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Abstract

The problem of finding optimal schedules for professional sports leagues has attracted interests
of many researchers in recent years. On the one hand, sport scheduling is an economically impor-
tant class of combinatorial optimization applications, since sport leagues generate considerable
amount of revenue for major radio and television networks, whose profits also depend on the
quality of schedules. On the other hand, sport scheduling poses a very challenging optimization
problem which involves issues of both feasibility and optimality.

The Traveling Tournament Problem (TTP) is a challenging sport scheduling problem ab-
stracting the features of major league baseball (MLB) in the United States. The objective of the
TTP is to find a double-round-robin tournament schedule minimizing the total distance traveled
by the teams and satisfying at the same time the TTP-specific constraints.

To solve TTP, we propose a metaheuristic approach based on Iterated Local Search (ILS)
framework. Iterated Local Search is a simple but yet powerful metaheuristic which has shown
very good results for different classes of optimization problems. First, we develop a basic ILS
algorithm for the TTP to assess the applicability of the ILS-principle to the TTP. Based on the
insights gained by analyzing the basic variant, we further optimize and extend the basic version
to improve the performance. One particularly important optimization is the definition of efficient
algorithm for incremental evaluation which speeds up the computation considerably.

We conduct extensive computational experiments on selected TTP benchmark-sets and com-
pare our results with those obtained by current state-of-the-art approaches in literature. For the
NL-x benchmark-set, our ILS algorithm is able to solve the smaller instances [NL4, NL6, NL8]
to optimality in only few seconds. For larger instances [NL10, NL12, NL14], our algorithm ex-
hibits better average performance than most of other compared approaches being only second to
the current best-performing Simulated Annealing approach. In general, our results show that our
ILS algorithm is competitive with current state-of-the-art approaches in the literature.
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Kurzfassung

Das Problem des Findens von optimalen Turnierplänen für professionelle Sportligen hat in letz-
ter Zeit Aufmerksamkeit vieler Wissenschaftler erregt. Die Planung von optimalen Sportplänen
ist eine wirtschaftlich wichtige Antwendung kombinatorischer Optimierung, weil die Sportligen
heutzutage wichtige Einnahmequellen für große Fernsehsender und Turnierveranstalter darstel-
len, wobei der erzielte Profit auch von der Qualität der Spielpläne abhängt.

Das Traveling Tournament Problem (TTP) ist ein schwieriges Sportplanungsproblem, wel-
ches die besonderen Merkmale von amerikanischen Major League Baseball (MLB) abstrahiert.
Das Ziel des TTP ist die Minimierung der gesamten Reisedistanz der teilnehmenden Teams,
während TTP spezifische Einschränkungen erfüllt bleiben müssen.

Wir stellen ein metaheuristisches Verfahren basierend auf Iterated Local Search Frame-
work zur Lösung des TTP vor. Iterated Local Search ist ein simples aber gleichzeitig mächtiges
Heuristikverfahren, das für viele verschiedene Optimierungsprobleme gute Ergebnisse gezeigt
hat. Wir entwickeln zuerst eine Basisvariante des ILS, mit der wir die Anwendbarkeit der ILS-
Prinzipien fuer das TTP beurteilen. Basierend auf den Erkenntnissen aus der Analyse der ersten
Variante verfeinern und optimieren wir den Basis-ILS weiter. Eine der wichtigsten Optimierun-
gen ist dabei die Definition einer inkrementellen Evaluierungsfunktion, was die Geschwindkeit
des Algorithmus deutlich steigert.

Wir führen ausführliche Experimente mit unserem Algorithmus durch und vergleichen die
Resultate mit den aus der Literatur. Die Ergebnisse mit der NL-x Benchmark-set zeigen, dass un-
ser Algorithmus die kleineren Instanzen [NL4, NL6, NL8] in wenigen Sekunden optimal lösen
kann. Für größere Instanzen [NL10, NL12, NL14] zeigt unser Verfahren bessere und stabilere
Durchschnittsleistung als die meisten Verfahren aus der Literatur, wobei nur das aktuell beste
state-of-the-art Verfahren basierend auf Simulated Annealing klar bessere Ergebnisse als unsere
Methode zeigt. Insgesamt zeigen die Ergebnisse, dass unser ILS-Algorithmus mit den besten
state-of-the-art Algorithmen aus der Literatur für das TTP gut konkurrieren kann.
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CHAPTER 1
Introduction

1.1 Motivation

The problem of finding optimal schedules for professional sports leagues has attracted interests
of many researchers in recent years. On the one hand, the scheduling of sport leagues is an
economically important class of combinatorial optimization applications, since sport leagues
generate considerable amount of revenue for major radio and television networks and neither
the sporting event organizers nor the participating teams want to waste their investments and
resources due to the poor schedules of games. On the other hand, sport scheduling poses a very
challenging optimization problem with multiple objectives and constraints combining issues of
feasibility and optimality.

The Traveling Tournament Problem (TTP), which is proposed by Easton, Nemhauser and
Trick [15] in year 2001, is a challenging sport scheduling problem abstracting the features of
major league baseball (MLB) in the United States. The objective of the TTP is to find a double-
round-robin tournament schedule minimizing the total distance traveled by the teams and satis-
fying at the same time the TTP-specific constraints. One can say that the TTP is a combination
of the well-known Traveling Salesman Problem and the sport timetabling problem, for which
already various effective solution techniques exist. But the combination of the both optimality-
and feasibility-issues makes the TTP a much more difficult optimization problem than its indi-
vidual underlying “sub-problems”.

Since its introduction, the TTP has received considerable attention and numerous different
approaches have been devised to tackle this hard optimization problem. The very first solving
techniques proposed for the TTP were exact-methods like constraint programming and integer
programming, but their limit was quickly reached even for the smallest instances. Then one

2



Chapter 1. Introduction 3

of the first successful metaheuristics approach using the Simulated Annealing technique was
proposed by Anagnostopoulos et al. [4] introducing basic neighborhoods, which are used by
nearly all the subsequent meta-heuristics researches for the TTP. In the following years, it was
further enhanced to the current state-of-the-art meta-heuristics for solving the TTP.

Many more metaheuristics approaches followed using different techniques like Tabu-Search
[17], Ant Colony Optimization [34] and Hyper-heuristics [24]. Based on the researches done so
far, one can recognize that single-solution based metaheuristics (like Simulated Annealing and
Tabu-Search) are performing particularly well for the TTP. The Iterated Local Search (ILS) is
another single-solution based metaheuristics technique, which can exhibit very powerful per-
formance if properly optimized, and it has been successfully applied to various optimization
problems.

To the best of our knowledge, the ILS hasn’t been closely analyzed in connection with the
TTP yet and we believe that investigating ILS’ applicability to the TTP would be an useful
contribution to improve general understanding of the metaheuristics’ effectiveness for solving
this very challenging combinatorial optimization problem.

During the study of previous TTP-researches, we also identified some interesting questions
regarding the neighborhoods, which are first introduced in [4] and used by many following meta-
heuristics. For instance, is it possible to define an efficient incremental evaluation function for
these neighborhoods? Is the resulting search-space fully connected under these neighborhoods?

1.2 Aims of this thesis

The main goals set for this thesis are:

• Give a detailed description of the Traveling Tournament Problem and discuss various suc-
cessful state-of-the-art approaches in the literature applied to this problem.

• Develop a novel metaheuristics approach based on Iterated Local Search to solve the TTP.

• Investigate some open issues regarding the widely used neighborhoods defined in [4].

• Implement the proposed algorithms and conduct extensive computational experiments
comparing the results with the best results in the literature
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1.3 Results

The main results obtained in the course of this thesis are:

• We have developed an ILS-based metaheuristics approach for solving the TTP. First, we
start from the very basic version of the ILS algorithm. Based on the insights gained
through analyzing the preliminary results, we further optimize and extend the basic ver-
sion improving the performance significantly.

• The experimental results show that our ILS-based approach is very competitive with state-
of-the-art approaches in the literature confirming the effectiveness of the ILS for solving
the TTP.

• Further, using the neighborhoods from [4], we have given detailed description how to
design and implement incremental evaluation function efficiently.

• We propose experimental approach for investigating the connectivity of the search-space
under the neighborhoods of [4]. Our results support the hypothesis that the search-space
is connected under the considered neighborhoods.

1.4 Organization

The rest of the thesis will be organized as follows. In Chapter 2, we give a formal description of
the Traveling Tournament Problem and discuss current state-of-the-art approaches. The general
principles of the Iterated Local Search will be discussed in Chapter 3. Our novel ILS-based
approach for solving the TTP is presented in Chapter 4. Chapter 5 compares the experimental
results of our approach with the results of the state-of-the-art approaches given in the literature.
Chapter 6 concludes this thesis with closing remarks and the outlook on future works.



CHAPTER 2
The Traveling Tournament Problem

(TTP)

2.1 Problem Description

The Traveling Tournament Problem, which is considered one of the most challenging sport
scheduling problems to date, was originally introduced by Easton, Nemhauser and Trick [15], .

Given n teams with n even and an n × n symmetric distance matrix D, where D(i, j)

represents the distance between the cities of team Ti and Tj , the goal in solving the traveling
tournament problem is to find a valid double round robin schedule, such that the total traveling
distance of all teams is minimized. A schedule is valid for the traveling tournament problem, if
it satisfies the following constraints:

1. Double Round-Robin constraint: Each team plays with each other team exactly two times,
once in its own city and once in its opponent’s city

2. AtMost constraint: Each team must play no more than u and no less than l consecutive
games in or away from the home city

3. NoRepeat constraint: It is not allowed that two teams are playing each other in two con-
secutive rounds

We call a schedule feasible, if it satisfies all the constraints above, otherwise infeasible. Note
that, if u is set to n − 1, then finding the schedule with the shortest traveling distance for one
team Ti is equivalent to solving the Traveling Salesman Problem. It is somewhat misleading

5



Chapter 2. The Traveling Tournament Problem (TTP) 6

to name the second constraint as the AtMost constraint, since we have both lower- and upper
bounds for the number of consecutive home- and away-games, but for most of the benchmark
instances available in the literature [3], the parameter l is set to 1, so that many researchers ([4],
[17]) adopted the notion AtMost constraint, because they consider only the upper bound.

It is obvious that a double round-robin schedule for n teams (n even) consists of at least
2n − 2 rounds and for the regular TTP we shall only consider double round-robin schedules
with this minimum number of rounds.

In this work, a schedule is represented by an n× (2n− 2) matrix S of integer numbers (like
in [4]), where the teams are assigned unique positive integer numbers from [1..n]. The entry Si,j
of the schedule matrix (see Figure 2.1) represents the game, which is played by the team Ti in
roundRj . The game entry Si,j is a positive integer number t, if the team Ti plays against a team,
whose assigned number is t, in round Rj in its own home city. On the other hand if the game
takes place in the opponent’s home city, it will be represented with a negative integer number
−t.

T/R R1 R2 R3 R4 ... R2n−2
T1 S1,1 S1,2 S1,3 S1,4 ... S1,(2n−2)
T2 S2,1 S2,2 S2,3 S2,4 ... S2,(2n−2)
T3 S3,1 S3,2 S3,3 S3,4 ... S3,(2n−2)
T4 S4,1 S4,2 S4,3 S4,4 ... S4,(2n−2)
...
Tn Sn,1 Sn,2 Sn,3 Sn,4 ... Sn,(2n−2)

Figure 2.1: A double-round-robin schedule given in n× (2n− 2) table

For instance, lets consider a valid TTP double-round-robin schedule with 6 teams. Ac-
cording to our representation, the schedule is represented as a 6 × 10 matrix of signed integer
numbers:

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +6 −2 +4 +3 −5 −4 −3 +5 +2 −6
T2 +5 +1 −3 −6 +4 +3 +6 −4 −1 −5
T3 −4 +5 +2 −1 +6 −2 +1 −6 −5 +4
T4 +3 +6 −1 −5 −2 +1 +5 +2 −6 −3
T5 −2 −3 +6 +4 +1 −6 −4 −1 +3 +2
T6 −1 −4 −5 +2 −3 +5 −2 +3 +4 +1

Figure 2.2: Representation of a double-round-robin schedule with 6 teams
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Using the representation given in Figure 2.2, the Traveling Tournament Problem can be
formally formulated as follows (see also [15], [32]):

Problem-Instance: A 5-tuple (n, l, u, T,D), where

n: Number of participating teams

l: Lower bound for the AtMost constraint

u: Upper bound for the AtMost constraint

T : Mapping function, which assigns the integer numbers [1..n] to the teams. We will denote
the team, to which the number i ∈ [1..n] is assigned, with Ti

D: n× n distance matrix, where D(i, j) denotes the distance between the home city of Ti
and the home city of Tj

Objective: Let P = (n, l, u, T,D) be an instance of the Traveling Tournament Problem. The
objective for solving the given instance is to find a schedule S, which minimizes the following
objective function:

n∑
i=1

Γ(Ti)

where

• Γ(t) =
2n−2∑
r=0

Φ(t, r)

• Φ(t, r) =



0 if r = 0 and St,r+1 > 0

D(t, |St,r|) if r = 0 and St,r+1 < 0

0 if 1 ≤ r < (2n− 2) and St,r > 0 and St,r+1 > 0

D(|St,r|, |St,r+1|) if 1 ≤ r < (2n− 2) and St,r < 0 and St,r+1 < 0

D(|St,r|, t) if 1 ≤ r < (2n− 2) and St,r < 0 and St,r+1 > 0

D(t, |St,r+1|) if 1 ≤ r < (2n− 2) and St,r > 0 and St,r+1 < 0

0 if r = (2n− 2) and St,r > 0

D(|St,r|, t) if j = (2n− 2) and St,r < 0

Furthermore the following constraints must be satisfied:
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C1: St,r = −S|St,r|,r ∀t ∈ [1..n], ∀r ∈ [1..(2n− 2)]

C2:
2n−2∑
r=1

Ψ(|St,r|, t′) = 2 ∀(t, t′) ∈ {(t, t′) | t ∈ [1..n], t′ ∈ [1..n], t 6= t′}

C3:
2n−2∑
r=1

St,r = 0 ∀t ∈ [1..n]

C4: |
u−1∑
k=0

Ω(St,r+k)| ≤ u ∀t ∈ [1..n], ∀r ∈ [1..(2n− 1− u)]

C5: |
l−1∑
k=0

Ω(St,r+k)| ≥ l ∀t ∈ [1..n], ∀r ∈ [1..(2n− 1− l)]

C6: |St,r| 6= |St,r+1| ∀t ∈ [1..n], ∀r ∈ [1..(2n− 3)]

where

• Ψ(g, t) =

{
1 if g = t

0 otherwise

• Ω(g) =


1 if g > 0

−1 if g < 0

0 otherwise

The constraints C1, C2 and C3 ensure that the solution is a valid double-round-robin tour-
nament. The constraints C4 and C5 make sure that the AtMost constraint is satisfied, which
constricts the number of consecutive home-games (homestand) and away-games (roadtrip) to be
between l and u. Finally the constraint C6 guarantees the fulfillment of the NoRepeat constraint
that two teams can’t play each other in two consecutive rounds.

2.2 Current State-of-the-Art heuristics

Although the TTP is a relatively new problem, it has attracted interests of many researchers
due to its practical relevance and its surprisingly high degree of difficulty, which results from the
combination of two well-known problems of finding the shortest tour (optimality) and timetabling
sport tournaments satisfying certain constraints (feasibility).

When the TTP has been introduced for the first time, the initial approaches proposed for
solving the TTP were exact methods like integer programming, constraint programming [16]
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and hybrid methods [7]. But even for small instances, it was extremely difficult for an exact
algorithm to solve them in reasonable time.

The current most sophisticated exact algorithm for the TTP is proposed by Uthus [33]. It is
based on branch-and-bound technique and is capable of solving the National League benchmark
instances optimally up to the size of 10 teams.

To the best of our knowledge, one of the first successful metaheuristics for the TTP has been
designed by Anagnostopoulos et al. [4] using the Simulated Annealing framework. It is one of
the most successful heuristics approaches for the TTP and it has produced numerous best upper-
bounds for most of the publicly available benchmark-sets. But the excellent solution quality
comes with very long computation time, spending days of computation for larger instances.

The most valuable contribution of their work was the design and definition of the neighbor-
hoods, which have been used nearly by all following metaheuristics for the TTP. The key idea
of their neighborhoods is to distinguish between hard constraints and soft constraints. The hard
constraints must be satisfied all the time during the search, whereas the soft constraints can be
occasionally violated. This idea stems from the observation that some constraints in the TTP are
extremely difficult to repair during the search, once they are violated.

After the Simulated Annealing approach, more single-solution-based metaheuristics fol-
lowed. Another very successful metaheuristic based on Tabu search was developed by Di
Gaspero and Schaerf [17]. Their algorithm uses composite neighborhoods based on the same
neighborhoods of [4]. Through further fine-tuning of the moves and careful analytical study
about the effectiviness of the different composite neighborhoods, they were able to obtain very
good results, which are comparable to the best results in the literature.

An interesting hybrid metaheuristic approach was introduced by Lim et al. [20], which
divides the search-space in two parts. The algorithm alternates between two components to
improve the current solution. The first component, using a Simulated Annealing algorithm,
tries to improve the solution by optimizing the timetable with a fixed team assignment, whereas
the second component, which incorporates the hill-climbing technique, searches for better team
assignment with a fixed timetable. So the fundamental idea in this approach is to improve
the timetable, when a good team assignment has been found, and to search for a better team
assignment, if the timetable looks promising.

Four years later after the first version of the Simulated Annealing approach [4] was proposed,
a population-based extension has been proposed in [35]. This extension made the paralleliza-
tion of the first SA algorithm possible and it produced the current upper-bounds for numerous
benchmark instances running on a a cluster of 60 Intel-based, dual-core, dual-processor Dell
Poweredge 1855 blade servers. For more details on this approach, we further refer to the origi-
nal paper [35].
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In recent years, other promising heuristics techniques based on Ant Colony Optimization
and Hyper-Heuristic have been proposed for solving the TTP. In the past, there were already 2
ACO-based attempts ([9],[12]) for the TTP, but their results were relatively poor. The new ACO
approach proposed by Uthus [34] in 2012, which incorporates some advanced extensions like
forward checking and conflict-directed backjumping algorithm (see also [34]), is able to improve
greatly on the solution quality compared to the previous ACO-based attempts. His new results
are competitive with those of the state-of-the-art heuristics.

The Hyper-Heuristic method proposed by Misir et al. [24] also gives very promising perfor-
mance. Their Hyper-Heuristic is composed of a simple selection mechanism based on a learning
automaton and a novel acceptance mechanism, which they call as the Iteration Limited Thresh-
old Accepting criterion. Despite of the simple and general nature of the Hyper-Heuristic, their
method is able to produce very good solutions in relatively short amount of time.

2.3 Other variants of the Traveling Tournament Problem

The TTP has spawned some interesting variants of the original problem over the years. In this
section we are going to briefly summarize some of them.

2.3.1 Mirrored Traveling Tournament Problem (mTTP)

For the mirrored version of the Traveling Tournament Problem, the NoRepeat constraint of the
original problem is replaced with the new Mirror constraint:

St,r = −St,r+n−1 ∀t ∈ [1..n], ∀r ∈ [1..n− 1]

The Mirror constraint states that if a team Ti plays in its home city team Tj , then Ti should
play Tj in Tj’s home city exactly n− 1 rounds later and vice versa. Also note that the NoRepeat
constraint is implicitly satisfied if the Mirror constraint is satisfied. Figure 2.3 shows an example
of a mirrored double-round-robin schedule.

T/R R1 R2 ... Rn−1 Rn Rn+1 ... R2n−3 R2n−2
T1 S1,1 S1,2 ... S1,n−1 −S1,1 −S1,2 ... −S1,n−2 −S1,n−1
T2 S2,1 S2,2 ... S2,n−1 −S2,1 −S2,2 ... −S2,n−2 −S2,n−1
T3 S3,1 S3,2 ... S3,n−1 −S3,1 −S3,2 ... −S3,n−2 −S3,n−1
...
Tn Sn,1 Sn,2 ... Sn,n−1 −Sn,1 −Sn,2 ... −Sn,n−2 −Sn,n−1

Figure 2.3: A mirrored double-round-robin schedule
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The mTTP is very well worth to be studied, because the mirrored tournament structure is
common in some countries (e.g. Latin America). The mTTP was first studied extensively by
Riberio and Urrutia in [26]. In their work, they proposed an approach called GRILS, which
is a combination of GRASP and Iterated Local Search framework, for solving the mTTP. Their
experimental results showed that their algorithm was very fast compared to other existing heuris-
tics for the non-mirrored TTP at that time and for some benchmark instances, it produced even
better results than its non-mirrored counterparts.

2.3.2 Non-Round-Robin Tournament Problem

The Non-Round-Robin Tournament Problem [1] is a variant of the TTP, which was originally
formulated by Douglas Moody.

In this variant, the wanted tournament schedule is no longer a double-round-robin schedule.
Instead we are given a so-called “Matchup”-matrix M , which defines the exact number of visits
for each team. Concretely the “Matchup”-matrix M is an n × n matrix, where the entry Mi,j

with i 6= j defines the number of times Ti has to visit Tj .
As a result, the constraint of the original TTP that every team has to visit each other team

exactly one time is modified so that every team Ti has to visit each other team Tj exactly Mi,j

times.

2.3.3 Relaxed Traveling Tournament Problem

This variant of the TTP, which was first proposed by Bao and Trick [2], relaxes the “compactness
constraint” allowing that the solution can consist of more than 2× (n− 1) rounds.

The relaxation permits the teams to have byes in their schedule, which means that they don’t
have to play in every round. The number of byes, the teams are allowed to have, is controlled
by a parameter, which is denoted usually with K. If the K is set to 0, then it corresponds to the
original TTP.

The byes are ignored when checking the feasibility of the AtMost constraint and the NoRe-
peat constraint.

2.4 Complexity

For a long time since the TTP has been first proposed, the complexity of the TTP remained an
open issue. Many researchers believed that the TTP must be computationally hard, when even
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alone the underlying sub-problem Traveling Salesman Problem is NP-Hard. But even the signs
were very strong, there was no formal proof to prove the complexity of the TTP until recently.

The first NP-completeness proof has been given by Bhattacharyya [8] for a variant of the
original TTP, where the constraint on consecutive home-games and away-games is left out.

The second attempt on TTP’s complexity proof is made by Thielen and Westphal [31]. They
showed that the TTP is strongly NP-complete, when the upper-bound of consecutive home-
games and away-games is fixed to 3. It still doesn’t prove the original TTP, where u and l can
be arbitrary integer numbers, but nonetheless it is a big contribution in the analysis of the TTP’s
complexity. Furthermore, the authors also pointed out that with further refinement their proof
can be probably generalized for the original TTP.
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CHAPTER 3
The Iterated Local Search (ILS)

framework

3.1 Iterated Local Search

There is an excellent overview of the Iterated Local Search framework given in [21], where they
presents the main principles of the ILS in terms of the three main components. In this chapter,
we will give brief descriptions about these components and discuss their impacts on the overall
performance of the ILS.

The Iterated Local Search is both conceptually and practically very simple metaheuristics
framework. The basic idea behind the ILS is to use the embedded local-search component
iteratively restarting it from different promising areas in the search-space.

Then how can one actually identify the promising areas for the restarts? In one extreme end,
we can determine the next restarting point in completely random fashion, where we then get a
simple Random-Restart scheme. But for many problems, this scheme is very unlikely to perform
well (see also [21],[18],[27]), because without using any information of the previous search the
algorithm will most likely just stray “blindly” in the search-space. On the other extreme end,
we can always restart from the “best position” found so far, but this strategy will increase the
danger of getting easily stuck in local optima.

The ILS considers the embedded local-search heuristic as a kind of black box component and
uses its output as a basis for determining the next starting point, trying to guide the search into
the promising areas. In doing so, the nature and strength of the perturbation of the local-search’s
output is critical for the performance of the ILS. If the perturbation is too weak, meaning that not
enough new attributes are introduced into the current search point, the algorithm risks getting

14



Chapter 3. The Iterated Local Search (ILS) framework 15

stuck early in local optima. On the other hand, if the perturbation is too strong, we will lose too
much information from the previous search. In worst case, it will be then not better than just
restarting the search from a random starting point.

Besides perturbation, there is another important aspect of the ILS, to which we should pay
close attention, namely the criteria how to accept the local optima found by the embedded local-
search component for the next iteration. To this end there are several different strategies to
consider, which we will discuss in detail later on.

In summary, we can modularize the ILS framework into following three main components
as described in [21]:

• Perturbation

• Local-search component

• Acceptance criterion

Having these individual components cleanly modularized reduces the complexity of the
framework and makes it easier to optimize the overall performance by fine-tuning the com-
ponents independently. Of course, it should be clear that the components can not function com-
pletely independent from each other. In order to achieve maximum performance, we also should
carefully study and understand their correlations and impacts on each other, which will vary
from problem to problem.

The main “work-flow” of the ILS framework can be depicted as in Figure 3.1.

Initial Solution

Perturbation Local Search Component Acceptance Criterion

Figure 3.1: Main work-flow of the ILS framework
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We start with an initial solution, which is usually generated using some random constructive
procedures. Then we use the local-search component to obtain a local optimum, which is either
accepted or discarded according to the chosen acceptance criterion. Then the local search com-
ponent restarts with a new starting point, which is obtained by perturbating the current accepted
solution. The ILS-template, formulated as a pseudo-code, is given in Algorithm 1.

Algorithm 1 Template of the ILS [21]
1: s = generateInitialSolution()
2:

3: while !stopCondition do
4: s′ = perturbate(s)
5:

6: s′′ = localSearch(s′)
7:

8: if acceptanceCriterion(s, s′′) then
9: s = s′′

10: end if
11: end while
12:

13: return s

3.1.1 Initial Solution

Until now, we have somewhat neglected the question how to generate initial solutions for the
ILS and what influence they have on the overall performance.

Simply stated, one can either start from fully random initial solutions or may try to use
greedy procedures in order to construct good-quality start solutions.

But in general, there is not always a clear best choice regarding the initial solutions for the
ILS. Sometimes greedy initial solutions appear to be recommendable when one has to obtain
good-solutions quickly. For instance, some experiments ([21]) have shown that for certain prob-
lems the ILS performs in average better with greedy initial solutions, when short computation
time is given.

For much longer running-time, the meaning of the initial solution may become less relevant,
since in most cases much of the initial properties will get lost during long search. Here, the user
may choose the strategy, which is easiest to implement.
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3.1.2 Perturbation

The perturbation component is a crucial component, which allows the ILS to escape from local
optima. The ILS tries to modify the local optimum in a certain way, so that the local-search
component can jump to another promising region in the next iteration.

At this point, we introduce the notion perturbation strength, which specifies how strong the
current local optimum will be modified. Obviously we should be very careful in choosing the
appropriate perturbation strength for the ILS. If the perturbation is too strong, we run the risk of
losing good properties found in the previous searches, which is against the concept of the ILS.
On the other hand, if we are too “petty” with the perturbation, the chance to successfully escape
from local optima will be very low. So as you can see, one of the most important aspects in fine-
tuning the ILS will be the task of finding a nice balance for the perturbation strength considering
the points mentioned above.

For example, there are different strategies proposed in the past to handle the perturbation
strength during the search:

• Static: the perturbation length is fixed a priori before the search and is no longer modified
during the search.

• Dynamic: the perturbation length is modified dynamically during the search without tak-
ing the search history into account (can be random variations of the perturbation length in
a certain interval).

• Adaptive: the perturbation length is modified dynamically during the search exploiting
the information (i.e. about the shape of the landscape) gathered during the search.

Finding effective perturbation methods is a highly “problem-specific” matter and depends
also on the used embedded local-search heuristic. One important aspect to consider is, that
the perturbation shouldn’t be easily undone by the local-search component, otherwise one will
fall back into the local-optimum just visited. Furthermore, one should try to exploit as much
problem-specific properties as possible in the perturbation component complementing possible
shortcomings of the local-search component.

3.1.3 Acceptance Criterion

Alongside the perturbation component, the acceptance criterion will also have a great influence
on the effectiveness of the ILS framework. We consider the ILS as an heuristic approach, which
“random-walks” in the search-space S∗ consisting of local optima defined by the embedded
local-search component. The perturbation mechanism together with the local-search component
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defines the transition from one local optimum s′ ∈ S∗ to the “neighboring” local optimum
s′′ ∈ S∗ and the acceptance criterion determines whether the neighbor s′′ will be accepted or
not for the next iteration.

The chosen acceptance criterion has a critical influence on the balance between intensifica-
tion and diversification of the search. On the one hand, we can define the acceptance criterion
to accept only better local optima than the current one. We call such strategy as the Better
acceptance criterion ([21]), which can be defined for the minimization problem as follows:

Better(s′, s′′) =

{
s′ if Cost(s′) < Cost(s′′)
s′′ otherwise

As you can intuitively see, this criterion is an extreme one, which clearly advocates strong
intensification.

At the opposite extreme, one can work with a strategy called Random-Walk (RW) accep-
tance criterion [21], which always chooses the most recently visited local optimum, irrespective
of its cost:

RW(s′, s′′) = s′′

This criterion strongly favors diversification over intensification, because every solution in S∗ is
accepted for the next step.

Obviously in order to find an appropriate balance between these two extremes, we need to
find a way to encourage both intensification and diversification in an adequate manner. One
of the very successful acceptance criteria applied to the ILS was a simulated annealing type
acceptance criterion, which we will denote as the LSMC acceptance criterion, reminiscent of
the term large step Markov chains used for one of the first ILS algorithms [22] with this type of
acceptance criterion.

The LSMC criterion accepts always s′′, if it is better than the current local optimum s′.
Otherwise, if s′′ is worse than s′, a certain probability p, with which s′′ will be accepted, is
calculated based on the difference in qualities of s′ and s′′. The bigger the gap between s′ and
s′′ is, the less the chance that s′′ will be accepted. Given s′ and its qualitative worse neighbor
s′′, the acceptance probability p can be calculated as

e
Cost(s′)−Cost(s′′)

T

, where T is a parameter called temperature, which controls the balance between intensification
and diversification.
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3.1.4 Local-Search Component

In many overview articles for the ILS, the local search component is described as a “blackbox”
module, for which we can use practically any existing single-solution based metaheuristics. This
gives us two advantages using the Iterated Local Search framework.

• Since we treat the embedded local-search as a blackbox component, we don’t have many
“dependency problems” between the framework and the local-search component. There-
fore, if necessary we can just swap the local-search component without altering the whole
framework again.

• As mentioned above, we can use any existing metaheuristics as the embedded local-search
component. If there already exists a well performing heuristic for the given problem, then
we can quickly develop a potentially better performing ILS-version reusing the existing
local-search algorithm as the embedded local search component.

At this point, we want to reemphasize the main principle of the ILS. Roughly speaking, the
ILS is nothing more than a “simple” walk in S∗, which can be seen as a subset of the original
search-space S consisting of local optima produced by the embedded local search. So, we can
think of the local-search component as a mapping function, which maps the original search-space
S into the subset of local optima S∗:

S∗ := { localSearch(s) | s ∈ S }

Note also that, no explicit neighborhood is defined for the walk in S∗, but instead the components
perturbation and acceptance criterion determine the next neighbor to visit.

You may have already noticed that ideally S∗ should be a small compact set of local optima,
which contains the global optimum. In order to get a high quality mapping, one, of course, needs
a powerful local-search component, which returns high quality local optima. In general, we can
assume the better the embedded local-search, the better the corresponding ILS. For example in
case of the TSP, the Lin-Kernighan heuristic is better than the 3-opt local-search. Researches
have shown that the ILS embedding the Lin-Kernighan heuristics gives better results than the
ILS using the 3-opt local-search ([18], [29]), confirming the aforementioned assumption. But
high quality comes usually with a high price, namely long running-time. If the computation-time
is heavily limited, it would be probably better idea to use a less powerful but faster embedded
local-search in order to get useful results more quickly.

As already mentioned for the perturbation, an important aspect to consider when choosing
the local-search component is the “collaboration” between the local-search and the perturbation
component. The rule of thumb is that local-search shouldn’t systematically undo the changes
made by the perturbation component ([21]).
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3.2 Applications of Iterated Local Search

The Iterated Local Search framework is very simple but at the same time very powerful concept.
If properly tuned and optimized, it can often become even a state-of-the-art algorithm. In this
section we will give you a quick overview of some combinatorial problems, to which the ILS
approach has been successfully applied.

3.2.1 Solving the Traveling Salesman Problem with ILS

The Traveling Salesman Problem is probably one of the oldest and most well-studied combina-
torial problems in computer science. Not surprisingly one of the first variants of the ILS concept
was applied to the Traveling Salesman Problem.

According to [21], the very first attempt to apply ILS concept for the TSP came from Baum
[6]. In his approach (called iterated descent method at the time), he used 2-opt local-search as
the embedded local-search component and a simple perturbation scheme, where he interchanges
3 cities randomly. Although his results were not particularly impressive, it made an useful
contribution for further researches with ILS concept.

The next major improvement for the ILS was achieved by Martin, Otto and Felten [22] using
a better acceptance criterion and the Lin-Kernighan algorithm for the embedded local-search. In
order to be more diversifying, they used a simulated annealing like LSMC acceptance criterion.
Besides the improved acceptance criterion, it was also the new perturbating move, so called
double-bridge move, which contributed much to the improvement of the ILS’s performance for
solving the Euclidean TSP.

Finally it should be mentioned that the ILS is today among the best performing metaheuris-
tics for the TSP, one concrete example being the Chained Lin-Kernighan by Applegate et al.
[5]. It’s especially interesting to read about their experimental tests, where they compare the
effectiveness of fine-tuning different components.

3.2.2 Solving the Scheduling Problems with ILS

Another area, where ILS performs well, is solving scheduling problems. Over the years, the ILS
has been applied successfully to various forms of scheduling problems:

• Single Machine Total Weighted Tardiness Problem (SMTWTP)

• Single and parallel machine scheduling

• Flow shop scheduling



Chapter 3. The Iterated Local Search (ILS) framework 21

There is an excellent overview included in [21] about applications of ILS to the aforemen-
tioned scheduling problems. So here we only give a brief summary of important aspects and skip
the most of the details. For more details, we refer the reader to the respective original works,
which are also referenced in [21].

Studying the various ILS applications for the scheduling problems, we can recognize that
in order to be successful with ILS, one has to exploit the problem-specific details as much as
possible.

For instance, the ILS implementation by Congram [11] et. al for the SMTWTP shows an
interesting way to incorporate problem-specific knowledge into the ILS algorithm. Without
going too much into details, they exploited the property of the SMTWTP (a detailed problem
description can also be found in [11]) that there exists an optimal solution, where non-late jobs
are sequenced in non-decreasing order of the due dates. This property is then successfully
exploited to design an effective perturbation move and to improve the computation speed of
the local-search component.

For the Flow Shop Problem, Stützle proposed an ILS approach [30], which is rather of simple
nature. Incorporating simple hill climbing local-search component, random perturbation scheme
and variant of the LSMC acceptance criterion with constant temperature, he was able to achieve
comparable results to the state-of-the-art results of that time.

Besides the TSP and scheduling problems, there are also many other problems, to which
the ILS has been successfully applied. For example, the Graph Coloring Problem [10], the
Quadratic Assignment Problem [28] and the Tree Decomposition Problem [25], just to name a
few.

3.3 Summary

In this chapter we’ve given a detailed description of the ILS framework. The ILS framework
consists of three main components, namely embedded local search, perturbation component
and acceptance criterion.

In general, each of these components can be optimized individually, but if we want to achieve
maximum performance out of ILS, we should also try to gain deeper understanding how they
influence each other and fine-tune them together “globally”.

We have presented some selected successful applications of the ILS to various combinatorial
optimization problems. Most notably, the ILS framework seems to be well suited both for the
TSP and the scheduling problems. This gives us an extra motivation and hope in choosing the
ILS framework for solving the TTP.



CHAPTER 4
Applying ILS to the TTP

In this chapter, we propose a metaheuristic approach based on ILS framework for solving the
Traveling Tournament Problem. First, we will give a detailed description of the neighborhoods,
we are going to use for the embedded local-search component.

As mentioned earlier, one of the first successful applications of a single-solution based meta-
heuristic to the TTP came from Anagnostopoulos et al. [4]. One of the key contributions of their
work was the definition of local-move neighborhoods, which are used more or less by all suc-
cessive metaheuristics approaches for the TTP.

For instance, Di Gaspero and Schaerf designed an approach based on Tabu Search, which
is one of the current state-of-the-art approaches, using the basic neighborhoods adapted from
those of [4]. Gaspero and Schaerf [17] also give an extensive analysis of these neighborhoods
providing us deeper insight about their individual properties and the resulting search space. It
is especially important to study the relationships between the individual basic neighborhoods, if
one wants to work with composite-neighborhoods.

In this work, we are going to use the “well-established” neighborhoods introduced by [4] as
well. In doing so, we also want to look into some interesting issues like definition of an efficient
incremental evaluation function and investigation of the connectivity of the search-space.

The rest of this chapter is organized as follows. First, we give detailed descriptons of the
individual neighborhoods. Then we investigate their connectivity by means of experimental
tests and present algorithms to implement incremental evaluation function. Finally, we propose
at first a basic ILS algorithm, which is optimized and extended further resulting in our final ILS
algorithm for solving the TTP.
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4.1 Neighborhoods for the Local-Search Component

4.1.1 The Search-Space

As already mentioned, we have defined our neighborhoods based on the ideas introduced in [4].
In particular, we consider five different types of neighborhoods, which can be categorized into
three different classes regarding the magnitude of introduced changes:

• N1: SwapHomes (micro move)

• N2, N3: SwapRounds, SwapTeams (macro moves)

• N4, N5: PartialSwapRounds, PartialSwapTeams (generalized moves)

But before we continue with the definition of the neighborhoods, let’s first take a quick look
at the TTP’s search-space. To the best of our knowledge, the size and structure of TTP’s search
space is still under investigation and it is still not clear how big exactly the search-space of valid
TTP-solutions is.

Nevertheless, if we want to make a rough estimation about the approximate size of the

search-space, the obvious upper-bound for a TTP-instance of size n can be given as
n∏

t=1
(2n −

2)! = ((2n − 2)!)n, since for each of n teams, there are (2n − 2)! permutation possibilities
to arrange the order of the matches. But this is actually too big for an estimation, because
it also includes all the invalid schedules violating the Double-Round-Robin constraint and the
TTP-specific At-Most and No-Repeat constraints.

In order to refine our estimation, let’s consider a double-round-robin(DRR) schedule with 6
teams given in Figure 4.1.

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T4 +T3 −T5 −T4 −T3 +T5 +T2 −T6
T2 +T5 +T1 −T3 −T6 +T4 +T3 +T6 −T4 −T1 −T5
T3 −T4 +T5 +T2 −T1 +T6 −T2 +T1 −T6 −T5 +T4

T4 +T3 +T6 −T1 −T5 −T2 +T1 +T5 +T2 −T6 −T3
T5 −T2 −T3 +T6 +T4 +T1 −T6 −T4 −T1 +T3 +T2

T6 −T1 −T4 −T5 +T2 −T3 +T5 −T2 +T3 +T4 +T1

Figure 4.1: DRR-schedule with 6 teams

Looking at this feasible DRR-schedule, we can think of some modification “moves”, that
we can apply to the schedule and maintain at the same time the feasibility of the Double-Round-
Robin constraint. For the time being, we will leave the At Most and No Repeat constraints out.
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If we just look at the columns of the schedule, it’s easy to recognize that swapping the columns
(rounds) doesn’t violate the DRR-feasibility at all.

For example, look at the rounds R3 and R6:

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T4 +T3 −T5 −T4 −T3 +T5 +T2 −T6
T2 +T5 +T1 −T3 −T6 +T4 +T3 +T6 −T4 −T1 −T5
T3 −T4 +T5 +T2 −T1 +T6 −T2 +T1 −T6 −T5 +T4

T4 +T3 +T6 −T1 −T5 −T2 +T1 +T5 +T2 −T6 −T3
T5 −T2 −T3 +T6 +T4 +T1 −T6 −T4 −T1 +T3 +T2

T6 −T1 −T4 −T5 +T2 −T3 +T5 −T2 +T3 +T4 +T1

swapping

T/R R1 R2 R6 R4 R5 R3 R7 R8 R9 R10

T1 +T6 −T2 −T4 +T3 −T5 +T4 −T3 +T5 +T2 −T6
T2 +T5 +T1 +T3 −T6 +T4 −T3 +T6 −T4 −T1 −T5
T3 −T4 +T5 −T2 −T1 +T6 +T2 +T1 −T6 −T5 +T4

T4 +T3 +T6 +T1 −T5 −T2 −T1 +T5 +T2 −T6 −T3
T5 −T2 −T3 −T6 +T4 +T1 +T6 −T4 −T1 +T3 +T2

T6 −T1 −T4 +T5 +T2 −T3 −T5 −T2 +T3 +T4 +T1

As you can see, the modified schedule is still a valid DRR-schedule. This means, given
a certain DRR-schedule, we have already (2n − 2)! possibilities to permutate the order of the
rounds producing different valid DRR-schedules.

In addition, we can also recognize that the swapping of two teams doesn’t violate the DRR-
feasibility either. Considering the schedule given in Figure 4.1, we can imagine this time the
teams T1,T2,...,Tn as kind of placeholders, to which arbitrary teams can be assigned. Then
obviously there are n! different team-assignments to consider.

Again, let’s look at one concrete example:
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T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T4 +T3 −T5 −T4 −T3 +T5 +T2 −T6
T2 +T5 +T1 −T3 −T6 +T4 +T3 +T6 −T4 −T1 −T5
T3 −T4 +T5 +T2 −T1 +T6 −T2 +T1 −T6 −T5 +T4

T4 +T3 +T6 −T1 −T5 −T2 +T1 +T5 +T2 −T6 −T3
T5 −T2 −T3 +T6 +T4 +T1 −T6 −T4 −T1 +T3 +T2

T6 −T1 −T4 −T5 +T2 −T3 +T5 −T2 +T3 +T4 +T1

New team assignment, where the teams T2 and T4 are swapped:

T1 T1
T2 T4
T3 T3
T4 T2
T5 T5
T6 T6

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T4 +T2 +T3 −T5 −T2 −T3 +T5 +T4 −T6
T4 +T5 +T1 −T3 −T6 +T2 +T3 +T6 −T2 −T1 −T5
T3 −T2 +T5 +T4 −T1 +T6 −T4 +T1 −T6 −T5 +T2

T2 +T3 +T6 −T1 −T5 −T4 +T1 +T5 +T4 −T6 −T3
T5 −T4 −T3 +T6 +T2 +T1 −T6 −T2 −T1 +T3 +T4

T6 −T1 −T2 −T5 +T4 −T3 +T5 −T4 +T3 +T2 +T1

We have now seen some possibilities to produce different DRR-schedules from a given
DRR-schedule. So as you can see, even if the search-space contains only valid DRR-schedules,
we would still have to deal with at least (2n− 2)! possible solution candidates.

In summary, the search-space would consist of total ((2n− 2)!)n possible candidates, if we
allow that all the three constraints can be violated. If we include all the invalid schedules in the
search-space, then the large size of the search-space will make it very difficult to find even valid
solutions satisfying all the three constraints, let alone optimizing the travel-distance. Therefore,
our neighborhoods consist of only valid DRR-schedules, whereas the other two constraints can
be violated. We will discuss this later in more details when we describe our ILS algorithm.
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4.1.2 Neighborhoods

4.1.2.1 Swap-Homes Neighborhood

From the five neighborhoods mentioned earlier, the Swap-Homes neighborhood offers the “small-
est local-move”, meaning that the number of changes caused by this move is minimal.

Given a valid DRR-schedule, this move swaps the home/away states of the teams Ti and Tj ,
where i 6= j. Let’s say that team Ti plays Tj in round Rl at home and team Tj plays Ti in round
Rk at home, where i 6= j and k 6= l. Then after swapping the home/away states of Ti and Tj ,
team Ti plays Tj in round Rk at home and team Tj plays Ti in round Rl at home. You can easily
recognize that there are O(n2) possible neighbors in this neighborhood. Also notice that the
“move-strength” is always 4, since only 4 games are affected by this move.

The procedure for applying the Swap-Homes move is depicted in Figure 4.2.

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T4 +T3 −T5 −T4 −T3 +T5 +T2 −T6
T2 +T5 +T1 −T3 −T6 +T4 +T3 +T6 −T4 −T1 −T5
T3 −T4 +T5 +T2 −T1 +T6 −T2 +T1 −T6 −T5 +T4

T4 +T3 +T6 −T1 −T5 −T2 +T1 +T5 +T2 −T6 −T3
T5 −T2 −T3 +T6 +T4 +T1 −T6 −T4 −T1 +T3 +T2

T6 −T1 −T4 −T5 +T2 −T3 +T5 −T2 +T3 +T4 +T1

Swapping the home/away roles of teams T2 and T4

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T4 +T3 −T5 −T4 −T3 +T5 +T2 −T6
T2 +T5 +T1 −T3 −T6 −T4 +T3 +T6 +T4 −T1 −T5
T3 −T4 +T5 +T2 −T1 +T6 −T2 +T1 −T6 −T5 +T4

T4 +T3 +T6 −T1 −T5 +T2 +T1 +T5 −T2 −T6 −T3
T5 −T2 −T3 +T6 +T4 +T1 −T6 −T4 −T1 +T3 +T2

T6 −T1 −T4 −T5 +T2 −T3 +T5 −T2 +T3 +T4 +T1

Figure 4.2: Swap-Homes Move
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4.1.2.2 Swap-Rounds Neighborhood

Actually, we have already introduced this move in the previous section when we discussed the
structure of the search-space. The Swap-Rounds move simply swaps two rounds Rk and Rl in
the given configuration, where k 6= l.

Swapping two rounds is considered to be a “macro” move, meaning that the changes intro-
duced by this move are of quite disruptive nature. The number of affected games by this move
is obviously 2 ∗n and there are O(n2) possible neighbors in this neighborhood. Also we should
recall that after swapping two rounds, the new resulting schedule is still a valid DRR-schedule,
so no further repair action is needed.

The procedure for applying the Swap-Rounds move is depicted in Figure 4.3.

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T4 +T3 −T5 −T4 −T3 +T5 +T2 −T6
T2 +T5 +T1 −T3 −T6 +T4 +T3 +T6 −T4 −T1 −T5
T3 −T4 +T5 +T2 −T1 +T6 −T2 +T1 −T6 −T5 +T4

T4 +T3 +T6 −T1 −T5 −T2 +T1 +T5 +T2 −T6 −T3
T5 −T2 −T3 +T6 +T4 +T1 −T6 −T4 −T1 +T3 +T2

T6 −T1 −T4 −T5 +T2 −T3 +T5 −T2 +T3 +T4 +T1

Swapping the rounds R2 and R6

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T4 +T4 +T3 −T5 −T2 −T3 +T5 +T2 −T6
T2 +T5 +T3 −T3 −T6 −T4 +T1 +T6 +T4 −T1 −T5
T3 −T4 −T2 +T2 −T1 +T6 +T5 +T1 −T6 −T5 +T4

T4 +T3 +T1 −T1 −T5 +T2 +T6 +T5 −T2 −T6 −T3
T5 −T2 −T6 +T6 +T4 +T1 −T3 −T4 −T1 +T3 +T2

T6 −T1 +T5 −T5 +T2 −T3 −T4 −T2 +T3 +T4 +T1

Figure 4.3: Swap-Rounds Move
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4.1.2.3 Swap-Teams Neighborhood

Similar to the Swap-Rounds move, swapping two teams is a “macro” move, which introduces
up to 4 ∗ (2n − 4) changes in the given schedule, and is the most disruptive move of the five
neighborhoods.

Given two teams Ti and Tj , the Swap-Teams move swaps the games of Ti and Tj at every
round, except when they play against each other. Obviously the number of affected rounds is
2n− 4 and at each round, the number of changed games is always 4.

This move is also similar to the Swap-Rounds move in the aspect that it doesn’t violate the
DRR-feasibility after the application either.

The procedure for applying the Swap-Teams move is depicted in Figure 4.4.

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T4 +T3 −T5 −T4 −T3 +T5 +T2 −T6
T2 +T5 +T1 −T3 −T6 +T4 +T3 +T6 −T4 −T1 −T5
T3 −T4 +T5 +T2 −T1 +T6 −T2 +T1 −T6 −T5 +T4

T4 +T3 +T6 −T1 −T5 −T2 +T1 +T5 +T2 −T6 −T3
T5 −T2 −T3 +T6 +T4 +T1 −T6 −T4 −T1 +T3 +T2

T6 −T1 −T4 −T5 +T2 −T3 +T5 −T2 +T3 +T4 +T1

Swapping the teams T2 and T4

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T4 +T2 +T3 −T5 −T2 −T3 +T5 +T4 −T6
T2 +T3 +T6 −T1 −T5 +T4 +T1 +T5 −T4 −T6 −T3
T3 −T2 +T5 +T4 −T1 +T6 −T4 +T1 −T6 −T5 +T2

T4 +T5 +T1 −T3 −T6 −T2 +T3 +T6 +T2 −T1 −T5
T5 −T4 −T3 +T6 +T2 +T1 −T6 −T2 −T1 +T3 +T4

T6 −T1 −T2 −T5 +T4 −T3 +T5 −T4 +T3 +T2 +T1

Figure 4.4: Swap-Teams Move
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4.1.2.4 Swap-Partial-Rounds Neighborhood

So far, we have discussed neighborhoods, which are straight-forward and simple to under-
stand. But the local-moves given by these neighborhoods are not sufficient for an effective
search resulting only in limited search-space. Therefore, the authors of [4] also introduced the
“partial-swapping-moves”, which generalize the aforementioned moves. These moves expand
the search-space considerably and make the search-space more connected.

Let’s first look at the Swap-Partial-Rounds neighborhood. Like the Swap-Rounds move,
we need two parameters Ri and Rj , which specify the rounds that are being swapped. But in
addition we also need a team Tk as the third parameter, from which the games at rounds Ri and
Rj should be swapped. Obviously, swapping just the two games will violate the DRR-constraint
of the schedule, but there is a deterministic way to define a sequence of “repairing movements”
in order to restore the DRR-feasibility after the swapping.

The procedure for applying the Swap-Partial-Rounds move is depicted in Figure 4.5.

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T2 +T3 −T5 −T4 −T3 +T5 +T4 −T6
T2 +T5 +T1 −T1 −T5 +T4 +T3 +T6 −T4 −T6 −T3
T3 −T4 +T5 +T4 −T1 +T6 −T2 +T1 −T6 −T5 +T2

T4 +T3 +T6 −T3 −T6 −T2 +T1 +T5 +T2 −T1 −T5
T5 −T2 −T3 +T6 +T2 +T1 −T6 −T4 −T1 +T3 +T4

T6 −T1 −T4 −T5 +T4 −T3 +T5 −T2 +T3 +T2 +T1

Partial-swapping the rounds R2 and R9 for the team T2

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 +T4 +T2 +T3 −T5 −T4 −T3 +T5 −T2 −T6
T2 +T5 −T6 −T1 −T5 +T4 +T3 +T6 −T4 +T1 −T3
T3 −T4 +T5 +T4 −T1 +T6 −T2 +T1 −T6 −T5 +T2

T4 +T3 −T1 −T3 −T6 −T2 +T1 +T5 +T2 +T6 −T5
T5 −T2 −T3 +T6 +T2 +T1 −T6 −T4 −T1 +T3 +T4

T6 −T1 +T2 −T5 +T4 −T3 +T5 −T2 +T3 −T4 +T1

Figure 4.5: Swap-Partial-Rounds Move
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As you can see, the Swap-Partial-Rounds move doesn’t swap the “whole columns”, but only
the parts which are necessary to maintain the DRR-validity. As already, the parts that are needed
to be swapped can be determined in a deterministic fashion.

Let’s take a closer look at the above example. Team T2 plays against team T1 and T6 at
rounds R2 and R9, which therefore should be swapped. Note that the home/away states of the
games are irrelevant in this case, so we concentrate only on teams. After swapping the relevant
games of T2, one can see that the games of T1 and T6 also should be swapped at rounds R2 and
R9, since they are affected by the first swap. Swapping games of T1 and T6 further affects the
team T4 and gives us a total set of teams {T1, T2, T4, T6}, whose games must be swapped at
rounds R2 and R9 in order to repair the violation of the DRR-constraint.

The authors of [17] introduced the term repair-chain, which depicts the way of determining
the parts to be swapped in a deterministic fashion. See Figure 4.6.

Team1

Team2

Team3

Team4

Team5

Team6

Round2 Round9

. . . . . . . . .
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-T4

+T4

-T6

-T5

-T1

+T3

+T2

1

2

3

4

Figure 4.6: Repair chain of the “Partial Swap-Rounds” move
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4.1.2.5 Swap-Partial-Teams Neighborhood

In a similar fashion like the Swap-Partial-Rounds neighborhood, the Swap-Partial-Teams neigh-
borhood is the further generalization of the Swap-Teams neighborhood. Given two teams Ti,
Tj and round Rk, the Swap-Partial-Teams move swaps the games of Ti and Tj at the round Rk

and repairs the schedule afterwards so that it becomes a valid DRR-schedule again. In addition,
there is an important precondition that Ti doesn’t play against Tj at the round Rk.

Similar to the Swap-Partial-Rounds move, the repair-chain can be determined in a determin-
istic way. The move-strength varies from case to case and is given by the actual length of the
repair-chain. In the extreme case, the repair-chain can have the length (2n−4), in which case the
move equals to the respective Swap-Teams move. The repair-chain of the Swap-Partial-Teams
move can be determined in a similar way as for the Swap-Partial-Rounds move, see Figure 4.8.

The procedure for applying the Swap-Partial-Teams move is depicted in Figure 4.7.

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T2 +T3 −T5 −T4 −T3 +T5 +T4 −T6
T2 +T5 +T1 −T1 −T5 +T4 +T3 +T6 −T4 −T6 −T3
T3 −T4 +T5 +T4 −T1 +T6 −T2 +T1 −T6 −T5 +T2

T4 +T3 +T6 −T3 −T6 −T2 +T1 +T5 +T2 −T1 −T5
T5 −T2 −T3 +T6 +T2 +T1 −T6 −T4 −T1 +T3 +T4

T6 −T1 −T4 −T5 +T4 −T3 +T5 −T2 +T3 +T2 +T1

Partial swapping the teams T2 and T4 at the round R9

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T4 +T3 −T5 −T4 −T3 +T5 +T2 −T6
T2 +T5 +T1 −T3 −T6 +T4 +T3 +T6 −T4 −T1 −T5
T3 −T4 +T5 +T2 −T1 +T6 −T2 +T1 −T6 −T5 +T4

T4 +T3 +T6 −T1 −T5 −T2 +T1 +T5 +T4 −T6 −T3
T5 −T2 −T3 +T6 +T4 +T1 −T6 −T4 −T1 +T3 +T4

T6 −T1 −T4 −T5 +T2 −T3 +T5 −T2 +T3 +T4 +T1

Figure 4.7: Swap-Partial-Teams Move
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4.1.3 Connectivity of the neighborhoods

Having defined the neighborhoods for our embedded local-search component, we look into the
next interesting question regarding the connectivity of our neighborhoods. It is indeed an im-
portant issue to investigate, since we want to know, if it is theoretically possible to reach every
valid solution in the search-space with the local-moves given by our neighborhoods.

From here on, let’s denote our neighborhoods with following abbreviations:

N1: Swap-Homes Neighborhood

N2: Swap-Rounds Neighborhood

N3: Swap-Teams Neighborhood

N4: Swap-Partial-Rounds Neighborhood

N5: Swap-Partial-Teams Neighborhood

To the best of our knowledge, there isn’t a formal proof yet proving whether the search-space
is connected or not under the neighborhoods [N1, . . . , N5], but there have been already some
interesting approaches. For instance, the authors of [17] attempted to investigate this matter
with an experimental approach. They performed an experiment on the NL-instance with team-
size 8, where there exists some structural information about its search-space and the optimal
solution is known. For eight teams, the number of non-isomorphic tournament patterns is only
six [36]. Using each of these patterns, they generated 6 different initial solutions and started their
solvers (with various compositions of [N1, . . . , N5]) from those initial configurations. By doing
so, they observed that each of their solvers could reach the same known optimal solution for the
NL8 instance. From this observation they suggested it is somewhat likely that the search-space
is indeed connected under the neighborhoods [N1, . . . , N5].

In this thesis, we want to propose another experimental approach, which will test the connectivity-
hypothesis also on the instances without explicit structural information. We have designed our
experiment as follows:

1. Generate a random DRR-schedule s.

2. Generate another random DRR-schedule s′.

3. Test if we can reach the schedule s′ starting from the schedule s using only local transfor-
mations given by the neighborhoods [N1, . . . , N5].



Chapter 4. Applying ILS to the TTP 34

The question, how we can generate a random DRR-schedule, will be discussed later in details.
Our approach to test the reachability between two random DRR-schedules is simple. Just

devise a simple heuristic, which tries to minimize the hamming-distance between the starting
schedule s and the target schedule s′ by applying only the moves from [N1, . . . , N5]. In other
words, the objective function is the hamming-distance function, which calculates the number of
differences between s and s′.

To this end, we propose a simple Iterated Local Search algorithm, which is described in the
Algorithm 2.

Algorithm 2 ILS for testing the reachability of two configurations
1: INPUT:
2: s: starting configuration
3: s′: target configuration
4:

5: s′′ = s
6:

7: while !stopCondition do
8: //perturbation
9: for i = 1→ k do

10: N = chooseRandomNeighborhood([N1, . . . , N5])
11: s′′′ = applyRandomMove(s′′, N )
12: end for
13:

14: //hill-climbing with the composite neighborhood
15: //N1 ∪N2 ∪N3 ∪N4 ∪N5 and
16: //hamming distance as the objective function
17: s′′′ = hillClimbSearch(s′′′)
18:

19: //acceptance criterion
20: if hammingDist(s′′′, s′) < hammingDist(s′′, s′) then
21: s′′ = s′′′

22: end if
23: end while
24:

25: if hammingDist(s′′, s′) == 0 then
26: return SUCCESS
27: else
28: return FAIL
29: end if

We have run our experiments for team-sizes [6, 8, 10, 12] testing each team-size with 1000
random DRR-schedule pairs. Interestingly for every team-size we have tested, we could always
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reach 100% success rates. Even with the very basic ILS procedure, the test could report success
in relatively small amount of computation-time.

In conclusion based on our own experimental results, we can only further support the hy-
pothesis from [17] claiming that the search-space seems to be connected under the investigated
neighborhoods. Obviously, it is just a hypothesis based on experimental results and doesn’t
prove the connectivity. The real challenge for the future would be proving the connectivity
formally which is not a trivial task. It would be also interesting to experiment on the largest
instances with much more runs.

4.1.4 Analysis of the neighborhoods

Before we begin with the design of an ILS algorithm for the TTP, we should first pay closer
attention to the individual properties of our previously introduced neighborhoods and analyze
what relationships they have with each other.

For the neighborhoods [N1,N2,N3], it is straightforward to see that they contain no duplicate-
neighbors and that N1 ∩ N2 ∩ N3 = ∅. Let’s call M(Ni) the set of Ni’s moves which lead to
the corresponding neighbors in Ni. Then, we say that a neighborhood Ni contains duplicates,
if two different moves m′ ∈ M(Ni) and m′′ ∈ M(Ni) applied to a specific solution s lead to
respective solutions s′ ∈ Ni and s′′ ∈ Ni, where s′ = s′′ and m′ 6= m′′.

On the contrary, the partial-swapping neighborhoods N4 and N5 contain duplicates, which
is an important fact to notice for efficiency, since we don’t want to visit the same state more
than once. This is not such a big deal for approaches like Simulated Annealing, since it doesn’t
search the whole neighborhood in each iteration but only chooses a random move from it. But
for methods like Hill-Climbing or Tabu Search, which have to scan the whole neighborhood in
every iteration, it could have considerable impacts on the performance w.r.t. the search-speed.

Given a schedule s, we denote M(N4) as a set of moves which lead to s’s neighbors in N4.
Then, a move m ∈M(N4) can be represented as a triple <Ti,Rj ,Rk> with j < k, which swaps
the Ti’s games at the rounds Rj and Rk. If the move <Ti,Rj ,Rk> induces the repair-chain RC,
then all the moves <T ,Rj ,Rk> with T ∈ RC will lead to same neighbor-schedule s′ ∈ N4.

For N5, the case is the same as with N4. If a move <Ri,Tj ,Tk> from M(N5) induces repair-
chain RC, then all moves <R,Tj ,Tk> with R ∈ RC are equivalent.
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Let’s look at one concrete example for N4, where R2 and R9 are being swapped for T2:

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 −T2 +T2 +T3 −T5 −T4 −T3 +T5 +T4 −T6
T2 +T5 +T1 −T1 −T5 +T4 +T3 +T6 −T4 −T6 −T3
T3 −T4 +T5 +T4 −T1 +T6 −T2 +T1 −T6 −T5 +T2

T4 +T3 +T6 −T3 −T6 −T2 +T1 +T5 +T2 −T1 −T5
T5 −T2 −T3 +T6 +T2 +T1 −T6 −T4 −T1 +T3 +T4

T6 −T1 −T4 −T5 +T4 −T3 +T5 −T2 +T3 +T2 +T1

The repair-chain of the move in the example consists of teams [T1, T2, T4, T6]. One can now
easily recognize that all the moves <T1,R2,R9>,<T2,R2,R9>, <T4,R2,R9> and <T6,R2,R9>
will lead to same schedule:

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +T6 +T4 +T2 +T3 −T5 −T4 −T3 +T5 −T2 −T6
T2 +T5 −T6 −T1 −T5 +T4 +T3 +T6 −T4 +T1 −T3
T3 −T4 +T5 +T4 −T1 +T6 −T2 +T1 −T6 −T5 +T2

T4 +T3 −T1 −T3 −T6 −T2 +T1 +T5 +T2 +T6 −T5
T5 −T2 −T3 +T6 +T2 +T1 −T6 −T4 −T1 +T3 +T4

T6 −T1 +T2 −T5 +T4 −T3 +T5 −T2 +T3 −T4 +T1

As stated earlier, the neighborhoods [N1,N2,N3] are disjunctive to each other: N1 ∩ N2 ∩
N3 = ∅. But since [N4, N5] are the respective generalizations of [N2, N3], there can be some
possible overlappings between them.

Lets consider N2 and N4. If a move <Ti,Rj ,Rk> ∈ M(N4) has a repair-chain of the length
n (team-size), then it is easy to see that the both moves <Rj ,Rk> ∈ M(N2) and <Ti,Rj ,Rk>
∈ M(N4) are equivalent, meaning that they both lead to same neighbor-schedule. On the other
hand, if a move m ∈ M(N4) has a repair-chain of the length 2, then there exists a move m′ ∈
M(N1) such that m and m′ are equivalent. So as you can see, it is possible that N2 ∩ N4 6= ∅
and N1 is in fact a subset of N4. Again for N3 and N5, the situation is similar as with N2 and
N4, but note also that N1 ∩N5 = ∅ because of the special precondition for N5.

It’s important that we identify and take notice of these properties, since they offer useful
information we can exploit to iterate over the neighborhoods more efficiently. A similar but
much more detailed analysis regarding the neighborhoods can also be found in [17].

4.1.5 Incremental Evaluation

One of the most performance-critical part of a local-search algorithm is the evaluation of the
neighboring solutions. After definition of the neighborhoods, the very first thing one should look
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into is the definition of an incremental (delta) evaluation function, which efficiently evaluates
only the changed parts of the neighbor-solution instead of reevaluating it from scratch.

For the TTP, a naive approach of evaluating everything from scratch can be costly, since
we’ll have O(n2) performance cost each time we evaluate a neighbor-solution. Therefore one
of our contribution goals in this thesis is to investigate if it is possible to define an efficient
incremental evaluation procedure, which is better than the naive approach.

A valid solution for the TTP is a schedule, which satisfies all three constraints

C1: Double-Round-Robin constraint

C2: AtMost constraint

C3: NoRepeat constraint

and the optimal solution for the TTP is the schedule, which minimizes the travel-distances of
each involved teams.

A DRR-schedule satisfies always the C1 constraint but can possibly violate the C2 and C3

constraints. Therefore we call the constraint C1 a hard-constraint and the constraints C2 and C3

soft-constraints (see also [4]). Please recall that the search-space defined by our neighborhoods
encompasses only valid DRR-schedules, i.e. only schedules, which already satisfyC1 constraint.
So in order to evaluate a TTP solution candidate in our search-space, we need values of three
cost-components:

• the travel-distance

• the number of AtMost violations

• the number of NoRepeat violations

4.1.5.1 Delta-Evaluation of the Traveling Distance

If we imagine the schedule as a two-dimensional matrix S (which is indeed our chosen data-
structure), where Si,j represents the game of the team Ti at round Rj , a change in the schedule
S equals an update of a matrix-entry, i.e. deleting the old game and inserting a new game. All the
moves defined by our neighborhoods can be seen as a sequence of those changes. For instance,
the Swap-Homes move causes exactly 4 updates in the schedule-matrix, since its move-strength
is 4.

Calculating the delta-value of the travel-distance, caused by an single entry update, is rel-
atively easy. One just has to subtract the distance value of the old deleted game and add the
distance value of the newly inserted game. The procedure is given in Algorithm 3. We also want
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to notice that some special cases (regarding the first and last round) are not considered here for
the sake of brevity, but they can be, of course, augmented in a trivial manner.

Algorithm 3 Calculate delta-travel-cost for single change
1: INPUT:
2: S: schedule
3: Ti: team
4: Rj : round
5: G: new game
6:

7: //let’s say that the function distance(t, g1, g2)
8: //calculates the distance between two games g1 and g2 for the team t
9:

10: δ = 0
11:

12: //delete the old game
13: δ = δ - distance(Ti, S[Ti][Rj − 1], S[Ti][Rj ]) + distance(Ti, S[Ti][Rj ], S[Ti][Rj + 1])
14: //insert the new game
15: δ = δ + distance(Ti, S[Ti][Rj − 1], G) + distance(Ti, G, S[Ti][Rj + 1])
16:

17: return δ

At first glance, the delta-function looks to be easily definable by calculating all the changes
caused by a move individually using the procedure given above. Unfortunately this doesn’t
work quite yet. Too see why, just consider a local-move, which introduces changes to the two
consecutive games of a team. If we were about to calculate the changes individually one after
another, the calculated delta-value wouldn’t be correct, because the second calculation wouldn’t
be able to “see” the new changed game from the first update.

The problem described above can be trivially solved if we actually update the intermediate
states of the schedule as we go along, so that the previous changes would become “visible” to
the subsequent delta calculations. But this comes with a performance cost. Not only we have
to perform the actual updates, but we also have to undo the changes (or if you work on a copy,
the copying itself would be actually more expensive than undoing the move) in order to visit the
next neighbor.

But there is a better way to address this problem. We can easily generalize the previous idea
of calculating the delta-value for a single change. Instead of working with one single change at
a time, we can actually work with one contiguous change-block at a time. A contiguous change-
block is an interval of consecutive games of a team affected by a move and can be represented
with a triple < Ti, Ri, Rj >, where Ti is the team and Ri, Rj are the beginning- and end-round
of the interval.
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An example of a contiguous change-block < T4, R2, R4 > for a schedule with 6 teams is
given in Figure 4.9. As you have probably already noticed, adjusting the Algorithm 3 to calculate
the delta-value of a contiguous change-block is not difficult. The adjusted procedure is given in
Algorithm 4.

Obviously the complexity of the Algorithm 4 is O(m), where m is the length of the change-
block. By applying this procedure for every affected change-block sequentially, we can calculate
the total delta-value of the travel-distance in O(p), where p is the total number of changes.

T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

. . .
T4 +T3 −T1 −T3 −T6 −T2 +T1 +T5 +T2 +T6 −T5
. . .

Figure 4.9: A contiguous change-block
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Algorithm 4 Calculate delta-travel-cost for a contiguous change-block
1: INPUT:
2: S: schedule
3: Ti: team
4: Ri: beginning of the change-block
5: Rj : end of the change-block
6: G[]: sequence of new games
7:

8: //let’s say that the function distance(t, g1, g2)
9: //calculates the distance between two games g1 and g2 for the team t

10:

11: δ = 0
12: k = 0
13:

14: δ = δ - distance(Ti, S[Ti][Ri − 1], S[Ti][Ri])
15: δ = δ + distance(Ti, S[Ti][Ri − 1], G[0])
16:

17: while Ri + k < Rj do
18: δ = δ - distance(Ti, S[Ti][Ri + k], S[Ti][Ri + k])
19: δ = δ + distance(Ti, G[k], G[k + 1])
20:

21: k = k + 1
22: end while
23:

24: δ = δ - distance(Ti, S[Ti][Rj ], S[Ti][Rj + 1])
25: δ = δ + distance(Ti, G[k + 1], S[Ti][Rj + 1])
26:

27: return δ



Chapter 4. Applying ILS to the TTP 41

4.1.5.2 Delta-Evaluation of the NoRepeat violations

Calculating the delta-value for the NoRepeat cost-component is as straight forward as it is for
the travel-distance. Again we can break down the changes caused by a local move in contiguous
change-blocks, which are described in the previous section, and calculate their delta-values in-
dependently. The algorithm for this procedure is similar to the Algorithm 4 and is presented in
the Algorithm 5 without further explanations.

Algorithm 5 Calculate delta-NoRepeat-cost for a contiguous change-block
1: INPUT:
2: S: schedule
3: Ti: team
4: Ri: beginning of the block
5: Rj : end of the block
6: G[]: sequence of new games
7:

8: //lets say that the function noRepeatViolation(g1, g2)
9: //returns 1 if the two games g1 and g2 have same opponents

10: //otherwise 0.
11:

12: δ = 0
13: k = 0
14:

15: δ = δ - noRepeatViolation(S[Ti][Ri − 1], S[Ti][Ri])
16: δ = δ + noRepeatViolation(S[Ti][Ri − 1], G[0])
17:

18: while Ri + k < Rj do
19: δ = δ - noRepeatViolation(S[Ti][Ri + k], S[Ti][Ri + k])
20: δ = δ + noRepeatViolation(G[k], G[k + 1])
21:

22: k = k + 1
23: end while
24:

25: δ = δ - noRepeatViolation(S[Ti][Rj ], S[Ti][Rj + 1])
26: δ = δ + noRepeatViolation(G[k + 1], S[Ti][Rj + 1])
27:

28: return δ

An attentive reader might have noticed that the code given above is not fully optimized
yet. If we consider the moves defined by our neighborhoods, all of them are moves, which
incorporate sequence of swapping. So in case of NoRepeat cost-component, when we swap two
entire change-blocks, the only positions, that can influence the delta-value, are the beginning and
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T/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 +6 −2 +4 +3 −5 −4 −3 +5 +2 −6

T2 +5 +1 −3 −6 +4 +3 +6 −4 −1 −5

T3 −4 +5 +2 −1 +6 −2 +1 −6 −5 +4

T4 +3 +6 −1 −5 −2 +1 +5 +2 −6 −3

T5 −2 −3 +6 +4 +1 −6 −4 −1 +3 +2

T6 −1 −4 −5 +2 −3 +5 −2 +3 +4 +1

This schedule with 6 teams yields following homeaway-sequence-table, where [] denotes
home-sequence and () denotes away-sequence

T1 [1,1] (2,2) [3,4] [3,4] (5,7) (5,7) (5,7) [8,9] [8,9] (10,10)
T2 [1,2] [1,2] (3,4) (3,4) [5,7] [5,7] [5,7] (8,10) (8,10) (8,10)
T3 (1,1) [2,3] [2,3] (4,4) [5,5] (6,6) [7,7] (8,9) (8,9) [10,10]
T4 [1,2] [1,2] (3,5) (3,5) (3,5) [6,8] [6,8] [6,8] (9,10) (9,10)
T5 (1,2) (1,2) [3,5] [3,5] [3,5] (6,8) (6,8) (6,8) [9,10] [9,10]
T6 (1,3) (1,3) (1,3) [4,4] (5,5) [6,6] (7,7) [8,10] [8,10] [8,10]

Figure 4.10: A homeaway-sequence table

end of the block. This makes it actually unnecessary to recompute the delta-value for the whole
block, but it would be sufficient to look only at the beginning and end of the change-block.

But nevertheless, these are low-level optimization issues, which can be fine-tuned during
the actual implementation. Either way, the complexity of the Algorithm 5 is linear to the
length of the change-block and again we can calculate the total delta-value of the NoRepeat
cost-component in time linear to the number of changes.

4.1.5.3 Delta-Evaluation of the AtMost violations

So far, calculating delta-values for the travel-distance and the NoRepeat cost-component has
been a relatively straight-forward affair. But for the final cost-component, namely the AtMost
cost-component, more complex strategies are needed as we will see it shortly.

In order to evaluate the number of AtMost violations, we need to know all the sequences of
the consecutive home-games and away-games for each team. We call such a sequence simply as
homeaway-sequence. To save the information of the homeaway-sequences, we have to define a
secondary data-structure, which we will call as homeaway-sequence-table.

Maybe the best way to explain it is to look at one concrete example. The homeaway-
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sequence-table shown in the Figure 4.10 should be self explanatory. As you can see, given the
schedule S and its homeaway-sequence-table H , the entry H[Ti][Rj ] contains the homeaway-
sequence, to which the game S[Ti][Rj ] belongs. A homeaway-sequence is represented as a pair
of numbers, whose first number is the round, where the sequence begins, and the second number
the round, where it ends.

Using the homeaway-sequence-tableH , the calculation of the delta-value for a single change
is now simple. It should be also clear that a change only occurs if the the old game and the new
game have different home-away assignments, i.e. there is no change if the old game and the new
game are both away-games or both home-games.

When calculating the delta-value for the single change at S[T ][R] , we distinguish four
different cases. We denote the respective homeaway-sequence as (i, j) = H[T ][R] and its
neighboring sequences as (g, h) = H[T ][i − 1] and (k, l) = H[T ][j + 1]. We also define
a function atMost(i, j), which calculates the number of the AtMost violations for the given
homeaway-sequence (i, j).

1. i = R = j (R is both the beginning and end of the interval):
δ = atMost(g, l)− atMost(g, h)− atMost(k, l)

2. i < R < j (R is in the middle of the interval):
δ = atMost(i, R− 1) + atMost(R+ 1, j)− atMost(i, j)

3. i = R < j (R is the beginning of the interval):
δ = atMost(g, i)− atMost(g, h)− atMost(i, j) + atMost(i+ 1, j)

4. i < R = j (R is the end of the interval):
δ = atMost(j, l)− atMost(k, l)− atMost(i, j) + atMost(i, j − 1)

As with the travel-distance, the unpleasant difficulty arises, when we have to deal with mul-
tiple changes. If we want to chain the calculation for the single change, then we actually have to
update all the intermediate states of the homeaway-sequence-table H .

Updating the intermediate states of H can cause a serious performance-penalty if done in a
naive manner. But luckily, there is an efficient way to make the intermediate changes “visible”
to the subsequent calls of the single delta-calculation. In contrast to the previous two cost-
components, we’re going to work here with a complete list of changed rounds for each team
instead of change-blocks. In addition, we demand as a precondition that the list of changed
rounds is sorted in ascending order. Then we just iterate over the list calculating the delta-cost
for each changed round with the procedure described above.
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Since we go through the sorted list of rounds, the only homeaway-sequence updates, which
have to be “visible” to the next calculation for the round R, are the 2 “rightmost” homeaway-
sequences up to the round R. The concrete details will become clearer when looking at the
implementation given in Algorithm 6. We want to notice again that some special-cases regarding
the first and last round are omitted in Algorithm 6 for the sake of brevity.

Clearly, the complexity of the Algorithm 6 is linear to the number of changed rounds, if the
list of changed rounds is already sorted. But if you actually need to sort it, then the complexity
will rise to O(m logm) (e.g. for the merge-sort) considering the sorting-cost, where m is the
length of the change-list.

4.1.5.4 Summary

In this section, the strategies for incremental-evaluation of the delta-values are introduced for all
three cost-components of a TTP-solution

• Travel-distance

• NoRepeat violations

• AtMost violations

The importance of incremental evaluation is critical for all kinds of metaheuristics. Some
may argue that if a move is too disruptive, then it is better to calculate everything from scratch.
This may be true for small-instances, but nevertheless you will certainly notice more and more
difference with increasing size of the instances.

Therefore we hope that our effort to find efficient ways of incremental evaluation would be
a positive contribution to further researches using similar neighborhoods.
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Algorithm 6 Calculate delta AtMost violation for all changed rounds of a team
1: INPUT:
2: S: schedule
3: H: venue-sequence table
4: Ti: team
5: R[]: sorted list of changed rounds
6:

7: //lets say that the function atMost(i, j)
8: //returns the number of AtMost violations of the given homeaway-sequence
9: //(i,j)

10:

11: haSeq1 = (∞,∞)
12: haSeq2 = (∞,∞)
13: δ = 0
14:

15: for r ∈ R do
16: if r ∈ haSeq2 then
17: (i, j) = haSeq2
18: (g, h) = haSeq1
19: (k, l) = H[Ti][j + 1]
20: else
21: (i, j) = H[Ti][r]
22: if i− 1 ∈ haSeq2 then
23: (g, h) = haSeq2
24: else
25: (g, h) = H[Ti][i− 1]
26: end if
27: (k, l) = H[Ti][j + 1];
28: end if
29:

30: if i = r = j then
31: δ = atMost(g, l) - atMost(g, h) - atMost(k, l)
32: haSeq2 = (g, l)
33: haSeq1 = H[Ti][g − 1]
34: else if i < r < j then
35: δ = atMost(i, r − 1) + atMost(r + 1, j) - atMost(i, j)
36: haSeq2 = (r + 1, j)
37: haSeq1 = (r, r)
38: else if i = r < j then
39: δ = atMost(g, i) - atMost(g, h) - atMost(i, j) + atMost(i+ 1, j)
40: haSeq2 = (i+ 1, j)
41: haSeq1 = (g, i)
42: else if i < r = j then
43: δ = atMost(j, l) - atMost(k, l) - atMost(i, j) + atMost(i, j − 1)
44: haSeq2 = (j, l)
45: haSeq1 = (i, j − 1)
46: end if
47: end for
48:

49: return δ
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4.2 Iterated Local Search for the TTP

We now have discussed all the necessary preliminaries to tackle the “main quest” of designing
an ILS algorithm for the TTP.

We find that designing an ILS algorithm is an iterative process, where we start from very
basic choices of the components and improve them based on the insights gained from analyzing
the previous choices.

To recap, the main components of the ILS framework are:

• Initial solution

• Local Search

• Perturbation

• Acceptance Criterion

The local-search component is the main driving part , which is responsible for finding the
local optima, whereas the components Perturbation and Acceptance Criterion are responsible
for escaping the local optima balancing the search between intensification and diversification.

Normally, one would assume that using a high-quality local search component is always
better, but you should also be aware of the high computation cost it comes with. Sometimes
it can be also very effective to use a simple but very fast embedded local-search, which, for
example, has been demonstrated in [25]. Tuning the perturbation and acceptance criterion com-
ponents are also very essential for the success of the ILS. The perturbation component should
introduce enough changes to maintain adequate chance of escaping local optima, whereas too
strong perturbation could destroy too much of the “good properties” found in previous searches.
The acceptance criterion normally should favor the better results, but doing it in a too biased
way can lead the algorithm to be stuck permanently in “difficult” local optima.

In the next following sections, we describe our choices for the individual components.

4.2.1 Basic ILS for the TTP (TTILSbasic)

4.2.1.1 Initial Solution

In order to kick off the ILS algorithm, we first need a valid initial solution, which is a valid
double-round-robin schedule. There already exist different strategies to generate an initial DRR-
schedule. For instance, see [4],[17], [20] and [26].

Our first choice was initially a semi-random strategy (similar to the one used in [17]), which
works as follows:
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1. For a given number of teams n, find an 1-factorization [23] of a complete graph Kn, i.e.
partition the graphKn into n−1 1-factors each containing n/2 edges, where the 1-factors
represent the rounds and the edges represent the games between two teams. The resulting
1-factorization of Kn is a valid single-round-robin schedule-pattern for n teams. We call
it a pattern, because the nodes ofKn can be seen as placeholders, to which concrete teams
can be assigned afterwards. So, the 1-factorization of Kn can be completed to a SRR-
schedule by determining home- and away-states for each game and assigning concrete
teams to the nodes of Kn,

Now we can generate a second SRR-schedule by simply mirroring the first one and by
appending the second SRR-schedule to the first one, we get a valid mirrored double-
round-robin schedule. The 1-factorization can be easily computed deterministically in
linear time [13].

2. After generation of a valid mirrored double-round-robin schedule S, we can now apply
several random moves from [N1,. . . ,N5] to randomize S further.

But we realized that this strategy wasn’t actually the best choice if we consider its “semi-
randomness”. Since our generation of the initial 1-factorization is a deterministic procedure
(canonicalpattern) and we don’t know with certainty the connectivity of our neighborhoods
[N1,. . . ,N5], it is desirable to devise a strategy to generate “more” random initial solutions.

Therefore we propose a second strategy which is based on a simple heuristic method. The
method works as follows:

1. Generate a random initial schedule S, such that every team Ti plays each team Tj(j 6= i)

exact twice, once at home and once in the opponent’s city. This is easy to achieve, since
we only have to assign each team a random permutation of the sequence [−Tn, . . . , Tn] \
[−Ti, Ti]. Obviously the resulting schedule can violate the DRR-constraint.

2. In the second phase, we try to eliminate the violations of the DRR-constraint from the
initial schedule S. For that purpose, we devise a simple Hill-Climbing heuristic using a
local-move, which simply swaps two games of a team. You can imagine this move as
our Swap-Partial-Rounds move, only without applying the repair-chain afterwards. The
objective function is the number of violations violating the DRR-constraint and the al-
gorithm stops if the number of violations drops to zero. Despite of its simplicity, the
proposed heuristic is able to find a valid DRR-schedule fairly quickly.

At this point, we also want to mention that we decided not to employ any kinds of greedy
constructing mechanism during the generation of the initial solution, since the precedent re-
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searches make us to believe that the greediness in the initial solution is not of a significant im-
portance in the long run for the TTP. So our initial schedule is a fully random schedule generated
using the second “full-random" method.

4.2.1.2 Local Search

Here, we describe our basic choice for the embedded local-search component. We have to
keep in mind that the quality alone is not the sole critical decisive factor to consider, but the
effectiveness of the local-search component also depends on its computation-time to reach high
quality solutions.

It is relatively often the case that a simple Hill-Climbing heuristic is used as the embedded
local-search component in the ILS framework. The main skeleton of the Hill-Climbing heuristic
for the minimization problem is given in the Algorithm 7.

Algorithm 7 Hill Climbing
1: INPUT:
2: x: initial solution
3: f : evaluation function
4: N : neighborhood structure
5:

6: stop = false;
7:

8: while !stop do
9: x’ = y ∈ N(x) with f(y) ≤ f(y′), ∀y′ ∈ N(x)

10: if f(x′) < f(x) then
11: x = x’
12: else
13: stop = true;
14: end if
15: end while
16:

17: return x;

As you can see, the Hill-Climbing heuristic improves the current solution, as long as it can
find improving neighbors. Finding an improving neighbor for the next iteration can be done in
two different ways:

• Find first improving neighbor

• Find best improving neighbor
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The first strategy continues with next iteration as soon as the first improving neighbor is found,
whereas the second one searches the full neighborhood and continues with the best improving
neighbor. Obviously if the neighborhood is very large, using the first improving strategy could
speed up things a little bit.

In order to apply the Hill-Climbing heuristic to the TTP, we first have to define an appropriate
neighborhood for it. In the previous sections, we’ve introduced five different neighborhoods
[N1, . . . , N5] for the TTP. At first, our initial thought was to combine all the five neighborhoods
into one big composite neighborhood. But simply joining them would be careless, since we’ve
seen that our neighborhoods [N1, . . . , N5] are not disjunct to each other. After some initial
experiments, we’ve decided to go with the following composition:

N = N2 ∪N3 ∪N∗4 ∪N∗5

,where N∗4 is the N4 neighborhood reduced by those moves, whose repair-chain has the length
n (team-size) and N∗5 is the N5 neighborhood reduced by the moves, whose repair-chain has the
length 2n− 4. We omitted the neighborhood N1 completely, since it is the subset of N4.

The obvious advantages of embedding the Hill-Climbing heuristic into the ILS are:

• easy, straight-forward implementation

• no critical parameters to optimize

• fast speed, if the ILS has already reached a high-quality region

But in contrast, we should also point out some of its significant disadvantages, which have to be
compensated by other components:

• poor local optima quality compared to more advanced local searches

• can easily be stuck in local optima, if the perturbation is not strong enough

Despite of some disadvantages, we have decided to use Hill-Climbing as the embedded local-
search for TTILSbasic because of its simplicity regarding the implementation and parameter-
tuning. Also, some researches show that even with a simple embedded local-search like Hill-
Climbing very competitive results can be achieved ([25],[28]).

4.2.1.3 Perturbation

A simple way to perform perturbation is to apply high-order random moves, i.e. apply a random
move from a randomly selected neighborhood for a predefined k times. This is exactly how our
initial perturbation is implemented for TTILSbasic.
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From the five neighborhoods [N1, . . . , N5], one is chosen randomly, a random move is gen-
erated from it and applied. This step is repeated k-times, where k is a parameter to be defined.
Since there are some overlapping moves in the neighborhoods, one should also take care that the
previous perturbation step is not reversed by the successive equal move.

Another important question is how to choose the value for the parameter k. If it is too big,
the perturbation will deteriorate the solution quality too much, whereas if it is kept too small,
the effectiveness of escaping local optima will be reduced. Instead of keeping it constant, we
decided to make k a dynamic parameter, which will vary during the search in some predefined
interval (kmin, kmax). Our approach is here very simple. We just increment k by 1 until it
reaches kmax and then it is reset to kmin.

This kind of perturbation has been already successfully applied in other ILS-applications
([25], [28]) as well and despite of its simplicity the results were very good when it was combined
with right components.

4.2.1.4 Acceptance Criterion

Initially we’ve decided to experiment with 2 basic acceptance criteria for the TTILSbasic:

• Better acceptance criterion

• Random Walk acceptance criterion

As the name already suggests, the Better acceptance criterion accepts only improving solu-
tions.

Better(s′, s′′) =

{
s′ if Cost(s′) < Cost(s′′)
s′′ otherwise

This clearly advocates strong intensification and it will push the search quickly towards a local
optimum. One major drawback of this strategy is that it is very difficult to escape difficult local
optima, once the search is stuck there.

On the other hand, the Random Walk strategy always accepts new solutions found by the
local-search component.

RW(s′, s′′) = s′′

In contrast to the Better acceptance criterion, this strategy strongly advocates diversification.
With this acceptance criterion, the ILS will be able to explore many different search regions, but
it will have difficulties to “go deeper” in one particular promising region.

Our initial experiments suggest that the Better acceptance criterion seems to perform better
than the Random Walk acceptance criterion for TTILSbasic.
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4.2.1.5 Objective function and Strategic Oscillation

The main objective in solving the TTP is to find a schedule, which minimizes the total travel-
distance satisfying at the same time various constraints. Our neighborhoods are defined in a way
that certain soft-constraints can be violated during the search and in order to push the search
towards valid solutions we have to add some penalties to those violations in the main objective
function.

Therefore we define the objective function f , which adds the weighted number of violations
to the total travel-distance. The objective function f can be formally expressed as

f(S) =

n∑
T=1

dist(S, T ) + ω ∗ (atmost(S, T ) + norepeat(S, T ))

,where dist(), atmost() and norepeat() are the respective cost-component functions of a single
team.

As shown in previous researches using the same neighborhoods, it is of great importance
to spend some time in infeasible regions during the search, i.e. we have to alternate the search
between feasible and infeasible regions. Similar to [4] and [17], we can achieve that by means of
a mechanism resembling the strategic oscillation incorporated successfully into the Tabu-Search
[14]. The idea is to increase and decrease the weight parameter ω based on search history, so
that the search spends an appropriate amount of time in both the feasible and infeasible regions.

We can build this strategy into the ILS by examining the feasiblity of the solutions produced
by the local-search component during k iterations. If the majority of them are infeasible/feasible,
then we can increase/decrease the weight ω by multiplying/dividing it with δ, thus penalizing
the violations stronger/weaker. For the simplicity, we’ve set k to 1.

The initial value of ω can be set initially to any appropriate value (e.g. the average distance
of the distance matrix), since the weight will be adjusted “reactively” during the search.

4.2.1.6 Discussion

After some preliminary experiments with TTILSbasic, we could observe that even the simple
basic “ILS-configuration” was capable of producing pretty good results in short amount of time.
But looking closely, some obvious problems emerged to the surface.

First, we noticed that the perturbation of TTILSbasic was too disruptive causing the local-
search component to spend long time to reach another local-optimum. The disturbance is the
worst when multiple consecutive perturbation moves are selected from the neighborhoods N2

and N3.
Second, both the Better and the Random Walk acceptance criteria were “too biased” or “too

random". When comparing the two directly, we could notice that the Better acceptance criterion
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was in general the superior one, but still the search gets too easily trapped in local optima with
Better acceptance criterion.

And finally, we find that the initial composite neighborhood for the local-search component
is still seems to be too big. Since the embedded Hill-Climbing heuristic is not so powerful and
its main advantage lies in fast sampling of the local optima, we should try to reduce the size of
the neighborhood as much as possible without losing too much quality for the local-optima.

4.2.2 Tuning the basic ILS for the TTP (TTILSopt)

In this section, we optimize the TTILSbasic by trying to improve the problematic issues de-
scribed in the previous section resulting in final version of our ILS algorithm TTILSopt.

4.2.2.1 Local Search

Regarding the local-search, we keep using the Hill-Climbing heuristic as our embedded local-
search component. But we experimented with further possibilities to composite the neighbor-
hoods and we noticed that omitting the neighborhoods N2 and N3 didn’t have too much of a
negative impact on the quality of the local-search. This also has been confirmed somewhat by
the results given in [17], where they used similar composition-neighborhood for their best solver.

So our new reduced composite neighborhood for TTILSopt is:

N = N4 ∪N5

Also note that we’ve removed the constraints on maximum repair-chain-length for N4 and N5.

4.2.2.2 Perturbation

The main idea of making high-order random moves for perturbation remains the same as for the
TTILSbasic, but we’ve further constrained the neighborhoods from which a random move can
be selected. Concretely, we have completely discarded the moves from [N2, N3]. The length
of these moves are just too long and even a small number of these moves can cause too much
disruption in the solution quality. We also further constrained the “selectable” moves from the
neighborhoods N4 and N5 to those with repair-chain length equal or less than 6.

In summary, the perturbation component of TTILSopt selects random moves from

N = N1 ∪N∗4 ∪N∗5

,where N∗4 and N∗5 are the reduced “versions” of N4 and N5, which contain only moves with
repair-chain length equal or less than 6.
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4.2.2.3 Directed Perturbation

In this section, we want to briefly describe a more advanced idea for the perturbation compo-
nent, which we didn’t use in the end due to the poor initial results. Although we couldn’t fully
investigate the idea, we find it worth mentioning, since we believe that properly tuned it could
be an interesting approach for the future researches.

The main idea was to apply the local-search component for the perturbation with the mod-
ified objective function, so that the local-search concentrates only on the subset of the teams.
Concretely, the “perturbating” steps for the given schedule S would be:

1. Choose m teams randomly from T1, . . . , Tn

2. Modify the objective function f to f ′, which optimizes only the chosen teams

3. Apply the local-search component to S with modified objective function f ′

4. Return the local-optimum found in the previous step as the perturbated solution

The rationale behind this idea can be summarized as follows:

• Optimizing a subset of the teams will push the corresponding parts of the schedule struc-
ture towards optimum, thus introducing new different “good” attributes into the schedule
without deteriorating the overall quality too much.

• The perturbation can not be easily undone by the embedded local-search component with
the original objective function.

All of this sounds quite promising and for future works, it would be interesting to investigate,
if this idea can be successfully incorporated into the perturbation component.

4.2.2.4 Acceptance Criterion

To find an appropriate balance between the two previous basic variants, we consider a simulated
annealing type acceptance criterion, which we will denote as the Large Step Markov Chains
(LSMC) acceptance criterion (as in [21]). This type of acceptance criterion was successfully
applied in one of the first ILS algorithms proposed for the TSP [22] and it significantly improved
the performances of the ILS algorithms for the TSP.

The LSMC acceptance criterion has been already briefly introduced in Chapter 3. To recap,
the LSMC acceptance criterion tries to find a balance between intensification and diversification
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by allowing the acceptance of qualitative inferior solutions with certain probabilities, which will
get lower with decreasing qualities. The acceptance probability p can be formally expressed as

p = e
Cost(s′)−Cost(s′′)

T

,where T is the so-called temperature, which regulates the degree of “punishment” of inferior
solutions. Obviously, the search becomes more diversifying with high temperature T and if T is
low, then the search is more intensifying.

In order to “regulate” the transitions between diversification and intensification, we have to
decide for a “cooling” scheme how the temperature is lowered during the search. For TTILSopt,
we have chosen a non-monotonic cooling scheme, where the temperature T is lowered during
the search by multiplying it with 0 < δ < 1 at each iteration until it seems the intensification is no
longer useful. Then the temperature is reset to Tmax to allow diversification again for a limited
time, where Tmax is a parameter to tune. This would be most effective, if we could do this in an
automatic manner taking the search history into account.

Therefore we have devised following strategy to determine an appropriate moment for the
next diversification phase: We simply check in every λ iterations how many worse solutions got
accepted. If the number of accepted worse solutions is smaller than α, then we assume that the
intensification is too strong and resets the temperature to Tmax. In this way, we can end the
intensification phase in a “timely” manner taking the search history into account. This idea was
inspired from the LSMC application in [28].

As it turns out, the parameter Tmax is one of the most important parameters to tune in order
to reach good performance. In Chapter 5, we’ll discuss which initial candidate values for Tmax

we’ve experimented with and the reason why we’ve chosen them.
The results from the initial experiments also suggest that fast temperature cooling-rate seems

to be more favorable, i.e. it seems to be better when the diversification phase is rather short and
the intensification is quickly resumed.

4.2.2.5 Additional Features

In the course of our preliminary experiments, we have noticed one particular problem when
applying the LSMC with non-monotonic cooling schedule. Concretely, we often could observe
the problem that the search systematically “wanders off” from very promising regions, when it
is desirable to stay there longer and search more thoroughly.

For example, let’s consider the following scenario, where the search has reached a very high-
quality solution S and the temperature is reset to Tmax. Then due to diversification, a (much)
worse solution S′ gets accepted, which also happens to be a “difficult” local-optimum (since we
are in a high-quality region), where the search is stuck until the next temperature reset occurs.
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After the temperature is reset again while the search is stuck at S′, now a new difficult local-
optimum S′′, which is worse than S′, gets accepted. One can now imagine where this is going.
If this happens multiple consecutive times, then the search will stepwise “back off” from the
promising region around the first high-quality solution S.

To address this problem, we incorporate a restoring mechanism, which restores the global
best solution found so far when there is a sign that the search wanders off too much from the
current promising region. The “restoring” can be triggered, when the difference between the
global best solution and currently accepted solution exceeds a certain threshold. To keep things
simple, in TTILSopt we just restore the global best solution every time when the temperature is
reset to Tmax.

Obviously one also has to consider the danger that the repeated restoring of global best
solution can cause the search to be trapped in the same search-region forever. Therefore, we use
additionally a soft restarting mechanism as means for “macro-diversification”, when we think
that the search is trapped for too long in the same region. To recognize a potential stalemate of
the search, we count the number of temperature resets without improvements for the current best
solution and if the number exceeds certain threshold, we simply restart the algorithm. In doing
so, we don’t start entirely from scratch, but we construct the initial solution for the next round
by applying high-order random perturbation-move to the current best solution, so that some of
the good properties are passed on.

Another noteworthy detail to mention is that we actually keep two global best solutions,
one for the feasible solutions and the other for the infeasible solutions. Keeping a “promising”
infeasible solution is valuable, since it can lead to very good feasible solutions in next iterations.
But we have to make sure that they are close to the feasibility, i.e. the number of violations is
within a certain limit, otherwise the probability it can be “repaired” to the equally good feasible
one is very low. Therefore, we manage only best infeasible solutions, whose total number of
violations is smaller than σ.

Since we keep both globally best feasible and globally best infeasible solutions, we have to
choose between the two global best solutions when we trigger the restoring-mechanism. In our
approach, we simply take one with 50% probability.
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CHAPTER 5
Experimental Results

In this chapter, we present the computational results of TTILSopt on selected benchmark in-
stances from [3]. The code is implemented from scratch in C++ and compiled using g++

(SUSE Linux) version 4.5.1 20101208 with flag -O3. All experiments are carried
out on a Linux machine with Intel(R) Xeon(R) CPU E5345 @ 2.33GHz and 47GB
main memory. It should be noted that the implementation of TTILSopt is strictly single threaded
and only one core is used during the computation. The memory usage of TTILSopt is not note-
worthy and occupies less than 1GB during the entire computation.

5.1 Benchmark instances

Trick, who originally proposed the Traveling Tournament Problem, personally administer the
TTP benchmark instances on his website [3].

One of the very first benchmark instances published by Trick was the family of NL-x in-
stances based on real data of the US National Baseball League, where the x is an even number
of teams. The family of NL-x instances is probably the most well-researched TTP benchmark-
family and virtually all researches studying the TTP publish their computational results with
NL-x instances.

Over the years, more and more instances are added, where the Super-x and Galaxy-x families
added by Uthus belong to the most recent ones. The Super-x instances are from the Super
14 Rugby League, composed of teams from New Zealand, Australia, and South Africa. The
Galaxy-x family uses distances that arise from taking distances between stars (in light years).

For our computational experiments, we’ve used all three families with following instance-
sizes.
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• NL-x family with team-sizes from 6 to 16.

• Super-x family with team-sizes from 6 to 14.

• Galaxy-x family with team-sizes from 6 to 16.

5.2 Parameter setting

Despite of the relatively simple ILS-components, there are actually some parameters to define
for the TTILSopt. The embedded local-search component is a simple Hill-Climbing heuristic
without any parameters to tune. The parameters for the perturbation component define the in-
terval in which the perturbation strength varies dynamically. At this point, one should notice
that TTILSopt tries to achieve diversification mainly by occasionally accepting worse solutions
and not so much by very high perturbation strength. Therefore the TTILSopt’s main “tool” for
escaping local-optima is the LSMC acceptance criterion, whose parameters have critical impacts
on the performance and we’ve spent considerable effort determining best values for them.

In summary, there are following parameters to determine for TTILSopt:

kmin: the minimum perturbation strength

kmax: the maximum perturbation strength

Tmax: the maximum(initial) temperature for LSMC acceptance criterion

λ: number of iterations before the next worse-solution-acceptance-rate is checked

α: if the number of accepted worse solutions is smaller than α, then the temperature is reset
to Tmax

δ: the rate with which the temperature is lowered

ω: the rate with which the penalty weight of the soft constraints is increased/decreased.

σ: the upper-bound for the allowed number of violations in global best infeasible solution

After extensive try&error experiments, we could determine reasonable values for most of
the parameters, which are stable across all benchmark-instances, except for the Tmax. Tmax

is surely one of the most influential parameters for TTILSopt, because if it is too high or too
low, the balance between diversification and intensification is easily distorted. Furthermore we
believe that the best value for Tmax actually depends on the individual instance-families and the
instance-sizes.
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As it has been already pointed out in [20], it is reasonable to take the average distance be-
tween two team sites into consideration when experimenting with initial temperature parameters
for simulated-annealing type acceptance criteria. The average distances calculated for each of
our benchmark-families are given in Table 5.1.

Family Inst6 Inst8 Inst10 Inst12 Inst14 Inst16

NL 649 623 621 790 1094 1194
Galaxy 35 38 45 51 57 61
Super 4198 4167 4130 3910 3954 -

Table 5.1: Average distances between two team sites

Considering the average distances given above, we’ve experiment with the following tem-
perature candidates for Tmax:

{10, 20, 30, 50, 200, 400, 600, 800, 1000, 2000, 1000, 3000, 5000}
As expected, the best Tmax values varied from instance to instance, probably depending

on the individual instance-sizes and the average distance between two team sites. It is also
noticeable that Tmax doesn’t have critical impacts on the solution quality for smaller instances,
because they are already solved optimally by the embedded local search.

The final parameter settings, which we have determined based on the various experiments
with Tmax and extensive try&error experiments for other parameters, are given in Table 5.2.
They are used for all of our computational benchmarks.

As you can see, all values for kmax are rather small values, so it seems to be best when the
perturbation doesn’t get too disruptive. As expected, the parameter ω should be set to a moderate
value, so that the penalty weight doesn’t fluctuate too much once it is settled. At the first glance,
the cooling speed δ seems to be too low, but since we update the temperature at each iteration,
this is actually a reasonable value. The parameter λ controls how often the acceptance-rate of
the worse solutions is checked and it seems that the value 500 for λ is stable for most of the
instances. The parameter α doesn’t actually appear to have significant impacts as long as it is
set to a reasonably small value.

As far as the soft-restarting mechanism is concerned, we just restart the algorithm, when
during the last 15 temperature-resets no improvements could be achieved. In doing so, the
initial solution for the next round is obtained by applying 5 random moves selected from the
neighborhoods [N1, . . . , N5] to the current best solution.
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Instance kmin kmax ω δ λ α σ Tmax

NL6 2 3 1.1 0.999 500 3 3 200
NL8 2 4 1.1 0.999 500 3 3 300
NL10 2 5 1.1 0.999 500 3 5 400
NL12 2 6 1.1 0.999 500 3 6 500
NL14 2 7 1.1 0.999 500 3 6 500
NL16 2 8 1.1 0.9995 1000 3 7 550

GL6 2 3 1.1 0.999 500 3 3 10
GL8 2 4 1.1 0.999 500 3 3 20
GL10 2 5 1.1 0.999 500 3 5 30
GL12 2 6 1.1 0.999 500 3 6 30
GL14 2 7 1.1 0.999 500 3 6 30
GL16 2 8 1.1 0.9995 1000 3 7 30

Sup6 2 3 1.1 0.999 500 3 3 400
Sup8 2 4 1.1 0.999 500 3 3 400
Sup10 2 5 1.1 0.999 500 3 5 500
Sup12 2 6 1.1 0.999 500 3 6 500
Sup14 2 7 1.1 0.999 500 3 6 1000

Table 5.2: Final parameter settings for each benchmark-instances (n denotes the team-size)
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5.3 Computational Results

Using the final parameter settings presented in the previous section, we’ve conducted extensive
computational experiments on aforementioned three benchmark-families. In the following, our
evaluation results will be presented for each benchmark-family individually and compared with
results of the different state-of-the-art approaches in the literature.

However it should be also noted that not all authors, who reported their best results on the
Trick’s TTP benchmark homepage [3], give detailed experimental results of their used methods.
For instance, there are no publicly available data regarding detailed benchmark results and ex-
perimental settings from Langford, who obtained current best results for some instances of the
Super-x and Galaxy-x families. To the best of our knowledge, his only publication for the TTP
came recently in year 2010 [19]. There he presents his new improved neighborhood derived from
Partial-Swap-Teams neighborhood of [4] and reports only his best results for larger Galaxy-x
instances, which he has obtained using slightly modified version of the Simulated Annealing
algorithm of [4]. No further details regarding experiments or benchmarks are given.

5.3.1 Results for the NL-x family

As already mentioned, the NL-x family is the most well-studied benchmark-set, for which nu-
merous computational results from different methods are reported. Among different heuristics
approaches in the literature, we’ve picked 5 leading methods (including the current state-of-the-
art metaheuristics) to compare our results with:

• Simulated Annealing (TTSA) [4]

• Composite-neighborhood Tabu Search (CNTS) [17]

• Hybridization of Simulated Annealing and Hill-Climbing (SAHC) [20]

• Ant Colony Optimization (AFC-TTP) [34]

• Learning Hyper-Heuristic (LHH) [24]

For the NL-x family, we’ve conducted 2 separate evaluations with different timeout settings.
For the first experiment, we tested our TTILSopt 10 times for each NL-instance and we adjusted
the timeouts corresponding to the average time-values reported in [24]. In doing so, we’ve also
tried to take the machine-difference into account, but, of course, the difference can be only
roughly approximated.

For the second experiment, we again ran our TTILSopt 10 times for each NL-instance and
this time we set the timeouts corresponding to the average time-values reported in [17] resulting
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Distance Best Time

Instance Min Avg Max Std.Dev Min Avg Max Std.Dev Timeout

NL6 23916 23916.0 23916 0 0 0.4 2 0.6663 10

NL8 39721 39721.0 39721 0 4 60 198 56.896 300

NL10 59583 59632.6 59727 60.592 489 2652 4305 1167.318 4700

NL12 113360 114391.7 115289 708.349 410 3088 4688 1140.322 4700

NL14 197230 199182.4 201638 1436.473 1873 3739.5 4688 874.921 4700

NL16 281644 286178.0 289547 2199.686 2225 3686.8 4673 751.776 4700

Table 5.3: Experimental results of TTILSopt on the NL-x family with short timeout

Distance Best Time

Instance Min Avg Max Std.Dev Min Avg Max Std.Dev Timeout

NL10 59583 59655.8 59910 119.33 70 1605.7 3816 1277.917 4600

NL12 112960 113820.8 115586 798.296 3740 4979.3 6937 1940.038 7000

NL14 194802 197185.1 201132 1688.060 5178 12577 18881 4721.297 19000

NL16 277088 280868.3 283951 1943.884 10140 24433.2 283951 8216.410 32700

Table 5.4: Experimental results of TTILSopt on the NL-x family with long timeout

in much longer runs than in the first experiment. The results of both evaluations are given in
Table 5.3 and 5.4, where all time values are given in seconds.

The results from the first evaluation (Table 5.3) are compared with the results of [24]. The
results obtained from the second experiment with longer timeouts (Table 5.4) are compared with
the results reported by [17], [34], [20] and [4]. We omit the results for NL6 and NL8 when
comparing the results from the longer experiment, since we always get optimal solutions for
these small instances.

It should be also noted that the comparisons with [24], [17] and [34] are made under the
roughly same experimental conditions regarding the computation-time and the number of runs
per instance. However the results of [20] and [4] are obtained from much longer test-runs and
[4] also carried out 50 runs per instance. The results of the individual comparisons are given in
Table 5.5, Table 5.6, Table 5.8, Table 5.7 and Table 5.9.

The evaluations and comparisons show very promising and favorable results for TTILSopt.
TTILSopt is always able to solve the small instances NL6 and NL8 to optimality in very short
amount of time.

The comparison with LHH shows that TTILSopt is capable of producing very good so-
lutions in short amount of time for all NL-instances and TTILSopt exhibits throughout better
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LHH TTILSopt

Instance Min Avg Std.Dev Avg(Time) Min Avg Std.Dev Avg(Time) Avg.Dif

NL6 23916 23916 0 300 23916 23916.0 0 10 0

NL8 39721 39801 172 1800 39721 39721.0 0 300 -0.2

NL10 59583 60046 335 3600 59583 59632.6 60.6 4700 -0.7

NL12 112873 115828 1313 3600 113360 114391.7 708.3 4700 -1.2

NL14 196058 201256 2779 3600 197230 199182.4 1436.5 4700 -1.0

NL16 279330 288113 4267 3600 281644 286178.0 2199.7 4700 -0.7

Table 5.5: Comparison of TTILSopt with LHH [24] on NL-x family

AFC-TTP TTILSopt

Instance Min Avg Std.Dev Avg(Time) Min Avg Std.Dev Avg(Time) Avg.Dif

NL10 59634 59928.3 155.47 4969.51 59583 59655.8 119.3 4600 -0.5

NL12 112521 114437.4 895.7 7660.07 112960 113820.8 798.3 7000 -0.5

NL14 196849 198950.5 1294.43 20870.07 194802 197185.1 1688.1 19000 -0.9

NL16 278456 285529.6 3398.57 35931.27 277088 280868.3 1943.9 32700 -1.6

Table 5.6: Comparison of TTILSopt with AFC-TTP [34] on NL-x family

SAHC TTILSopt

Instance Min Avg Std.Dev Avg(Time) Min Avg Std.Dev Avg(Time) Avg.Dif

NL10 59821 60375.0 552.72 67619.6 59583 59655.8 119.3 4600 -1.2

NL12 115089 116792.3 1069.59 82322.0 112960 113820.8 798.3 7000 -2.5

NL14 196363 197769.9 731.52 96822.4 194802 197185.1 1688.1 19000 -0.3

NL16 274673 278477.9 1885.53 111935.2 277088 280868.3 1943.9 32700 0.8

Table 5.7: Comparison of TTILSopt with SAHC [20] on NL-x family

CNTS TTILSopt

Instance Min Avg Std.Dev Avg(Time) Min Avg Std.Dev Avg(Time) Avg.Dif

NL10 59876 60424.2 823.9 7056.7 59583 59655.8 119.3 4600 -1.3

NL12 113729 114880.6 948.2 10877.3 112960 113820.8 798.3 7000 -0.9

NL14 194807 197284.2 2698.5 29635.5 194802 197185.1 1688.1 19000 -0.05

NL16 275296 279465.8 3242.4 51022.4 277088 280868.3 1943.9 32700 0.5

Table 5.8: Comparison of TTILSopt with CNTS [17] on NL-x family
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TTSA TTILSopt

Instance Min Avg Std.Dev Avg(Time) Min Avg Std.Dev Avg(Time) Avg.Dif

NL10 59583 59605.96 53.36 40268.62 59583 59655.8 119.3 4600 0.08

NL12 112800 113853.00 467.91 68505.26 112960 113820.8 798.3 7000 -0.02

NL14 190368 192931.86 1188.08 233578.35 194802 197185.1 1688.1 19000 2.2

NL16 267194 275015.88 2488.02 192086.55 277088 280868.3 1943.9 32700 2.1

Table 5.9: Comparison of TTILSopt with TTSA [4] on NL-x family

average solution qualities and more stability than the LHH. However, LHH produced better
minimum results than TTILSopt for instances NL12, NL14 and NL16.

Our results also compare favorably with other approaches with longer computation-times.
In general, TTILSopt shows slightly better average performance than CNTS and SAHC for in-
stances NL10, NL12 and NL14, even when SAHC has much longer computation-time for each
instance. TTILSopt also finds better minimum solutions than CNTS and SAHC for instances
NL10, NL12 and NL14. TTILSopt outperforms AFC-TTP both in average performance and in
terms of minimum solution qualities for all instances. Only for NL12, AFC-TTP finds slightly
better minimum solution.

Compared with TTSA, which is the current best metaheuristics for the TTP, we can claim
that our results are at least comparable, where the biggest gap in average solution quality is
2.2%. For NL12, we even reach slightly better average performance.

We are somewhat disappointed from the results for the instance NL16. Though comparable
with other methods, the results for the NL16 were worse than originally anticipated. First we
suspected that TTILSopt could have problems with the large size of 16 teams, but it seems
to be rather an instance-specific problem, because TTILSopt produces very good results for
the instance Galaxy16 with the same team-size of 16. In the future, we will investigate more
thoroughly if we can obtain better results for NL16 by investing even more effort in parameter-
tuning.

5.3.2 Best results for the NL-x family

In this section, we present our global best results for NL-x family, which we have obtained during
our research and compare them with the best results in the literature.

It should be noted that the best results for instances NL12 and NL14 don’t come from the
systematic evaluations presented before but from the various individual experiments we have
conducted in the course of this thesis. They are obtained without the soft-restarting mechanism
and the parameter settings, with which we have obtained them, are given in Table 5.10.
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Instance kmin kmax ω δ λ α σ Tmax Time

NL12 2 6 1.1 0.999 500 3 5 600 2700
NL14 2 7 1.1 0.999 500 5 3 800 32204

Table 5.10: Parameter settings for best NL12-NL14-results

Our best results for NL-x family are given in Table 5.11, which also lists all the best results
reported in the past by different authors. The comparison table for NL-x family is adapted from
[9].

As apparent from the comparison tables, our TTILSopt produces results comparable to the
current upper-bounds, despite we didn’t conduct many experiments with very long computation-
time. Our best results are slightly better than those obtained by Lim et al. [20] (except for the
largestNL16 instance) and are slightly worse than the best results of [17] forNL12, NL14, NL16

instances. Clearly, the current best performing metaheuristic for the TTP is the Simulated An-
nealing approach TTSA and its extensions [4],[35]. But as you can see, our best results are not
far away from their best results either. All in all we can claim that TTILSopt produces very
competitive results and shows great potential for future researches.
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Authors Method NL4 NL8 NL6 NL10 NL12 NL14 NL16

Easton et
al.

Linear Program-
ming (LP)

8276 23916 44113 312623

Benoist
et al.

constraint program-
ming and lagrange
relaxation

8276 23916 42517 68691 143655 301113 437273

Cardemil Tabu Search 8276 23916 40416 66037 125803 205894 308413
Zhang Unknown (data from

TTP website)
8276 24073 39947 61608 119012 207075 293175

Shen and
Zhang

Greedy big step
meta-heuristics

39776 61679 117888 206274 281660

Lim et
al.

Simulated An-
nealing and Hill
Climbing

8276 23916 39721 59821 115089 196363 274673

Langford Unknown (data from
TTP website)

59436 112298 190056 272902

Crauwels
and Oud-
heusden

Ant Colony Opti-
mization with local
improvement

8276 23916 40797 67640 128909 238507 346530

Anagnos-
topoulos
et al.

Simulated Anneal-
ing

8276 23916 39721 59583 111248 188728 263772

Gaspero
and
Schaerf

Composite Neigh-
borhood Tabu
Search Approach

59583 111483 190174 270063

Chen et
al.

Ant-Based Hyper-
heuristic

8276 23916 40361 65168 123752 225169 321037

Van
Henten-
ryck and
Vergados

Population-based
Simulated Anneal-
ing

8276 23916 39721 59436 110729 188728 261687

Mustafa
Mısır et
al.

Learning Automata
Hyperheuristics

8276 23916 39721 59583 112873 196058 279330

Uthus et
al.

Ant Colony Opti-
mization

8276 23916 39721 59583 112521 195627 278456

This
work

Iterated Local
Search

8276 23916 39721 59583 112478 194384 277088

Table 5.11: Best results for NL instances (adapted from [9])
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5.3.3 Results for the Super-x family

To the best of our knowledge, the only publicly available experimental results on the Super-
x benchmark-set are reported in [24]. As we’ve done it for the NL-x family, we adjust the
computation-time of our experiment to be comparable with those reported in [24] and test our
algorithm 10 times for each instance. Our results are reported in Table 5.12 and compared with
the results of LHH in Table 5.13.

As you can see from the results, TTILSopt is able to solve the small instances Sup6 and
Sup8 always to the optimality and LHH [24] is again outperformed by TTILSopt. Additionally,
we give the gaps between our experiment’s best values and the current best results for the Super-x
family reported on the TTP-benchmark-website [3] in Table 5.14.

As mentioned already, the current best results for the Super-x family are reported by Lang-
ford and Uthus, but, to the best of our knowledge, there are no further information available what
concrete experiments they have conducted and what the average solution-quality and running-
time of their approaches are.

Distance Best Time

Instance Min Avg Max Std.Dev Min Avg Max Std.Dev Timeout

Sup6 130365 130365.0 130365 0 0 0.1 1 0.3 10

Sup8 182409 182409.0 182409 0 3 77.3 286 80.96 300

Sup10 318007 318225.5 318691 262.973 186 2313.6 4104 1147.795 4700

Sup12 469290 472002.1 115289 1228.140 150 2514.4 4646 1464.588 4700

Sup14 594388 600533.6 610824 5187.210 538 1911.6 3005 939.88 4700

Table 5.12: Experimental results of TTILSopt on Super-x family

LHH TTILSopt

Instance Min Avg Std.Dev Avg(Time) Min Avg Std.Dev Avg(Time) Avg.Dif

Sup6 130365 130365 0 300 130365 130365.0 0 10 0

Sup8 182409 182975 558 1800 182409 182409.0 0 300 -0.3

Sup10 318421 327152 6295 3600 318007 318225.5 262.973 4700 -2.7

Sup12 467267 475899 5626 3600 469290 472002.1 1228.140 4700 -0.8

Sup14 599296 634535 13963 3600 594388 600533.6 5187.210 4700 -5.3

Table 5.13: Comparison of TTILSopt with LHH [24] on Super-x family
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Instance TTILSopt Best Dif(%)

Sup6 130365 130365 0
Sup8 182409 182409 0
Sup10 318007 316329 0.5
Sup12 469290 463876 1.2
Sup14 594388 571632 3.98

Table 5.14: Comparison with best results of the Super-x family

5.3.4 Results for the Galaxy-x family

In this section, we report our experimental results for the Galaxy-x benchmark-set. Unfortu-
nately due to novelty of the Galaxy-x family, there are no extensive computational results avail-
able for this benchmark-set yet. As mentioned previously, author Langford [19] reported most
of the current best results for Galaxy-x family using modified version of TTSA from [4], but
didn’t give further details about how he obtained them and what experiments he has conducted
to benchmark his approach.

In the following, we present our results for the Galaxy-x family in Table 5.15, which are
obtained under the same experimental settings as for the Super-x family. Table 5.16 lists the gaps
between our minimum values and the current best values of Langford showing that TTILSopt
is also able to produce very good solutions for the Galaxy-x family in short amount of time.

Distance Best Time

Instance Min Avg Max Std.Dev Min Avg Max Std.Dev Timeout

GL6 1365 1365.0 1365 0 0 0.1 1 0.3 10

GL8 2373 2373.0 2373 5 3 31.1 73 20.554 300

GL10 4535 4547.4 4585 16.704 562 2351.1 4374 1253.793 4700

GL12 7318 7395.6 7502 56.075 1935 3591.3 4618 3591.3 4700

GL14 11324 11434.5 11545 69.717 1439 3089.6 4665 1198.567 4700

GL16 15172 15733.0 16173 258.457 1939 4119.7 4677 772.589 4700

Table 5.15: Experimental results of TTILSopt on the Galaxy-x family
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Instance TTILSopt Best Dif(%)

GL6 1365 1365 0
GL8 2373 2373 0
GL10 4535 4535 0
GL12 7318 7197 1.7
GL14 11324 10918 3.7
GL16 15172 14900 1.8

Table 5.16: Comparison with best results of the Galaxy-x family



CHAPTER 6
Conclusion and future work

In this thesis, we have proposed a novel metaheuristics approach based on the Iterated Local
Search framework for solving the very challenging Traveling Tournament Problem.

First, we developed a basic ILS approach TTILSbasic to assess the applicability of the ILS-
principle to the TTP. The initial results of TTILSbasic were promising and based on the insights
gained by analyzing TTILSbasic, we further optimized and extended TTILSbasic, which led to
our final version TTILSopt.

The proposed TTILSopt incorporates perturbation mechanism, which uses random moves
from higher-order neighborhoods to perturbate solutions and varies its strength dynamically.
TTILSopt embeds simple Hill-Climbing heuristic as the local-search component, where we
have experimented with different compositions of neighborhoods. In order to escape difficult
local optima, TTILSopt uses an advanced simulated annealing type acceptance criterion with
non-monotonic cooling schedule. TTILSopt incorporates also other additional extensions like
strategic-oscillation and soft-restarting mechanism.

We have implemented the proposed algorithm TTILSopt and conducted extensive com-
putational experiments on selected benchmark-families publicly available from Trick’s TTP-
benchmark-website. The results of our experiments are compared with other state-of-the-art
metaheuristics proposed for the TTP in the literature.

The comparison on the NL-x benchmark-set with other approaches showed particularly fa-
vorable results for TTILSopt. TTILSopt is able to solve the smaller instances [NL4, NL6, NL8]

to optimality in only few seconds and for larger instances [NL10, NL12, NL14], TTILSopt ex-
hibits better average solution qualities and robustness than most of other compared approaches,
being only second to the current best-performing Simulated Annealing approach TTSA [4].

70
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These results confirm the potential and effectiveness of the ILS-based metaheuristics approach
for solving the TTP.

Furthermore, we investigated the possibility of defining an efficient incremental evaluation
function when using the five neighborhoods [N1, . . . , N5] introduced in [4], which are also the
underlying basic neighborhoods for TTILSopt. We were able to propose incremental algorithms
with better complexity than the naive approach to calculate delta-values for all of the three cost-
components efficiently.

The connectivity of the neighborhoods [N1, . . . , N5] is also an interesting issue, since, to
the best of our knowledge, it is still unknown whether the search-space is connected or not
under the aforementioned neighborhoods. We propose an experimental approach to investigate
this issue, where the reachability between two random solutions is tested by means of heuristic
optimization. The preliminary results of our experiment on NL-x benchmark-set further support
the hypothesis that the search-space is connected under the considered neighborhoods.

For the future, several issues could be further investigated to improve the performance of
TTILSopt:

• Investigate if a more powerful embedded local-search component like Tabu-Search or
Simulated Annealing can improve the solution quality.

• Search for some useful problem-specific properties, which can be exploited in a more
advanced perturbation scheme.

• Explore novel ideas for designing new neighborhoods. For instance, it would be inter-
esting to see if it is feasible to search in a much bigger search-space, where the double-
round-robin constraint is also a soft-constraint.

• Reevaluate TTILSopt with much longer computation-time and investigate how much can
longer computation-time improve the solution quality of TTILSopt.
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