needed to store the rules. In such situation,
mining and checking for empty result queries will incur a high computational cost.

The size of the rectangles depends on the types of data distribution. Clusters for each
continuous attributes are formed according to the positions of points, where points located
in close proximity to each other forms a cluster. For points that are highly skewed, bigger
sized rectangles can be identified (refer Figure 6.8, 6.7), whereas for points that are evenly
distributed, clusters of equal size and are located close to each other are produced. In fact
in such cases, no real clusters are formed since the data points are evenly scattered. (eg:
Figure 6.6(b)). In this case, rectangles are that small or insignificant are produced. This
can be explained using the concept used in [Liu et al., 1997]. A maximal hyper-rectangle
is split when a data point is added. The existing rectangles are repeatedly being split into
smaller rectangles whenever a new data point is added. If the point distribution is evenly
scattered, then many small rectangles will be produced. Analogous in our situation, mined
rules produced have a very fine granularity and are not useful in empty query detection.
To overcome this problem, [Liu et al., 1997] proposed to mine only sufficiently large empty
regions.

7
Integration of the algorithms into query processing

In this chapter, we explore the potential usage of mined EHR. First and foremost, we can
use it to detect empty result queries. This is done by matching the selection criteria with
the mined rules. Once any selection criteria is found to be an exact match or a superset
of any empty rules, then that particular query is categorized as ’empty’ and thus will not
be evaluated. All EHR can be materialized as views, as described in [Gryz and Liang,
2006]. Another alternative is to store them in the form of rules.

7.1 Different forms of EHR

As explained earlier, mining of empty result queries can be done in the form of finding
empty spaces in datasets or selection rules. The goal is to mine the minimum empty query
combination Lk−empty, and any superset of an empty selection will not be stored.

Mined rules.

Mined rules are stored in a Disjunctive Normal Form (DNF). Queries that matches one of
the clauses will be categorized as empty. The rules are stored in the following form:

Lempty : {rule1 ∨ rule2 ∨ . . . rulem}

where rulei for i ∈ {1, . . . m} is in the form of Conjunctive Normal Form(CNF), consisting
of

• point based comparison (for discrete and continuous attributes): Ax = ax

• interval comparison (for continuous attributes): minx ≤ Ax ≥ maxx

where Ax ∈ A, and x ∈ {1, . . . , n}.

Example 7.1. Let D be a database with attributes A = {A1, A2, A3}, where A1, A2 are
continuous valued attributes and A3 is a discrete valued attribute, with the domain of
{a31 , a32 , a33}.
rule1: 5 < A1 < 10
rule2: 2 < A2 < 14 ∧A3 = a33

rule3: 13 < A1 > 20 ∧ 15 < A2 < 20 ∧A3 = a31

56

7.2 Avoid execution of empty result queries 57

The mined rules are presented in this form:

Lempty = (5 < A1 < 10)
∨ (2 < A2 < 14 ∧A3 = a33)
∨ (13 < A1 > 20 ∧ 15 < A2 < 20 ∧A3 = a31)

Materialized Views

As for finding empty regions in the data, it is analogous to finding empty hyper-rectangles.
The mined results can be materialized as views. When a materialized view for a set of
attributes X is constructed, all empty rules of set X and all rules involving subset of X are
combined to form the view. In the visualized form, all EHR formed by the subset of X,
which are in lower dimension are projected to X dimensions.

Both rules and materialized views can be used in detecting empty result queries. Mined
rules can be used in the form of checking against the selection criteria of a query. If the
query selection matches any of the conjunctive clauses, then it is categorized as ’empty’.
EHR can be materialized as views. Any query that falls within the empty region defined
by the EHR is categorized as ’empty’.

7.2 Avoid execution of empty result queries

Our main focus here is to detect these empty result queries and to avoid executing them.
A possible implementation of empty query detection can be done for ’canned queries’.
’Canned queries’ are predefined queries, with predefined selection predicates. In most
instances, canned queries contain prompts that allows user to select the query parameters
from a list. In these cases, only the selection values in the query changes. Typically,
these kind of queries are common for end users in the Internet domain. Online users often
submit canned queries by filling parameter values into a predefined template. This usually
involves choosing a few predefined lists, each having a low cardinality domain. An example
would be the Advanced Online Search, that has more selection criteria than a general or
basic search.

We propose to use mined EHR in this context. Since the method that we propose
efficiently mines low cardinality domains, we can use the result in detecting empty canned
queries. We output EHR in the form of rules and populate them in the form of an XML
file. The XML file can then be placed in the intermediate stage to check for empty result
queries before queries are being sent to DBMS to be evaluated. Figure 7.1 shows the
architecture.

Internet Data source

Mined rules
(XML file)

User query

Figure 7.1: Implementing mined empty queries for online queries

7.2 Avoid execution of empty result queries 58

These XML files are generated according to the following DTD, shown in Table 7.1. An
example of such an XML file is shown in Table 7.2.

<!DOCTYPE emptySets [
<!ELEMENT emptySets (emptySet*)>
<!ELEMENT emptySet (rule_no, att1?, att2?,....attn?)>
<!ELEMENT att1 (#PCDATA)>
<!ELEMENT att2 (#PCDATA)>
.
.
<!ELEMENT attn (#PCDATA)>

]>

Table 7.1: DTD

<?xml version="1.0"?>
<emptySets">

<emptySet>
<rule_no>1</rule_no>
<att1>A</att1>

</emptySet>
<emptySet>

<rule_no>2</rule_no>
<att2>

<min>5</min>
<max>10</max>

</att2>
</emptySet>
<emptySet>

<rule_no>3</rule_no>
<att1>B</att1>
<att2>

<min>15</min>
<max>20</max>

</att2>
</emptySet>

</emptySets>

Table 7.2: An example of an XML file

Query criteria matching can be done using XQuery FLOWR expression. Table 7.3 shows
an example of XQuery used in respect to the XML file in Table 7.2:

If the XQuery evaluates to true and returns an XML node, then we know that the
selection criteria of the query matches the empty rules. If no match is found, then query
will be sent to the DBMS.

7.3 Interesting Data Discovery 59

for $x in doc("empty.xml")/emptySets/emptySet
where $x/att1=’A’

or ($x/att2/min=5 and $x/att2/max<15)
return $x/number

Table 7.3: XQuery

Two applications were proposed in [Gryz and Liang, 2006]. They are:

1. Query optimization by query rewriting
Empty hyper-rectangles can be materialized in views and used for query optimiza-
tion. By reducing the range of one or more of the attributes or by adding a range
predicate (hence reducing an attributes range), the number of tuples that participate
in the join execution are reduced thus providing optimization.

2. Improve Cardinality estimates in query processing
Currently, a join cardinality estimate is based on the assumption of uniform data
distribution or by using histogram. By identifying and taking into consideration the
empty regions in a join, the corresponding join cardinality estimate is more accurate.

7.3 Interesting Data Discovery

Clearly, the knowledge of empty regions may be valuable in and of itself as it may reveal
unknown correlations between data values which can be exploited in applications. As
described earlier, empty regions in data can be seen as a type of data skew. From the
mined empty regions, it can lead to interesting data discovery, for example attribute
correlations and functional dependencies.

In [Liu et al., 1997], the authors proposed to use the knowledge of empty regions in
medical domains. For example, in a disease database, we may find that certain symtoms
and/or test values do not occur together, or when a certain medicine is used, some test
values never go beyond certain range. Discovery of such information can be of great
importance in medical domains because it could mean the discovery of a cure to a disease
or even some biological laws.

7.4 Other applications

1. Database administration
The knowledge of empty regions can help database administrator in adding integrity
constraint or check constraint in the database.

2. Detection of anomalies in updates
From the mined rules, we are able to identify which ranges of values do not occur
together. They can be used in checking for anomalies in updates.

8
Conclusion

The results have shown that given a set of attributes, the proposed solution is able to
find the set of empty combination in the query selection that causes a particular query to
return an empty result. The mined results are presented as disjunction of rules. In the
special case of numeric attributes, these rules can be defined in terms of empty hyper-
rectangles. The proposed solution has a few strong points over existing methods. Unlike
previous methods, they focus only in finding empty regions formed by numeric values, this
methods explores the combinations of category and numeric values. Besides being able to
mine mixed type of attributes, it can also mine hyper-rectangles in higher dimensions. It
is shown that the algorithm is independent of the size of the actual dataset but dependent
only on the size of the attribute domains. It is efficient for low cardinality domains, but
performance degrades if the cardinality of the attribute domains becomes too large. In this
method, false positive are allowed, but no false negatives are reported. This means that
all mined rules are guaranteed to be ’empty’, however there may be some empty regions
that go undetected. Since this solution has good performance for low cardinality domains,
therefore it can be implemented to detect empty query results for ’canned queries’.

8.1 Future Work

We expect this feature of mining empty result queries to be most helpful in read-mostly
environments. Extending this to a more update-intensive environment is an interesting
area for future work. The continuation of this work would be to use the mined results to
efficiently detect empty result queries. As stated, there exist a few previous works that
check for empty regions in the dataset, however only [Luo, 2006] focused on empty result
queries detection.

Section 6.7.7 in Chapter 6 contains the list of drawbacks and limitation of the proposed
method. One of them is that the mined rules are too fragmented to be useful in empty
query detection. Thus, it is worth investigating on how to optimize the current rules,
by combining these ’fragments’, making them large enough to be used in empty query
detection. By combining these ’fragmented’ rules, we can minimize the number of rules
used to define empty spaces. This optimization problem of finding the minimal number
of rules to fully identify the empty regions is known to be NP-Hard. Just like it is stated
in [Agrawal et al., 1998], computing the optimal cover is also NP-hard. Nonetheless, it
will be interesting to see the performance of empty query detection in such optimized
condition.

60

Bibliography

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J. B. Bocca,
M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB,
pages 487–499. Morgan Kaufmann, 12–15 1994. ISBN 1-55860-153-8. URL citeseer.
ist.psu.edu/agrawal94fast.html. 4.4, 4.4.2

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace cluster-
ing of high dimensional data for data mining applications. pages 94–105, 1998. URL
citeseer.ist.psu.edu/agrawal98automatic.html. 2.2.3, 3.2.1, 6.7.5, 8.1

Q. Cheng, J. Gryz, F. Koo, T. Y. C. Leung, L. Liu, X. Qian, and K. B. Schiefer. Im-
plementation of two semantic query optimization techniques in db2 universal database.
In VLDB ’99: Proceedings of the 25th International Conference on Very Large Data
Bases, pages 687–698, 1999. 1

S. S. Cosmadakis, P. C. Kanellakis, and N. Spyratos. Partition semantics for relations. In
Journal Computer System Science, pages 203–233, 1986. 4.4.1

J. Edmonds, J. Gryz, D. Liang, and R. J. Miller. Mining for empty rectangles in large
data sets. In ICDT, pages 174–188, 2001. 2.1, 2.2.2, 3.1, 6.7.1

T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-
dimensional optimized association rules: scheme, algorithms, and visualization. In
SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD international conference on
Management of data, pages 13–23, New York, NY, USA, 1996. ACM. ISBN 0-89791-
794-4. doi: http://doi.acm.org/10.1145/233269.233313. 3.2.1

J. Gryz and D. Liang. Holes in joins. In J. Intell. Inf. Syst., volume 26, pages 247–268,
Hingham, MA, USA, 2006. Kluwer Academic Publishers. doi: http://dx.doi.org/10.
1007/s10844-006-0368-2. 1, 1.1, 2.2.2, 3.1, 5.1, 7, 7.2

Y. Huhtala, J. Kinen, P. Porkka, and H. Toivonen. Efficient discovery of functional
and approximate dependencies using partitions. In ICDE, pages 392–401, 1998. URL
citeseer.ist.psu.edu/huhtala97efficient.html. 4.4.1

W. Kießling and G. Köstler. Preference sql - design, implementation, experiences. In
VLDB, pages 990–1001, 2002. 1.1

B. Lent, A. Swami, and J. Widom. Clustering association rules. In ICDE, 1997. URL
mack.ittc.ku.edu/lent97clustering.html. 4.1.2

B. Liu, L.-P. Ku, and W. Hsu. Discovering interesting holes in data. In IJCAI (2), pages
930–935, 1997. 2.1, 2.2.2, 2.2.2, 2.2.3, 6.7.1, 6.7.7, 7.3

61

citeseer.ist.psu.edu/agrawal94fast.html
citeseer.ist.psu.edu/agrawal94fast.html
citeseer.ist.psu.edu/agrawal98automatic.html
citeseer.ist.psu.edu/huhtala97efficient.html
mack.ittc.ku.edu/lent97clustering.html

BIBLIOGRAPHY 62

B. Liu, K. Wang, L.-F. Mun, and X.-Z. Qi. Using decision tree induction for discovering
holes in data. In Pacific Rim International Conference on Artificial Intelligence, pages
182–193, 1998. URL citeseer.ist.psu.edu/liu98using.html. 2.1, 2.2.2, 6.7.1

G. Luo. Efficient detection of empty-result queries. In VLDB, pages 1015–1025, 2006. 1.1,
2.2.1, 6.7.1, 8.1

R. J. Miller and Y. Yang. Association rules over interval data. In J. Peckham, editor,
SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management
of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 452–461. ACM Press, 1997.
4.2

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning
databases, 1998. URL http://www.ics.uci.edu/~mlearn/MLRepository.html. A.2,
2

N. Spyratos. The partition model: a deductive database model. In ACM Trans. Database
Syst., pages 1–37, 1987. 4.4.1

R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables.
In H. V. Jagadish and I. S. Mumick, editors, Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pages 1–12, 1996. URL citeseer.
ist.psu.edu/srikant96mining.html. 4.2

I. H. Witten and E. Frank. WEKA data mining: Practical machine learning tools and
techniques, 2005. URL http://www.cs.waikato.ac.nz/~ml/weka/. 6, 1, 2, 1, 3

X. Yin, J. Han, J. Yang, and P. Yu. Crossmine: Efficient classification across multiple
database relations. 2004. URL citeseer.ist.psu.edu/yin04crossmine.html. 5.1

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method
for very large databases. In ACM SIGMOD International Conference on Management
of Data, pages 103–114, Montreal, Canada, June 1996. URL citeseer.ist.psu.edu/
article/zhang96birch.html. 4.2

citeseer.ist.psu.edu/liu98using.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
citeseer.ist.psu.edu/srikant96mining.html
citeseer.ist.psu.edu/srikant96mining.html
http://www.cs.waikato.ac.nz/~ml/weka/
citeseer.ist.psu.edu/yin04crossmine.html
citeseer.ist.psu.edu/article/zhang96birch.html
citeseer.ist.psu.edu/article/zhang96birch.html

A
More Test Results

A.1 Synthetic Dataset

1. Testset #1

• Description: artificial dataset with 6 attributes (3 discrete and 3 continuous).
Data are generated with dependencies between the attribute values.

• Size of dataset: 40,768 rows of records

• Source: collection of regression datasets at WEKA dataset repository [Witten
and Frank, 2005].

Description Type Values Domain Cardinality min max

X3 Low cardinality brown, red, green 3
X4 Numeric integer 61 clusters -7.5 2.5
X6 Numeric integer 78 clusters -37.194 12.114
X7 Boolean yes/no 2
X8 Low cardinality normal, large 2
Y Numeric integer 79 clusters -41.822 2.5

(a) Attributes of testset #1

Dimension distribution size # rules time (in seconds)

first 2 attributes 0.34 44 910
first 3 attributes 0.22 423 2,895
first 4 attributes 0.19 1,133 6,592
first 5 attributes 0.19 1,216 14,140
all attributes 0.08 34,772 31,322

(b) Results

Table A.1: Testset #1

63

A.1 Synthetic Dataset 64

2. Testset #2 [fried]

• Description: artificial dataset with 6 attributes (all continuous). All values are
generated independently each other, of which uniformly distributed over [0,1].

• Size of dataset: 40,768 rows of records

• Source: collection of regression datasets at WEKA dataset repository [Witten
and Frank, 2005].

Description Type Values Domain Cardinality min max

Att1 Numeric integer 81 clusters 0 1
Att2 Numeric integer 78 clusters 0 1
Att3 Numeric integer 82 clusters 0 1
Att4 Numeric integer 87 clusters 0 1

(a) Attributes of Testset #2

Dimension distribution size # rules time (in seconds)

first 2 attributes 0.42 151 797
first 3 attributes 0.23 227 2,809
All attributes 0.12 302 7,889

(b) Results

Table A.2: Testset #2

A.2 Real Life Dataset 65

A.2 Real Life Dataset

For evaluation of real datasets, we have chosen a few datasets from UCI KDD (Knowledge
Discovery in Databases) [Newman et al., 1998] and from statlib of CMU. Datasets from
both these sources are provided in WEKA machine learning homepage.

1. Ailerons

• Description: This data set addresses a control problem, namely flying a F16
aircraft. The attributes describe the status of the aeroplane.

• Size of dataset: 13,750 rows of records

• Source: collection of regression datasets at WEKA dataset repository [Witten
and Frank, 2005].

Description Type Values Domain Cardinality min max

climbRate Numeric integer 76 clusters -975 977
q Numeric integer 58 clusters -0.54 0.62
curPitch Numeric integer 71 clusters -0.42 2.58
curRoll Numeric integer 61 clusters -3.1 2.9
absRoll Numeric integer 21 clusters -23 -3
diffDiffClb Numeric integer 53 clusters -62 46

(a) Attributes of Ailerons

Dimension distribution size # rules time (in seconds)

first 2 attributes 0.24 5 101
first 3 attributes 0.18 683 420
first 4 attributes 0.12 1,222 916
first 5 attributes 0.09 3,404 1,907
all attributes 0.04 11,268 4,016

(b) Results

Table A.3: Ailerons

A.2 Real Life Dataset 66

2. KDD internet usage

• Description: This data comes from a survey conducted by the Graphics and
Visualization Unit at Georgia Tech in 1997. The particular subset of the survey
provided here is the ”general demographics” of Internet users.

• Size of dataset: 10,108 rows of record

• Source: UCI KDD [Newman et al., 1998]

Description Type Values Domain Cardinality

Community Building Low-card. {D, E, L, M} 4
Gender Boolean {Female, Male} 2
Household Income Low-card. {[10-19], [20-29], [30-39], [40-

49], [50-59], [75-99], Nil,
Over100}

9

Occupation Low-card. {Computer, Education, Man-
agement, Other, Professional}

5

Marital Status Low-card. {Divorced, Married, Not Say,
Other, Separated, Single,
Widowed}

7

Race Low-card. {Asian, Black, Hispanic, In-
degenous, Latino, Not Say,
Others}

8

Years on internet Low-card. {1-3Yr, 4-6Yr, 6-12Yr,
Over7Yr, Under6Mth}

5

(a) Attributes of KDD Internet Usage

Dimension distribution size # rules time (in seconds)

first 2 attributes 1 - -
first 3 attributes 0.97 1 33
first 4 attributes 0.95 32 77
first 5 attributes 0.53 592 181
first 6 attributes 0.11 2,524 755
all attributes 0.04 6,987 7,800

(b) Results

Table A.4: KDD Internet Usage Survey

A.2 Real Life Dataset 67

3. Credit Card Scoring

• Description: Credit card application and approval based on application scoring.

• Size of dataset: 5,000 rows of records

• Source: collection of regression datasets at WEKA dataset repository [Witten
and Frank, 2005].

Description Type Values Domain Cardinality min max

Age Numeric integer 22 clusters 20 50
Income Numeric integer 28 clusters 1.51 10
Monthly CC expenditure Numeric integer 15 clusters 0 1898.03
Own a home Boolean {yes / no} 2
Category scoring low-card. {0,1,2,3,4,7} 6

(a) Attributes of Credit Card Scoring

Dimension distribution size # rules time (in seconds)

first 2 attributes 0.34 16 48
first 3 attributes 0.12 30 193
first 4 attributes 0.10 30 283
All attributes 0.08 51 384

(b) Results

Table A.5: Credit Card Scoring

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Organization

	Related Work
	Different definitions used
	Existing Techniques for discovering empty result queries
	Incremental Solution
	Data Mining Solutions
	Analysis

	Proposed Solution
	General Overview
	Terms and definition
	Semantics of an empty region

	Method
	Duality concept

	Algorithm
	Preliminaries
	Input Parameters
	Attribute Selection
	Maximal set, max_set
	Example

	Step 1: Data Preprocessing
	Step 2: Encode database in a simplified form
	Step 3 - Method 1:
	Generating 1-dimension candidate:
	Generating k-dimension candidate
	Joining adjacent hyper-rectangles
	Anti-monotonic Pruning

	Step 3 - Method 2:
	Generating n-itemset
	Generating k-1 itemset
	Monotonic Pruning

	Comparison between Method 1 & Method 2
	Data Structure

	Mining in Multiple Database Relations
	Holes in Joins
	Unjoinable parts

	Test and Evaluation
	Performance on Synthetic Datasets
	Performance on Real Life Datasets
	Granularity
	Varying Distribution Size
	Different Data Types
	Accuracy
	Performance Analysis and Summary
	Comparison to existing methods
	Storage and Scalability
	Buffer Management
	Time Performance
	Summary
	Practical Analysis
	Drawbacks and Limitations

	Integration of the algorithms into query processing
	Different forms of EHR
	Avoid execution of empty result queries
	Interesting Data Discovery
	Other applications

	Conclusion
	Future Work

	Bibliography
	More Test Results
	Synthetic Dataset
	Real Life Dataset

