
. .

Univ.Prof. Dr. Georg Gottlob

masterarbeit

Hypertree Decompositions
for Optimal Winner Determination

in Combinatorial Auctions

ausgeführt am

Institut für Informationssysteme

Abteilung für Datenbanken und Artificial Intelligence

der Technischen Universität Wien

unter der Anleitung von

O.Univ.Prof. Dr.techn. Georg Gottlob

Privatdoz. Dr.techn. Nysret Musliu

Projektass. Dipl.-Ing. Werner Schafhauser

durch

Ekaterina Lebedeva

Wien, 10. März 2008 .

Ekaterina Lebedeva

ii

. .

Univ.Prof. Dr. Georg Gottlob

Master Thesis

Hypertree Decompositions
for Optimal Winner Determination

in Combinatorial Auctions

carried out at the

Institute of Information Systems

Database and Artificial Intelligence Group

of the Vienna University of Technology

under the instruction of

O.Univ.Prof. Dr.techn. Georg Gottlob

Privatdoz. Dr.techn. Nysret Musliu

Projektass. Dipl.-Ing. Werner Schafhauser

by

Ekaterina Lebedeva

Vienna, March 10, 2008 .

Ekaterina Lebedeva

ii

Contents

Abstract vii

Dedication ix

Acknowledgements xi

1 Introduction 1

2 Basic Concepts 5
2.1 Combinatorial Auctions (CA) 5

2.1.1 Basic Definitions of Combinatorial Auctions 5
2.1.2 The WDP for CAs . 6

2.2 Constraint Satisfaction Problems 6
2.3 Graphs . 9

2.3.1 Basic Definitions of Graphs 9
2.3.2 Tree Decompositions of Graphs 9

2.4 Hypergraphs . 10
2.4.1 Basic Definitions of Hypergraphs 10
2.4.2 Hypertree Decompositions of Hypergraphs 13
2.4.3 Maximum-Weighted Set Packing Problem 16

2.5 Decomposition Methods for CSPs 17
2.5.1 General Framework of Decomposition Methods for CSPs 18
2.5.2 Hypertree Decomposition Method for CSPs 19

3 Solving the WDP for CAs 21
3.1 Complexity of the WDP for CAs 21
3.2 Tractable Classes of Combinatorial Auctions 22
3.3 Exact Algorithms . 23

3.3.1 Combinatorial Auction Structured Search (CASS) . . 23
3.3.2 Combinatorial Auction Branch On Bids (CABOB) . . 24
3.3.3 CPLEX . 24
3.3.4 ComputeSetPackingk 25

iii

iv CONTENTS

4 ComputeSetPackingk Implementation 29
4.1 General Architecture . 29
4.2 Constructing a Complete HTD 32

4.2.1 Variable Orderings . 32
4.2.2 Bucket Elimination for Hypertree Decompositions . . 32
4.2.3 Completing the Hypertree Decomposition 34

4.3 Formulating and Solving a CSP 36
4.3.1 Constructing an Initial Constraint Network 36
4.3.2 Constructing an Acyclic Constraint Network 37
4.3.3 Filtering Non-Confirming Tuples 38

5 Experimental Evaluation 43
5.1 Experimental Setup . 43

5.1.1 Artificial Distributions: General Characterization . . . 44
5.1.2 Artificial Distributions: Published Work 44
5.1.3 Combinatorial Auctions Test Suite (CATS) 46

5.2 Experiments . 48
5.2.1 Goals . 48
5.2.2 Running Time Dependency on the Width of Hypertree

Decompositions . 49
5.2.3 Dependencies of the Width of Hypertree Decompositions 51
5.2.4 Experimental Conclusions 56
5.2.5 Comparison of Distribution’s Difficulties between Al-

gorithms . 57

6 Conclusion 59

List of Figures

2.1 Example of a hypergraph and its dual hypergraph: (a) Hy-
pergraph H; (b) Dual hypergraph H̃ for H 11

2.2 Example of a primal graph: (a) Hypergraph H(a); (b) Hyper-
graph H(b); (c) Primal graph for H(a) and H(b) 12

2.3 Example of item graphs: (a) HypergraphH; (b) Primal graph
for H; (c,d) Two item graphs for H 13

2.4 Example of a generalized hypertree decomposition for the hy-
pergtaph from Figure 2.1(b) 14

2.5 Example of a hypertree decomposition and a complete hyper-
tree decomposition: (a) HTD; (b) Complete HTD 15

2.6 Example of confirming and non-confirming packings: (a) Hy-
pergraphs Hn and Hc; (b) All packings for Hn and for Hc . 17

4.1 Hypergraph the combinatorial action from Example 4.1 . . . 30
4.2 General architecture . 31
4.3 Dual hypergraph for the hypergraph from Figure 4.1 31
4.4 Execution of Bucket Elimination for two orderings on the

hypergraph from Figure 4.3 34
4.5 Generalized hypertree decomposition of the hypergraph from

Figure 4.3 . 35
4.6 Complete hypertree decomposition of the hypergraph from

Figure 4.3 . 36
4.7 Constraints for the combinatorial auction from Example 4.1 . 38
4.8 Constraint in the root node of the hypertree from Figure 4.6

after performing join . 39
4.9 Semi-join of the relation in the root with the relation in the

left child for the hypertree in Figure 4.6 40
4.10 Semi-join of the relation in the root with the relation in the

left child for the hypertree in Figure 4.6 40

5.1 ComputeSetPackingk running time dependence on the width
of hypertree decompositions for distributions L2, L3, L4, L6,
regions, matching and scheduling 50

v

vi LIST OF FIGURES

5.2 Values of the hypertree width for which ComputeSetPackingk

terminates for different distributions 51
5.3 Dependence of the width of hypertree decompositions on the

numbers of bids and items for distribution L3 53
5.4 Dependence of the width of hypertree decompositions on the

numbers of bids and items for distribution L6 53
5.5 Dependence of the width of hypertree decompositions on the

numbers of bids and items for regions distribution 54
5.6 Dependence of the width of hypertree decompositions on the

numbers of bids and items for distribution L4 54
5.7 Dependence of the width of hypertree decompositions on the

numbers of bids and items for distribution L7 55
5.8 Dependence of the width of hypertree decompositions on the

numbers of bids and items for scheduling distribution 56

Abstract

A combinatorial auction is an auction in which various items are sold and a
bid can be placed for more than one item at once. The winner determination
problem for a combinatorial auction is the task of determining a set of
mutually disjoint bids that brings the maximal revenue from the auction.
This problem is known to be NP-complete [23, 24].

To cope with the NP-completeness of the winner determination problem
for general combinatorial auctions, there were attempts to identify the most
general classes of combinatorial auction instances on which the problem is
feasible in polynomial time. One of these attempts resulted in a polynomial
time algorithm for combinatorial auction instances with associated dual hy-
pergraphs having the hypertree width bounded by some natural number
[11].

In this thesis we describe the essential concepts involved in solving the
winner determination problem by means of the ComputeSetPackingk algo-
rithm, which is a polynomial time algorithm that utilizes the notion of hyper-
tree decomposition [11]. We implemented the algorithm, and the description
of our implementation is given in the thesis. The experimental evaluation of
our implementation showed how the essential parameters of the combinato-
rial auctions (distributions used for generating problem instances, numbers
of items and bids) and of the decomposition method (the width and the size
of the constructed hypertree) influence the performance of the algorithm.
The results and analysis of our experimental tests, as well as a comparison
of ComputeSetPackingk with the other approaches for different distributions
with respect to their hardness to be solved, are also presented within the
thesis.

vii

viii ABSTRACT

Dedication

I dedicate my work to my grandparents and to my parents, whose constant
love and support have always been the main source of my strength and
inspiration.

ix

x DEDICATION

Acknowledgements

This thesis would not take place without the suggestion of an interesting
and challenging topic given by Prof. Georg Gottlob, whom I would like to
acknowledge for supervising my work and for providing the guidelines for
my research in Combinatorial Auctions. I am very grateful to Prof. Nysret
Musliu for advising my work, supporting and encouraging me, as well as
for revising this thesis. I would also like to thank a Ph.D. student of Prof.
Musliu, Werner Schafhauser, for his assistance in the moments of my both
theoretical and practical doubts, for interesting discussions and for very
useful suggestions.

Besides, I would like to acknowledge Stepan Mikhaylov for his significant
help in solving programming issues.

The two years of my M.Sc. studies were funded by the Erasmus Mundus
Scholarship, for which I am grateful to the European Commission. I grate-
fully acknowledge the coordinators of the European Master in Computa-
tional Logic program, Prof. Enrico Franconi at Free University of Bozen-
Bolzano and Prof. Alexander Leitsch at Vienna University of Technology,
for their essential help with organizational difficulties.

My special thank to Bruno Woltzenlogel Paleo for the philosophical ideas
in the moments of uncertainty, for the moral support in the moments of
anxiety, for the inspiration in the moments of fatigue and for making happy
every moment that we spent together.

Finally, I am very much thankful to all my friends with whom I have
had wonderful, enjoyable and unforgettable time in Italy and in Austria.

xi

xii ACKNOWLEDGEMENTS

Chapter 1

Introduction

In combinatorial auctions bidders can place their bids not only on single
items, but also on sets of items, often called “bundles”. This models the
case when a bidder’s value for a set of items is different than the sum of the
values of the individual items.

The concept of combinatorial auctions has acquired a particular practical
importance since it may be applicable in many real-world domains. Com-
binatorial auction mechanisms were introduced as early as 1976 by Charles
L. Jackson in his Ph.D. thesis “Technology for Spectrum Markets” for ra-
dio spectrum rights [16]. Since then the interest in combinatorial auctions
has been growing as the rise in computing power made the implementation
of combinatorial auctions more attractive [5]. Recently combinatorial auc-
tions have been employed in a variety of industries. Some of the examples
in which combinatorial auctions have been used along with other mecha-
nisms are: truckload transportation, airport arrival and departure slots, bus
routes, allocating radio spectrum for wireless communication services and
electronic trading systems [4, 5].

The study of combinatorial auctions lies in the intersection of economics,
operations research and computer science [4]. In this thesis we consider the
combinatorial auctions discipline from the computer science perspective.

In a combinatorial auction an auctioneer receives price offers for vari-
ous bundles of items. In terms of combinatorial auctions these offers are
called bids. The auctioneer is interested in maximizing his revenue from
the auction when determining which bids he accepts. Bids accepted by the
auctioneer are called winning bids, and the winner determination must be
such that each item may appear in at most one winning bid.

This problem, called “winner determination problem”, is known to be
NP-complete [23, 24], meaning that a polynomial-time algorithm that solves
the problem is unlikely to exist unless P=NP. Furthermore, the problem is
not approximable in polynomial time unless NP=ZPP [24]. Hence, there
have been much research efforts addressing the problem, which may be clas-

1

2 CHAPTER 1. INTRODUCTION

sified as follows [3, 18]:

1. Designing approximate algorithms that are provably fast, but on some
problem instances may give results far from the optimal solution [10].

2. Imposing restrictions on the combinatorial auction instance (e.g., re-
stricting bid prices or the bundles on which bids can be placed).

3. Designing decomposition methods for the problem, and tree search
algorithms that provably find an optimal solution [24, 27, 10].

The last approach is associated with the desire to identify the most
general classes of instances on which the winner determination problem is
feasible in polynomial time. In [3] it is proposed to use the notion of item
graphs, coming from graph theory, to isolate the tractable class of combina-
torial auctions. The winner determination problem is known to be feasible in
polynomial time on instances having associated item graphs with bounded
treewidth [3]. However, the problem of determining whether an item graph
with tree width equal to 3 exists was proven to be intractable [11].

Therefore, a different kind of structural requirement to single out tractable
classes of combinatorial auctions was investigated. More precisely, the no-
tion of hypertree decomposition was applied. The winner determination
problem is solvable in polynomial time on combinatorial auction instances
which associated dual hypergraphs have bounded hypertree width [11]. More-
over, the class of tractable instances identified by means of hypertree decom-
position approach properly contains the class of instances having an item
item graph with bounded tree width [11].

Furthermore, a polynomial time algorithm, called ComputeSetPackingk,
that utilizes the notion of hypertree decomposition was proposed in [11].
Let C(H̃, k) denote the class of all the hypergraphs whose dual hypergraphs
have hypertree width bounded by a fixed k. The winner determination
problem can be solved in polynomial time on the class C(H̃, k) by means of
the algorithm ComputeSetPackingk [11].

In this thesis we presented the main notions of combinatorial auctions
theory, giving an overview of previous research targeted on solving the win-
ner determination problem for combinatorial auctions. Moreover, we de-
scribe the essential concepts involved in solving the winner determination
problem by means of ComputeSetPackingk algorithm. We implemented and
experimentally evaluated ComputeSetPackingk. The experiments showed
how the essential parameters of the combinatorial auctions (distributions
used for generating problem instances, numbers of items and bids) and of
the decomposition method (the width and size of the constructed hypertree)
influence the performance of the algorithm. The results and analysis of our
experimental tests, as well as a comparison of ComputeSetPackingk with the

3

other approaches for different distributions with respect to their hardness
to be solved, are also presented within the thesis.

This work is organized according to the following chapters:

• Chapter 2, Basic Concepts, presents basic formal notations and defi-
nitions, as well as concepts and well-known results of theories that are
used within the context of this thesis.

• Chapter 3, Solving the Winner Determination Problem for Combi-
natorial Auctions, talks about the complexity of the problem and
presents some approaches to solve it. One of them is the algorithm
ComputeSetPackingk [11], which was implemented within this thesis.

• Chapter 4, ComputeSetPackingkImplementation, includes the descrip-
tion of algorithms used by us to construct the required input for
ComputeSetPackingk and shows how the essential steps of
ComputeSetPackingk are carried out.

• Chapter 5, Experimental Evaluation, firstly describes existing bid gen-
eration techniques, either parameterized by number of bids and num-
ber of items [24, 10, 5] or a suite for distributions based on real-world
situations [20]. Then the chapter presents our experimental results,
when ComputeSetPackingk was executed on benchmark instances gen-
erated with these distributions.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Basic Concepts

In this chapter we present basic formal notations and definitions, as well as
concepts of theories that are used within the context of this thesis. First,
we formally describe what a combinatorial auction is and present the main
challenge in combinatorial auctions theory - finding efficient solutions for
the combinatorial auction winner determination problem. The latter can
be viewed as a constraint satisfaction problem, which is also defined in the
chapter. Moreover, we present basics of graph and hypergraph theories,
as well as the framework of decomposition methods which are involved in
the approach used by us to cope with the combinatorial auction winner
determination problem.

2.1 Combinatorial Auctions (CA)

A combinatorial auction is an auction, in which various items are sold, and
a bidder is allowed to bid for any combination of items at once. This is
essential when a bidder considers the utility of a set of items to be different
from the simple sum of the utilities of the items considered separately. An
auctioneer is interested in finding the most profitable outcome for a combi-
natorial auction. However, this task is known to be NP-complete [23, 24].

In the following subsections we present formal definitions of combinato-
rial auctions and their winner determination problem. The definitions there
are based on the definitions given in [11].

2.1.1 Basic Definitions of Combinatorial Auctions

Definition 2.1.1. (Combinatorial Auction, CA) A combinatorial auction
is a pair 〈I,B〉, where I = {I1, . . . , Im} is a set of all items in the auction,
B = {B1, . . . , Bn} is the set of all bids in the auction. Each bid Bi is a tuple
〈Si, pi〉, where Si is a set of items from I and pi ≥ 0 is a real number which
stands for the price offered by a buyer for Si.

5

6 CHAPTER 2. BASIC CONCEPTS

Notation 2.1.1. S : B → 2I , is a function s.t. S(Bi) = S(〈Si, pi〉) = Si

Notation 2.1.2. p : B → R+, is a function s.t. p(Bi) = p(〈Si, pi〉) = pi

Definition 2.1.2. (Outcome for CA) An outcome for a combinatorial auc-
tion 〈I,B〉 is a set U ⊆ B in which all bids are pairwise disjoint sets, i.e. if
(Bi ∈ U and Bj ∈ U) then S(Bi)∩S(Bj) = ∅ for each Bi, Bj s.t. Bi 6= Bj .

Note that there may be many outcomes for a combinatorial auction. We
denote the set of all outcomes for a CA as U.

Definition 2.1.3. (Revenue for CA) Let A, s.t. A = 〈I,B〉, be a com-
binatorial auction. The revenue Rev(U) of an outcome U of A is the real
number calculated as follows:

Rev(U) =
∑

Bi∈U
p(Bi)

2.1.2 The Winner Determination Problem (WDP) for Com-
binatorial Auctions

In a combinatorial auction a seller is accepting different bids and his ob-
jective is to determine a set of mutually disjoint bids (an outcome) that
will bring him the maximum revenue over all possible outcomes. In this re-
spect, the seller is interested in finding the solution for the so-called winner
determination problem.

Definition 2.1.4. (Winner Determination Problem, WDP) Let A, s.t. A =
〈I,B〉 be a combinatorial auction. The winner determination problem of A
is the problem of finding a set W such that:

1. W ⊆ B

2. W ∈ U, where U is the set of outcomes for A

3. Rev(W) = max
Ui∈U

Rev(Ui)

This problem was proven to be intractable, more precisely NP-complete
[23]. There has been much interest in developing approximate algorithms
for combinatorial auction winner determination [10]. However, the problem
is not approximable in polynomial time (unless NP=ZPP) [24]. In Chapter
3 we discuss this question in more details.

2.2 Constraint Satisfaction Problems (CSPs)

Many well-known problems in Computer Science and Mathematics, such
as graph-colorability, eight queens puzzle, the Sudoku solving problem, the

2.2. CONSTRAINT SATISFACTION PROBLEMS 7

boolean satisfiability problem, can be formulated as constraint satisfaction
problems. The winner determination problem for combinatorial auctions
can also be formulated as a constraint satisfaction problem. Informally,
constraint satisfaction is the process of finding a solution to a problem which
has a set of constraints on the values and combinations of variables.

Many of the formal definitions and discussions in this subsection are
based on the definitions given in [7, 13].

Definition 2.2.1. (Constraint) A constraint C is a pair 〈S, R〉, that consists
of a relation R defined on a finite sequence of variables S (S is called the
constraint scope).

Intuitively, a constraint is a rule that says which of the variable assign-
ments are legal.

Definition 2.2.2. (Constraint Network) A constraint network N is a triple
〈V ar,D, C〉, where

1. V ar = {v1, . . . , vn} is a finite set of variables

2. D = {Dv1 , . . . , Dvn} is a set of domains, such that each variable vi ∈
V ar has a nonempty domain Dvi of its possible values, such that
Dvi ⊆ D

3. C = {C1, . . . , Ct} is a set of constraints. Each constraint Ci is defined
on a subset of variables Si, where Si ⊆ V ar

Note that in the constraint 〈Si, Ri〉, where Si = 〈v1, . . . , vr〉, the relation
Ri is a subset of the Cartesian product Dv1 × · · · ×Dvr .

Definition 2.2.3. (Variable Instantiation) Variable instantiation is a map-
ping

ν : V ar′ →
⋃

v∈V ar′

Dv

s.t. V ar′ ⊆ V ar and for each v ∈ V ar′ Dv is the domain of v.

In other words ν is a partial function from V ar to the corresponding
domains of the variables in V ar. A variable v is instantiated by a mapping
ν if v belongs to V ar′.

Example 2.1. Consider, for example, a set of variables V ar = {v1, v2, v3},
with their corresponding domains Dv1 = {0, 2}, Dv2 = {1, 2}, Dv3 = {1, 2, 4}.
Then some of the possible instantiations of variables from V ar are ν(v1) = 0,
ν(v2) = 2 , ν(v3) = 4.

We say that a set V of variables is instantiated if each variable from V
is instantiated.

8 CHAPTER 2. BASIC CONCEPTS

Definition 2.2.4. (Satisfying a Constraint) An instantiation ν of a set of
variables V ar = {v1, . . . , vk} satisfies a constraint 〈S, R〉 iff

1. for each variable v ∈ S v ∈ V ar

2. there exist a tuple t ∈ R, s.t. for every variable v ∈ S t(v) = ν(v)

Example 2.2. Recall Example 2.1. Consider a relation R = {〈0, 1〉, 〈0, 2〉}
over variables 〈v1, v2〉. ν satisfies R, because {v1, v2} ∈ V ar and there is a
tuple t = 〈0, 2〉 in R, s.t. t(v1) = ν(v1) = 0 and t(v2) = ν(v2) = 2.

An instantiation that does not violate any constraint is called consistent
or legal. A complete instantiation is one in which every variable from the
set V ar is mentioned. A solution is a complete and consistent instantiation
of the variables.

Definition 2.2.5. (Solution to a Constraint Network). Let N be a con-
straint network, such that N = 〈V ar,D, C〉. A solution to N is an instan-
tiation ν of all variables from V ar that satisfies all the constraints from
C.

Often the concepts of “constraint network” and “constraint satisfaction
problem” are used interchangeably. In fact, however, solving a constraint
satisfaction problem is a task over the constraint network N , such as deter-
mining whether a solution to N exists and, if yes, finding this solution.

In general, constraint satisfiability is known to be NP-hard [7]. One of
the approaches to identify tractable classes of constraint satisfaction prob-
lems is to consider structural properties of the constraint scopes. In the
general case these properties can be formalized as graph-theoretic proper-
ties of the constraint hypergraph [13].

The constraint hypergraph of a constraint network is the hypergraph
such that its vertices are the variables of the network and its hyperedges are
the sets of those variables which appear together in a constraint scope:

Definition 2.2.6. (Constraint Hypergraph) Let N , s.t. N = 〈V ar,D, C〉,
be a constraint network. The constraint hypergraph of N is a hypergraph
〈V, E〉 such that:

1. V = V ar

2. E = {S | C = 〈S, R〉, C ∈ C}

A constraint network is acyclic if its constraint hypergraph is acyclic.
Acyclic constraint networks are polynomially solvable [6].

2.3. GRAPHS 9

2.3 Graphs

Graphs are mathematical structures that are helpful for modelling pairwise
relations between objects from a certain collection. In this section we present
some concepts from graph theory that are usefull within the context of this
thesis.

2.3.1 Basic Definitions of Graphs

Definition 2.3.1. (Graph) An undirected graph G is a pair 〈V,E〉, where
V is a finite set of vertices, and E is a set of unordered pairs of vertices
(edges): E = {{v1, v2} | v1, v2 ∈ V }.

If the graph is undirected, the adjacency relation defined by the arcs is
symmetric.

Definition 2.3.2. (Path) Let G = 〈V,E〉 be an undirected graph. A
sequence 〈{v1, v2}, {v2, v3}, {v3, v4}, . . . , {vk−1, vk}〉 is a path of G between
v1, vk ∈ V .

Definition 2.3.3. (Connected Graph) G is connected iff for any vi, vj ∈ V
there exists a path between vi and vj .

Definition 2.3.4. (Acyclic Graph) G is acyclic iff there is no path in G
that starts and ends at the same vertex v ∈ V .

Definition 2.3.5. (Tree) A tree is a connected, undirected, acyclic graph.

2.3.2 Tree Decompositions of Graphs

The concept of tree decompositions was introduced by Robertson and Sey-
mour in their work on graph minors [22].

Definition 2.3.6. (Tree Decomposition of a Graph) Let G = 〈V,E〉 be a
graph. A tree decomposition of G is a tuple 〈T, χ〉, where T is a tree, s.t.
T = 〈N,E〉, and χ is a function, s.t. χ : N → 2V , which satisfies all the
following conditions:

1.
⋃
t∈N

χ(t) = V

2. for all {v, w} ∈ E there exists a t ∈ N that v ∈ χ(t) and w ∈ χ(t)

3. for all i, j, t ∈ N if t is on the path from i to j in T, then χ(i)∩χ(j) ⊆
χ(t)

10 CHAPTER 2. BASIC CONCEPTS

The first condition ensures that each vertex of G occurs in the χ-set of
at least one node of T. The second condition says that each edge of G is
contained within the χ-set of some node of T. The last condition ensures
that for each vertex v of the graph the set of vertices {t ∈ N | v ∈ χ(t)}
forms a connected subtree of T.

Definition 2.3.7. (Width of a Tree Decomposition of a Graph) The width
of a tree decomposition 〈χ,T〉, where T = 〈N,E〉, is max

t∈N
| χ(t) | −1.

Definition 2.3.8. (Tree Width of a Graph) The tree-width of a graph G
(tw(G)) is the minimum width over all tree decompositions of G.

The notion of treewidth can be used as a characterization of graph
acyclicity. In particular, a graph is acyclic if and only if its treewidth is
equal to one [22].

Definition 2.3.9. (Structured Item Graph) A graph with the tree-width
bounded by some natural number k (tw(G) ≤ k) is called structured item
graph.

2.4 Hypergraphs

A hypergraph is a generalization of a graph, where an edge not only may be
two-element subset of the set of vertices, but also can consist of any subset
of the set of vertices. This notion is used for the structural description of
a large number of important problems, such as constraint satisfaction prob-
lems or conjunctive queries. The notion of hypergraphs is also suitable for
the representation of combinatorial auctions, since a combinatorial auction
winner determination problem can be viewed as a constraint satisfaction
problem.

Besides, the representationH of a combinatorial auction as a hypergraph
is useful to see the analogy between the winner determination problem and
the maximum weighted set packing problem (maximum weighted set packing
problem is described in Subection 2.4.3).

Most of the definitions in this section are based on the definitions given
in [12, 13, 11].

2.4.1 Basic Definitions of Hypergraphs

Definition 2.4.1. (Hypergraph) A hypergraph H is a pair 〈V, E〉, where
V = {v1 . . . vn} is a nonempty set of vertices, and E = {e1 . . . em} is a set of
subsets of V, i.e. E ⊆ 2V \∅. Each element of E is called the hyperedge of H.

Note, that any graph may be defined as a hypergraph, in which every
hyperedge has two elements.

2.4. HYPERGRAPHS 11

(a) (b)

B3

B2

I1

I2

I3

I4

B1

B2

B1 B3

I4
I1

I2 I3

Figure 2.1: Example of a hypergraph and its dual hypergraph: (a) Hyper-
graph H; (b) Dual hypergraph H̃ for H

Definition 2.4.2. (Dual Hypergraph) Let H = 〈V, E〉 be a hypergraph.
The dual hypergraph H̃ of H is a hypergraph 〈Ṽ, Ẽ〉, such that

1. there is a bijective mapping η : E → Ṽ

2. there is a bijective mapping µ : V → Ẽ

3. for all v ∈ V, µ(v) = {η(e)|v ∈ e, e ∈ E}

An example of a hypergraph, as well as of its dual hypergraph, is pre-
sented in Figure 2.1.

To a hypergraph may be associated a primal graph, which is a graph
having the same set of vertices and containing an edge between any pair of
vertices that appear in the same hyperedge of the hypergraph.

Definition 2.4.3. (Primal Graph) Let H = 〈V, E〉 be a hypergraph. The
primal graph ḠH for H is the graph 〈V,E〉, where

1. V = V

2. E = {{v, w} | v 6= w and ∃e ∈ E s.t. v, w ∈ e}

Note that two different hypergraphs may have the same primal graph as
it happens for the two graphs in Figure 2.2.

Definition 2.4.4. (Connected Hypergraph) A hypergraph is connected if
its primal graph consists of a single connected component.

Definition 2.4.5. (Reduced Hypergraph) A hypergraphH, s.t. H = 〈V, E〉,
is reduced if there is no e1, e2 ∈ E , s.t. e1 ⊆ e2.

12 CHAPTER 2. BASIC CONCEPTS

(a)

(b)

(c)

1

2

3

1

2

3

1

2

3

e1

e1 e2

e3

Figure 2.2: Example of a primal graph: (a) Hypergraph H(a); (b) Hyper-
graph H(b); (c) Primal graph for H(a) and H(b)

Definition 2.4.6. (Item Graph) Let H = 〈V, E〉 be a hypergraph. An item
graph ĠH for H is the graph 〈V,E〉, where

1. V = V

2. E are s.t. for any e ∈ E the vertices occurring in e induce a connected
subgraph of ĠH

Therefore the primal graph ḠH for a given hypergraph H is a particular
type of item graph for H. Moreover any item graph for H may be con-
structed from its primal graph by eventual deleting some edges preserving
the connectedness condition. Note that there may be many item graphs
associated to a given hypergraph. This is demonstrated in Figure 2.3.

Definition 2.4.7. (Join Graph) Let H, H = 〈V, E〉, be a hypergraph. A
join graph ǴH for H is an item graph 〈V,E〉 of the dual hypergraph of H.

Definition 2.4.8. (Join Tree) Let H, H = 〈V, E〉, be a hypergraph. A join
tree for H is a join graph for H that is a tree.

It is important to note, that the notion of join trees may be used to
determine if a hypergraph is acyclic: a hypergraph is acyclic iff it has a join
tree [2, 13].

Example 2.3. Recall the hypergraph from Figure 2.2(b). It is equivalent
to its dual hypergraph, and it is not acyclic since it does not have a join

2.4. HYPERGRAPHS 13

(a)

(b) (d)

(c)

1

2

3

e1

e2

1

2

3

1

2

3

1

2

3

Figure 2.3: Example of item graphs: (a) Hypergraph H; (b) Primal graph
for H; (c,d) Two item graphs for H

tree. The hypergraph from Figure 2.1(a) has only one join tree. Note that a
hypergraph can have more than one join tree if its dual hypergraph has more
then one item graphs - see Figure 2.3.

2.4.2 Hypertree Decompositions of Hypergraphs

Definition 2.4.9. (Hypertree for a Hypergraph) Let H, H = 〈V, E〉, be a
hypergraph. A hypertree for a hypergraph H is a triple 〈T, χ, λ〉, where T =
〈N,E〉 is a rooted tree and χ and λ are labelling functions which associate
two sets χ(t) ⊆ V and λ(t) ⊆ E to each node t ∈ N, i.e.:

χ : N→ 2V

λ : N→ 2E

Notation 2.4.1. For every node t ∈ N we denote the rooted subtree of T
with root t as Tt.

Definition 2.4.10. (Hypertree Decomposition, HTD) Let H, s.t. H =
〈V, E〉, be a hypergraph. A hypertree decomposition of H is a hypertree T ,
s.t. T = 〈T, χ, λ〉 and T = 〈N,E〉, for H which satisfies all the following
conditions:

1. for each hyperedge e ∈ E there exists t ∈ N such that e ⊆ χ(t) (t
covers e)

14 CHAPTER 2. BASIC CONCEPTS

{I2} {B1, B2}

{I2, I3} {B2, B3}

Figure 2.4: Example of a generalized hypertree decomposition for the hy-
pergtaph from Figure 2.1(b)

2. for each vertex v ∈ V, the set {t ∈ N | v ∈ χ(t)} induces a (connected)
subtree of T

3. for each t ∈ N, χ(t) ⊆ (
⋃

e∈λ(t)

e)

4. for each t ∈ N, (
⋃

e∈λ(t)

e) ∩ (
⋃

tj∈Tt

χ(tj)) ⊆ χ(t)

The first condition says that each hyperedge of H is covered by (the
χ-set of) at least one node of the hypertree decomposition 〈T, χ, λ〉. The
second condition requires that in every node t of T every vertex from χ(t)
is covered by at least one hyperedge from λ(t). The third condition imposes
the connectedness condition one the hypertree T with respect to vertices
from the χ-sets. The last condition requires that for any subtree Tt of T a
vertex appearing in the χ-set of any node of Tt must also appear in χ(t),
unless it does not appear in any edge from λ(t).

Note that if we consider only the first two conditions in the definition
of hypertree decopositions above, we will have a definition of tree decompo-
sition of a hypergraph (analogous to one for graphs). If we omit the forth
condition from the definition we will get the definition of generalized hy-
pertree decomposition. In the following example we illustrate a generalized
hypertree decomposition for the hypergraph from Figure 2.1(b).

Example 2.4. Consider Figure 2.4. In the example we refer to the root of
the hypertree as t and to its only child as n. There is item B1, such that

• B1 ∈ I2 and I2 ∈ λ(t)

• B1 ∈ χ(n)

• B1 6∈ χ(t)

Therefore, the forth condition is violated. Note, that if we remove the hy-
peredge I2 from the λ-set of the root t, we will get a hypertree decomposition
for the hypergraph, shown on Figure 2.5(a).

2.4. HYPERGRAPHS 15

{I2} {B1, B2}

{I3} {B2, B3}

(a) (b)

{I2} {B1, B2}

{I3} {B2, B3}

{I4} {B3}

{I1} {B1}

Figure 2.5: Example of a hypertree decomposition and a complete hypertree
decomposition: (a) HTD; (b) Complete HTD

Definition 2.4.11. (Strongly Covered Hyperedge in HTD) Given a hy-
pergraph H, s.t. H = 〈V, E〉, and its hypertree decomposition T , s.t.
T = 〈T, χ, λ〉 and T = 〈N,E〉. A hyperedge e ∈ E is strongly covered in
T if there exists t ∈ N such that e ⊆ χ(t) and e ∈ λ(t) (t strongly covers e).

Definition 2.4.12. (Complete HTD) A hypertree decomposition T of hy-
pergraph H is a complete decomposition of H if every edge of H is strongly
covered in T .

An example of a complete hypertree decomposition for a hypergraph
from Figure 2.1(b) is reported in Figure 2.5 (b).

Definition 2.4.13. (Width of HTD) The width of a hypertree decomposition
〈T, χ, λ〉 of H is max

t∈N
| λ(t) |.

Definition 2.4.14. (Hypertree Width) The hypertree width hw(H) of H is
the minimum width over all its hypertree decompositions.

Note that acyclic hypergraphs are exactly hypergraphs that have hyper-
tree width equal to one.

Example 2.5. Figure 2.1 shows acyclic hypergraphs only.

Now we would like to draw attention to a feature of hypertree decompo-
sitions that plays an important role in finding a decomposition of minimal
width for a hypergraph H, H = 〈V, E〉: as soon as a hyperedge e ∈ E has
been covered by the χ-set of some node t of the hypertree decomposition,
any subset of variables of e may be used for decomposing the remaining cy-
cles of the hypergraph. The intuition is that, the use of a subset of vertices
in e preserves the connectedness condition while minimizing the size of the
λ-sets for each node of the hypertree.

16 CHAPTER 2. BASIC CONCEPTS

2.4.3 Maximum-Weighted Set Packing Problem

Definition 2.4.15. (Weighted Hyperedge) Let e ∈ E be a hyperedge of a
hypergraph H = 〈V, E〉. A weighted hyperedge ê for e is a tuple 〈e, w〉, where
w ∈ R+ stands for the weight of e.

Notation 2.4.2. e : Ê → 2V , is a function s.t. e(êi) = e(〈ei, wi〉) = ei

Notation 2.4.3. w : Ê → R+, is a function s.t. w(êi) = w(〈ei, wi〉) = wi

Notation 2.4.4. We denote a set of weighted hyperedges as Ê , i.e. Ê =
{ê1, . . . , ên}, where êi are weighted hyperedges.

Definition 2.4.16. (Weighted Hypergraph) A weighted hypergraph Ĥ is
a pair 〈V, Ê〉, where V = {v1 . . . vn} is a nonempty set of vertices, and
Ê = {ê1 . . . êm} is a set of tuples, where for all i ∈ {1, 2, . . . ,m} êi =
〈ei, wi〉, ei ∈ 2V \ ∅ and wi ∈ R+ is the weight of ei.

Definition 2.4.17. (Packing) Let Ĥ = 〈V, Ê〉 be a (weighted) hypergraph.
A packing P for Ĥ is a set P ⊆ Ê in which all sets of items are pairwise
disjoint, i.e. for each pair Pi, Pj ∈ P s.t. Pi 6= Pj , it holds that e(Pi)∩e(Pj) =
∅

Notation 2.4.5. We denote the set of all packings for a hypergraph as P.

Definition 2.4.18. Let Pn and Pc be two packings for Hn and Hc re-
spectively, where Hn = 〈Vn, En〉 and Hc = 〈Vc, Ec〉 are two (weighted)
hypergraphs. Pn conforms with Pc, denoted Pn # Pc, if

1. for each P ∈ Pc ∩ En, P ∈ Pn

2. for each P ∈ Ec \ Pc, P 6∈ Pn

Example 2.6. Consider the two hypergraphs Hn and Hc shown in Figure
2.6(a). All possible packings for Hn and for Hc respectively are shown in
2.6(b). An arrow coming from a packing Pn to a packing Pc shows that
Pn # Pc. Different styles are used to distinguish arrows coming from dif-
ferent packings.

Definition 2.4.19. (Weight of Packing) Let Ĥ = 〈V, Ê〉 be a weighted
hypergraph. The weight of packing P for Ĥ is the rational number w(P) =∑
Pi∈P

w(Pi).

The maximum weighted set packing problem for a hypergraph Ĥ is the
problem of finding a packing for Ĥ that has the maximum weight over all
possible packings for Ĥ. Formally:

2.5. DECOMPOSITION METHODS FOR CSPS 17

(a)

(b)

I4

I3

B4

B3

Hn Hc

I2

I1

B2

B1

B3

{ }
{B1, B3}
{B2}

{ }
{B3}
{B4}

Figure 2.6: Example of confirming and non-confirming packings: (a) Hyper-
graphs Hn and Hc; (b) All packings for Hn and for Hc

Definition 2.4.20. (Maximum-Weighted Set Packing Problem) Let Ĥ, s.t.
Ĥ = 〈V, Ê〉, be a weighted hypergraph. The maximum-weighted set packing
problem for Ĥ is the problem of finding M⊆ Ê such that:

1. M∈ P, where P is the set of all packings for Ĥ

2. w(M) = max
Pi∈P

w(Pi)

To see that maximum-weighted set packing problem for a hypergraph
Ĥ, Ĥ = 〈V, Ê〉, is just another formulation for the winner determination
problem for a combinatorial auction A, A = 〈I,B〉, take

• V = I

• Ê = B

In this settings, the set of the solutions for the weighted set packing prob-
lem for Ĥ with weighting function w coincides with the set of the solutions
for the winner determination problem on A.

2.5 Decomposition Methods for Constraint Satis-
faction Problems

As already mentioned in Section 2.2, constraint satisfaction problems which
associated constraint hypergraphs are acyclic can be solved efficiently. In

18 CHAPTER 2. BASIC CONCEPTS

this section we first present a general framework of methods for decomposing
a cyclic constraint satisfaction problems into acyclic ones. Then we discuss
the idea of CSP-solving algorithms based on hypertree decompositions, since
the hypertree decomposition method presents a very promising approach for
identifying and solving tractable classes of constraint satisfaction problems.

2.5.1 General Framework of Decomposition Methods for Con-
straint Satisfaction Problems

It is well known that acyclic constraint satisfaction problems are polynomi-
ally solvable [6]. Many constraint satisfaction problems happen to be nearly
acyclic. Among these are problems that are not acyclic, but can be trans-
formed to equivalent acyclic problems by simple operations, and problems
with corresponding hypergraphs containing either few or small cycles [13].
Hence, there has been much research in artificial intelligence focused on de-
veloping techniques for decomposing (nearly) cyclic constraint satisfaction
problems into acyclic ones, thus identifying tractable classes of constraint
satisfaction problems.

The general formal framework of decomposition methods was introduced
in [13].

Let H, H = 〈V, E〉, be a constraint hypergraph. Assume w.l.o.g. that
every vertex from V appears in at least one hyperedge from E . Assume
also w.l.o.g. that H is connected and reduced. A decomposition method D
associates to H a parameter D-width(H).

Definition 2.5.1. Let D be a decomposition method for a constraint sat-
isfaction problem. For any natural k, the k-tractable class C(D, k) of D is
defined as C(D, k) = {H | D-width ≤ k}

Therefore, for every decomposition method, constraint satisfaction prob-
lems can be classified according to the following infinite hierarchy of tractable
classes:

C(D, 1) ⊂ C(D, 2) ⊂ · · · ⊂ C(D, k) ⊂ . . .

such that for each (cyclic) constraint satisfaction problem K belonging to
class C(D, k) there exists a decomposition of width ≤ k, i.e. K can be
transformed in polynomial time (depending on k) into an equivalent acyclic
constraint satisfaction problem K′ [13, 15].

The solution to K′ (and therefore K) may be found efficiently by process-
ing the respective join-tree in a bottom-up fashion and performing semi-joins
of parent relations with corresponding children relations while ascending. In
other words, starting from the leaves, the constraint size associated to each
node t of the T may be reduced by filtering the tuples that do not agree on
the common attributes with the constraint of some of the child node of t. In
this way, at every hypertree decomposition node, we solve a partial problem

2.5. DECOMPOSITION METHODS FOR CSPS 19

with respect to K′. If, at any node of T after performing a semi-join, we
get an empty relation, then a given CSP instance has no solution. If, at the
end, the constraint relation in the root is not empty, then a solution exists,
and we may “collect” it traversing the tree in the top-down fashion. This
approach was originally introduced in [29].

It is desirable that a decomposition method D satisfies the following
properties [12]:

1. It should be as general as possible, i.e. for all k the classes C(D,k) of
D should be as large as possible.

2. It should be polynomially computable, i.e. given a hypergraph H, it
should be possible, for a fixed constant k, to decide the existence of
a decomposition of width k of H and compute one (if any exist) in
polynomial time.

3. Given a problem, the result of its hypergraph decomposition of bounded
width should lead to the polynomial solution of the problem.

There are many decompositions satisfying the last two properties. How-
ever, as shown in [13], the method of hypertree decompositions is the most
general method satisfying all three properties known so far. The idea of
solving constraint satisfaction problems with generalized hypertree decom-
positions is presented in [12].

2.5.2 Hypertree Decomposition Method for Constraint Sat-
isfaction Problems

Let H be a hypergraph representation of a constraint satisfaction problem
K. Let T, where T = 〈T, χ, λ〉 and T = 〈N,E〉, be a complete hypertree
decomposition of H of width k. To obtain a join-tree of an acyclic hyper-
graph H′, we define, for each node t ∈ N, a new constraint with the scope
χ(t), which associated constraint relation is the projection on χ(t) of the
join of the relations in λ(t). It takes O(m|λ(t)|−1logm) time to build a fresh
constraint for each t ∈ N, where m is the size of the largest relation to be
joined. This H′ is a hypergraph corresponding to a new CSP instance K′,
which solution is equivalent to the solution to original K. Then K′ may be
solved in O(n′mw−1logm) time, where w is the decomposition width and n′

is the number of nodes in T .
It is important to note that a hypertree with the smallest width for

a given constraint satisfaction problem K gives the best way of putting
together constraints of K in order to obtain an acyclic equivalent instance
K′ to be solved efficiently [12].

In fact, the hypertree width is known as a tractability measure for some
NP-hard constraint satisfaction problems [14]. Intuitively, the smaller the
hypertree width is, the faster the corresponding problem can be solved.

20 CHAPTER 2. BASIC CONCEPTS

Chapter 3

Solving the Winner
Determination Problem for
Combinatorial Auctions

The winner determination problem for combinatorial auctions is known to
be NP-complete [23]. In this chapter we talk about existing approaches
for identifying tractable classes of combinatorial auctions. Additionally, we
present existing optimal algorithms for solving the problem [24, 27, 10, 11].
One of these algorithms, ComputeSetPackingk, is the algorithm implemented
and experimentally tested within this thesis, and details about its implemen-
tation are left to Chapter 4.

3.1 Complexity of the Winner Determination Prob-
lem for Combinatorial Auctions

It is NP-complete to determine the winners in general combinatorial auctions
[23]. Numerous attempts to cope with this computational complexity can
be found in the literature. Among them, three main directions of developing
algorithms for solving the winner determination problem can be singled out
[3, 18]:

1. Designing approximation algorithms [10]. Unfortunately, there is no
polynomial-time algorithm that can give a sufficient approximation
[23, 24].

2. Designing optimal polynomial time algorithms for restricted classes of
combinatorial auctions [23, 26]. The drawback of this approach is that
the bidders cannot fully express their preferences.

3. Designing optimal search algorithms that are often fast, but require ex-
ponential time in the worst case (unless P=NP) [24, 27, 10, 11]. These

21

22 CHAPTER 3. SOLVING THE WDP FOR CAS

algorithms are mainly based on tree search algorithms and decompo-
sition techniques.

In this thesis we focus on the last direction among the directions men-
tioned above.

3.2 Tractable Classes of Combinatorial Auctions

In this section we give an overview of two approaches for the decomposi-
tion of hypergraphs - structured item graphs and hypertree decompositions
- aimed to identify tractable classes of combinatorial auctions. Any combi-
natorial auction instance can be evaluated by both of these notions, since for
every hypergraph it is possible to construct its item graph and its hypertree
decomposition. However, the hypertree decomposition technique is known
to be strictly more general than the technique of item graphs with bounded
tree width [11].

The tree-width of an item-graph of the hypergraph corresponding to a
combinatorial auction is proposed as the main complexity parameter for
solving the winner determination problem in [3]. However, with regard to
this notion, two computational problems arise:

• Solving the winner determination problem for a combinatorial auction
when an item graph is given.

• Constructing an item graph with the smallest possible width.

A winner determination problem is polynomially solvable if the item-
graph for a combinatorial auction has the tree-width equal to 1 [26]. More-
over, according to [3], a winner determination problem can be solved in
polynomial time if an item graph with bounded tree width is given. The
second result is practically useful when a structured item graph of small
width either is given or can be efficiently determined. Therefore, the ques-
tion of determining whether a structured item graph of a certain tree-width
exists and can be computed in polynomial time is of a particular interest,
and has been extensively researched. The difficulty is that there may be
exponentially many item graphs for a hypergraph corresponding to a given
combinatorial auction.

An algorithm for constructing an item tree with tree-width equal to 1 (if
it exists) in polynomial time was presented in [3]; yet the question whether
an item graph with small tree-width may be constructed was left open.
Another important result from [3] says that constructing the item graph
with the fewest edges is NP-complete.

Polynomial time algorithms for finding the structural item graph with
the minimum tree width were shown for the cases when the item graph
to be constructed is a line [17], a cycle [9] or a tree [3], yet the crucial

3.3. EXACT ALGORITHMS 23

open problem was whether it is tractable to check if there exists an item
graph with bounded treewidth for a given combinatorial auction, and how
it can be efficiently constructed if it exists. Later it was proved in [11] that
determining whether structured item graphs with a given tree-width exist
is computationally intractable for tree-width greater or equal to 3.

However, the problems of deciding if a hypertree decomposition of bounded
width exists, and computing one are solvable in polynomial time [14]. Hence,
hypertree decompositions are considered as a promising concept for solving
the combinatorial auction winner determination problem.

According to [11], the winner determination problem is tractable on the
class of the instances with corresponding dual hypergraphs having hypertree
width bounded by a fixed natural number. Note that the key parameter in
this tractability result is the hypertree width of the dual hypergraph H̃ for
the auction hypergraph H.

Furthermore, the hypertree decomposition technique for solving the win-
ner determination problem proposed in [11] is strictly more general than the
technique of structural item graphs, in the sense that strictly larger classes
of instances are tractable by the hypertree decomposition approach than by
the item graphs with bounded treewidth approach. Therefore, the problem
of determining whether a structured item graph with bounded tree-width
exist is not due to its generality, but rather because of some specificity in
its definition [11].

3.3 Exact Algorithms

There has been much effort in developing algorithms for solving the combi-
natorial auction winner determination problem. Due to the computational
complexity of the problem, the main challenge is to develop algorithms that
provably find an optimal solution. This section focuses on today’s foremost
optimal algorithms for solving the problem [24, 27, 10, 11].

3.3.1 Combinatorial Auction Structured Search (CASS)

Combinatorial Auction Structured Search is a branch-and-bound algorithm
presented in [10, 19] that exploits contextual information of an auction. This
is achieved by dividing bids into groups, called “bins”, in the following way:
For every item in I a bin is created. Then, given an ordering of all items in
the auction, CASS distributes bids among bins, such that a bid is put into
the bin corresponding to its lowest-order item. Hence, all bids are mutually
exclusive in a bin. This division lets the algorithm not only to exclude from
the consideration conflicting bids from the same bin, but also to skip entire
bins (due to the ordering).

The algorithm performs a depth-first search using a heuristic h for back-
tracking. It remembers the allocation Lbest (a set of compatible bids) with

24 CHAPTER 3. SOLVING THE WDP FOR CAS

the highest revenue Rev(Lbest) found so far. During the search, it finds at
every other allocation L an upper bound h(L) on the weight-revenue that
can be obtained with the remained items from the auction. It backtracks
when Rev(L) + h(L) ≤ Rev(Lbest). Besides, if an outcome U is reached
CASS remembers it if Rev(U) > Rev(Lbest) and backtracks.

Moreover, the algorithm uses a particular caching technique to keep the
knowledge from earlier searches to shrink in some cases a value of the upper
bound function h.

A more detailed description of the algorithm, its caching scheme, as
well as techniques for the construction of the upper-bound and some other
heuristics applied in CASS can be found in [10, 19]. Additionally, the C++
source code of the algorithm is publicly available.

3.3.2 Combinatorial Auction Branch On Bids (CABOB)

Combinatorial Auction Branch On Bids [27] is another special-purpose win-
ner determination algorithm. It is a descendant of the Branch On Bids
(BOB) algorithm of the same authors [26]. CABOB is a depth-first branch-
and-bound tree search algorithm that branches on bids. During the search,
the algorithm maintains a graph structure, called “bid graph”, which incor-
porates information about conflicting bids: the vertices of the graph cor-
respond to bids that do not include any already allocated item (i.e. still
“available” bids); two vertices of the graph are connected by an edge if the
corresponding bids compete for an item. While searching, the algorithm
uses upper and lower bounds on the revenue that the non-allocated items
can contribute.

Moreover, CABOB partitions bids into individual connected compo-
nents, such that every item appears only in the bids of at most one of
the components; then it uses upper and lower bounding for further pruning
across these components.

A more detailed explanation of CABOB, as well as other techniques ap-
plied in it, including preprocessing algorithms, description of upper-, lower-
bound and bid ordering heuristics can be found in [27, 25]. Unfortunately,
CABOB’s executables and source code are not publicly available.

3.3.3 CPLEX

CPLEX is a general-purpose mixed integer programming package 1. Since
the winner determination problem for combinatorial auctions can be for-
mulated as a (mixed) integer program, CPLEX is able to obtain optimal
solutions for combinatorial auctions. According to [1], “much more gen-
eral combinatorial auctions than the ones treated so far can be expressed
as mixed integer programs, and [. . .] they can be successfully managed by

1see www.cplex.com

3.3. EXACT ALGORITHMS 25

standard operations research algorithms and commercially available soft-
ware”.

3.3.4 ComputeSetPackingk

ComputeSetPackingk is a polynomial-time algorithm proposed in [11] for
solving the maximum weight set packing problem (hence, the winner detrmi-
nation problem for combinatorial auctions) on the class of those instances for
which the corresponding dual hypergraphs have bounded hypertree width.

A pseudo-code of ComputeSetPackingk is presented in Algorithms 3.3.1,
3.3.2, 3.3.3 and 3.3.4, and it is given using notations that are typical for the
maximum-weighted set packing problem. However, a reader should bear in
mind that the maximum set packing problem can be viewed as a constraint
satisfaction problem, therefore the algorithm follows the scheme described
in Subsection 2.5.2.

Subsequently we give a more detailed explanation of the essential parts
of the algorithm.

The algorithm receives two arguments in input:

• a weighted hypergraph H

• a complete k-width hypertree decomposition T of the dual hypergraph
H̃ of H

Every node n of the hypertree decomposition T represents a subproblem
of the initial problem. To see this, consider a hypergraph Hn = 〈Vn, En〉,
where Vn = λ(n) and En = χ(n). For each such hypergraph Hn the algo-
rithm constructs a set Pn of all its possible packings (i.e. partial packings
for the initial problem). This set represents a constraint defined in the node
n with the scope χ(n) and tuples of the constraint relation corresponding to
every P ∈ Pn. The size of Hn is bounded by (|E|+1)k, which is imposed by
the nature of the original problem: each vertex may be referred to a single
hyperedge, or left uncovered.

For each packing, its weight is computed. Then the algorithm traverses
the hypertree T twice. The first traversal is called the Bottom-Up phase,
and the second, the Top-Down phase.

In the Bottom-Up phase the algorithm processes nodes of T from the
leaves to the root, and for every node n of T (except leaves) the algorithm
removes from Pn those packings that do not conform with any packing of
any of the child-nodes of n. Afterwards, for each of the remaining packings
P in Pn, the algorithm finds, in the packings of every child node c of n, a
packing best[P, c] conforming with P and such that best[P, c] has maximal
weight. Besides, the weight of P is updated, in a way that the weight-revenue
“brought” by the conforming packing with the maximal weight among pack-
ings of each of the child-nodes is added to the former weight of P.

26 CHAPTER 3. SOLVING THE WDP FOR CAS

After the Bottom-Up phase is complete, in the root r of the tree there
will be a set of packings Pr, such that every Pr ∈ Pr has a weight wPr

associated to it. This wPr is the maximal weight, which is possible to get
using the hyperedges occurring in the considered packing Pr. Besides, each
Pr ∈ Pr has references to the best (in terms of weight-revenue) conforming
packing in every child-node of r; and each of those packings has references
to the packings that are best confiorming with it in all the corresponding
child-nodes of the tree, and so on down to the leaves of the tree. It is only left
to choose from the root-node r of the tree a packing that has the maximal
weight among all other packings Pr, and to traverse the tree in Top-Down
fashion, from r down to the leaves, accumulating the best partial packings
found.

Algorithm 3.3.1: ComputeSetPackingk(H, T (H̃))

comment: H = 〈V, E〉

comment: T (H̃) = 〈T, λ, χ〉
comment: T = 〈N,E〉
main
for each n ∈ N

do

Hn ← weighted hypergraph s.t. Hn = 〈Vn, En〉,
where Vn ⊆ V ,Vn = λ(n) , En ⊆ E and En = χ(n)
Pn ← set of all packings for Hn

for each P ∈ Pn

do wP ←Weight(P)
BottomUp()
let r be the root of T
Pr

best ← arg max{P∈Pr}wP
res← Pr

best

TopDown(r,Pr
best)

return (res)

3.3. EXACT ALGORITHMS 27

Algorithm 3.3.2: ComputeSetPackingk(H, T (H̃))

comment: H = 〈V, E〉

comment: T (H̃) = 〈T, λ, χ〉
comment: T = 〈N,E〉
procedure Weight(P)
w ←

∑
Pi∈P w(Pi)

return (w)

procedure TakeRawNode()
nodes← {n | n ∈ T, n 6∈ Done and ∀c s.t. {n, c} ∈ E c ∈ Done}
return (node ∈ nodes)

Algorithm 3.3.3: ComputeSetPackingk(H, T (H̃))

comment: H = 〈V, E〉

comment: T (H̃) = 〈T, λ, χ〉
comment: T = 〈N,E〉
procedure BottomUp()
Done← the set of all leaves of T
n← TakeRawNode()
repeat
for each c ∈ {child | child ∈ N and {n, child} ∈ E}
do Pn ← Pn − {P | P ∈ Pn and ¬∃Q ∈ Pc s.t. P # Q}

for each P ∈ Pn

do

for each c ∈ {child | child ∈ N and {n, child} ∈ E}

do

best[P, c]← arg max{Q | Q∈Pc and P#Q}(wQ)
wP ← wP + Weight(best[P, c])−
Weight(best[P, c] ∩ P)

Done← Done ∪ n
n← TakeRawNode()

until n = ∅

28 CHAPTER 3. SOLVING THE WDP FOR CAS

Algorithm 3.3.4: ComputeSetPackingk(H, T (H̃))

comment: H = 〈V, E〉

comment: T (H̃) = 〈T, λ, χ〉
comment: T = 〈N,E〉
procedure TopDown(n ∈ N, p ∈ Pn)
for each c ∈ {child | child ∈ N and {n, child} ∈ E}

do
{

res← res ∪ best[P, c]
TopDown(c, best[P, c])

In [11] it is shown that, given a weighted hypergraph H and a k-width
hypertree decomposition T of the dual hypergraph H̃ of H, such that T =
〈N,E〉, ComputeSetPackingk correctly outputs a solution for the correspond-
ing winner determination problem in time O(|T | × (|E|+ 1)2k).

Moreover, since deciding whether a k-width hypertree decomposition
exists and, if yes, computing it, are polynomially solvable problems, the
described decomposition method defines a k-tractable class for the maximum
weighted set packing problem [11].

Chapter 4

ComputeSetPackingk
Implementation

This chapter is dedicated to the description of our implementation of
ComputeSetPackingk. We start the description of the algorithms that con-
struct a specific decomposition, namely a complete hypertree decomposition
of the dual hypergraph for the problem. Then we show how essential steps of
ComputeSetPackingk, such as formulation of partial problems in every node
of the hypertree decomposition and propagation of the solutions of these
partial problems along the hypertree, are carried out. For convenience, we
describe these steps using a database notation, considering the winner de-
termination problem as a constraint satisfaction problem.

Throughout the chapter we will illustrate these and other ideas on the
following example of a combinatorial auction.

Example 4.1. Consider a combinatorial auction which hypergraph repre-
sentation is shown in Figure 4.1. Note that the hypergraph is cyclic. The
bids for this auction are:

B1 = 〈{I1, I2}, 1〉,
B2 = 〈{I2, I3}, 2〉,
B3 = 〈{I1, I3}, 2〉,
B4 = 〈{I2, I4}, 1〉,

B5 = 〈{I4}, 2〉

4.1 General Architecture

In this section we give an informal overview of the processing steps for
a given combinatorial auction in order to solve the corresponding winner
determination problem. Figure 4.2 illustrates the sequence of structural
modifications of a weighted hypergraph corresponding to the combinatorial
auction from Example 4.1.

29

30 CHAPTER 4. COMPUTESETPACKINGK IMPLEMENTATION

B3

B2

I1

I2

I3

I4

B1

B4B5

Figure 4.1: Hypergraph the combinatorial action from Example 4.1

Given a weighted hypergraph H representing a combinatorial auction.
To decompose the underlying constraint satisfaction problem the following
steps are carried out:

• Construction of the dual hypergraph H̃ for H

• Construction of the hypertree decomposition T of the dual hypergraph
H̃

• Completion of T (H̃)

• Construction of the constraint network N based on H̃ and formulating
the corresponding constraint satisfaction problem

Note that the dual hypergraph H̃ (Figure 4.3) represents a new formu-
lation for the original constraint satisfaction problem: constraints in H̃ say
that we can choose only one vertex per hyperedge.

Afterwards these transformation steps, the weighted hypergraph H, the
constraint network N and the complete T (H̃) will be given as an input for
ComputeSetPackingk.

In the following sections we describe these steps in more details.

4.1. GENERAL ARCHITECTURE 31

HTD(H̃)Dual Hypergraph H̃

Complete HTD(H̃)

ComputeSetPackingk

Solution to CA WDP

Weighted
Hypergraph H

{I1, I2} {B1, B2, B3, B4}

{I4} {B4, B5}

{I3} {B2, B3}{I4} {B4, B5}

{I1, I2} {B1, B2, B3, B4}

B3

B2

I1

I2

I3

I4

B1 B4

B5
B3

B2

I1

I2

I3

I4

B1

B4B5

CN

Figure 4.2: General architecture

B3

B2

I1

I2

I3

I4

B1 B4

B5

Figure 4.3: Dual hypergraph for the hypergraph from Figure 4.1

32 CHAPTER 4. COMPUTESETPACKINGK IMPLEMENTATION

4.2 Constructing a Complete Hypertree Decom-
position

A complete hypertree decomposition of the hypergraph associated to a con-
straint network is required as one of the input arguments for the algorithm
ComputeSetPackingk. As explained in Section 2.5 this decomposition rep-
resents an acyclic constraint network equivalent to the initial one. In the
next subsections we present procedures that we use for constructing such a
decomposition.

4.2.1 Variable Orderings

Variable ordering is a useful concept for managing many problems in graph
theory. Some of these problems are to decide the consistency of a constraint
network and decompose a cyclic constraint network into an equivalent acyclic
network. One of the algorithms for coping with these tasks is the Bucket
Elimination Adaptive Consistency algorithm [7]. This algorithm is presented
in more details in the following section. Here we describe two heuristic
methods for computing variable orderings. Both methods were used in our
implementation.

Min-Induced-Width and Max-Cardinality methods compute the variable
orderings for a graph [28]. However, we can also use these methods to get
a variable ordering for a hypergraph. For that we just use its primal graph
as an input for the algorithms [8].

Min-Induced-Width orders the variables of the graph from last to first in
the following way: It first selects a vertex which is connected with the least
number of vertices in the graph, and puts this variable in the last position
in the ordering. Then the algorithm creates edges connecting to each other
the neighbouring vertices of the selected vertex. Afterwards it eliminates
the selected vertex and all its adjacent edges from the original graph. The
selection of next variables continues recursively with the remaining subgraph
[7].

Max-Cardinality orders the vertices of a graph from first to last accord-
ing to the following procedure: It firstly picks up a random vertex from
the graph. After this it selects, one after another, those vertices that are
connected to a maximal number of already ordered vertices (breaking ties
randomly) [7].

4.2.2 Bucket Elimination for Hypertree Decompositions

The Bucket Elimination Adaptive Consistency method is a method used in
Constraint Processing [7]. Given a variable ordering d, the method firstly
associates a bucket to each variable of a problem. Then, it puts each con-
straint C into the bucket associated to the latest variable (according to d)

4.2. CONSTRUCTING A COMPLETE HTD 33

in the scope of C. Hence, each constraint of the problem is placed in some
bucket, and constraints that have the same latest variable (according to d)
in their scopes are placed in the same bucket. Then, by processing in a
direction that is reversed to the direction of the ordering d, the method
solves subproblems represented by every bucket, recording the result as a
new constraint and putting it in the bucket of the latest variable (according
to d) of its scope.

The Bucket Elimination Adaptive Consistency method can be extended
to create a tree decomposition R = 〈T, χ〉, where T = 〈N,E〉, for a hy-
pergraph representing a constraint satisfaction problem [21, 8]. For every
bucket, a node t ∈ N is created. Every time a solution of the subproblem
represented by a bucket is put into another bucket, the method connects
by an edge two nodes from N that are associated to those two buckets, and
adds this edge to E. At the end, for each t ∈ N, the set χ(t) is composed
of exactly those vertices that appear in the corresponding bucket Bt. A
pseudo-code of this method is presented in Algorithm 4.2.1 1.

Algorithm 4.2.1: BucketElimination(H, d)

comment: H = 〈V, E〉
comment: d = 〈v1, . . . , vn〉 is an ordering of vertices in V
main
E← {}
for i← 1 to n

do
{

Bi ← {}
ti ← new node in N

for i← n to 1

do
{

Bi ← Bi ∪ e,
s.t. vi ∈ e and e ∈ E is yet unplaced

for i← n to 1

do

A← Bi \ {vi}
Bj ← Bj ∪A, s.t. vj is the latest vertex in A according d
E← E ∪ < ti, tj >

for i← 1 to n
do χ(ti)← Bi

return (< 〈N,E〉, χ >)

This method will produce a tree decomposition of smallest width, when
an optimal variable ordering is provided [7].

1The implementation of the Bucket Elimination algorithm for constructing hypertree
decompositions can be found at www.dbai.tuwien.ac.at/proj/hypertree/index.html

34 CHAPTER 4. COMPUTESETPACKINGK IMPLEMENTATION

Bucket(B5) : { } ∪ {B5}

Bucket(B3) : {B1, B2, B3}

Bucket(B1) : {B1, B2, B4}

Bucket(B4) : {B4, B5}

Bucket(B2) : { } ∪ {B2, B4}

d2 = {B5, B4, B2, B1, B3}

Bucket(B5) : { } ∪ {B5}

Bucket(B2) : {B1, B2, B3, B4}

Bucket(B3) : {B1, B3} ∪ {B4}

Bucket(B4) : {B4, B5}

Bucket(B1) : { } ∪ {B1, B4}

d1 = {B5, B4, B1, B3, B2}

(a) (b)

Figure 4.4: Execution of Bucket Elimination for two orderings on the hy-
pergraph from Figure 4.3

Example 4.2. Consider the hypergraph depicted in Figure 4.3. Figure 4.4
shows a schematic execution of Bucket Elimination method for two variable
orderings: d1 = {B5, B4, B1, B3, B2} and d2 = {B5, B4, B2, B1, B3}. The
initial partitioning of variables into buckets is shown on the left side of ∪-
symbol, while variables added to buckets are on the right side of ∪-symbol.

A generalized hypertree decomposition T = 〈T, χ, λ〉 can be obtained
from a tree decomposition R = 〈T, χ〉 by associating to each node t ∈ N an
additional set λ(t) ⊆ E , such that the following condition is satisfied:

for each t ∈ N, χ(t) ⊆ (
⋃

e∈λ(t)

e)

Intuitively, for each node t we need to “cover” each variable found in
χ(t) by at least one edge presented in λ(t). To solve this covering problem
the greedy set covering heuristic can be applied [21]. For every node t this
heuristic creates the set λ(t) by iteratively choosing hyperedges covering
most of the “uncovered” vertices from the χ(t)-set.

Example 4.3. Continuing our example, a generalized hypertree decompo-
sition built based on the tree decomposition from Figure 4.4(a) (after some
simplifications) is presented in Figure 4.5.

4.2.3 Completing the Hypertree Decomposition

In order to represent the winner determination problem for a combinatorial
auction as a constraint satisfaction problem we need to consider all hyper-

4.2. CONSTRUCTING A COMPLETE HTD 35

{I1, I2} {B1, B2, B3, B4}

{I4} {B4, B5}

Figure 4.5: Generalized hypertree decomposition of the hypergraph from
Figure 4.3

edges of the hypergraph representation of the underlying problem. This is
required for formulating the constraints imposed by the intersection of those
hyperedges. However, as was discussed in Subsection 2.4.2, it is not required
that all hyperedges of the hypergraph are strongly covered in a generalized
hypertree decomposition. Hence, we need to complete this decomposition
with respect to those hyperedges that have not been strongly covered. Given
a hypergraph and its generalized hypertree decomposition, Algorithm 4.2.2
constructs a complete hypertree decomposition having the same width as
the given generalized hypertree [13].

Algorithm 4.2.2: MakeCompleteHTD(H, T)

comment: H = 〈V, E〉
comment: T = 〈T, χ, λ〉
main
for each e ∈ E

do
{
if Missing(e, T)
then T ← AddNode(e, T)

return (T)

procedure Missing(e ∈ E , T)
for each n ∈ N

do
{
if e ∈ λ(n)
then return (false)

return (true)

procedure AddNode(e ∈ E , T)
n← new leaf s.t. n ∈ N and n is a child of t,
where t ∈ N and e ⊆ χ(t)

χ(n)← e
λ(n)← {e}
return (T)

36 CHAPTER 4. COMPUTESETPACKINGK IMPLEMENTATION

{I1, I2} {B1, B2, B3, B4}

{I3} {B2, B3}{I4} {B4, B5}

Figure 4.6: Complete hypertree decomposition of the hypergraph from Fig-
ure 4.3

Intuitively, for every hyperedge e ∈ E that does not appear in the λ-set
of some node of the generalized hypertree decomposition T , T = 〈T, χ, λ〉,
of a hypergraph H, H = 〈V, E〉, the algorithm does the following:

1. Finds a node n ∈ N , s.t. e ⊆ χ(t) (n exists in N by the first condition
in Definition 2.4.10 of hypertree decomposition)

2. Creates a new node n, with χ(n) = e and λ(n) = {e}, and adds this
node n to the N as a child of the node t

Example 4.4. A complete hypertree decomposition for the generalized hy-
pertree decomposition from Figure 4.5 and hypergraph from Figure 4.3 is
shown in Figure 4.6.

4.3 Formulating and Solving a Constraint Satis-
faction Problem

Given a combinatorial auction instance, we first formulate a constraint net-
work based on it. Then we use hypertree decomposition method to make
this constraint network acyclic, as described in Subsection 2.5.2. Finally,
we solve the corresponding acyclic constraint satisfaction problem following
ideas from [29] which are briefly described in Subsection 2.5.1. Subsequently
we illustrate how these steps are involved in ComputeSetPackingk.

4.3.1 Constructing an Initial Constraint Network

Given a combinatorial auction and its hypergraph H representation, we
formulate a constraint network (constraint satisfaction problem) for solving
the corresponding winner determination problem. We first reformulate the
problem by constructing the dual hypergraph H̃ for the original hypergraph
H.

With each hyperedge of the dual hypergraph H̃ we associate a single con-
straint as it is shown in Algorithm 4.3.1. Hence, the number of constraints
in the formulated constraint satisfaction problem is equal to the number of
hyperedges in H̃.

4.3. FORMULATING AND SOLVING A CSP 37

Algorithm 4.3.1: ConstructConstraintNetwork(H̃)

comment: H̃ = 〈Ṽ, Ẽ〉
main
N ← constraint network
for each ẽ ∈ Ẽ

do

S ← 〈ṽ | ṽ ∈ ẽ〉
n← |S|
R[S]← {tj | tj ∈ {0, 1}n and

∀i ∈ {1, n} t(i) = 1 iff i = j}
R[S]← R[S] ∪ {0}n
C ẽ ← constraint s.t. C ẽ = 〈S, R〉
N ← N ∪ C ẽ

return (N)

In database terms, a constraint for a hyperedge ẽ of a hypergraph H̃, H̃ =
〈Ṽ, Ẽ〉, is a relation instance, with the relation name ẽ and a set of attributes,
such that there is an attribute corresponding to every vertex ṽ ∈ ẽ. Tuples
are formulated based on constraints imposed by the combinatorial auction:
each tuple of the relation instance represents one of the legal combinations
of bids for the considered item of the combinatorial auction, respecting the
condition that an item may appear at most in one bid at a time, i.e. in each
hyperedge in the dual hypergraph we may choose at most one vertex.

Indeed, every tuple of a constraint defined as above corresponds to a
partial packing for the original hypergraph H, H = 〈V, E〉, i.e. a packing
for a hypergraph H′, s.t. H′ = 〈V ′, E ′〉, V ′ ⊆ V, E ′ ⊆ E , where in the set E ′
there are exactly the hyperedges from the scope of the constraint.

Example 4.5. Constraints formulated for the combinatorial auction from
Example 4.1 are presented on the Figure 4.7. Consider, for instance, the
constraint I2. The set of partial packings that this constraint represents is
{{}, {B1}, {B2}, {B3}}. The second tuple of the constraint I2 corresponds
to the partial packing {B1}.

4.3.2 Constructing an Acyclic Constraint Network

Given a cyclic constraint network and its hypertree decomposition T with
bounded width, we can formulate an equivalent acyclic constraint network
and efficiently solve the corresponding constraint satisfaction problem. To
do so, we need to associate a constraint to each node n of the hypertree
decomposition. If there is only one element in the set λ(n), we just take
the corresponding constraint from the initial constraint network. However,

38 CHAPTER 4. COMPUTESETPACKINGK IMPLEMENTATION

I1 B3B1

0 0

1 0

0 1

I3 B3B2

0 0

1 0

0 1

I2 B4B1

0

1

0

0

0

0

0 10

10 0

B2

I4 B5B4

0 0

1 0

0 1

Figure 4.7: Constraints for the combinatorial auction from Example 4.1

if there is more than one element in λ(n), we need to make joins among
the corresponding constraints, project the result over the variables in χ(n),
and associate the obtained constraint with the node n. Besides, we need
to associate a weight for every tuple of the obtained constraint computed
as a sum of weights of those hyperedges that appear in the corresponding
packing.

Example 4.6. Recall Example 4.1 and the complete hypertree decomposi-
tion of the dual hypergraph for it shown in Figure 4.6. We need to make
a join between constraints I1 and I2, project the result of the join over
the variables B1, B2, B3, B4, and place the resulting constraint in the the
root. Additionally, we need to compute the weight for every tuple of the
constraint as a sum of weights of those hyperedges that appear in the cor-
responding partial packing. The constraint obtained as a result of the join
and weights computed for every tuple of this constraint are shown in Fig-
ure 4.8. Consider, for instance, the sixth tuple t6 = 〈0, 1, 0, 1〉. Then
w(t6) = w(B3) + w(B4) = 2 + 1 = 3. Thus, the acyclic constraint net-
work for the problem from Example 4.1 consists from the constraints I3, I4

and πB1,B2,B3,B4(I1 ./ I2).

4.3.3 Filtering Non-Confirming Tuples

After the acyclic constraint network is formulated, we can solve the corre-
sponding constraint satisfaction problem by considering every node n of the
hypertree decomposition and filtering those tuples in the constraint associ-
ated to n that do not agree on common attributes with any of the tuples of
some child-node of n. We do this in the bottom-up fashion, starting from the
leaves of the hypertree, by computing semi-joins between the corresponding
relations. Moreover, while performing these semi-joins we are looking for a

4.3. FORMULATING AND SOLVING A CSP 39

πB1,B3,B2,B4(I1 ./ I2) B1 B2B3

0

0

0

1

1

1

1 00

0 01

0

0

0

0

1

0

0

0

0

B4

0

0

0

1

0

0

1

w

2

4

1

3

0

2

1

Figure 4.8: Constraint in the root node of the hypertree from Figure 4.6
after performing join

confirming tuple that is the best in terms of weight-revenue for every tuple
in the constraint relation of the parent-node.

In the next subsubsections we explain these procedures in more details.
In the examples we use the following notation: “Croot”, “Cleft”, “Cright”
stand for the constraints associated to the root-node, the left-child node
and the right-child node respectively. “w” is the weight of a tuple in the
corresponding constraint, while “wl” and “wr” are updated weight-values in
the root-node after semi-joins with the left-child node and with the right-
child node respectively.

Performing Semi-Joins

In order to accomplish semi-joins more efficiently, instead of looking through
all tuples quadratically, we firstly sort relations of both constraints partic-
ipating in the semi-join over their common attributes. Then, we traverse
the sorted relations starting from their first tuples until we reach their last
tuples removing from the relation of the parent constraint tuples that do not
have a tuple in the relation of the child constraint identical on the common
attributes. Moreover, sorting allows a faster search of the “best” confirming
tuples already while performing semi-joins.

Example 4.7. Continuing Example 4.1, recall the complete hypertree de-
composition for it from Figure 4.6. As we see, the hypertree decomposition
consists of three nodes, one of which is the root, and the other two are child-
nodes of the root: the left child and the right child. Hence, we need to make
two consequent semi-joins of the constraint associated to the root node with
the constraints associated to child-nodes of the hypertree. The first semi-
join is performed over the attribute B4, the second semi-join is performed
over the attributes B3 and B2. These semi-joins are shown on Figure 4.9
and on Figure 4.10 respectively. After every semi-join the constraint in the
root-node is updated with the result.

40 CHAPTER 4. COMPUTESETPACKINGK IMPLEMENTATION

B1 B3 wlwB2 B4

0 0 200 0

0 0 421 0

0 0 110 1

0 1 420 0

0 1 641 0

0 1 330 1

1 0 310 0

B4 B5Cleft w

0 0 0

1 0 1

0 1 2

Croot

Figure 4.9: Semi-join of the relation in the root with the relation in the left
child for the hypertree in Figure 4.6

B1 B3 B2 B4

0 0

0 1

1 0 0 0

1 0

0 1 0 0

0 1 0 1

0 1 1 0

0 0

0 0

0 0

wl

3

4

3

6

1

2

4

wr

3

4

3

1

2

4

B3 B2Cright w

0 0 0

0 1 2

1 0 2

Croot

Figure 4.10: Semi-join of the relation in the root with the relation in the
left child for the hypertree in Figure 4.6

4.3. FORMULATING AND SOLVING A CSP 41

Note that after performing the semi-join with the constraint relation Croot

in the right-child (Figure 4.10), one of the tuples was eliminated from the
relation in the root-node. The reason is that there is no tuple in Croot that
would agree with the removed tuple on the common attributes (i.e. on B3

and B2).

Determining Best Partial Solutions

While performing semi-joins, for every tuple tp in the parent-node relation
we look for “best” tuples that equal to tp on their common attributes in the
relations of every child-node. Those tuples are the ones that, conforming
with the partial packing represented by tp, bring the higher profit in terms
of weight.

Example 4.8. Consider once again Figures 4.9 and 4.10. In these figures
an arrow coming from a tuple tp of the parent-node and pointing to a tuple
tc of the child-node means that tp and tc agree on the common attributes,
and the tuple tc is the tuple from the constraint of the considered child node
that has the highest weight among all other tuples that agree with tp.

Note that in Figure 4.9 the weights of the first five tuples in the constraint
of the parent node were updated. It is explained by the fact, that for each tuple
tp among the first five ones the “best” tuple tc of the left-child relation was the
tuple, corresponding to a partial packing of the underlying hypergraph, where
the hyperedge B5 appears. Hence, considering that B5 is not a common
attribute for the semi-joined constraints, the tuple tc will “bring” the weight-
revenue equal to the weight of the hyperedge B5. Take, for instance, the forth
tuple as t4 = 〈0, 1, 1, 0〉 of the parent-constraint. Then wl(t4) = w(t4) +
w(tc)− w(t4 ∩ tc) = 4 + 2− 0 = 6.

For the last two tuples in the parent-constraint, the best tuples found in
the left-child constraint will not “bring” any weight-revenue. Hence, weights
of those tuples were not updated. Consider, for instance, the last tuple t7 =
〈0, 1, 0, 1〉. Then wl(t7) = w(t7) + w(tc)− w(t7 ∩ tc) = 3 + 1− 1 = 3.

Accumulating the Answer

If the resulting constraint in the root-node is not empty after the last semi-
join in the root-node is performed, then the solution to the winner determi-
nation problem exists. To get the solution, we first choose a tuple having
the maximal weight in the relation of the root-node and include the partial
packing that this tuple represents into solution. Then we traverse the hy-
pertree down to the leaves, accumulating the “best” packings confirming to
the packings that are already included to solution.

Example 4.9. Finishing Example 4.1, the constraint associated to the root
node of the hypertree decomposition (Figure 4.6), after the bottom-up phase

42 CHAPTER 4. COMPUTESETPACKINGK IMPLEMENTATION

was finished, is shown in Figure 4.10. There are two tuples t3 = 〈1, 0, 0, 0〉
and t6 = 〈0, 1, 0, 1〉 having the maximal weight w(t3) = w(t6) = 3 among the
other tuples in the relation. This is the highest possible revenue from the
combinatorial auction. To find the allocation of non-intersecting hyperedges
that lead to this revenue, we firstly choose any of t3 or t6, and then consider
in top-down fashion the other tuples that are being referenced by the choosen
one. For instance, consider t3 that represents the partial packing {B1}. We
first add {B1} to the solution: res = {B1}. Then we consider the “best”
tuples for t3 in the left- and right- children nodes of the root. The “best” tuple
from the left-child node (Figure 4.9) represents the partial packing {B5},
which we add to the solution res = res ∪ {B5} = {B1} ∪ {B5} = {B1, B5}.
Since the “best” tuple from the right-child node (Figure 4.10) represents the
empty partial packing { }, a solution to the problem is res = {B1, B5}.

In a similar way, if we choose the tuple t6 in the root node of the hypertree
as a best partial packing for the problem, we will get the packing {B3, B4} a
solution to the problem.

Chapter 5

Experimental Evaluation

This chapter describes experimental work investigating the solution for the
winner determination problem for combinatorial auctions. It firstly intro-
duces various techniques to generate test data based on statistical methods,
then it gives an overview of distributions that were actually implemented
by other researches on combinatorial auctions. Moreover, it describes a test
suite for combinatorial auction algorithms that models realistic data. Fi-
nally, it presents experimental results obtained with the execution of the
ComputeSetPackingk algorithm on instances generated with these distribu-
tions, as well as the analysis of the results.

5.1 Experimental Setup

There may be different approaches to conduct experimental work on combi-
natorial auctions. One of these approaches is to use human subjects. Such
tests may be useful in understanding the nature of human behavior under
different auctions mechanisms. However because of many reasons mentioned
in [20] they are not suitable for evaluating the computational characteristics
of those mechanisms. Another way to experiment on combinatorial auctions
is to examine particular problems, such as coordination of railroad tracks or
airport time slot allocation, to which combinatorial auctions are appear to
suite well. The advantage of this approach is that it provides specific descrip-
tions of problem domains to which combinatorial auctions can be applied.
However, the approach does not provide a method to generate test data and
it does not give the means to evaluate how the problem’s difficulty depends
on the number of items and bids [20].

To overcome the flaws of the approaches mentioned above, a number of
studies proposed several bid generation techniques, parameterized by num-
ber of bids and items [24, 10, 5]. Besides, a suite for distributions based on
real-world situations (Combinatorial Auctions Test Suite) was presented in
[20]. In the next subsections we describe such parameterized distributions

43

44 CHAPTER 5. EXPERIMENTAL EVALUATION

in more details.

5.1.1 Artificial Distributions: General Characterization

Much of the research on the algorithms for combinatorial auctions was con-
ducted in the absence of test suites. In order to test proposed algorithms,
various distributions for generating test data were developed. As noticed
in [20], each of these distributions can be seen as the answer to three ques-
tions: how many items to request in a bundle, which items to request, and
what is the price offered for a bundle. In the following tables we summarize,
following [20], some possible techniques that address these questions. These
tables can be used as a framework to classify distributions.

Number of Items in a Bundle:

Uniform Uniformly distributed on [1, num items]
Normal Normally distributed with µ = µ items and

σ = σ items

Constant Fixed at constant items

Decay Starting with 1, repeatedly increment the
size of the bundle until rand(0, 1) exceeds α,
where rand(0, 1) is a real number drawn uni-
formly from [0, 1].

Binomial Request n items with probability pn(1 −
p)num items−n

(
num items

n

)
Exponential Request n items with probability Cexp−n q

Which Items to Request in a Bundle:

Random Draw n random items from the set of all
items, without replacement

Price Offer for a Bundle:

Fixed Random Uniform on [low fixed, hi fixed]
Linear Random Uniform on [low linearly · n, hi lineary · n]
Normal Draw from a normal distribution with η =

η price and σ = σ price

5.1.2 Artificial Distributions: Published Work

With the classification framework presented in Subsection 5.1.1, we proceed
here to study and classify distributions that were actually implemented by

5.1. EXPERIMENTAL SETUP 45

other researches on combinatorial auctions. Our study is summarized in the
following table1.

author # of items price CATS
Random

Sandholm
[24, 27]

uniform fixed random with low fixed = 0,
hi fixed = 1

L1

Andersson
et al. [1]

uniform fixed random with low fixed = 1,
hi fixed = 1000

L1a

Weighted Random
Sandholm
[24, 27]

uniform linear random with low linearly = 0,
hi linearly = 1

L2

Andersson
et al. [1]

uniform linear random with low linearly =
500, hi linearly = 1500

L2a

Uniform
Sandholm
[24, 27]

constant fixed random with low fixed = 0,
hi fixed = 1

L3

Decay
Sandholm
[24, 27]

decay with
α = 0.55

linear random with low linearly = 0,
hi linearly = 1

L4

Andersson
et al. [1]

decay with
α = 0.55

linear random with low linearly = 1,
hi linearly = 1000

L4a

Binomial
Fujishima
et al. [10]

binomial
with
p = 0.2

linear random with low linearly =
0.5, high linearly = 1.5

L7

Andersson
et al. [1]

binomial
with
p = 0.2

linear random with low linearly =
0.5, high linearly = 1.5

L7a

Exponential
Fujishima
et al. [10]

exponential
with q = 5

linear random with low linearly =
0.5, high linearly = 1.5

L6

Andersson
et al. [1]

exponential
with q = 5

linear random with low linearly =
500, high linearly = 1500

L6a

Each distribution was given a name by their proponents depending either
on the technique employed to generate the number of items in a bid or on the
technique for bid’s price generation. In the last column in the table we show
the notations of the corresponding distributions given by Leyton-Brown et
al. in [20]. Note that we omit from the table the information about which
items to request in a bundle, since all of the presented below distributions
use random technique for answering this question.

1CATS’ L3 distribution corresponds to Sandholm’s [24, 27] uniform distribution with
the constant items = 3.

46 CHAPTER 5. EXPERIMENTAL EVALUATION

5.1.3 Combinatorial Auctions Test Suite (CATS)

While the bid-generation techniques discussed above may be sufficient for
evaluating or comparing algorithms, the suits they generate do not represent
the scenarios happening in the real-world auctions. Therefore it is hard to
predict to which real-world problems each algorithm may be applied.

A universal test suite for combinatorial auction algorithms is introduced
in [20]. Combinatorial Auctions Test Suite (CATS) is “a suite of distribu-
tion families for generating realistic, economically motivated combinatorial
bids in five broad real-world domains.” For most of these distributions the
following procedure for generating bids are used:

1. Construction of a graph representing the adjacency relationships be-
tween items

2. Derivation of complementary properties between items and substi-
tutability properties of bids (using the graph)

All five CATS distributions may generate slightly more bids then they
were asked. For the detailed overview of the distributions see [20]. Below
we describe them briefly.

Path in Space This class of problems can be described as the problem
of purchasing a connection between two points. Although this dis-
tribution can be applied to model many of the real-life domains, the
authors use the railway domain as an intuitive example. In the graph
corresponding to the problem, nodes represent locations and edges
represent connections between locations. Therefore the items of the
auctions are edges of the graph, and bids are the sets of the edges that
make a path between two nodes.

The graph is generated randomly with various parameters that can
be adjusted. The technique generates non-planar graphs. Bids are
generated in the following way: randomly choose two nodes, start
with the value for a path between those nodes equal to their Euclidean
distance, make XOR bids on all alternative but more profitable paths
between the nodes. The paths’ values are random in parameterized
proportion to the Euclidean distance between the nodes.

Proximity in Space The most intuitive examples of the real-world prob-
lem for this distribution is the sale of adjacent pieces of real estate.
Nodes of the graph for this problem represent the items and edges
represent the adjacency relationship, in such a way that there may be
a variable number of neighbours per node.

The size of each bundle is determined by the decay distribution. A
first item is added to the bid randomly. The other items for the bid

5.1. EXPERIMENTAL SETUP 47

are added as follows. For every new item to be added with uniformly
random distribution, there is a small probability that it will not be
adjacent with the existing items in the bundle. Otherwise, an item
from the set of nodes bordering a node of the bundle is added. The
price offered for the bundle depends on the sum of common and private
valuations for the items in the bundle, and also takes into consideration
a superadditive function on the number of items.

Arbitrary Relationships This technique generates problems in which there
are arbitrary complementarity relationships between items. The graph
corresponding to this problem is fully-connected. Each edge from n1

to n2 of the graph is labelled with the value d(n1, n2) = rand(0, 1).

The technique for modelling bids is the generalization of the technique
for Proximity in Space distribution: For each bid B, select the first
item randomly. Proceed to add items, each with the probability pro-
portional to

∑
n2∈B d(n1, n2) · pi(n1), where pi(n1) represents bidder

i’s private valuation of the item (n1).

Temporal Matching This approach models problems with real-world do-
mains in which complementarity arises from a temporal relationship
between items. Perhaps the most striking example of a problem of
this king is the airport take-off and landing problem that is used in
[20] for the description of the technique. In this example items are
the privileges to use the runway at a particular airport at a particular
time. Substitutable bids are different departure/arrival units. The
graph used in the example is the real map of the four busiest US air-
ports. The bidding mechanism presumes that airlines have a certain
tolerance (expressed with statistical parameters) for the departure and
arrival time of a plane, considering its most preferred departure and
arrival times. The value of a bundle is derived from a particular agent’s
utility function.

Temporal Scheduling Temporal scheduling is a CA formulation for the
distributed job-scheduling problem: a factory conducts an auction for
time-slices on some resource; each bidder has a job requiring some
amount of machine time, and one or more deadlines by which the job
must be accomplished.

In the CATS formulation of the problem a specific time-slice is repre-
sented by an item. A set of substitutable bids satisfying the deadline
constraints is generated. Note that two bids are substitutable if they
represent different possible schedules for the same job. The number
of deadlines for each job is determined by the decay distribution. If
d1 < · · · < dn, where di is some deadline, and the value of a job ac-
complished by d1 is v1 (which is superadditive in the job length), then

48 CHAPTER 5. EXPERIMENTAL EVALUATION

the value of a job accomplished by di is vi = v1 · d1
di

. Hence, the later
a deadline is, the less the bidder is willing to pay for it.

5.2 Experiments

To examine the performance of the ComputeSetPackingk algorithm in prac-
tice, we measured its running time and the width of the hypertree decom-
positions varying the number of goods and bids on the input data generated
with the CATS software. Our empirical results are based on computational
experiments on instances involving up to 1500 bids and 1500 items.

For our experiments we considered L2, L3, L4, L6 and L7 artificial distri-
butions, as well as matching, regions and scheduling distributions from the
CATS suite [20].

All experiments were executed on twelve computers with Intel Celeron D
3.06 GHz and 1.24 GB of RAM running Windows XP. For every experiment,
the algorithm was running until either an exact solution was found or a
memory overflow took place.

5.2.1 Goals

The major goal of our experiments was to estimate and compare the hardness
of different combinatorial auction benchmark distributions with respect to
solving the corresponding combinatorial auctions with the ComputeSetPackingk

algorithm.
As already mentioned in Subsection 2.5.2 and in Section 3.2, hypertree

width is a significant tractability parameter for the winner determination
problem in combinatorial auctions. Since we use a heuristic method (Bucket
Elimination) to build hypertrees for combinatorial auctions, the widths of
our hypertree decompositions (Definition 2.4.13) are only an estimation
of the hypertree width (Definition 2.4.14) of the corresponding problems.
Throughout the experiments when we talk about the width of the hypertree
decomposition we refer to a complete hypertree for the dual hypergraph
built by the Bucket Elimination method for the underlying problem. For
each experimental case we built two hypertree decompositions by the Bucket
Elimination method - one with Min-Induced-Width ordering heuristics and
the other with Max-Cardinality ordering heuristics. Then we considered the
smaller width of the resulting hypertree decompositions.

With our experiments we observed how the width of hypertree decom-
positions changes while varying the number of bids and the number of items
for different distributions.

Another goal of the experiments was to estimate a threshold of the width
of the hypertree decomposition, such that a problem having a hypertree de-
composition with the width lower than the threshold is easy enough to be
solvable by the algorithm with the computational resources that we used

5.2. EXPERIMENTS 49

for our experimental work. Additionally, for every distribution we exper-
imentally determined ranges of values for the numbers of items and bids
for which the corresponding problems have hypertree decompositions with
width below the threshold.

To achieve our experimental goals we divided our experiments in two
parts. In the first part we estimated the dependency of the running time
of the algorithm on the width of the hypertree decompositions for different
distributions. In the second part of our experiments we evaluated the de-
pendency of the width of hypertree decompositions on the numbers of items
and bids for different distributions. Next two subsections present these ex-
periments.

5.2.2 Running Time Dependency on the Width of Hypertree
Decompositions

In these experiments we estimated how running time depends on the width of
hypertree decompositions for different distributions, and we found the range
of values for the width of hypertree decompositions for which the program’s
execution finishes without producing memory overflow in our computers.

Experimental Procedure

To evaluate the running time of the algorithm for each of the distributions
L2, L3, L4, L6 and regions we varied the number of bids in the range from 20
to 200 with step 20, the number of items in the range from 30 to 300 with
step 30. For the distributions matching and scheduling we varied both the
number of bids and the number of items in the range from 100 to 900 with
step 200. Note, that we consider the actual number of items and bids that
was given as an input to the CATS generator: due to the nature of some
of the distributions the generated instances could have a different number
of items or bids than the number given as input to CATS - we assume
that, if there were less items generated than we actually asked, then non-
generated items were dummy in the sense that each of them was belonged
only to bids with prices equal to zero. For every experimental case, i.e. for
every pair of numbers of bids and items, we executed the algorithm on three
problem instances and took the average of the running times over those
instances. The time required for parsing the test data and for building the
hypertree decomposition was not measured, since we were only interested
in the time required to solve the constraint satisfaction problem represented
by the hypertree decomposition.

Throughout the experiments we estimated how running time varies with
the width of the hypertree decomposition.

50 CHAPTER 5. EXPERIMENTAL EVALUATION

Results and Analysis

Figure 5.1 presents the dependence of the running time on the width of
hypertree decompositions for different distributions. As we can see this
dependence is exponential.

Figure 5.1: ComputeSetPackingk running time dependence on the width of
hypertree decompositions for distributions L2, L3, L4, L6, regions, matching
and scheduling

It is interesting that for a fixed width the running time varies significantly
among some of the distributions. For example, if we consider a hypertree
decomposition with width equal to 2, the corresponding problem instance
from the scheduling distribution was solved in 3263.4 seconds in average.
An instance from the L2 distribution was solved in 4.45 seconds in average.
From the L4 distribution it was solved in 0.12 seconds in average. This sug-
gests that even though the hypertree width is an interesting and important
measure of the difficulty of the problem, it is not the only notion that must
be considered.

By our experiments we observed that the size (the number of nodes) of
the hypertree also influences the running time and the memory used by the
algorithm. For example, given a fixed number of items and bids, the hyper-
tree constructed for the instance of scheduling distribution has normally the
smallest width among all distributions. However, it is much harder to solve
this instance because of the large size of the corresponding hypertree. There
is a tradeoff between the width of the hypertree decompositon and the size
of the hypertree: the lower the width of the hypertree decompositions, the
larger their sizes.

A possible direction for future research could be to estimate how the
performance of the algorithm depends on the size of the hypertree decom-

5.2. EXPERIMENTS 51

position, and to extend the algorithm considering the tradeoff between the
width and the size of the hypertree decomposition. One of the approaches
could be to use heuristics that would help to find the best combination of
values for the size and the width of the hypertree decomposition for a given
combinatorial auction instance.

Figure 5.2 shows the maximum values of the width of the hypertree
decompositions for which the algorithm was always finishing without caus-
ing memory overflow. For the instances having hypertree decompositions
with widths larger than those shown in Figure 5.2 the algorithm led to the
depletion of memory.

Figure 5.2: Values of the hypertree width for which ComputeSetPackingk

terminates for different distributions

As we can see from Figure 5.2, the distribution for which the algo-
rithm manages to give an exact answer for instances with largest widths
is L3. On the other extreme, the distribution that is the hardest to solve for
ComputeSetPackingk is scheduling.

5.2.3 Dependencies of the Width of Hypertree Decomposi-
tions

The experiments described in this section were designed to answer how the
widths of hypertree decompositions vary while varying the number of bids
and the number of items for different distributions.

Additionally, these experiments show the ranges of values for the num-
bers of items and bids for which the Bucket Elimination method was able
to built hypertree decompositions with the width below the threshold that
was determined with the previously described experiments.

52 CHAPTER 5. EXPERIMENTAL EVALUATION

Experimental Procedure

To make the observation of experiments more visual, we split distributions
in two groups, such that the change of the widths of hypertree decomposi-
tions with the change of the numbers of bids and items is easily comparable
with other distributions inside the group. The first group consisted of distri-
butions L3, L4, L6, L7 and regions; for these distributions we varied both the
number of items and the number of bids in the range from 20 to 400 with
a step of 20. To the second group we attributed the scheduling distribution,
which is the hardest distribution for ComputeSetPackingk; for scheduling dis-
tribution we varied the number of items and the number of bids in the range
from 75 to 1500 with a step of 75. For each experimental case we executed
the algorithm on one problem instance.

Throughout the experiments we evaluated:

1. How the width of the hypertree decomposition varies with the number
of items.

2. How the width of the hypertree decomposition varies with the number
of bids.

3. How the width of the hypertree decomposition varies with the distri-
bution for fixed numbers of bids and items.

Results and Analysis

Figures 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 show how the width of a hypertree
decomposition varies with the number of items and the number of bids for
distributions L3, L6, regions, L4, L7 and scheduling respectively. Examin-
ing them together with the data presented in Figure 5.2, we can estimate
for which problem instance size, i.e. for which range of the values of the
number of items and the number of items, the problem can be solved by
ComputeSetPackingk with the computational resources that we used. For
example, if we consider the distribution L3 we can see that in Figure 5.3 the
instances having the hypertree decomposition with the width at most equal
to 9 are approximately in the range from 0 to 400 of the number of items
and from 0 to 100 of the number of bids.

Below we give a comparison of the dependence of the width of hypertree
decompositions on the numbers of items and bids for different distributions.

As we can see from Figures 5.3, 5.4 and 5.5, the width of the hypertree
decompositions grows in a similar manner for the distributions L3, L6 and
regions with the increase of the number of items and bids: for all three of
them the value of the width of the hypertree decompositions does not depend
much on the number of items, but depends substantially on the number of
bids, increasing with the increase of the number of bids.

5.2. EXPERIMENTS 53

Figure 5.3: Dependence of the width of hypertree decompositions on the
numbers of bids and items for distribution L3

Figure 5.4: Dependence of the width of hypertree decompositions on the
numbers of bids and items for distribution L6

54 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.5: Dependence of the width of hypertree decompositions on the
numbers of bids and items for regions distribution

Figure 5.6: Dependence of the width of hypertree decompositions on the
numbers of bids and items for distribution L4

5.2. EXPERIMENTS 55

Nevertheless, some important differences can also be observed. First of
all, L3 is the most difficult among these three distributions: for fixed numbers
of items and bids, it results in a hypertree decomposition having width
almost twice larger than for the distributions L6 and regions. In the range
of the numbers of items and bids that we considered for these experiments
(i.e. from 20 to 400 for both) the width of hypertree decompositions varies
for these distributions in the following ranges: from 1 to 71 for L3; from 1
to 44 for L6; and from 2 to 27 for regions.

The fact that we considered only one instance for every experimental case
allows us to observe one more interesting property of these distributions.
As can be easily seen from Figures 5.3, 5.4 and 5.5, the surface for the
distribution L3 is “smoother” than the surface for the distribution L6, while
the surface for L6 is “smoother” than the surface for regions. Hence, we can
conclude that, among them, the regions distribution behaves most randomly
with respect to the width of the generated hypertree decomposition, and L3
behaves least randomly with this respect.

For the distribution L4 (Figure 5.6) the dependence of the width of hy-
pertree decompositions on the number of items is the opposite in comparison
to the dependence for other distributions in the group: it decreases with the
increase of the number of items. As for the dependence on the number of
bids, the distribution L4 behaves similarly to the other distributions: the
width of hypertree decompositions increases with the number of bids.

Figure 5.7 shows the variation of the width of hypertree decompositions
for the distribution L7. It increases with the number of bids with decreas-
ing rate, in contrast to other distributions in the group. Moreover, this
distribution is the easiest among them because the width of hypertree de-
compositions is the smallest for the same numbers of items and bids.

Figure 5.7: Dependence of the width of hypertree decompositions on the
numbers of bids and items for distribution L7

56 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.8: Dependence of the width of hypertree decompositions on the
numbers of bids and items for scheduling distribution

The dependence of the width of hypertree decompositions on the num-
bers of items and bids for the scheduling distribution behaves differently
from the dependencies presented above. As we see from Figure 5.8 the value
of the width of a hypertree decomposition depends substantially both on
the number of bids and on the number of items: the width of hypertree
decompositions increases with the number of bids, the highest widths occur
for small numbers of items and they reduce drastically with the increase of
the number of items. This is due to the nature of the scheduling distribution:
with the increase of the number of items the number of cycles of overlapping
bids decreases, causing the decrease of the width of a hypertree decomposi-
tion. In contrast, for the other distributions, the increase of the number of
items does not influence as much the number of cycles of overlapping bids,
hence the width of a hypertree decomposition does not change significantly
or remains the same.

5.2.4 Experimental Conclusions

To conclude the experimental work we classify the distributions that we
tested by their hardness to be solved by ComputeSetPackingk with respect
to the values of the width of hypertree decompositions built by Bucket Elim-
ination and the influence of this width to the running time.

Considering the length of the running time for fixed widths of hypertree
decompositions that were built in our experiments, we can separate the
distributions in three groups of hardness according to Figure 5.1. In the first
group we include the scheduling distribution that requires much longer time
to be solved already for hypertree decompositions with very small width.

5.2. EXPERIMENTS 57

L2, L3, matching and regions distributions form the second group. To the
third and easiest group, we attribute the L4 and L6 distributions since they
require less time to find the solution even for hypertree decompositions with
large widths.

With regard to the speed of increase of the width of hypertree decom-
positions with the numbers of items and bids (Figures 5.3, 5.4, 5.5, 5.6, 5.7
and 5.8), we can say that the L3 distribution is the most rapid, hence the
hardest to be solved for a larger number of items and bids. Then follow L6,
regions, L4, L7, concluding with scheduling.

However, as we already mentioned before, the width of the hypertree
decomposition is not the only factor influencing the hardness of the problem
for the algorithm, and future research could be aimed on identifying other
factors, such as the tradeoff between the width and the size of a hypertree
decomposition, and estimating the behavior of the algorithm with respect
to these factors.

5.2.5 Comparison of Distribution’s Difficulties between Al-
gorithms

In this subsection we give a brief comparison of the distributions with respect
to the difficulty to be solved by CABOB, CASS, CPLEX and
ComputeSetPackingk algorithms.

L2 is known to be an easy distribution for the CABOB, CASS and
CPLEX algorithms. For these algorithms this distribution is shown to be
much easier than L3 and L4 distributions, while L3 is known to be harder
than L4 [27, 19]. On the contrary, for ComputeSetPackingk L2 and L3 distri-
butions have a similar difficulty, and the distribution L4 is easier than both
of them.

Moreover, according to [19], L6 and L7 are among the hardest distribu-
tions for CASS. For ComputeSetPackingk the distribution L6 is one of the
easiest among the distributions that we tested for the hypertree decompo-
sitions with small width. L7 is easy for ComputeSetPackingk because the
speed of the width growth with the numbers of items and bids is relatively
low.

All CATS distributions, apart from scheduling which is of medium dif-
ficulty, are shown to be the easiest for CABOB and CPLEX [27]. For
CASS these distributions are hard [19]. As our experiments have shown, the
scheduling distribution is the hardest distribution for ComputeSetPackingk,
and the matching and the regions distributions are much easier than schedul-
ing.

58 CHAPTER 5. EXPERIMENTAL EVALUATION

Chapter 6

Conclusion

In this thesis we formally presented the main notions of combinatorial auc-
tions theory, giving an overview of previous research targeted on solving the
winner determination problem for combinatorial auctions. Moreover, we de-
scribed the concepts involved in solving the winner determination problem
by means of the ComputeSetPackingk [11] algorithm which is a polynomial
time algorithm that uses the technique of hypertree decompositions.

We implemented the ComputeSetPackingk algorithm in a way that uses
an existing implementation of the Bucket Elimination algorithm with Min-
Induced-Width and Max-Cardinality heuristics to prepare the required hy-
pertree decompositions [8, 21]. We experimentally tested our implementa-
tion on L2, L3, L4, L6, regions, matching and scheduling benchmark distribu-
tions involving up to 900 items and bids. Our experiments have shown that
the algorithm could be successfully applied to the problem instances hav-
ing the width of hypertree decompositions below a certain threshold that is
specific for each distribution. Therefore, we analyzed how the width varies
with the numbers of bids and items and we experimentally estimated the
threshold for each distribution. As another result of our experiments, we
observed that the size of a hypertree decomposition built for a problem also
influences the performance of the algorithm.

Our experiments show that the efficiency of the algorithm could be sig-
nificantly improved by making it or the underlying heuristics for hypertree
decompositions more specific to particular distributions. Extending it with
techniques aimed to reduce the memory consumption would allow a general
increase in the solvability threshold for the width of the hypertree decom-
positions. These are possible directions for future research.

59

60 CHAPTER 6. CONCLUSION

Bibliography

[1] A. Andersson, M. Tenhunen, and F. Ygge. Integer programming for
combinatorial auction winner determination. In ICMAS ’00: Proceed-
ings of the Fourth International Conference on MultiAgent Systems
(ICMAS-2000), page 39, Washington, DC, USA, 2000. IEEE Computer
Society.

[2] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On
the desirability of acyclic database schemes. J. ACM, 30(3):479–513,
1983.

[3] Vincent Conitzer, Jonathan Derryberry, and Tuomas Sandholm. Com-
binatorial auctions with structured item graphs. In AAAI, pages 212–
218, 2004.

[4] Peter Cramton, Yoav Shoham, and Richard Steinberg. Combinatorial
Auctions. The MIT Press, 2006.

[5] Sven de Vries and Rakesh V. Vohra. Combinatorial auctions: A survey.
INFORMS Journal on Computing, (3):284–309, 2003.

[6] Rina Dechter. Constraint Networks. In Stuart C. Shapiro, editor, Ency-
clopedia of Artificial Intelligence, volume 1. Addison-Wesley Publishing
Company, 1992.

[7] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers,
2003.

[8] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben McMahan, Nys-
ret Musliu, and Marko Samer. Heursitic methods for hypertree decom-
positions. Technical report, Technische Universität Wien, DBAI-TR-
2005-5, 2005.

[9] Elaine M. Eschen and Jeremy P. Sinrad. An o(n2 algorithm for circular-
arc graph recognition. In SODA ’93: Proceedings of the fourth an-
nual ACM-SIAM Symposium on Discrete algorithms, pages 128–137,
Philadelphia, PA, USA, 1993. Society for Industrial and Applied Math-
ematics.

61

62 BIBLIOGRAPHY

[10] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham. Taming the
computational complexity of combinatorial auctions: Optimal and ap-
proximate approaches. In IJCAI ’99: Proceedings of the Sixteenth In-
ternational Joint Conference on Artificial Intelligence, pages 548–553,
San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[11] Georg Gottlob and Gianluigi Greco. On the complexity of combinatorial
auctions: structured item graphs and hypertree decomposition. In ACM
Conference on Electronic Commerce, pages 152–161, 2007.

[12] Georg Gottlob, Martin Grohe, Nysret Musliu, Marko Samer, and
Francesco Scarcello. Hypertree decompositions: Structure, algorithms,
and applications. In WG, pages 1–15, 2005.

[13] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison
of structural csp decomposition methods. In IJCAI ’99: Proceedings of
the Sixteenth International Joint Conference on Artificial Intelligence,
pages 394–399, San Francisco, CA, USA, 1999. Morgan Kaufmann Pub-
lishers Inc.

[14] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree de-
compositions and tractable queries. In PODS ’99: Proceedings of the
eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 21–32, New York, NY, USA, 1999. ACM.

[15] Georg Gottlob, Nicola Leone, and Francesco Scarcello. On tractable
queries and constraints. In DEXA ’99: Proceedings of the 10th In-
ternational Conference on Database and Expert Systems Applications,
pages 1–15, London, UK, 1999. Springer-Verlag.

[16] C. L. Jackson. Technology for spectrum markets. PhD thesis, Depart-
ment of Electrical Engineering, MIT, Cambridge, MA, 1976.

[17] Norbert Korte and Rolf H. Möhring. An incremental linear-time algo-
rithm for recognizing interval graphs. SIAM J. Comput., 18(1):68–81,
1989.

[18] Daniel Lehmann, Rudolf Mueller, and Tuomas Sandholm. Combinato-
rial Auctions, chapter The winner determination problem, pages 297 –
317. The MIT Press, 2006.

[19] Kevin Leyton-Brown. Resource Allocation in Competitive Multiagent
Systems. PhD thesis, Stanford University, August 2003.

[20] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a
universal test suite for combinatorial auction algorithms. In ACM Con-
ference on Electronic Commerce, pages 66–76, 2000.

BIBLIOGRAPHY 63

[21] Ben McMahan. Bucket elimination and hypertree decompositions. Im-
plementation report, Institute of Information Systems (DBAI), TU Vi-
enna, 2004.

[22] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic
aspects of tree-width. Journal of Algorithms, 7(3):309–322, 1986.

[23] Michael H. Rothkopf, Aleksandar Pekec, and Ronald M. Harstad.
Computationally manageable combinational auctions. Manage. Sci.,
44(8):1131–1147, 1998.

[24] Tuomas Sandholm. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135(1-2):1–54, 2002.

[25] Tuomas Sandholm. Combinatorial Auctions, chapter Optimal Winner
Determination Algorithms, pages 337 – 368. The MIT Press, 2006.

[26] Tuomas Sandholm and Subhash Suri. Bob: Improved winner deter-
mination in combinatorial auctions and generalizations. Artif. Intell.,
145(1-2):33–58, 2003.

[27] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine.
CABOB: a fast optimal algorithm for winner determination in combi-
natorial auctions. Management Science, 51(3):374–391, 2005.

[28] Robert Endre Tarjan and Mihalis Yannakakis. Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs. SIAM J. Comput., 13(3):566–
579, 1984.

[29] Mihalis Yannakakis. Algorithms for acyclic database schemes. In
VLDB, pages 82–94, 1981.

