DISSERTATION

Intelligent Search Methods for Workforce
Scheduling: New Ideas and Practical
Applications

ausgefithrt zum Zwecke der Erlangung des akademischen
Grades eines Doktors der technischen Wissenschaften/der
Naturwissenschaften unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany
E184, Institut fir Informationssysteme
Technische Universitat Wien

eingereicht an der Technischen Universitat Wien, Fakultat fur
Technische Naturwissenschaften und Informatik

von

Dipl.-Ing. Nysret Musliu
Matrikelnummer 9627141
Lorenz Miiller Gasse 1a/18
A-1200 Wien

Wien, im September 2001 -



Né pérkujtim té babait dhe gjyshit tim, té cilét u vrané nga forcat
policore serbe gjaté luftés né Kosové me 30.03.1999 para derés sé
shtépisé sé gjyshit tim, vetém pse ishin shqiptare,

dhe

per nénen dhe véllaun tim té vogel, té cilet pas kétyre ngjarjeve tragjike
u detyruan qé té largohen nga trojet e tyre ne Kosové, dhe ishin pér
disa muaj refugjate

To the memory of my father and grandfather, who were killed from
Serb police forces during the war in Kosova on 30.03.1999 in front of
the home of my grandfather, only because they were Albanians,

and

to my mother and youngest brother, who after these tragic events were
forced to leave their home in Kosova, and were for several months
refugees



Abstract

Intelligent search methods, based on heuristic and intelligent pruning of the search
space, have been intensively used for solving difficult real-life problems. Examples
of hard problems are problems regarding workforce scheduling. These problems
appear in many areas of life, like in industrial plants, hospitals, call centers, public
transport etc. and have high practical relevance. Results from ergonomic studies
indicate that workforce schedules have a profound impact on the health and
satisfaction of employees, as well as on their performance at work. Moreover,
workforce schedules have to satisfy numerous legal requirements and meet the
specific objectives of the individual workplace.

In this thesis, we use intelligent search methods to investigate the comput-
erized generation of solutions for two specific problems in workforce scheduling:
rotating workforce scheduling and shift design problem.

We propose a new framework for generating rotating workforce schedules.
One of the basic design decisions is to aim at high-quality schedules for realisti-
cally sized problems that can be obtained rather quickly, while, at the same time,
maintaining human control. Therefore, interaction between the decision-maker
and the algorithm consists of four steps: (1) choosing a set of lengths for the work
blocks (a work block is a sequence of consecutive days of work), (2) choosing a
particular sequence of blocks of work and days-off blocks amongst those that have
optimal weekend characteristics, (3) enumerating possible shift sequences for the
chosen work blocks subject to shift change constraints and bounds on sequences
of shifts, and (4) assignment of shift sequences to work blocks while fulfilling the
staffing requirements. The combination of constraint satisfaction with problem-
oriented intelligent backtracking algorithms in each of the four steps can produce
good solutions for real-world problems in acceptable time. Apart from the fact
that the generated schedules meet all of the hard constraints, the new framework
also allows for the incorporation of the preferences of the decision-maker with
regard to soft constraints that are otherwise more difficult to assess and model.
Computational results from benchmark examples found both in the literature

iii



ABSTRACT iv

and in real-world problems confirm the viability of our approach.

Regarding the shift design problem, we consider iterative solution methods.
We proposed repair steps (moves) to explore the neighborhood of solutions for
this problem. In order to generate the neighborhood and accept the solution
for the next iteration, basic principles of the so called tabu search technique are
used. However, while tabu search finds acceptable solutions for this problem, the
complete exploration of the neighborhood (using all defined moves) during each
iteration is very time-consuming. We proposed a new approach in combination
with tabu search in order to make the search more effective. The basic idea is
to exploit knowledge about the shift design problem during the search. Based
on the temporal workforce of the current solution and given workforce require-
ments (distance of the current solution to the optimal solution with respect to
most important criteria), selecting repair steps during each iteration is guided
so that the repair steps that have a greater chance to improve the solution are
used. As a result of this knowledge about the problem, the neighborhood is se-
lectively explored during each iteration, which makes the search more effective.
Furthermore, we propose an algorithm for generating a good initial solution,
which further improves the effectiveness of the search.

Finally, we included algorithms in the commercial products that allows to
take into account user preferences in the decision-making process. This new
framework for rotating workforce schedules has been included in a commercial
product called First Class Schedule, which is already being used by several com-
panies in Europe since 2000. This product is highly appreciated internationally
and currently exists in German, English, Finnish and Dutch. Guided local search
was included in the commercial product Operating Hours Assistant, which has
also been used successfully in several organizations since the beginning of the
year 2001.



Kurzfassung

Intelligente Suchmethoden, die auf Heuristiken und intelligenter Beschneidung
des Suchraumes basiert sind, sind intensiv verwendet worden, um schwierige
praktische Probleme zu l6sen. Beispiele von solchen Problemen sind Schichtpla-
nungsprobleme. Das Finden von Schichtpléine ist iiberall dort eine kritische Auf-
gabe, wo eine bestimmte Mitarbeiteranzahl (die sogenannte Besetzungsstirke)
garantiert werden muss, z.B. in Hochofen, Spitalern oder bei Fluggesellschaften.
Ergebnisse aus der Arbeitswissenschaft zeigen, dass die Qualitat der Schichtplane
einen groflen Einfluss sowohl auf die Gesundheit und Zufriedenheit der Mitar-
beiter als auch auf ihre Arbeitsleistung hat. Schichtpline miissen aulerdem die
Arbeitszeitgesetze erfiillen und mit den wirtschaftlichen Anforderungen des Be-
triebes in Einklang stehen.

Thema dieser Dissertation ist die Entwicklung von Algorithmen zur au-
tomatischen Erzeugung zyklischer Schichtplane und Generierung von Schichten
basierend auf intelligenten Suchverfahren. Zu den zwei wichtigsten Zielen zéhlen
dabei die Qualitat der Losungen - sie sollen zumindest so gut sein, wie von pro-
fessionellen Planern erstellte - sowie die Zeitersparnis bei der Erstellung. Weiters
sollte der Benutzer die Moglichkeit haben, Anforderungen einflielen zu lassen, die
sich nur schwer explizit modellieren lassen oder die von individuellen Praferenzen
abhangen.

In dieser Dissertation wurde ein neuer Losungsansatz zur Erzeugung von
zyklischen Schichtplinen entwickelt. Der Losungsansatz besteht aus den fol-
genden Schritten: (1) Auswahl von Mengen von Arbeitsblocken mit verschiede-
nen Lingen, (2) Entscheidung tiber Anzahl der freien Wochenenden und die
Reihenfolge der Arbeitsblocke, (3) Erzeugung von Schichtfolgen, (4) Erzeu-
gung von Schichtplinen (die erzeugten Schichtfolgen werden den Arbeitsblocken
zugewiesen). Fir jeden Schritt von 1-4 implementierten wir problemorien-
tierte, intelligente backtracking Algorithmen, die sehr effizient sind, da sie den
Suchraum durch die beschriebene Zerlegung der Einschrinkungen weitestge-
hend reduzieren konnen. Ausgiebige Tests und Benchmarkergebnisse bestatigen



KURZFASSUNG vi

die Zweckméifigkeit unseres Ansatzes. Die Erzeugung hochwertiger zyklis-
cher Schichtplane mittels dieses Losungsansatzes erfolgt fiir die meisten Prob-
lemstellungen innerhalb weniger Sekunden. FEin weiterer Vorteil von unsere
Ansatz ist die Moglichkeit, Plane in Kooperation mit dem Benutzer zu erzeu-
gen. Selbstverstandlich erfiillen die erzeugten Pline alle angegebenen Ein-
schrankungen. Dariiber hinaus erlaubt die Interaktion mit dem Planer aber auch
die Berticksichtigung anwendungsspezifischer Einschriankungen und Praferenzen,
die sonst nur schwierig zu erfassen und zu modellieren waren.

Die Erzeugung von Schichten wird basiert auf iterativen Suchmethoden. Es
wurden Reparatur basierte Schritte (‘moves’) vorgeschlagen, um die Umgebung
der Losung zu erkunden. Um diese Umgebubg zu generieren und die Losung fiir
die nachste iteration zu selektieren, wurden grundlegende Prinzipien der Tabu
Suche verwendet. Wahrend jedoch die Tabu Suche akzeptable Losungen fiir
dieses Problem anbietet, ist die vollstandige Erkundung der Umgebung (unter
Verwendung alle definierten ‘moves’) wiahrend jeder Iteration sehr zeitraubend.
Um die Suche effektiver zu machen wurde ein neuer Losungsansatz in Verbindung
mit Tabu Suche vorgeschlagen. Die grundlegende Idee ist es, Wissen iiber das
Problem wahrend der Suche zu verwenden. Basierend auf der Belegschaft der ak-
tuelle Losung und der gegebenen Besetzungsstéarke (Distanz der aktuellen Losung
von der optimalen Losung hinsichtlich der meisten wichtigen Kriterien), werden
wahrend jeder Iteration die ‘moves’ selektiert, die eine gréflere Chance haben,
die Losung zu verbessern. Infolge dieses Wissens uber das Problem wird die
Umgebung der Losung wahrend jeder Iteration nicht vollstandig generiert, was
die Suche effektiver macht. Auflerdem wurde ein Algorithmus vorgeschlagen,
der eine gute anfangliche Losung erzeugt, welche die Effizienz der Suche weiter
verbessert.

Der Losungsansatz zur Erzeugung von zyklische Schichtplinen wurde in
dem Softwarepaket First Class Scheduler (FCS) implementiert. FCS ist eine
Erweiterung des Programms Schichtplanassistent der XIMES GmbH, welches
in fritheren Versionen bereits eine effiziente Manipulation und Uberpriifung
von manuell erstellten Schichtplianen erlaubte. Mit FCS konnen die wichtig-
sten Einschrankungen im europaischen Raum modelliert werden. Das Soft-
warepaket ist in Schichtplanungskreisen international hoch angesehen und liegt
derzeit in den Sprachen Deutsch, Englisch, Finnisch und Niederlandisch vor. Die
Losungsansitze fiir Generierung von Schichten wurde in dem Softwarepaket Op-
erating Hours Assistant implementiert. Dieses Softwarepaket wird seit Anfang
2001 von einigen Organisationen erfolgreich verwendet.



Acknowledgments

First and foremost I would like to thank my family for their continuous support all
my life long. I got infinite love from my parents. My father sacrificed everything,
despite the very hard situation in Kosova, to make it possible for me to continue
my studies. He was my teacher of physics and chemistry in primary school and
gave me a lot of insight into problem solving. His support was always present
for me and he will always remain my role model in my life. I lost him and my
grandfather during the war in Kosova, when I was in the middle of work on this
thesis, and that was very hard to face. My mother was always here for me to give
me support in the hardest situations. I am amazed by her force to deal with the
most hard situations of life. Without her love and support this thesis would never
have been finished. My younger brothers Xhevdet and Valdet were my inspiration
and one more reason to be strong and continue the work on this thesis after I
lost my father and grandfather. I would like to thank also my grandparents for
their support and for beautiful moments of my life I had with them.

Special thanks go to my supervisor Wolfgang Slany. Discussions with him,
his useful suggestions, and his readiness to help me in any situation were very
important for successfully finishing this thesis. It was a pleasure to work with
him in project Rota and writing papers together. I am also grateful to him and
to his wife Kyoko for the moral support they gave me and my family in times
when tragic events happened.

My thanks also go to Prof. Georg Gottlob for giving me the opportunity to
work in the DBAI group and for his moral support throughout this thesis. It
was very nice to work in a good working atmosphere with all colleagues in the
DBAT group and to have for a long time Robert Baumgartner as my room-follow.
Thanks to Jochen Renz and Christoph Koch for proof reading parts of my thesis.

I would like to thank Johannes Gartner for being my second advisor and for
his ideas and discussions with him about the generation of rotating schedules and
throughout the work in the project. I thank Sabine Wahl for the perfect joint
work on the commercial software products in which the algorithms described in

vii



ACKNOWLEDGMENTS viii

this thesis were included. It was very nice to work part of the time at Ximes
Corp. I would like to thank all colleagues at Ximes who gave support to me and
my family in a time when we needed it most.

Special thanks go to my friend Astrit Ademaj, who was for two years my
room-follow in the dormitory and gave me great support in the hardest moments
of my life. T would like also to thank all my friends and especially Driton Statovci,
Idriz Smaili, Assumpcié Lépez Polo and Melchor Moro Oliveres for the support
they gave to me in that time. I thank YIl Haxhimusa for reading parts of this
thesis.

I am grateful to my relatives who gave me in the first phase of this thesis
financial and any kind of other support throughout this thesis: Ismail Musliu,
Hamdi Musliu, Ali Beka, Mustafe Musliu, Xhafer Musliu, Liman Beka, Sylejman
Beka, Osman Beka, Ruzhdi Musliu, Muhamet Musliu, Selvete Musliu, Sadije
Gerbeshi, Zarife Musliu, Nazmije Musliu, and Bahrije Beka.

I wish to thank also Elisabeth Hager, Mimoza Vladi and Douglas Linton for
proofreading parts of this thesis.

My research was partially supported by FFF project No. 801160/5979, the
Austrian Science Fund Project N Z29-INF, and the Austrian government. I am
grateful for that.



Contents

Abstract
Kurzfassung
Acknowledgments

1 Introduction
1.1 Background . . . . . ... ...
1.2 Workforce scheduling problems . . . . . ... ... .........
1.3 Computerized workforce scheduling . . . . . . . ... ... ... ..
1.4 Research questions of this thesis . . . . ... ... ... .. ....
1.5 Mainresults . . . . . . . ..

1.6 Organization of this thesis . . . . . . .. ... ... ... ......

2 A Brief Review of Intelligent Search Methods
2.1 Search and problem solving . . . . ... ... ... ...
2.2 Complexity of problems . . . . .. ... ... ... ... ...
2.3 Search techniques in AT . . . ... ... ... ... .........
2.3.1 Exhaustivesearch . . ... ... ... ... ... ...
2.3.2 Heuristic based search . . . . .. ... ... .. .. ...
2.3.3 Search for constraint satisfaction problems. . . . . . .. ..

2.3.4 Local search techniques . . ... ... ... ... ......

X



CONTENTS

3 Workforce Scheduling

3.1 Basicconcepts . . . . .. ... e
3.1.1 Cyclic and non-cyclic schedules . . . . . ... .. ... ...
3.1.2 Constraints . . . . . . ...
3.1.3 Designofshifts . . .. ... ... ... 0oL

3.2 Problems we consider in this thesis . . . .. .. .. ... ... ...
3.2.1 Shiftdesign . . . .. ... .. o Lo
3.2.2 Rotating workforce scheduling . . ... ... ... ... ..
3.2.3 Complexity of the problems we consider in this thesis

3.3 Previouswork . . . . . ...
3.3.1 Rotating workforce scheduling . . ... ... ... .....
3.3.2  Shift scheduling . . . . . ... ... ... 0oL
3.3.3 Related workforce scheduling problems . . . . . .. ... ..

4 Efficient Generation of Rotating Workforce Schedules
4.1 Introduction . . . . . . . . ... L
4.2 New four step framework for rotating workforce scheduling
4.2.1 Determination of lengths of work blocks . . . .. ... ...

4.2.2 Determination of distribution of blocks of work and days-off
that have optimal weekend characteristics . . . . . ... ..

4.2.3 Generating permitted shift sequences for each work block
4.2.4  Assignment of shift sequences to work blocks . . . .. ...

4.3 Computational results . . . . . .. ... ... ... ... ......

5 Local search for shift design
5.1 Imtroduction. . . . . . .. ... .. .. o
5.2 Local search for shift design . . . . .. ... ... ... ... ...
5.2.1 Neighborhood relations . . . ... ... ... ... .....
5.2.2  Generation of neighborhood . . . . . . . ... ... ... ..
5.2.3 Tabu mechanism . . ... ... ... ... ..........

5.2.4 Selection criteria . . . . . . . .. ... e

27
27
29
30
32
32
32
35
37
38
38
39
40

43
44
45
46

52
53
54
56



CONTENTS

5.2.5 Fitness function .

5.3 Including the knowledge about the problem during the search . . .

5.3.1 Initial Solution . .

5.4 Computational results . .

5.4.1 Randomly generating problem instances . . . . . ... ...

5.4.2 Computational results over random examples . . . . . . . .

5.4.3 Computational results on real-world problems . . . . . . ..

6 Practical Applications
6.1 First Class Scheduler . . .
6.2 Operating Hours Assistant

7 Conclusions

x1

73

76
7
78
79
80

86
86
90

98



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

5.1

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9

Breadth-first search tree for Problem 1 . . . . . .. ... ... ... 14
Depth-first search tree for Problem 1 . . . . . . . . ... ... ... 15
Random restart hill climber . . . . . . . ... ... .. ....... 21
Procedure of a stochastic hill climber . . . . . . .. ... ... ... 22
Simulated annealing procedure . . . .. ... ... ... ...... 23
Basic tabu search procedure . . . . .. . ... ... 0L 24
Requirements in example 1 for Monday and Tuesday . . . . . . .. 76
Definition of hard constraint in First Class Scheduler . . . . . . . . 88

Selecting of the possible length of work blocks in First Class Scheduler 89

Selecting of possible distribution of work and day off blocks based
on the weekend characteristics. . . . . . ... ... ... ... ... 90

Generated schedules that fulfill all constraints . . . . . .. ... .. 91
Remaining schedules after eliminating of some the shift sequences . 92
Week representation of one schedule that fulfills all constraints . . 92
Screenshot of Operating Hours Assistant . . . . . . ... ... ... 93
Definition of temporal requirements in Operating Hours Assistant . 94

Definition of shift types in Operating Hours Assistant . . . . . . . 95

6.10 Definition of weights about the criteria in Operating Hours Assistant 96

6.11 Solution generated using guided search with an initial solution . . 97

xii



List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

A possible feasible solution for example 1 . . . . . ... ... ...

Comparison of polynomial growth with exponential growth

First 12 steps of backtracking algorithm for problem 1 . . . . . . .

A possible initial solution for Problem 1 . . . . .. ... ... ...

One of the neighborhood solutions for solution in Table 2.4

Initial solution for TS for example 1 . . . . . ... ... ... ...

New solution obtained from solution in Table 2.6 by exchanging

elements 2 and 3incolumnl . .. .. .. ... ... ... ...

One typical week schedule for 9 employees . . ... .. ... ...
Second week for the cyclic schedule from Table 3.1 . . . .. .. ..
Temporal requirements for the schedule in Table 3.1 . . . .. . ..
Possible temporal requirements for one week . . . . . .. ... ...

Possible constraints for shift types in the shift design problem . . .

A possible schedule with work blocks in the order (46546555)

First Class Scheduler solution for problem 1 . . . . . . .. .. ...

First Class Scheduler solution for problem 2 . . . . . ... .. ...

Solution of Balakrishnan and Wong [8] for the problem from [15]

First Class Scheduler solution for the problem from [15] . . . . ..

Solution of Balakrishnan and Wong [8] for the problem from [44]

First Class Scheduler solution for the problem from [44] . .. . ..

Solution of Balakrishnan and Wong [8] for the problem from [33]

First Class Scheduler solution for the problem from [33] . .. . ..

xiii

12
18
19
19
25

25

28
29
30
32
33

47
o7
99
60
61
63
63
65



LIST OF TABLES xiv

5.1 Constraints about shifts for the random generator . . . . ... .. 78

5.2 Results for 30 examples using TS with the variant of a solution-

typetabulist . . . . ... oo 81
5.3 Results for 30 examples using TS with good initial solution . . . . 82
5.4 Results for 30 examples using TSaGSwIS . . . .. ... ... ... 83
5.5 Temporal requirements for the call center problem . . .. ... .. 84
5.6 Constraints about shifts in the call center problem . .. .. .. .. 84

5.7 Solution for the call center problem with TSaGSwIS . . . .. ... 84



Chapter 1

Introduction

1.1 Background

In this thesis, we consider practical approaches for computerized workforce
scheduling. In general, workforce scheduling includes many problems that deal
with planning and scheduling of a workforce in an organization. These problems
appear in different forms in a broad range of workplaces, such as hospitals, indus-
trial plants, call centers, public transportation, and airline companies. Results
from ergonomics [11] indicate that workforce schedules affect both the health and
the social life of the employees, and can also increase the risk of work-related ac-
cidents. Moreover, workforce schedules also impact workforce related costs for
the organization. Therefore, it is of a high practical relevance to find workforce
schedules that, on the one hand, fulfill the ergonomic criteria for the employees,
and, on the other, reduce costs for the organization. However, most workforce
scheduling problems are difficult to solve. Most relevant problems in workforce
scheduling belong to the class of problems called NP-hard problems. No efficient
algorithms are known for these problems and an exact solution, in general cases,
is generally not believed to be possible. Despite these hurdles, researchers have
developed over the years a number of alternative methods that make it possible
to find an acceptable solution to these problems in a reasonable amount of time.
One group of such methods is loosely classified as intelligent search methods. This
group includes methods that determine the problem’s exact solution (for relevant
large instances of problem in practice) by intelligently pruning the regions of the
search space that cannot contain good solutions. Furthermore, in this group are
also included heuristic search methods.

In this thesis, in order to solve the workforce scheduling problems, we rely
on such intelligent search methods. A brief review of intelligent search methods

1



CHAPTER 1. INTRODUCTION 2

is given in Chapter 2.

1.2 Workforce scheduling problems

The typical process for planning and scheduling of a workforce in an organization
consists of several stages. Usually the first stage is to determine the temporal
requirements. To do this, the required number of employees with certain qual-
ifications is determined for every time slot of the planning period (e.g., every
Monday between 6:00-10:00 there should be 4 employees at work). After this
stage, one can proceed to determine the total number of the employees needed,
while at the same time designing the shifts, and then assigning these shifts or
days-off to the employees. The literature provides different approaches for finding
solutions at this stage. One approach is to coordinate the design of the shifts with
the assigning of these shifts to employees. This solves both problems as if they
were a single one [29]. Other approaches consider days-off scheduling and shift
scheduling only after the shifts are designed [8, 46]. One of the disadvantages of
the second approach is that considering the design of the shifts separately does
not guarantee that a feasible solution for the assignment of the shifts can be
found. In contrast, solving the workforce-scheduling problem in several separate
stages makes the problem of general workforce scheduling easier to tackle, one of
the reasons why this approach is used frequently in practice.

In this thesis, we consider separately the problem of the designing the shifts,
and the problem of assigning employees to particular shifts or days-off for rotating
schedules. A detailed description of both problems is given in Chapter 3.

For the problem of shift design, we are given the workforce requirements for
a certain period of time, constraints about the possible start and the length of
shifts, and an upper limit for the average number of duties per week per employee.
The aim is to generate solutions that contain shifts (and the number of employees
per shift) that fulfill all hard constraints about the shifts, as well as minimize the
number of shifts, over- and understaffing, and differences in the average number
of duties per week.

After the shifts are generated, the assignment of employees to shifts or days-
off for a given period of time can be made. There are two main variants of work-
force schedules: rotating (or cyclic) workforce schedules and non-cyclic workforce
schedules. In a rotating workforce schedule — at least during the planning stage
— all employees have the same basic schedule but start with different offsets.
Therefore, while the individual preferences of the employees cannot be taken into
account, the aim is to find a schedule that on average is optimal for all employees.
In non-cyclic workforce schedules the individual preferences of the employees can



CHAPTER 1. INTRODUCTION 3

be taken into consideration and the aim is to achieve schedules that fulfill the
preferences of most employees. In both variations of workforce schedules other
constraints such as the minimum number of employees required for each shift
have to be met. In this thesis we will consider the problem of rotating workforce
schedules.

1.3 Computerized workforce scheduling

Both problems of shift design and assignment of employees to shifts and days-off
are NP-complete [41, 46]. For this reason, they are generally difficult to solve,
which corresponds to the extremly large search space and conflicting constraints
that are usually encountered. All this reinforces the importance of finding a way
to generate practicable schedules in a reasonable amount of time. Regarding
the problems we consider in this thesis, experienced professional planners can
construct an acceptable solution for many of them by hand. However, the time
required to do this can sometimes be very long. For example, rotating workforce
schedules can take anywhere from one hour to several days. In addition, because
of the large number of possible solutions, the human planners can never be sure
whether their solution is the best one. Because of the complexity of the problem
and the relatively high number of constraints that must be satisfied and, in case of
soft-constraints, optimized, generating shifts and a schedule without the help of
the computer in a short period of time is almost impossible — even for relatively
minor instances of this problem. Therefore, computerized workforce scheduling
has been the focus of interest for researchers for over 30 years.

Different approaches were used to solve problems of workforce scheduling.
Examples for the use of exhaustive enumeration are [33] and [15]. Glover and
McMillan [29] rely on the integration of techniques from management sciences
and artificial intelligence to solve general shift scheduling problems. Balakrish-
nan and Wong [8] solve a problem of rotating workforce scheduling by modeling
it as a network flow problem. Smith and Bennett [63] combine constraint satis-
faction and local improvement algorithms to develop schedules for anesthetists.
Schaerf and Meisels [61] proposed generalized local search for employee timetable
problems. A wide review of previous work on workforce scheduling is given in
the Chapter 3.

The critical features of workforce scheduling algorithms are their computa-
tional behavior and flexibility for solving a wide range of problems that appear in
practice. Recently Laporte [43] assessed rotating workforce scheduling algorithms
proposed in the literature saying that “[...] these are often too constraining and
not sufficiently flexible for this type of problem”.



CHAPTER 1. INTRODUCTION 4

1.4 Research questions of this thesis

This thesis results from the solving of problems that emerged directly from prac-
tice. The aim was to develop algorithms that will automate the process of gener-
ating rotating workforce schedules and designing shifts for the Ximes Corp, which
specializes in developing software and in consulting on work-hour arrangements.
The efficiency of the algorithms and the quality of their solutions are the two
most important criteria. In the consulting process, it is essential that a solu-
tion be produced in a very short time, so that it can be discussed further. The
algorithms should be included in systems that can be employed directly in the
consulting process. They should also be able to stand alone, so that they can be
easily used in different organizations and by individuals who are not specialized in
the process of generating the workforce schedules. This implies that the packages
should be flexible, thus making possible a relaxing of the constraints. It should
also allow for the inclusion of the user in the decision-making process, especially
with regard to the constraints, which in different situations may have different
levels of importance.

Before proceeding further, we will summarize the main objectives of this
thesis:

e Develop efficient algorithms for generating high quality rotating workforce
schedules. The algorithms should solve most real cases in a reasonable
amount of time (from a few seconds to a few minutes).

e Develop efficient algorithms for the shift design problem. The algorithms
should be able to find good solutions in most real cases in a reasonable
amount of the time.

e Include the algorithms in the commercial products First Class Scheduler
and Operating Hours Assistant. The systems should include the appropri-
ate interaction in relaxing the constraints, as well as allowing the user to
choose between a number of solutions, which fulfill different criteria that
might vary in importance depending on the situation.

1.5 Main results

Here we summarize the main results of this thesis:

e We propose and implement a new framework for computerized rotating
workforce scheduling, including intelligent backtracking algorithms for each
stage of the framework.



CHAPTER 1. INTRODUCTION )

The new framework consist of the following steps: (1) choosing
a set of lengths for the work blocks (a work block is a sequence
of consecutive days of work), (2) choosing a particular sequence
of blocks of work and days-off blocks amongst those that have
optimal weekend characteristics, (3) enumerating possible shift
sequences for the chosen work blocks subject to shift change con-
straints and bounds on sequences of shifts, and (4) assignment of
shift sequences to work blocks while fulfilling the staffing require-
ments. The combination of constraint satisfaction with problem-
oriented intelligent backtracking algorithms in each of the four
steps can produce good solutions for real-world problems in ac-
ceptable time. Apart from the fact that the generated schedules
meet all of the hard constraints, the new framework also allows
for the incorporation of the preferences of the decision-maker with
regard to soft constraints that are otherwise more difficult to as-
sess and model. Computational results from benchmark examples
found both in the literature and in real-world problems confirm
the viability of our approach.

e We propose and implement a local search technique based on the tabu
search principles for the shift design problem.

The appropriate neighborhood structure for local search is one of
the most important features to reach ‘good’ solution. In this the-
sis we propose moves (repair steps) that are used to explore the
neighborhood. We experimented with different neighborhoods
over practical and randomly generated examples. In order to ac-
cept the solution for next iteration, basic principles of the tabu
search technique are used, where we experimented with two vari-
ants of making solutions tabu. Furthermore, we experimented
with different initial solution and proposed an algorithm for gen-
eration of a good initial solution, which improves the effective-
ness of the search. The local search based technique gives good
results in real life examples and randomly generated examples,
which were generated with a random generator we proposed for
the shift design problem.

e We propose and implement a method, which by exploiting knowledge about
the shift design problem guides the selection of the neighborhood during
each iteration in the local search.

The complete exploration of the neighborhood using all defined



CHAPTER 1. INTRODUCTION 6

moves during each iteration is very time consuming for the shift
design problem. We proposed a new approach in combination
with tabu search to make the search more effective. Based on the
temporal workforce of the current solution and given workforce
requirements (distance of the current solution from the optimal
solution with respect to the most important criteria), selecting
the repair steps during each iteration is guided so that the repair
steps that will most likely improve the solution are used. As a
result of this knowledge about the problem, the neighborhood
is selectively explored during each iteration, which makes the
search more effective. Computational results in real life examples
and randomly generated problems show the advantages that this
ingredient gives to the tabu search technique.

e We include algorithms and other parts that allow taking into account the
user in the decision-making process in commercial products.

This new framework for rotating workforce schedules has been
included in a commercial product called First Class Scheduler,
which is already being used by several companies in Europe since
2000. This product is highly appreciated internationally and cur-
rently exists in German, English, Finnish and Dutch. The guided
local search was included in the commercial product Operating
Hours Assistant, which has also been used successfully in several
organizations since the beginning of year 2001.

Some of the results of this thesis have already been accepted for publica-
tion in the journals “Discrete Applied Mathematics” and “Artificial Intelligence
Communications” and have appeared in the proceeding of three international
conferences.

1.6 Organization of this thesis

This thesis is divided into six chapters. Following this chapter, in Chapter 2, we
give a brief review of intelligent search methods, with emphasis on the methods
used in this thesis. Chapter 3 introduces workforce scheduling in general and
the problems we consider here in detail. This chapter also includes a review of
previous efforts made in solving problems related to workforce scheduling. In
Chapter 4 a new framework for rotating workforce scheduling and computational
results for real life examples is presented. Chapter 5 proposes a solution for the



CHAPTER 1. INTRODUCTION 7

shift design problem. It also presents a neighborhood search based on tabu search,
a guided neighborhood search, and the computational results for both real-life and
randomly generated examples. Chapter 6 briefly introduces commercial products
in which our algorithms have been included. Chapter 7 concludes and describes
work that remains to be done.



Chapter 2

A Brief Review of Intelligent
Search Methods

Rapid development of computer sciences has made possible modeling and solving
very complex real world problems. Real world problems are often very hard
to modulate, heavily constrained and with a large search space, that is a large
number of possible solutions. To solve these problems in a reasonable amount
of time, researchers have developed many problem-solving techniques. One way
to solve problems is by searching. In this Chapter we give a brief overview of
intelligent search techniques which have been intensively used for solving hard
real world problems.

2.1 Search and problem solving

Search is one of the typical strategies in computer sciences to solve problems
that have a so-called combinatorial nature. Some problems with high practical
relevance solved by search are given below:

¢ Route finding: Vehicle routing concerns with finding the routing of vehicles
to pick up or supply the costumer with goods in different locations, subject
to different constraints like: time restrictions, costs of the routes etc. Rout-
ing is also very important in computer networks, bus routing, airline travel
etc.

e VLSI design: Designing chips with a million gates is a very complex task
that includes many complicated problems like placement of the cells and



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 9

routing decision. Search is used to minimize the area of the chip, length of
wiring etc.

e Scheduling and sequencing: Such problems appear for example in manufac-
turing systems where a determined number of jobs should be completed on
a set of machines. The task is to determine the order of jobs on machines,
such that the completion time of the last job is minimized. Another im-
portant application is automatic assembly of complex objects by a robot.
Other examples include workforce scheduling, course scheduling, university
timetabling, sport events timetabling, scheduling for space missions etc.

e Packing and loading problems: Such problems include for example cutting
of rectangular pieces in wood industry from standardized stocks, cutting
from the rolls in the textile or paper industry, optimal loading of the items
in the specified area etc.

e Robot navigation.

e Applications in medicine: Such problems appear in systems for medical
diagnosis, cancer treatment etc.

e Applications in telecommunications: Example of such problems are the
optimization of communication network planning, code design which make
possible fast and reliable transmitting of information, etc.

e Applications in molecular biology like mapping of DNA sequences.

Further we introduce basic concepts of search by one example.
Problem 1: There is given a table with dimensions nxm (assuming in he following
example that n = 4 and m = 7). Each of the elements of the table should be
filled with one of the symbols M,A,N.-, such that the following constraints are
satisfied:

1. In each column there should appear each symbol exactly one time (in gen-
eral case this constraint can specify a different frequency of appearance for
each symbol)

2. Two adjacent elements of the table are not allowed to be assigned in the
following sequences: “N M”,“A M”, “N M”. Adjacent elements in a row
are considered to be consecutive elements. Additionally, the last element
of the row is considered adjacent to the first element of the next row , and
the next row for the last row is the first row of the table



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 10

Table 2.1: A possible feasible solution for example 1

MIM|N|N|-|-]-
A|lA|A|JA|N|N|N
- - M|M|A|A A
N|IN|-|-|M M| M

3. Blocks of adjacent elements assigned with one of the symbols M,A,N are
not allowed to be shorter than 4 and longer than 7.

4. Blocks of elements assigned only with symbol “” should have length of
from 2 to 4

This is a simplified version of a practical problem that will be considered in
this thesis.

How shall we find the solution for this problem? First let us make an obser-
vation about the number of possible assignments to this table. The number of
possible solutions (feasible and infeasible ones) for the search problem is called
search space of the problem. Let us see how large is the search space for this prob-
lem. The table has 4 x 7 = 28 elements. As for each of the elements there exist 4
possibilities (four symbols), the space of the possible solutions is: 428 = 7,2x10'6.
In this problem we are interested on finding the first solution which fulfills all
constraints. For example in Table 2.1 is shown one of the solutions that fulfills
all constraints. An algorithm used to find the solution among all possible solu-
tions is called a search algorithm. Sometimes is not only required to find the
first solution that fulfills some criteria but also to find the best solution subject
to one ore more criteria which can be fulfilled to a specific degree. In this case
the problem is called an optimization problem and the aim is to find the optimal
solution.

A very simple algorithm, so that a solution for Problem 1 is found, would
be to enumerate all possible solutions and to test each of them whether it ful-
fills constraints or not until we find the first one. However, this method is not
effective. Even for small instances of problems it is impossible to enumerate all
possible solutions in a reasonable amount of time. In order that those problems
that have a very large search space are solved in a reasonable amount of time, al-
ternative methods have been developed. Those methods do not always guarantee
finding an optimal solution, but produce, most of the time, acceptable solutions
in practice. In this thesis, we rely in techniques which are loosely classified as
intelligent search techniques [58] and part of them as modern heuristic techniques



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 11

[51]. We will not consider here some of typical operational research techniques
like linear programming, because we focus in this thesis in intelligent search tech-
niques. Before we describe Al search techniques let us say some words about the
complexity of the problems.

2.2 Complexity of problems

Complexity theory is a field of computer science which studies the complexity of
problems based on the characteristics of theoretically best algorithms that solve
them. A problem which can be solved with algorithms, which have similar time
or space requirements belongs to class of problems. Two complexity classes are
the class P and NP. These two complexity classes include many relevant practical
problems.

One problem belongs to class P if it can be solved with an efficient (polyno-
mial) algorithm. The algorithm is polynomial if its execution time grows (rate
of growth O()) according to a polynomial function compared to the size of the
description of the problem’s instance. One of the algorithms for sorting called
selection sort, for example, is a polynomial algorithm as this algorithm has the
rate of growth O(n?), where n represents the number of the items that should be
sorted.

Another complexity class called NP (non-deterministic polynomial) includes
many problems that have high practical relevance. The class P is a subset of NP,
but the class NP include problems which are called hard or intractable because
for these problems no efficient algorithms are known. One of the open questions
in computer science is the whether the class P is equivalent to NP.

Problems in NP can be described as decision problems which have one answer

“yes” or “no”. Suppose that we can guess a solution, which has the answer

“yes” to the problem. If we can check in polynomial time that the solution
is right then the problem is NP. If every problem in NP can be transformed
to a particular problem in polynomial time the problem is called NP-hard. If
an NP-hard problem belongs itself to the class NP that problem is called NP
complete. Stephen Cook [18] was first (1971) to prove that the problem called
‘satisfiability’ is NP complete. Karp (1972) [38] presented other problems that
are NP complete and during the last 30 years a lot of work has been done in
NP completeness theory. A list of many NP complete problems can be found in
Garey’s and Johnson’s book [21] which provides a detailed introduction to the

theory of NP completeness.

Many practical problems, including the problems from workforce scheduling



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 12

Table 2.2: Comparison of polynomial growth with exponential growth

rate of growth | n=3 | n=10 n=20 n=30 n=40
n? 9 100 400 900 1600
4n 64 | 1048576 | 1099511627776 | 1,15+ 10" | 1,2 % 10%*

that we will consider in this thesis, are NP complete problems. For these problems
no such efficient algorithms are known, but nobody has also proved that they do
not exist for such problems. Solving one of these problems efficiently would also
mean solving all NP complete problems efficiently, as every NP complete problem
could then be transformed in polynomial time to a problem for which efficient
algorithms would exist.

The general case of Problem 1 is an NP-Complete problem and no efficient
algorithm for it is known. Enumeration of all solutions for this problem (exhaus-
tive search) requires an exponential algorithm with a rate of growth O(4™*™).
Suppose that the m remains fix and only n changes in value. In Table 2.2 the
difference of the rate of growth for this algorithms and selection sort which has
growth rate O(n?) is given for different values of n.

2.3 Search techniques in Al

Although for NP complete problems in general no efficient algorithms exist, re-
searchers have developed over the years a number of alternative methods that
make it possible to find an acceptable solution to these problems in a reasonable
amount of time. We give a brief review of some of the intelligent search methods
in the following.

2.3.1 Exhaustive search

Exhaustive search is a procedure that guarantees finding the best solution, but
it is a very ineffective procedure. With this method, all the possible solutions in
the search space are systematically enumerated until the best solution is found.
In case the evaluation of the best solution is known, the search procedures stop
as soon as the best solution is found, otherwise all possible solutions must be
examined and the best one is identified at the very end. As the search space
of most practical problems is very large, use of exhaustive search is mostly not
practical. However, analyzing the procedures for enumerating all solutions is



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 13

important, because other more effective methods are based on these procedures.
Further we give a brief description of two such procedures called breadth-first
search and depth-first search. These two strategies are called blind strategies
because they do not have the information about the past cost to the goal solution.
In order to describe these procedures, the search process is illustrated with a
search tree.

Breadth-first search

In the breadth-first search procedure, first, all nodes of the first level in the
tree are visited, then all nodes of level 2 and so on, until the last level when
the best (goal) solution is found if one exists. In Figure 2.1 the breadth-first
search procedure for Problem 1 is illustrated. First level of the tree represents
all possibilities for the element (1,1) of the table. Like described in the problem,
these possibilities are the symbols M,A,N,- . For each of the nodes in level one
there exist four other possibilities in the element (1,2) of the table. In this manner
the tree is expanded until the whole table is filled. As the table has 28 elements
the tree will have 28 levels. The solution that fulfills all constraints can be found
only in the last level, when all elements of the table are filled.

The breadth-first strategy guarantees that the best solution will be found (in
our case the solution that fulfills all constraints). However, space requirements
of this strategy are very large, as all nodes should be stored in the memory. In
our case, each node has 4 branches (branching factor is 4) and the tree has 28
levels (depth of the tree is 28). Thus the minimum number of nodes that must
be stored in memory is 427. In the general case, if there is a tree with branching
factor b and depth d the minimum number of node that must be memorized
is b1 which is bounded by O(b?), an exponential growth rate in d. Even for
very small problems, the amount of memory required by this procedure exceeds
practical possibilities.

Another variant of breadth-first search is bidirectional search. The basic idea
there is to search from the initial state and the goal state until two searches meet
[60].

Depth-first search

In the depth-first search procedure, the left most node in each level of the tree is
visited until the point in which it is concluded that the found path in the tree is
not the best solution. At this point the procedure backtracks for one level to visit
other nodes. In Figure 2.2 the depth-first search procedure for the Problem 1 is



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 14

Lewel:
i
i
I A H &

PO ¢ O Y ) Y - MJA Ny, /MW fa W
2 L 9 o0 o o o o o o o o o o o

22

Figure 2.1: Breadth-first search tree for Problem 1

illustrated. First, the first node that consist in the first possibility for element
(1,1) of the matrix (in our case M) is visited, after that the second element of the
table is filled and so on, until the first path is reached, which unfortunately does
not represent the desired solution. As the path does not represent the solution
that fulfills all constraints, backtracking done, and the next node to the right is
visited (A). When the 4 nodes are visited in the bottom but the solution is not
found, the depth-first search procedure backtracks two levels higher to visit other
nodes, and the visiting of nodes is done recursively.

The depth-first strategy guarantees that the best solution will be found (in
our case the solution that fulfills all constraints) if the tree is not infinite. Space
requirements of this strategy are not large, only d (depth of tree) nodes have
to be memorized. However, the time complexity of the depth-first search is also



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 15

Lewel:
1]
i
1 &
Il
2 O

Backtrack

28

Figure 2.2: Depth-first search tree for Problem 1

O(b%). The disadvantage of the depth-first search is that it can get stuck in the
tree and take a wrong path (direction).

2.3.2 Heuristic based search

Breadth-first search and depth-first search visit systematically the nodes of the
tree, and are very impractical even for small instances of problems. In artificial
intelligence (AI) methods based on so-called "heuristic’ search have been devel-
oped. The word heuristic is derived from the Greek verb "heuriskein’ which means
‘to find’ or ‘to discover’. Newell, Shaw, and Simon (1963) describe heuristics as
‘a process that may solve a given problem, but offers no guarantees of doing so’.



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 16

Another definition given by Reeves [59] defines heuristics as ‘a technique, which
seeks good (i.e., near optimal) solutions at a reasonable computational cost with-
out being able to guarantee either feasibility or optimality, or even in many cases
to state how close to optimality a particular feasible solution is.’

Search heuristics have been used intensively in AI. The basic idea is to expand
not all but only a subset of nodes in the search selected by heuristic. One of the
simplest variants of the so called best-first search is based on the heuristic function
h, where h(n) represents estimated cost of the cheapest path from the state at
node n to the goal state. We use notation from [60] and this approach is called
Greedy search.

An extension of best-first search is the search technique called A* where
the evaluation function f(n) is a combination of the heuristic function h(n) and
the function g(n) which represents the cost of the path found so far: f(n) =
g(n) + h(n). The function h is selected such that it guarantees the so called
admissibility’. An algorithm is admissible if it always terminates at the optimum
solution [51]. For detailed description of the Ax search strategy and its extensions
we refer the reader to [60], [51], [13].

Heuristic search has been also used extensively in Al for game playing Shan-
non [62].

2.3.3 Search for constraint satisfaction problems

Many practical problems like routing, scheduling, timetabling, etc. can be de-
fined as constraint satisfaction problems (CSP). Formally, a constraint satisfac-
tion problem is described with a set of n variables z1,z9, ..., z,, sets of domain
values which the variables can take D(z1), D(z2),...,D(zy), and set a of con-
straints c1,co,...,c, over the variables z1,z9,...,z,. For example, Problem 1
is a constraint satisfaction problem where the variables are elements of the table
and domain of each variable are values M,A,N.-. Constraint 2 for example is a
binary constraint as it is defined between any of two adjacent elements of the
table. This constraint is satisfied if the adjacent elements take only values for
which the constraint is specified. The domain of the variables in CSP can be
finite or infinite. In Problem 1 the variables have finite domains, as they can take
only one of the four values. Constraints are also often divided in to hard and
soft constraints. In case of hard constraints, the constraints must be satisfied,
and in the case of soft constraints the aim is to satisfy the constraint as good as
possible. They are so called optimization problems. For detailed description of
constraint satisfaction problems we refer the reader to [68] and [48].



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 17

Backtracking search

In the case of CSPs, search space can be significantly reduced by pruning of part of
the search space where some of the constraints cannot be satisfied. The basic idea
is to test before expanding every node in the search tree if any of constraints are
violated. In that case, the part of the tree will not be searched, as it is sure that
a feasible solution cannot be found. The search technique that prunes the search
space in this manner and is based on depth-first search, is called backtracking
search. This strategy has been used for many practical problems and is a way
of enumerating all solutions in a much more effective way than basic depth-first
search. One way to make backtracking more effective is forward checking [60].

Further we illustrate the backtracking strategy for the Problem 1 in Table 2.3.
Column 1 of the table is represented by variable x1, column 2 with 25 and so one
until the last column with variable zsg. In Table 2.3 first 12 steps of backtracking
algorithms are presented. The letter U is used to denote that the variable is
unsigned. In the first step, backtracking search begins with giving first possible
value for the first variable. Every time the variable is assigned, a test for violation
of constraints is done. We show in braces which constraints are violated when
new variable is assigned with the value. If this is the case, the search backtracks,
which means that the variable should be assigned other value or backtracking to
the previous step should be done.

Heuristics for constraint satisfaction problems

One way to solve larger instance of CSPs is by using heuristics, which can be
used to determine the order of variables to be assigned and selecting values for
the variables. Most-constrained variable heuristics [12] are used with forward
checking. With this technique, the order of assignment of variables is determined
and the variable with the fewest possible value is selected to be assigned. Other
heuristics used are the least-constraining-value heuristic [32] where the value of
variable is selected such that it rules out the smallest number of values in the
variables which are connected to the current variable by constraints.

Other methods used to solve CSPs is the iterative improvement technique.
With this method, initially all variables are assigned with a value and the solution
is repaired iteratively from the inconsistencies (constraint violations), by changing
iteratively the values of variables. Different type of heuristics can be used in
choosing the new value of variables. One of the heuristics that has proved to
be very effective in solving CSPs is the min-conflict heuristic [52]. With this
heuristic, in each iteration, the value of the variable that minimizes the number



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 18

Table 2.3: First 12 steps of backtracking algorithm for problem 1

Ty ™2 T3 T4 Ts Te Ty T T9 Tig T2g
Step 1: M U U U U U U U U U U
Step 2: M M U U U U U U U U U
Step 3: M M M U U U U U U U U
Step 4: M M M M U U U U U U U
Step 5: M MM MM U U U U U U
Step 6: M MM MMMU U U U U
Step 7: M M M MMMMU U U U
Step 8: M MM MMMMM U U U
backtrack: (cl,c3)
Step 9: M MM MMMM A U U U
backtrack: (c3)
Step 10: M M M MMMMN U U U
backtrack: (c3)
Step 11: M MM MMMM - U U U
Step 12: M M MMMMM - M U U

backtrack: (c4)

of constraint violations is changed. This technique has been successfully used to
schedule observation for the Hubble space telescope.

2.3.4 Local search techniques

We will describe here, in detail, hill climbing, simulated annealing and tabu search
technique that are based on local search. Local search techniques, named also
([59], [2]) neighborhood search, are based on the neighborhood of the current so-
lution. Many local search techniques have been developed for different problems.
Search, in these techniques, begins with constructing the initial solution, which
is after that changed iteratively with so called neighborhood relations (moves)
until an acceptable or optimal solution is reached. Neighborhood of solution s
is denoted with N(s) and contains all solutions which can be obtained from the
solution s transforming it by moves. One solution is said to be global optimum
or optimal solution if it has the best evaluation among all solutions in the search
space. One solution is said to be a local optimum if it is the best solution in
its neighborhood. Imagine the search space like a landscape with many peaks.



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 19

Table 2.4: A possible initial solution for Problem 1

AM|M|-|-|-1]-
M|-|A/A|N|N|N
-lAINM|A|A A
N|IN|- | N M| M M

Table 2.5: One of the neighborhood solutions for solution in Table 2.4

Al-[A[A|N|N|N
" [A[N|M[|[AA[A
N|[N|-|N|M|M|M

The highest peak is a global optimum and other peaks in the landscape are local
optima.

In order to explain some concepts of local search, suppose for example that we
constructed for Problem 1 the initial solution in Table 2.4. This solution does not
fulfill all constraints and in order to find a solution that fulfills all constraints,
local search techniques could be applied. First we have to define the moves.
Suppose, for example, we define for this problem only one move, which swaps the
contents of two cells in any column of the table. We call this move swap(j, i, k),
where j represents the column in which the change of elements should be done,
and 4, k represent elements in column j that should swap their contents. The
neighborhood of the solution in Table 2.4 represents now all solution that can be
obtained by applying the move swap(j, i, k), where 1,5,k take all possible integer
values (in this case 0 < j < 8,0 < 4,k < 5). One possible neighborhood solution
for the solution in Table 2.4 is presented in Table 2.5. This solution is obtained
by applying the move swap(1,1,2).

More moves, of course, can be defined, and they are most of the time specific
to the problem in question that has to be solved. Larger neighborhood offers
principally better possibilities to reach an optimal solution. However, exploring
a larger neighborhood requires also more time. During each iteration, from the
neighborhood of the solution based on some criteria (i.e., the solution is better
then current solution) one solution is becoming a current solution. Let as mention
that it is also possible that the current solution does not change, as the criteria
for changing it are not fulfilled. In the next iteration, the new neighborhood for



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 20

the current solution is generated and again the descendant of the current solution
is selected. This procedure is repeated for a determined number of iterations.

An initial solution can be constructed randomly, or a procedure to find a
good initial solution can be applied.

Local search techniques differ mainly in the way they explore neighborhood
and in their decision about accepting the descendant of the current solution. Some
of the techniques generate complete neighborhood (with all defined moves) of the
solution during each iteration. Some of them generate only part of neighborhood,
i.e., one neighborhood solution or more. Regarding accepting the descendant
solution, some techniques accept only better solutions than the current one, while
others accept worse solution too, under some conditions. We further describe
these techniques in more detail.

Hill climbing

Hill climbing is an iterative improvement technique. The simplest variant of a
hill climbing technique begins with constructing the initial solution which we will
call current solution. Iteratively, during the next iterations, the current solution
is replaced with the best solution in the neighborhood if that one has a better
evaluation then the current solution. If no improves can be made, the procedure
stops. Hill climbing can easily get stuck in local optimum if there exist many
local optima, which is the case with most practical problems.

One variant of hill climbing is random restart hill climbing. In this pro-
cedure, the simple hill climbing is called with different starting random initial
solutions and to the end, the best solution found so far from all calls of the pro-
cedure is picked. In this case more chances exist to find the global optimum, and
that depends on the number of starting points, which are used for running the
simple hill climbing. The procedure is stopped after a determined number of iter-
ations. Another criteria for stopping procedures are also used. For example, the
procedure can be stopped if after a determined number of iteration no improves
to the solution have been made. In Figure 2.3 the version of random restart hill
climbing is given (based on [51]). Exit from the main loop is done if the number
of maximal iterations is reached, and exit from the hill climbing loop is done if
no improves can be done.

Another variant of hill climbing is a method called stochastic hill-climber.
This procedure differs from the previous one in that, only one solution from the
neighborhood is generated during each iteration. This generated neighborhood
solution will be accepted with a probability which depends on its evaluation.
In this manner, even a solution that is worse than the current solution, has



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 21

Initialize Spegs
NumberOflterations=0
Do While NumberOflterations < MaximalNumberOfIterations

Generate randomly Initial Solution s,
Evaluate s,
Solutionlmproved=TRUE

Do While Solutionlmproved=TRUE

Generate neighborhood solutions of solution s,
Select best solution s, from the neighborhood

If s, is better than s. then
Se¢ = Sy

else Solutionlmproved=FALSE
Loop

NumberOfIterations=NumberOflterations+1

if s. is better then sp.5 then

Sbest = Sc

Loop

Figure 2.3: Random restart hill climber

chances to become the current solution in the next iteration. The pseudo code of
stochastic hill-climber is presented in Figure 2.4, where we assume that we have
maximization problem.

The parameter T given in the code remains constant during the search. The
probability for accepting the solution decreases if the solution s, is much worse
than the solution s.. If the parameter T is greater, the difference of the current
solution from that in the neighborhood has less impact on the probability to
accept the generated neighborhood solution for the next iteration.

Simulated annealing

The first basic ideas for simulated annealing (SA) were published by Metropolis
et al. [50] as early as in 1953. In the 1980s, Kirkpatrick et al. [39] suggested that



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 22

NumberOflterations=0

Generate randomly Initial Solution s,

Evaluate s,

Do While NumberOflterations < MaximalNumberOflterations

Generate neighborhood solution s, of the solution s,
Select s, with probability p =

eval(sc)—eval(sz)
1+e T

NumberOfIterations=NumberOfIterations+1

Loop

Figure 2.4: Procedure of a stochastic hill climber

simulated annealing could be used for optimization problems. This algorithm is
based on the analogy of annealing of solids. Simulated annealing under special
circumstances allows accepting of a worse solution from the neighborhood in
order to escape from a local optimum. This technique is similar to a stochastic
hill climbing, but here the parameter 7' called temperature changes during the
search. Another difference is that the solution that is better than current one is
always accepted in the next iteration. The pseudo code of simulated annealing is
presented in Figure 2.5. Here we assume we have maximization problem.

In standard SA, the neighborhood solution s, is selected most of the times
randomly, but there exist also implementations in which the selecting of the
neighborhood solution is cyclic, such that all neighbors are tried once before any
is considered two times. Critical points in SA are the decision about the ini-
tial temperature and the function g(T, NumberOflterations) which is called also
cooling ratio and which defines how the temperature changes during the search.
Terminate-Conditionl and Terminate-Condition2 are also important parameters
that have to be specified. They may be dependent for example on the number of
iterations, number of iterations without improvement etc.

For a more detailed description of simulated annealing, the reader is referred
to Laarhoven and Aarts [42], Aarts and Korst [1], and Dowsland [20].

Tabu search

First ideas for the tabu search (TS) techniques came from Glover [25] and Hansen
[31]. This technique is one of most powerful modern heuristic techniques, which
has been used successfully for many practical problems. In this thesis, we will



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 23

NumberOflterations=0

Initialize temperature T

Generate randomly Initial Solution s,
Evaluate s,

Do While terminate-conditionl

Do While terminate-condition2

Generate neighborhood solution s, of the solution
Se
if s, is better than s. then

Se = Sz

else generate random z in the range (0,1)

eval(sz)—eval(sc)

ifzx<e
then s, = s,

Loop

T= g(T, NumberOFIterations)
NumberOflterations=NumberOflterations+1

Loop

Figure 2.5: Simulated annealing procedure

show how this technique can be used for the shift design problem. Basic idea of
this technique is to avoid the cycles (visiting the same solution) during the search
using the tabu list. In the tabu list specified information for search history for a
fixed specific number of past iteration are stored. The acceptance of the solution
for the next iterations in this technique depends not only from its quality, but
also from the tabu list. In the tabu list one stores for instance the moves or
inverse moves that have been used during specific number of past iterations. The
stored moves are made tabu for several iterations. A solution is classified as a
tabu solution if it is generated from a move that is present in the tabu list. In
this technique, during each iteration, the complete neighborhood (with defined
moves) of the current solution is generated. In the basic variant of T'S the best
solution (not tabu) from the neighborhood is accepted for the next generation.
However, it is also possible to accept the tabu solution if it fulfills some conditions,
which are determined with, the so called aspiration criteria (i.e., the solution is
tabu but has the best evaluation so far). In Figure 2.6 the basic procedure of the
is presented.



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 24

NumberOflterations=0

Initialize tabu list

Generate randomly Initial Solution s,
Evaluate s,

Do While terminate-condition

Generate all neighborhood solutions of the solution s,
Find best solution s, in the neighborhood
if s, is not tabu solution then s. = s,

elseif ’aspiration criteria’ is fulfilled then s, = s,

else

find best not tabu solution in the neighborhood s,¢
Sc = Snt

Update tabu list
NumberOfIterations=NumberOflterations+1

Loop

Figure 2.6: Basic tabu search procedure

The termination-condition can be fulfilled for example if the maximum num-
ber of iterations is exceeded, or no improves have been found for several numbers
of iterations, etc.

In this technique, is it possible to accept a worse solution. In this way, tabu
search escapes from local optima. However, as it is heuristic technique, it does
not always guarantee to find the global optimum.

The tabu list is updated after each iteration. In order to give an idea of
the tabu list suppose that the initial solution of the Problem 1 is given in Ta-
ble 2.6. Further, let us suppose that the best solution in the neighborhood of
the solution that can be obtained with move swap(column, elementl, element2)
is the solution obtained by exchanging elements 2 and 3 in the column 1 (see
Table 2.7). In order to obtain this solution, we applied move swap with the pa-
rameters swap(1,2,3). To avoid the cycle, we store the move swap with these
parameters swap(1,2,3) in the tabu list. In this way, the exchange of elements



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 25

Table 2.6: Initial solution for TS for example 1

M| -|M|-]|-1|-1]-
NIM|A|A|N|N|N
-lAINM|M|A A
A|N|- | N|JA M| M

Table 2.7: New solution obtained from solution in Table 2.6 by exchanging ele-
ments 2 and 3 in column 1

CIM|[A[A[N|N|N
N|A|N|M|M|A]|A
AIN|-|N|A MM

2 and 3 in column 1 is made tabu for a specified number of iterations (this de-
pends on the length of the tabu list). Solutions in the neighborhood that will be
obtained in the next iterations with swap(1,2,3) are considered tabu solutions.

One of the critical points in the tabu search is the length of the tabu list.
This parameter most of the time depends on specific problem and usually is
determined experimentally. There exists also a variant of the basic TS in which
this parameter changes dynamically during the search called reactive tabu search
9).

The memory in which the visited solutions or moves are stored is called
recently-based memory. Another memory used in the tabu search technique is
called frequency-based memory (or long term memory). In this memory, there
could be stored, for example, the information about the frequency of use of each
move during the prespecified number of iterations. The frequency-based memory
can be used in different ways. A typical use would be, for example, to diversify
the search in the unexplored regions of the search space, for example by applying
moves that have not been applied for several iterations or to intensify the search
in promising regions of the search space.

For detailed description of tabu search technique the reader is refereed to
Glover and Laguna [28] and Glover [26], [27].



CHAPTER 2 A BRIEF REVIEW OF INTELLIGENT ... 26

Other heuristic techniques

There exist also other heuristic techniques that have been used successfully in
problem solving. Here we mentioned them briefly. Genetic algorithms ([34], [30])
were developed from Holland, his colleagues, and his students 1960s and 1970s
at the University of Michigan. Currently, GA are applied almost in all areas.
Neural networks and recently ant colony optimization heuristics have been also
used for solving of combinatorial problems.

The techniques we described in this chapter can also be used in combination
with each other. For example, combining genetic algorithms with local search
algorithms has given good results for many problems.



Chapter 3

Workforce Scheduling

Workforce scheduling, in general, includes sub-problems which appear in many
spheres of life like in industrial plants, hospitals, public transport, airlines com-
panies, universities etc. According to the area, this problem is denoted with
different names in the literature. Usual used terms are: workforce scheduling,
manpower scheduling, staff scheduling, shift scheduling, employee timetabling,
employee scheduling, rostering, personnel scheduling, crew scheduling, labor shift
scheduling problem etc. In this chapter, we first give a rather intuitive and semi-
formal definition of workforce scheduling problems. Further, we give a detailed
description and formal definition for two problems we consider in this thesis (ro-
tating workforce scheduling and shift design). Subsequently, we give a review on
work in computerized workforce scheduling which has been the subject of study
of researchers from the operational research community and the Al community
since more than 30 years.

3.1 Basic concepts

A workforce schedule represents the assignments of the employees to the defined
shifts for a period of time. In Table 3.1 one typical representation of work-
force schedules is presented. There exist different representations of workforce
schedules in different areas, but we can explain the basic definition of workforce
scheduling without loss of generality based on this representation.

Subsequently, main features of this schedule are listed:

Employees: This schedule is made for 9 employees (first column of the ta-
ble). In this table, the employees are represented with numbers 1-9, but other

27



CHAPTER 3 WORKFORCE SCHEDULING 28

Table 3.1: One typical week schedule for 9 employees

H Employee/day ‘ Mon ‘ Tue ‘ Wed ‘ Thu ‘ Fri ‘ Sat ‘ Sun H

1 D D D D D - -
2 - D D D D | D D
3 D - - N N | N N
4 - - - - Al A A
S A A A A - - -
6 N N N N N - -
7 - - A A Al A A
8 A A - - - N N
9 N N N - - D D

representations are also used (i.e., name of the employees). The number of em-
ployees is variable and depends on the specific problem. In general workforce
scheduling problems, the employees can have different qualifications. Addition-
ally, general problems can include employees with different working times.

Planning period: Determines the length of the schedule. This table rep-
resents a one week schedule of 9 employees. The second column of the table
corresponds to Monday, the third to Tuesday and so on until Sunday. In prac-
tice, the length of planning period varies. Most typical are week and month
schedules, although schedules with other lengths also appear in practice.

Shifts: The letters D, N, A in table represent the shifts. A shift is a period
of time during which the employees are in duty. This schedule contains three
shifts, but in general the number of shifts can change. To be on duty does not
mean automatically that the employee is at the workplace. The employee can
also be in a so-called stand-by duty (being prepared to work if needed). The sign
-7 represents days-off (the employee has time free). Basic features of one shift
are the start and the end time. For example, the shift D can be defined as a shift
which begins at 6:00 and ends at 14:00, A: 14:00-22:00 and N: 22:00-6:00. Usually,
according to the begin time, each shift becomes its name. In this example we
call shifts D, A, and N respectively day shift, afternoon shift, and night shift.
The structure of shifts in practice can be much more complicated. Shifts can for
example include breaks of different lengths, which can be fixed or within time
windows (the break can appear anywhere during the specified time period).

Thus, what does this schedule describe? In this schedule is described ex-
plicitly when 9 employees will work during one week. The employee 1 works



CHAPTER 3 WORKFORCE SCHEDULING 29

Table 3.2: Second week for the cyclic schedule from Table 3.1

H Employee/day H Mon ‘ Tue ‘ Wed ‘ Thu ‘ Fri ‘ Sat ‘ Sun H

1 N N N - - D D
2 D D D D D - -
3 - D D D D | D D
4 D - - N N | N N
S - - - - Al A A
6 A A A A - - -
7 N N N N N - -
8 - - A A Al A A
9 A A - - - N N

from Monday until Friday in a day shift (D) and during Saturday and Sunday
has days-off. The second employee has a day-off on Monday and works in a day
shift during the rest of the week. Further, the last employee works from Monday
until Wednesday in night shifts (N), on Thursday and Friday has days-off, and
on Saturday and Sunday works in the day shift. Each row of the table represents
the week schedule of one employee.

3.1.1 Cyclic and non-cyclic schedules

One wide division of workforce schedules is in cyclic (rotating) and non-cyclic
schedules. If the schedule represented in Table 3.1 is defined as non-cyclic, then,
after a week, a new schedule for the employees should be constructed or the
present one remains. If the schedule is cyclic, after the first week the first employee
will take the schedule of the second employee, the second employee the schedule
of third employee and so on, then the last employee will take the schedule of
the first employee (see Table 3.2). The cycle length is equal to the number of
employees times the planning length, and thus in this case it is 9 weeks. Since each
employee takes the schedule of each other employee during the cycle, all employees
pass through the same schedule during the cycle. In case of cyclic schedules, all
employees have the same working hours on average and are considered to have
the same qualifications.



CHAPTER 3 WORKFORCE SCHEDULING 30

Table 3.3: Temporal requirements for the schedule in Table 3.1

Shift | Mon | Tue | Wed | Thu | Fri | Sat | Sun
D 2 2 2 2 2 2 2
A 2 2 2 2 2 2 2
N 2 2 2 2 2 2 2

3.1.2 Constraints

Workforce schedules most of the times should fulfill several constraints. The
workforce scheduling constraints are influenced by the results from ergonomics
[11], cost for the organization and individual preferences of employees. It is well
known that the schedule can have an impact in the health of the employees
and their performance at work. The type of constraints depend on the specific
problems. However, we give here a brief description of some constraints which
appear almost in every problem.

Temporal requirements

One of the typical constraints for each problem is about workforce requirements.
Workforce requirements determines the needed number of employees for each
day and time interval during the planning period. For example, in Table 3.1 two
employees are present every day in each shift. It follows that this schedule satisfies
the requirements of two employees for each day and each shift (see Table 3.3).
Shortly, we represent these requirements by a so-called requirement matrix where
each row of the matrix represents one shift and each column one day, whereas
the elements of the matrix represent needed number of employees for particular
shifts and days. In a general workforce problem it is not always necessary that
the requirements are fulfilled exactly since this sometimes may not be possible.
If that is the case, the aim is to minimize the difference of numbers of employees
who are presented in the schedule to the requirements.

R37 =

3

N DN N
N DN N
N DN DN
N DN DN
N DN N
N DN N
N DN DN



CHAPTER 3 WORKFORCE SCHEDULING 31

Number of working hours per week

Average number of working hours is defined for each employee per week. In the
general case, employees can have different numbers of working hours. The aim in
the schedule is to reach a specified number of working hours for each employee
as exactly as possible.

Sequences of shifts

Some sequence of shifts are not allowed or not preferable to be assigned to the
employees because of ergonomic criteria. For example, working in the morning
shift after a night shift is not allowed because there should exist a minimum
period of rest between two duties. Another example includes the limits about
the length of sequences of work in the same shift. For example, working in the
night shift for more than 4 to 5 successive days is depreciated.

Work and rest periods

Usually the employees should have rest days after a certain number of working
days. For example, in the schedule from Table 3.1, no employee will work more
than 7 days in a row. Usually the rest period should not be too short or too long,
thus, for this reason limits are set. In the schedule of Table 3.1, rest periods have
length between 2 to 4 days.

Individual preferences

In the case the schedule is not cyclic, individual preferences of employees can be
taken into consideration. Individual preferences of employees for example concern
the days the employees want to have off (availability of employees). Another
example includes preferences about the work shifts. Some employees for example
may prefer to work more during the weekend or in night shifts.

Hard and soft constraints

Constraints in workforce scheduling problem can be hard or soft. In the case
they are hard, any valid schedule must fulfill them. In case of soft constraints,
violating them is allowed, but the goal is to fulfill them as much as possible. Soft
constraints can be for example individual preferences. In this case, it is sometimes
impossible to construct the schedule that fulfills constraints of all employees, but
the aim is to fulfill as many of the preferences of the employees as possible.



CHAPTER 3 WORKFORCE SCHEDULING 32

Table 3.4: Possible temporal requirements for one week

Time interval/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun
07:00-11:00 5 5 5 5 5 1 1
11:00-14:30 10 10 10 10 | 10 | 4 4
14:30-20:30 12 12 12 12 12 4 4
20:30-06:00 14 14 14 14 | 14| 4 4

3.1.3 Design of shifts

Usually, after the temporal requirements are defined, the first phase in workforce
scheduling is to construct the shifts. In this phase the number of employees for
each shift is determined. Further, the total number of employees is calculated
based on the average number of working hours for a certain period of time, usually
one week.

In Table 3.4 an example of temporal requirements is given. In this example
the temporal requirements are given for one week. Based on these requirements
and some constraints about the shifts, the aim in the shift design problem is to
generate legal shifts that fulfill in the best way the temporal requirements. In
the next section we will give a detailed description of the problem of shift design
we consider in this thesis.

3.2 Problems we consider in this thesis

In this thesis we consider the problem of generation of shifts and the problem of
assignment of shifts to the employees for the case of rotating workforce schedules
(rotating workforce scheduling). Further, we give a detailed description of these
problems.

3.2.1 Shift design

Instance:

e n consecutive time intervals [a1,a2), [a2,a3), ... [an,ant1),
all with the same length slotlength in minutes. Each interval
[ai,a;+1) has an adjoined numbers w; indicating the optimal
number of employees that should be present during that interval.



CHAPTER 3 WORKFORCE SCHEDULING

Table 3.5: Possible constraints for shift types in the shift design problem

Time point a; represents the begin of the planning period and
time point a, represents the end of the planning period. The
format of time points is: day:hour:minute. For simplicity the
temporal requirements are usually represented using longer time
intervals. See one possible representation of temporal require-
ments for one week in Table 3.4.

y shift types vi,...,v,. BEach shift type v; has the follow-
ing adjoined parameters: v;.min-start, v;.max-start which rep-
resent the earliest and latest start of the shift and v;.min-
length, v;.max-length which represent the minimum and max-
imum lengths of the shift. In Table 3.5 an example of shift types
is given.

An upper limit for the average number of working shifts per week
per employee (definition is given later).

33

Shift type || Earliest begin | Latest begin | Shortest length | Longest length
M 05:00 08:00 07:00 09:00
D 09:00 11:00 07:00 09:00
A 13:00 15:00 07:00 09:00
N 21:00 23:00 07:00 09:00
Problem:

Generate a set of k shifts s1,...,s,. FEach shift s; has adjoined pa-
rameters s;.start and s;.length and must belong to one of the shift
types (see formal definition below). Additionally, each real shift s,
has adjoined parameters s,.w;,Vi € {1,...,C} (C represents number
of days in the planning period) indicating the number of employees in

shift

sp during the day i. The aim is to minimize the four components

given below:

Sum of the excesses of workers in each time interval during the
planning period (see formal definition below).

Sum of the shortages of workers in each time interval during the
planning period (see formal definition below).

Number of shifts k.



CHAPTER 3 WORKFORCE SCHEDULING 34

e Distance of the average number of duties per week in case it is
above a certain threshold.

This is a multi criteria optimization problem. The criteria have different
importance depending on the situation. The objective function is a scalar function
which combines the four weighted criteria. Let we note that we consider designing
of shifts for a week (less days are also possible) and assume that the schedule is
cyclic (consecutive element of last time slot of planning period is the first time
slot of planning period).

Formal definitions:
The generated shift belongs at least to one of the shift types if:

vie{l,...,k}35€{1,....y}/
v;j.min-start < s;.start < v;.max-start

v;.min-length < s;.length < v;.max-length

Sum of the shortages and excesses (in minutes) of workers in each time
interval during the planning period is defined as

n k
ShortagesSum = Z(Indz’cator(wd - Z Zp.q) * slotlength)
d=1 p=1
n k
ExcessesSum = Z((Indz’cator — 1) (wg — Z Zp.q) * slotlength)
d=1 p=1

where,
1 if wg— Y)_ @p,q is positive

Indicator = .
naucator { 0 otherwise.

R if d time slot belongs to the interval of shift s, in the day i
pd 0  otherwise.

The average number of working shifts per week per employee (AvD) is defined
below:
(Zle ZJC:1 si.wj) * AverageNumber OfHoursPer Week

AvD = - -
Di=1 Z]’:1 si.awj * s;.length




CHAPTER 3 WORKFORCE SCHEDULING 35

3.2.2 Rotating workforce scheduling

In this section, we describe the problem of assignment of shifts and days-off to
employees in case of rotating workforce schedules. This is a specific problem of
a general workforce-scheduling problem. The definition is given below:

Instance:

e Number of employees: n.

e Set A of m shifts (activities) : ay,ao,...,an, where a,, represents the
special day-off “shift”.

e w: length of schedule. The total length of a planning period is n x w because
of the cyclic characteristics of the schedules.

e A cyclic schedule is represented by an n X w matrix S € A™. Each element
s;j of matrix S corresponds to one shift. Element s; ; shows which shift
employee 7 works during day j or whether the employee has time off. In
a cyclic schedule, the schedule for one employee consists of a sequence of
all rows of the matrix S. The last element of a row is adjacent to the first
element of the next row, and the last element of the matrix is adjacent to
its first element.

e Temporal requirements: (m — 1) x w matrix R, where each element r; ; of
matrix R shows the required number of employees for shift ¢ during day j.

o Constraints:

— Sequences of shifts permitted to be assigned to employees (the com-
plement of inadmissible sequences): Shift change m X m X m matrix
C € A If element ¢ j, of matrix C is 1, the sequence of shifts
(a;,aj,ay) is permitted, otherwise it is not.

— Maximum and minimum length of periods of consecutive shifts: Vec-
tors MAXS,,, MINS,,, where each element shows the maximum re-
spectively minimum permitted length of periods of consecutive shifts.

— Maximum and minimum length of blocks of workdays: MAXW,
MINW .

Problem: Find as many non-isomorphic cyclic schedules (assignments of shifts
to employees) as possible that satisfy the requirement matrix, all constraints, and
are optimal in terms of weekends without scheduled work shifts (weekends off).



CHAPTER 3 WORKFORCE SCHEDULING 36

All constraints defined are hard constraints, except one for the weekends-off.
Note also that generation of many possible schedules that satisfy all constraints
is required. The idea behind this requirement is to give the user the possibility
to include other possible soft constraint in the group of schedules which fulfill all
hard constraints and maximize the number of weekends off.

In the following, we formally express the constraints:

The requirement matrix R is satisfied if
Vie{l,2,...,w}Vke{1,2,... m—1}

|{’L € {1,2, ,’]’L}/ Si,j et ak}| — ’rk,j

The other constraints are satisfied if:
For the shift change matrix C:

Vie{l,...,n}Vje{l,....,w}Te, f,ge{1,...,m}

855 = ae A next(s;j) = ay A nexto(s;j) = ag = Cefq=1

where
Sij+1 if j <w
next(s;;) =19 Sit11 ifj=wandi<n
s1,1  otherwise
and

nexty(s;j) = next(next(. .. next(s;;)...)),

k

Maximum length of periods of successive shifts:
VEe{l,....m}Vie{l,....,n}Vje{l,...,w}

(83,5, next(sij),- - -, next yaxsw)(8ig)) # (k- ar)
—_——
MAXS(k)+1

Minimum length of periods of successive shifts:

VEe{l,....m}Vie{l,....,n}Vje{l,...,w}



CHAPTER 3 WORKFORCE SCHEDULING 37

—(si,j 7 ar A next(sij) = ap A ( \V nexty(si;) # ar))
be{2,..,MINS(k)}

Maximum length of work blocks:
Vie{l,...,n}Vje{l,...,w}
(8ij = am V next(s;;) = am V...V next yaxw(sij) = am)

Minimum length of work blocks:

Vie{l,...,n}Vje{l,...,w}

(85 = am N next(s; ;) # am A ( \/ nexty(s; ;) = am))
be{2,...MINW}

3.2.3 Complexity of the problems we consider in this thesis

The staff scheduling problem is listed in the book by Gary and Johnson [21]) as
problem [SS20] in the list of NP complete problems. The NP completeness of the
problem is proved by a transformation from X3C (Exact cover by 3-sets). Garey
and Johnson [21] define the staff scheduling problem as follows:

Instance: Positive integers m and k, a collection C of m-tuples, each having k
I’s and m — k 0’s (representing possible work schedules), a ‘requirement’ m-tuple
R of non-negative integers, and a number n of employees.

Question: Is there a schedule f : C — Z; such that 3. f(¢) < n and such
that > s f(€)e < n?

Lau [46] considers the problem of the assignment of shifts to employees sub-
ject to demands and shift change constraints (the shift change matrix is two-
dimensional), both for cyclic and non-cyclic schedules. The author gave the
proof that the problem is NP complete by a polynomial reduction from the 3-
SAT problem. In the same paper, the author presents a polynomial algorithm
for the case when the shift changes are monotonic (if the shifts are arranged in
order according to their start time, the shift numbers assigned to each employee
should be monotonically non-decreasing).

Kortsarz and Slany [41] show that it is possible to model the shift design
problem as a network flow problem, namely as the cyclic multi-commodity ca-
pacitated fixed-charge min-cost max-flow problem. Exploiting this modeling, if
one drops the objective to minimize the number of shifts, the problem can be



CHAPTER 3 WORKFORCE SCHEDULING 38

solved very efficiently with a polynomial min-cost max-flow algorithm. Using a
reduction to the Minimum Edge Cost Flow problem (no. [ND32] in Garey and
Johnson [21]), Kortsarz and Slany show also that, on the contrary, the general
problem is NP complete. The problem in itself is thus hard. It is also hard to ap-
proximate: Kortsarz and Slany [41] also show that there is a constant ¢ < 1 such
that approximating the shift design problem with polynomial bounds on numbers
appearing in the requirements within c¢Inn is NP hard. Additionally, they con-
vincingly argue that it is very unlikely that the shift design problem admits an
efficient algorithm with an approximation guarantee that is substantially better
than an O(y/nlog M) ratio (where M is the largest number in the requirements),
which in practice would anyway be unusable. This strongly suggests that at-
tacking the problem using exact methods is not feasible for anything beyond toy
problems, and that heuristic methods should thus be employed for realistically
sized problems. Similar results exist for the Minimum Edge Cost Flow problem
and variants [41]. This problem is one of the more fundamental flow variants
with many applications. A sample of these applications include optimization of
synchronous networks, source-location, transportation, scheduling (for example,
trucks or manpower), routing, and designing networks (for example, communi-
cation networks with fixed cost per link used, e.g., leased communication lines),
see [41] for references.

3.3 Previous work

Computerized workforce scheduling has interested researchers for over 30 years.
In this section, we give brief review of the previous work in workforce scheduling
with the emphasis on the problems which show similarities with the problems we
consider in this thesis. First we present a review of work in the rotating workforce
scheduling and shift scheduling. Further, we give a review of work in the related
problems. Let us not that the problem of generating the shifts and assignment
of the shifts and days-off to the employees are sometimes solved simultaneously.
Survey of algorithms used for different workforce scheduling problems is given by
Tien and Kamiyama [66]. Operational research (OR) approaches for employee
scheduling are described in book Nanda and Browne [56].

3.3.1 Rotating workforce scheduling

For generation of rotating workforce schedules different approaches were used.
Examples for the use of exhaustive enumeration are [33] and [15]. Balakrishnan
and Wong [8] solved a problem of rotating workforce scheduling by modeling it as



CHAPTER 3 WORKFORCE SCHEDULING 39

a network flow problem. We will compare our results in Chapter 4 with the results
of Balakrishnan and Wong. Gértner and Wahl [23] discuss the interaction of
vizualization and diverse planning strategies for constructing rotating workforce
schedules. They proposed also few heuristics for the manual construction of
schedules. Several other algorithms for rotating workforce schedules have been
proposed in the literature [35, 36, 40, 45]. Recently Laporte [43] considered
developing rotating workforce schedules by hand and showed how the constraints
can be relaxed to get acceptable schedules.

3.3.2 Shift scheduling

The shift design problem we consider in this thesis is similar with problem which
has been addressed in literature as shift scheduling problem. Typically for this
problem is required to generate shifts and number of employees for each shift
for a single day. The aim is to obtain the solutions without under-staffing and
to minimize number of employees. Let we note that problem of shift design we
consider in thesis differs in several aspects from the problem of shift scheduling.
First, we consider generation of shifts for a week. We consider also minimizing of
number of shifts and distance of the average number of duties per week in case it
is above a certain threshold. Moreover, in our problem under-staffing is allowed.

Shift scheduling problem has been solved mainly by using Integer Program-
ming (IP). Dantzig [19] developed the original set-covering formulation for shift
scheduling problem:

n

mimimaize Z Cj T4

=1
subject to
n
Zaijxj >r;fori=1,2,...,m
=1
z; > 0 and integer for n € N
where

n = index for shifts,

z; = number of employees assigned to shift j,

7; = number of employees required to work in the ith time period,
¢; = cost of having an employee work shift j,

m =number of time periods to be scheduled over a single day,



CHAPTER 3 WORKFORCE SCHEDULING 40

0 — 1 if the time periodiis a work period of shiftj
1 0 otherwise.

In this formulation for each feasible shift exist one variable. Feasible shifts are
enumerated based on possible start, length, breaks and time windows for breaks.
When the number of shifts increases rapidly this formulation is not practical.

Bechtold and Jacobs [10] proposed a new integer programming formulation
for shift scheduling. In this formulation the modeling of break placements is done
implicitly. Authors reported superior results with their model compared to the
set covering model. Their approach is limited in the organization which operates
less than 24 hours per day.

Thompson [64] introduced fully implicit formulation of shif scheduling prob-
lem. The model combines work of Moondra [53] and Bechtold and Jacobs [10]
in which respectively the length of shifts and the breaks are modeled implicitly.
Authors reported better results compare to model of Bechtold and Jacobs [10].

Another integer programming model for shift scheduling with multiple rest
and lunch breaks and break windows was proposed by Aykin [6]. This formula-
tion is applicable to the shift scheduling problem without the limitation in [10].
Compare of different modeling approaches is given in by Aykin [7].

3.3.3 Related workforce scheduling problems

Schaerf and Meisels [61] considered problems of workforce scheduling where the
shifts are composed of tasks and the employees can have different qualification.
The problems includes different constraints like requirements, ability, availability
etc. The authors present a local search framework consisting of one move and a
very simple objective function, and proposed generalized local search with three
moves and another objective function. For two cases techniques based on the
hill climbing were applied. They differ in the amount of the neighborhood they
explore during each iteration: The first technique has only one neighborhood
solution, while the latter constructs all neighborhood solutions for the predefined
moves. The objective function for generalized local search is a combination of
two types of constraints and a so called look-ahead factor. All these components
in the objective function have different weights, which are changed during the
search (shifting penalty mechanism). The authors experimented with problems
from nurse scheduling and scheduling in the production line. The results for
some instances of the second problem were given. The instances consist of 21
weekly shifts (three per day), 50 employees and a total of 280 tasks. The authors



CHAPTER 3 WORKFORCE SCHEDULING 41

reported obtaining best results by using the generalized local search technique
based on min-conflict hill climbing [52]. According to the authors, tabu search
techniques as basis for generalized local search gives comparable results with the
above mentioned best technique. The authors claim: “For the generalized local
search, the combining effect of the shifting penalty mechanism (which changes
continuously the quality of moves) and the presence of different move types made
the use of the prohibition mechanism not effective in our experiments”. Several
other algorithms based on the local search techniques have been proposed in the
literature for different workforce scheduling problems [67, 17, 65, 14, 57].

Smith and Bennett [63] combine constraint satisfaction and local improve-
ment algorithms to develop schedules for anaesthetists. Weil and Heus [69] for-
mulate the nurse scheduling problem as a constraint satisfaction problem and
proposed an approach to reduce the search space by eliminating interchangeable
values. The shifts with similar characteristics, which may be interchangeable,
are considered like one shift and thus the domain of each variable is reduced.
The approach is used for scheduling two nurses in a two weeks schedule. In this
paper no results for practical problem are given. Several other algorithms based
on the constraint programming have been proposed in the literature for different
workforce scheduling problems [47, 3, 49, 5].

The set-cover formulation presented in the previous section can be used also
for the problem of assigning of shifts to employees for a week [54]. This problem
is addressed in OR literature as tour scheduling problem. Example of solving
tour scheduling problem by using integer programming is the work of Cezik et
al. [16]. proposed integer programming model for the weekly tour in the call
center. This model is obtained by combining seven daily shift scheduling models
in a network flow problem. The model they proposed can accommodate different
days-off requirements. Furthermore, their formulation allows finding of solutions
which fulfill the the requirements about the difference between starting times of
any two consecutive shifts. This model work under assumption that shifts are
fully contained in one day without spill-over to the next day.

Different approaches were used to solve general workforce scheduling in which
problems of the design of shifts and the assignment of shifts to employees are
solved simultaneously. Jackson and Dollard [37] consider a problem where the
employees have different skills and availabilities and the shifts with skill require-
ments are given. The authors proposed a simple greedy algorithm for this prob-
lem. Glover and McMillan [29] consider the problem that includes employees
with different skills and different working hours, and many constraints about de-
mands for each period, maximum and minimum number of working hours for
each employee, constraints about feasible shifts, linking constraints between time
periods and so one. The problem of shift design and assignment of shifts to em-



CHAPTER 3 WORKFORCE SCHEDULING 42

ployees are solved simultaneously. The authors proposed an approach that relies
on integration of techniques from management sciences and artificial intelligence.
This approach combines tabu search, where for the evaluation of the moves the
multiple evaluation criteria is used, with an approach that creates additional cri-
teria which should lead to a configurations which seems promising. Additionally,
a problem decomposition is used during the search. In this paper results of 10
tests from real world applications are presented. Each problem involves around
100 employees and a weekly schedule is made. Execution time for each example
is around 20 minutes and the optimality of the obtained solutions ranges between
98 to 99 percent. The number of constraints is 3400-9000, and from one million
to 4 million variables are involved.



Chapter 4

Efficient Generation of
Rotating Workforce Schedules

Generating high-quality schedules for a rotating workforce is a critical task in all
situations where a certain staffing level must be guaranteed, such as in industrial
plants or police departments. Results from ergonomics [11] indicate that rotating
workforce schedules have a profound impact on the health and satisfaction of
employees as well as on their performance at work. Moreover, rotating workforce
schedules must satisfy legal requirements and should also meet the objectives of
the employing organization. In this paper our description of a solution to this
problem is being stated. One of the basic design decisions was to aim at high-
quality schedules for realistically sized problems obtained rather quickly, while
maintaining human control. The interaction between the decision-maker and the
algorithm therefore consists of four steps: (1) choosing a set of lengths of work
blocks (a work block is a sequence of consecutive days of work), (2) choosing a
particular sequence of blocks of work and days-off blocks amongst these that have
optimal weekend characteristics, (3) enumerating possible shift sequences for the
chosen work blocks subject to shift change constraints and bounds on sequences
of shifts, and (4) assignment of shift sequences to work blocks while fulfilling the
staffing requirements. The combination of constraint satisfaction and problem-
oriented intelligent backtracking algorithms in each of the four steps allows for
finding good solutions for real-world problems in acceptable time. Computational
results from a benchmark example found in the literature confirmed the viability
of our approach. The algorithms have been implemented in commercial shift
scheduling software.

43



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 44
4.1 Introduction

Rotating workforce scheduling appears mostly in organizations which operate
around the clock in several shifts. We gave a detailed description of this problem
in Section 3.2.2. Let us remind briefly the problem. For this problem we have
given: A number of employees n, a set of m shifts, the length of the schedule w,
temporal requirements which are given as matrix R((m — 1) X w) and constraints
about the forbidden sequences of shifts to be assigned to employees, maximum
and minimum lengths of periods of consecutive shifts given as vectors MAXS,,,
MINS,;, and maximum and minimum lengths of blocks of workdays.

The aim is to find as many non isomorphic cyclic schedules (assignments
of shifts to employees) as possible that satisfy the requirement matrix, all con-
straints, and are optimal in terms of weekends without scheduled work shifts
(weekends off). An important criteria is to generate the workforce schedules
efficiently.

The length of schedule is usually one week. In a rotating workforce schedule
— at least during the stage of planning — all employees have the same basic
schedule but start with different offsets. Therefore, while individual preferences
of the employees cannot be taken into account, the aim is to find a schedule that
is optimal for all employees on average. The employees in this problem have
all the same qualification. Work is done usually in three shifts, although there
are case with more shifts. Note that in this problem we consider simultaneously
assignments of the days-off and shifts to employees. In the literature these two
phases are considered sometimes separately. The problem of rotating workforce
scheduling is NP complete [46] and thus hard to solve in general.

To give an idea of the search space of this problem, suppose there are 9
employees and three shifts and the schedule for one week has to be constructed.
The search space of this problem is 45 > 8.5x 1037, which is a very large number.
This problem is a rather small instance of the problem which we can solve very
easily with the approach we proposed in this thesis.

In Chapter 3 we gave a review on previous work on rotating workforce sched-
ules. In this thesis we proposed and implemented a new framework to solve the
problem of rotating workforce scheduling, including efficient backtracking algo-
rithms for each step of the framework. Constraint satisfaction is split up into
four steps so that the search space is reduced for each step, which provides the
possibility of using backtracking algorithms. Computational results show that
our approach is efficient for real-sized problems. The main characteristic of our
approach is the possibility to generate high quality schedules in a short time
interactively, involving the human decision-maker.



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 45

Further in this chapter we describe our new framework and the algorithms
that were used and give computational results for real life examples and bench-
mark examples from the literature.

4.2 New four step framework for rotating workforce
scheduling

Tien and Kamiyama [66] proposed a five stage framework for workforce schedul-
ing algorithms. This framework consists of the following stages: determination
of temporal manpower requirements, total manpower requirement, recreation
blocks, recreation/work schedule and assignment of shifts (shift schedule). The
first two stages can be seen as an allocation problem and the last three stages
are scheduling of days-off and assignment of shifts. All stages are related to each
other and can be solved in sequence, but there also are algorithms which solve
two or more stages simultaneously.

For the problem formulation examined here, we assume that the temporal
and total requirements are already stated. Temporal requirements are given
through the requirement matrix and determine the number of employees needed
for each day and each shift. For this problem total requirements are represented
by the number of employees n. We propose a new framework for solving the
problem of assigning days-off and shifts to employees. This framework consists
of the four steps given below:

1. choosing a set of lengths of work blocks (a work block is a sequence of
consecutive days of working shifts),

2. choosing a particular sequence of work and blocks of days-off amongst these
that have optimal weekend characteristics,

3. enumerating possible shift sequences for the chosen work blocks subject to
shift change constraints and bounds on sequences of shifts, and

4. assignment of sequences of shifts to blocks of work while fulfilling the staffing
requirements.

As a start we explain our motivation for using this framework. The approach
we use is focused on interaction with the decision-maker. Thus, the process of
generating schedules is only semi-automatic. When our system generates possible
candidate sets of lengths of work blocks in step 1, the decision-maker has to
select the one solution that reflects his or her preferences best. In this way we



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 46

satisfy two goals: On the one hand, an additional soft constraint regarding the
lengths of work blocks can be taken into account by this interaction, on the
other hand the search space for step 2 is significantly reduced. Consequently it
is possible to solve step 2 much more effectively. In step 2 our main concern is
to find the best solution for weekends off. The user’s selection made in step 1
can impact features of weekends off versus length of work blocks since these two
constraints are the ones that — in practice — are in conflict most frequently.
The decision-maker can decide if he or she prefers an optimal length of work
blocks or better features for weekends off. With step 3 we satisfy two more
goals. First, because of the shift change constraints and the bounds on the
number of consecutive shifts per sequence, each work block has only few legal
shift sequences (terms). Thus in step 4 backtracking algorithms will very quickly
find assignments of terms to the work blocks so that the requirements are fulfilled
(if shift change constraints with days-off exist, their satisfaction is checked at this
stage). Second, a new soft constraint is introduced. Indeed, as we generate several
shift plans, they will contain different terms. The user has then the possibility to
eliminate some undesired terms, and therefore to eliminate solutions containing
these terms. Terms can have impact on the fatigue and sleepiness of employees
and are therefore very important when high-quality plans are desired.

4.2.1 Determination of lengths of work blocks

A work block is a sequence of workdays between two days-off. An employee has
a workday scheduled for day j if he or she is assigned a shift different from the
days-off shift a,,. In this step the feature of work blocks we are interested in
is its length only. Other features of work blocks (e.g., shifts of which the work
block is made of, start and end of the block, etc.) are not known at this time.
As the schedule is cyclic each employee has the same schedule and consequently
the same work blocks for the entire planning period.

Example: The weekly schedule for 9 employees given in Table 4.1 (D, A and
N are abbreviations for day shift, afternoon shift and night shift) consists of two
work blocks of length 6, four work blocks of length 5 and two of length 4 in the
order (46 54655 5). By re-arranging the order of blocks, other schedules can
be constructed, for example the schedule with the order of work blocks (5 5 6 5
445 6). We will represent schedules with the same work blocks, but a different
order of work blocks using unique solutions, so-called class solution, where blocks
are shown in decreasing order. The class solution for the example given above
will therefore be {6 6 555 5 4 4}.

It is clear that even for small instances of problems many class solutions can



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 47

Table 4.1: A possible schedule with work blocks in the order (46546555)

Employee/day || Mon | Tue | Wen | Thu | Fri | Sat | Sun
1 D D A A
2 A A A N | N | N
3 D D N N N
4 A A A | A
5 D D D D D
6 D D D D N
7 N Al A N
8 N N A A
9 A N N

be found. Our main concern in this step is to generate all possible class solution,
or as many as possible for large instances of the problem.

A class solution is nothing but an integer partition of the sum of all working
days scheduled for one employee during the entire planning period. To find
all possible class solutions in this step we have to deal with the following two
problems:

e Generation of restricted partitions, and

¢ Elimination of those partitions for which no schedule can be created.

Because the elements of a partition represent lengths of work blocks and
because constraints about maximum and minimum length of these work blocks
are given, not all partitions must be generated. Still, the maximum and minimum
lengths of days-off blocks impact the maximum and minimum permitted number
of elements in one partition, since between two work blocks there always is one
block of days-off, or a block for recreation. In summary, partitions that fulfill the
following criteria have to be generated:

e Maximum and minimum value of elements in a partition. These two pa-
rameters are respectively maximum and minimum permitted length of work
blocks,

e Minimum number of elements in a partition:

DaysOﬁSum"

MINB = [ MAXS (m)



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 48

DaysOffSum: Sum of all days-off that one employee has scheduled during
the entire planning period.

e Maximum number of elements in a partition:

MAXE — {DaysOﬁSumJ

MINS (m)
The set of partitions that fulfill the criteria given above is a subset of the set of
all possible partitions. It is possible to first generate the full set of all possible
partitions and then eliminate those that do not fulfill the constraints given by the
criteria. However, this approach is inefficient for large instances of the problem.
Our idea was it to use restrictions for pruning while the partitions are generated.
We implemented a procedure based on this idea for the generation of restricted
partitions. This procedure searches for all legal paths (legal partitions) in a
search tree. Levels of the tree represent components of the partition and branches
correspond to assignments of possible work blocks to components. To prune
the search tree, the procedure uses the information about the maximum and
minimum number of elements in a partition, the sum of elements of a partition,
and the fact that the values of the components of the partition should be in
decreasing order.

Pseudo code of procedure we use is given below. The set P contains elements
of a partition of V.

Initialize N, MAXB, MINB, MAXW , MINW
"Value of arguments for first procedure call
Pos =1, MazValue = MAXW

"Recursive procedure
RestrictedPartitions(Pos, Maz Value)

1= MINW
Do While (i <= MazValue A —~PartitionlsCompleted)

Add to the set P element 4
PSum = Sum of elements in a set P

If (PSum = N A Pos > MINB) Then

PartitionlsCompleted = true
Store partition (set P)

"Pruning
Elself (Pos < MAXB A PSum < N — MINW) Then



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 49

"Recursive call
RestrictedPartitions(Pos + 1,1)

EndIf
1=1+1
Remove last element from set P

Loop

End

Not all restricted partitions can produce a legal schedule that meets the
requirements of work force per day (in this step we only test whether we have
the desired number of employees for a whole day, not for each shift).

Example: Supposing we have to find a one week schedule for 9 employees so
that every day 6 employees are present in three shifts. Additionally, suppose
that the length of work blocks can range from 4 to 7 and the length of days-off
blocks from 2 to 4. Possible class solutions are restricted partitions of the
number 42 = 7 days X 6 employees. Some of these restricted partitions
are legal, some are not. For example, with restricted partition {6 6 5 5 5
5 5 5} a legal schedule can be generated, while this is not possible for the
restricted partition {7 5555 5 5 5}. For the latter no days-off distribution that
can produce a legal schedule subject to the day requirements (6 employees) exists.

As we only want to have class solutions that get us a legal shift plan, we
eliminate all restricted partitions that cannot fulfill the work force per day re-
quirements. A restricted partition will be legal if at least one distribution of
days-off exists that fulfills the work force per day requirements. In the worst case
all distributions of days-off have to be tested if we want to be sure that a re-
stricted partition has no legal days-off distribution. It is possible to first generate
all days-off distributions and then test each permutation of restricted partitions
if at least one satisfying days-off distribution can be found. This approach is
rather ineffective when all class solution have to be generated, as many of them
will not have legal days-off distribution and thus the process of testing takes too
long for large instances of typical problems. We implemented a backtracking al-
gorithm for testing the restricted partitions. The procedure is a search for a first
legal path (distribution of work and days-off blocks that fulfills the requirements
per day) in a tree. The levels of the tree represent blocks (odd levels represent
work blocks and even levels represent days-off blocks) and the branches of the
tree correspond to the allocation of blocks of work and days-off. To prune the



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 50

search tree, the procedure uses its knowledge of the number of employees needed
each day and the permitted number of blocks of work and days-off of each type.
Additionally, as we want to obtain the first class solutions as soon as possible,
we implemented a three stages time restricted test. Consequently no time is lost
with restricted partitions which do not have any legal days-off distribution at the
beginning of the test.

The pseudo code of algorithm for testing the restricted partitions is given
below (without the time restriction).

INPUT: Restricted partition, possible days-off blocks.

Initialize vectors W (NumberOfUnique WorkBlocks) and
F(NumberOfUniqueDaysOffBlocks) with unique work blocks, respectively with

unique days-off blocks (for example unique work blocks of class solution {5 5 4 4
3} are blocks 5, 4 and 3).

i represents one work or days-off block. It takes wvalues from 1 to

number Of WorkBlocks = 2 (after each work block comes a days-off block and our
aim is to find the first schedule that fulfills the requirements per day). For the
first procedure call 7+ =1

"Recursive procedure

PartitionTest (7)

k=1
If 7 is odd

Do While(k < NumberOfUnique WorkBlocks)
Assign block ¢ with work block W (k)

If 4 = LastBlock — 1 then

Req= for each day the number of employ-
ees does not get larger than the require-
ment and the number of work blocks of
type W (k) does not get larger than the
number of blocks of type W (k) in the class
solution

"Pruning

If Req =true then

PartitionTest (7 4 1)

Endif



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ...

Else
’Only partial schedule until block 7 is
tested
Req = requirements for number of em-

ployees during each day are not overfilled
and number of work blocks of type
W (k) does not get larger than the number
of blocks of type W (k) in the class solution

If Req =true then
PartitionTest (7 4 1)

Endif
Endif
k=k+1

Loop
Else

Do While(k < NumberOfUniqueDaysOffBlocks)
Assign block i with days-off block F'(k)

If 4+ = lastblock then
SumTest =Test if sum of all days-off is as
required
If SumTest =true then
Class solution has at least one days-off
distribution
Interrupt test
Endif
Else
’Only partial schedule until block 7 is tested
FreeTest =Test if not more employees than
required have free (test is done for each
day)
"Pruning
If FreeTest =true then
PartitionTest(z 4 1)
Endif
Endif
k=k+1

o1



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 52

Loop
Endif

End

4.2.2 Determination of distribution of blocks of work and days-
off that have optimal weekend characteristics

Once the class solution is known, different shift plans can be produced subject
to the order of work blocks and to the distribution of days-off. For each order of
blocks of the class solution there might be various distributions of days-off. At this
point we introduce a new soft constraint. This constraint is relevant for weekends
off. Tt is our intention to find the best solution (or more solutions if they are not
dominated) for each order of work blocks for weekends off. We want to maximize
the number of weekends off, to maximize the number of long weekends off (the
weekend plus Monday or Friday is free) and to find solutions that have a “better”
distribution of weekends off. Distribution of weekends off will be evaluated by
the following method: every time two weekends off appear directly after each
other the distribution gets a negative point. A certain distribution of weekends
off is better than other distributions, if it has less negative points. Priority is
given to the number of weekends off followed by the distribution of weekends
off. Finally, the number of long weekends off is considered only if the others are
equal. Possible candidates are all permutations of the work blocks found in a
class solution. Each permutation may or may not have days-off distributions. If
the permutation has at least one days-off distribution it is then our aim to find
the best solutions for weekends off. The best solutions are those that cannot be
dominated by another solution. We state that solution Solut; dominates solution
Soluty in the following cases:

e Solutq has the same number of weekends off as Soluto, the evaluation of the
weekends distribution of Solut; is equal to the one of Solut2, and Solut,
has more long weekends off than Solut,.

e Soluty has the same number of weekends off as Soluts and the evaluation
of the weekends distribution of Solut; is better than the one of Solut2.

e Solut, has more weekends off than Solut,.

At this point two remarks have to be made. First, because some of the
permutations of the class solutions may not have any days-off distribution, we



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 53

use time restrictions to find days-off distributions. In other words, if the first
days-off distribution is not found in a predetermined time, the next permutation
is tested. Second, for large instances of problems, too many days-off distributions
may appear and this may impede the search for the best solution. Interrupting
the test can be done manually depending on the size of the problem.

For large instances of the problem it is in practice impossible to generate
all permutations of class solutions and the best days-off distributions for each
permutation in a reasonable amount of time. In these cases our main concern is to
enumerate as many solutions as possible which have the best days-off distribution
and can be found in a predetermined time. All solutions found are arranged
based on weekend attributes so that the user can easily decide which distribution
of days-off and workdays he or she wants to continue with. The user may select
one of the solutions solely based on weekends, but sometimes the order of work
blocks may also be a deciding factor. For example, one can prefer the order of
work blocks (76 376 37 6) to the order (77766 6 3 3).

For finding legal days-off distributions for each permutation of a class solution
we use a backtracking procedure similar to the one for testing the restricted
partitions in step 1, except for here the distribution of work blocks is already
set. After the days-off distributions for a given order of work blocks are found,
searching the best solutions based on weekend characteristics is a comparatively
trivial task and does not take very long.

Selected solutions in step 2 have a set distribution of work blocks and days-
off blocks, and in the final step the assignment of shifts to the work blocks has
to be done.

4.2.3 Generating permitted shift sequences for each work block

In step 2, work and days-off blocks have been fixed. We still have to assign
shifts to the employees. Again we use a backtracking algorithm, but to make
this algorithm more efficient we introduce another intermediate step. The basic
idea of this step is the following: For each work block, construct the possible
sequences of shifts subject to the shift change constraints and the upper and
lower bounds on the length of sequences of consecutive shifts of the same kind.
Because of these constraints, the number of these sequences (we will call them
terms) is not too large. Therefore, our backtracking algorithm — which only
manipulates this limited set of terms — is much more efficient than the classical
backtracking approach, where for each position in the work blocks all shift
possibilities would have to be tried and the test for shift change constraints
would have to be done in a much more time-consuming manner.



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 54

Example: Suppose the solution selected by the user in step 2 has the distribution
of work blocks (6 44 6 5 4 5).

Shifts: Day (D), Afternoon (A) and Night (N).
Inadmissible shift changes: (N D), (N A), (A D).
Minimum and maximum lengths of consecutive shifts: D: 2-6, A: 2-5, N: 2-4.

Our task is it to create legal terms for work blocks of length 6, 5, and 4.

For work block of length 6 the following terms exist:
DDDDDD, DDDDAA, DDDDNN, DDDAAA, DDDNNN, DDAAAA, DDNNNN,
DDAANN, AAAANN, AAANNN, AANNNN.

Block of length 5:
DDDDD, DDDAA, DDDNN, DDAAA, DDNNN, AAAAA, AAANN, AANNN.

Block of length 4:
DDDD, DDAA, DDNN, AAAA, AANN, NNNN.

This approach is very appropriate when the number of shifts is not too big.
When the number of shifts is big we arrange shifts with similar characteristics
in groups of so-called shift types. For example if there is a separate day shift
for Saturday that starts later than the normal day shift, these two shifts can be
grouped together. This integration of similar shifts into shift types allows us to
have a smaller number of terms per work blocks and therefore reduces the overall
search space. At the end a transformation from shift types to the substituted
shifts has to be done. A similar approach has been applied by Weil and Heus [69].
They group different days-off shifts into one shift type and thus reduce the search
space. Different days-off shifts can be grouped into one days-off shift only if they
are interchangeable (the substitution has no impact on constraints or evaluation).

The process of constructing the terms usually does not take long given that
the length of work blocks in the vast majority of cases is less than 9 and some basic
shift change constraints always appear because of legal working time restrictions.

4.2.4 Assignment of shift sequences to work blocks

Once we know the terms we can use a backtracking algorithm to find legal solu-
tions that satisfy the requirements for each shift during each day. The size of the



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 55
search space that should be searched with this algorithm is:

TI2_, Ny (i)

where b is the number of work blocks and Ny(7) is the number of legal terms for
block .

If we would not use terms the search space would be of size:

(m o 1)SumOfAllWorkDays

Of course we would have more constraints, in the latter case for instance the
shift change constraints, but the corresponding algorithm would be much slower
because the constraints would have to be tested not only once as in our solution.

The procedure we implemented in this step is a search for all legal paths
(legal schedules) in a search tree. The levels of the tree represent work blocks
and the branches of the tree correspond to the allocation of terms (a sequence of
shifts). To prune, the procedure uses the information about the needed number
of employees for each shift (for each day). Say the terms test for shift change
constraints is done without consideration of shift a,, (days-off). If there are shift
change constraints that include days-off, the test of the solution has to be done
later for these sequences.

Pseudo code for the backtracking algorithm based on terms is given below.

INPUT: distribution of work and days-off blocks

Generate all legal shift sequences for each work block
"Value of argument for first call of procedure Shift Assignment
1=1

"Recursive procedure
Shift Assignment()

7 = Number of shift sequences of block i
k=1
Do While (k < j)

Assign block 7 with sequence number &
If 1+ = lastblock then



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 56

Req = Test if requirements are fulfilled and shift
change constraints are not violated (in this stage
we test for forbidden shift sequences that include
days-off)
If Req = true then

Store the schedule
Endif

Else

"Only partial schedule until block i is tested
PTest=Test each shift if not more than needed em-
ployees are assigned to it

"Pruning ...

If Ptest =true then

Shift Assignment (i + 1)

Endif
Endif
k=k+1

Loop

End

There are rare cases when, even if there is a work and days-off distribution, no
assignment of shifts can be found that meets the temporal requirements for each
shift on each day because of shift change constraints. In these cases constraints
about minimum and maximum length of periods of consecutive shifts must be
relaxed to obtain solutions.

4.3 Computational results

In this section we report on computational results obtained with our approach.
We implemented our four step framework in a software package called First
Class Scheduler (FCS) which is part of a shift scheduling package called
Shift-Plan-Assistant (SPA) of XIMES! Corp. All our results in this section have
been obtained on an Intel Pentium II 333 MHz based computer. Our first two
examples are taken from a real-world sized problems and are typical for the kind

"http://www.ximes.com/



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 57

Table 4.2: First Class Scheduler solution for problem 1

Employee/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun
1 D D D D D D
2 D D D D
3 D D D D
4 D D D D D D
5 D D D D

of problems for which FCS was designed. Further, we compared our results with
results from a paper of Balakrishnan and Wong [8]. They solved problems of
rotating workforce scheduling through the modeling in a network flow problem.
Their algorithms were implemented in Fortran on an IBM 3081 computer. They
applied their technique to several examples taken from previous literature. We
compare our results to three benchmark problems.

Problem 1: An organization operates in one 8 hours shift: Day shift (D). From
Monday to Saturday 4 employees are needed, whereas on Sunday no employees
are needed. These requirements are fulfilled with 5 employees which work on
average 38,4 hours per week. A rotating week schedule has to be constructed
which fulfills the following constraints:

1. Length of periods of successive shifts should be: D: 2-6

2. Length of work blocks should be between 2 and 6 days and length of days-off
blocks should be between 1 and 4

3. Features for weekends off should be as good as possible

We note that days-off blocks of length 1 are not preferred, but otherwise no
class solution for this problem would exist.

Using FCS in step 1, all class solutions are generated in 4.5 seconds: {6 4 4 3
322},{6633222},{664332},{664422},{666222},{66633}. We
select the class solution {6 6 4 4 2 2} to proceed in the next step. In step 2 FCS
generates 6 solutions after 0.6 seconds. Each of them has one long weekend off.
We select a solution with the distribution of work blocks (6 4 4 6 2 2) to proceed
in the next steps. Step 3 and 4 are solved automatically. We obtain the first and
only existing schedule after 0.02 seconds. This solution is shown in Table 4.2.



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 58

The quality of this schedule stems from the fact that there are at most 8
consecutive work days with only a single day-off in between them. This constraint
is very important when single days-off are allowed. This example showed a small
instance of a problem with only one shift; nevertheless, even for a such instances
it is relatively difficult to find high quality solutions subject to this constraint.

Let us note here that the same schedule can be applied for a multiple of 5
employees (the duties are also multiplied) if the employees are grouped in teams.
For example if there are 30 employees they can be grouped in 5 teams. Each of
them will have 6 employees.

Problem 2: An organization operates in three 8 hours shifts: Day shift (D),
Afternoon shift (A), and Night shift (N). From Monday to Friday three employees
are needed during each shift, whereas on Saturday and Sunday two employees
suffice. These requirements are fulfilled with 12 employees which work on average
38 hours per week. A rotating week schedule has to be constructed which fulfills
the following constraints:

1. Sequences of shifts not allowed to be assigned to employees are:
(A D), (ND), (N A)

2. Length of periods of successive shifts should be: D: 2-7, A: 2-6, N: 2-5

3. Length of work blocks should be between 4 and 7 days and length of days-off
blocks should be between 2 and 4

4. Features for weekends off should be as good as possible

Using FCS in step 1, the first class solution is generated after 0.07 seconds
and we interrupt the process of generation of class solutions after 1.6 seconds
when already 7 class solutions have been generated out of many others: {6 6 5 5
5555555}, {66655555554}, {76555555554},{T665555
55444, {775554444444,{7776555555},and{777665505
5 4}. The first solution has the highest number of most optimal blocks, namely
those with length 5, but entails weak features for weekends off. For this reason
we select the class solution {7 77 6 555 5 5 5} to proceed in the next step.
In step 2 the optimal solution for the distribution of blocks (7776 5555 5
5), with 6 weekends off from which 3 are long, is found in less than 2 seconds.
The first 11 solutions are generated in 11 seconds, where we have one solution
with 6 weekends off, 4 of which are long, and a distribution of weekends off that
is acceptable. This solution has the order of work blocks as follows: (776 5 5
5755 5). We select this solution to proceed in the next steps. Step 3 and 4



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 59

Table 4.3: First Class Scheduler solution for problem 2

Employee/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun
1 D D D A A
2 A A A A
3 D D D D D
4 A A | A| N N
5 N N N
6 N N A | A A
7 A A N N
8 A A A A | A
9 N N N N N
10 N N N N N
11 D D D D D D
12 D D D D D

are solved automatically. We obtain a first schedule which is given in Table 4.3
after 0.17 seconds and the first 50 schedules after 4 seconds. The decision maker
can eliminate some undesired terms. Besides these solutions there exist also a
large amount of other solutions which differ in terms with each other. If a better
distribution of weekends off would have been sought, this could have been found
through another class solution, for example {7 777 7 7 5 5 5} found in step 1
after 16 seconds, at the cost of longer work sequences.

Problem 3: The first problem from literature for which we discuss computa-
tional results for First Class Scheduler is a problem solved by Butler [15] for the
Edmonton police department in Alberta, Canada. Properties of this problem
are:

Number of employees: 9

Shifts: 1 (Day), 2 (Evening), 3 (Night)

Temporal requirements:

2.2 222 2 2
Ry7=|2 2233 3 2
2.2 222 2 2

Constraints:

e Length of work periods should be between 4 and 7 days



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 60

Table 4.4: Solution of Balakrishnan and Wong [8] for the problem from [15]

Employee/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun

1 A A A A | AJ] A

2 N N N N N

3 A A | A| A A
4 D D D D D
5 D D N N N
6 N A | A| A A
7 A A D D D
8 D D D D N
9 N N N N

Only shift 1 can precede the rest period preceding a shift 3 work period

Before and after weekends off, only shift 3 or shift 2 work periods are allowed

At least two consecutive days must be assigned to the same shift

No more than two 7-day work periods are allowed and these work periods
should not be consecutive

Balakrishnan and Wong [8] solve this problem using a network model and
they needed 73.54 seconds to identify an optimal solution of the problem. This
solution is given in Table 4.4. We use D for 1, A for shift 2, N for shift 3, and if
the element of the matrix is empty the employee has free.

Before we give our computational results some observations should be made.
First constraint two and three cannot be represented in our framework. Let us
note here that in all three examples given, we cannot model the problem exactly
(the same was true for Balakrishnan and Wong’s [8] approach to the original
problems), which is to a high degree due to the different legal requirements found
in the U.S./Canadian versus those found in the European context, but we tried
to mimic the constraints as closely as possible or to replace them by similar
constraints that appeared more meaningful in the European context. Having
said this, let us proceed as follows: The other constraints can be applied in
our model and are left like in the original problem. As mentioned, we include
additional constraints about maximum length of successive shifts and minimum
and maximum length of days-off blocks. In summary, additional constraint used
for First Class Scheduler are:



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 61

Table 4.5: First Class Scheduler solution for the problem from [15]

Employee/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun

1 D D D D D
2 D N N A A
3 A N N N N

4 A A A A | A

5 D D N N N

6 A A A | A] A A
7 D D N N
8 N A | A| A N
9 N D D D D

e Not allowed shift changes: (N D), (N A), (A D)
e Length of days-off periods should be between 2 and 4
e Vector MAXSs = (7,6,4)

In our model we first generate class solutions. Class solutions that exist for
the given problem and given constraints are:

(66666555, {7T6666554}, {T7T77755}, {6666665 4},
(76665555, {7T6666644}, {T7665554}, {T766654
AT TT7T444444), {77755554}, {T7765544}, {T776644
A {TTT6666), {77775444},{7T7T77665}, {7T777764},{77655555}.

The first solution is generated in 0.14 seconds and all solutions in 4.38 sec-
onds. We select in this step the class solution with the highest number of optimal
blocks: {7 7655555}

In step 2 the distributions of work and days-off periods that gives best results
for weekends is found. We select the best solution offered in this step from
First Class Scheduler that has this order of work blocks (757 55 6 5 5). The
computations of the system took 0.73 seconds.

Step 3 and 4 are solved automatically. The first solution given in Table 4.5
is generated after 0.39 seconds and the first 50 solutions in 4.29 seconds.

There exist also many other solutions that differ only in terms that they
contain. Undesired solutions can then be eliminated through the elimination of



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 62

unwanted terms.

Problem 4 (Laporte et al. [44]): There exist three non overlapping shifts D, A,
and N, 9 employees, and requirements are 2 employees in each shift and every
day. A week schedule has to be constructed that fulfills these constraints:

1. Rest periods should be at least two days-off

2. Work periods must be between 2 and 7 days long if work is done in shift D
or A and between 4 and 7 if work is done in shift N

3. Shift changes can occur only after a day-off
4. Schedules should contain as many weekends as possible

5. Weekends off should be distributed throughout the schedule as evenly as
possible

6. Long (short periods) should be followed by long (short) rest periods

7. Work periods of 7 days are preferred in shift N

Balakrishnan and Wong [8] need 310.84 seconds to obtain the first optimal
solution. The solution is given in Table 4.6. The authors report also about
another solution with three weekends off found with another structure of costs
for weekends off.

In FCS constraint 1 is straightforward. Constraint 2 can be approximated if
we take the minimum of work blocks to be 4. Constraint 3 can also be modeled if
we take the minimum length of successive shifts to be 4. For maximum length of
successive shifts we take 7 for each shift. Constraints 4 and 5 are incorporated in
step 2, constraint 6 cannot be modeled, and constraint 7 is modeled by selecting
appropriate terms in step 3.

With these given parameters for this problem there exist 23 class solutions
which are generated in 5 seconds. For each class solution there exist at least one
distribution of days-off, but it could be that no assignment of shifts to the work
blocks exist because the range of blocks with successive shifts are too narrow in
this case. Because in this problem the range of lengths of blocks of successive
shifts is from 4 to 7 for many class solution no assignment of shifts can be found.
Class solution {7 7 6 5 5 4 4 4} gives solutions with three free weekends, but
they are after each other. Class solution {7 77 7 5 5 4} gives better distribution



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 63

Table 4.6: Solution of Balakrishnan and Wong [8] for the problem from [44]

Employee/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun
1 A A A A D
2 D D D D
3 D D D D D
4 A A | A] A A
5 N N N N N
6 N N A | A A
7 A A D D D
8 D N N N N
9 N N N

Table 4.7: First Class Scheduler solution for the problem from [44]

Employee/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun

1 D D D D | D

2 D D D | D | D D
3 D N | N| N N
4 A A A
5 A A A A

6 N N N N | N

7 A A | A| A A
8 A A N N
9 N N N D D

of weekends. If we select this class solution in step 1, our system will generate
5 solutions in step 2 in 1.69 seconds. We selected a solution with the order of
work blocks to be (774 7575). Step 3 and 4 are solved simultaneously and the
first solution was arrived at after 0.08 seconds. 18 nonisomorphic solutions were
found after 0.5 seconds. One of the solutions is shown in Table 4.7.

With class solution {7 7 7 7 7 7} the same distribution of weekends off can
be found as in [44].

As we see we can arrive at the solutions much faster than Balakrishnan and
Wong [8], though in interaction of the human decision maker. Because each step
is very fast, the overall process of constructing an optimal solution still does not



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 64

take very long.

Problem 5: This problem is a larger problem first reported in [33]. Character-
istics of this problem are:

Number of employees is 17 (length of planning period is 17 weeks).
Three nonoverlapping shifts.

Temporal requirements are:

54 4 4 4 4 3
Ryz=|5 4 4 4 4 4 4
43 33 4 4 4

Constraints:

e Rest-period lengths must be between 2 and 7 days

e Work-periods lengths must be between 3 and 8 days

A shift cannot be assigned to more than 4 consecutive weeks in a row

Shift changes are allowed only after a rest period that includes a Sunday or
a Monday or both

The only allowable shift changes are 1 to 3, 2 to 1, and 3 to 2

Balakrishnan and Wong [8] need 457.98 seconds to arrive at the optimal
solution which is given in Table 4.8.

With First Class Scheduler we cannot model constraints 3, 4, and 5 in their
original form. We allow changes in the same block and for these reason we have
other shift change constraints. In our case the following shift changes are not
allowed: 2 to 1, 3 to 1, and 3 to 2. Additionally, we limit the rest period length
from 2 to 4 and work periods length from 4 to 7. Maximum and minimum
length of blocks of successive shifts are given with vectors MAXS3 = (7,6,5) and
MINS3 = (2,2,2).

With these conditions the first class solution {6 6 5555555555555
5} is found after 0.22 and the first 9 solutions after 14.2 seconds. Of course there
exist much more class solutions, but finding all class solutions will take too much
time for this large problem. If we choose the first solution with the most optimal
blocks we will obtain solutions with 5 weekends off, even though the weekends
are one after each other. We arrive at a better solution with the following class
solution: {76 5555555555555 4}. In step 2 we stop the process of



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 65

Table 4.8: Solution of Balakrishnan and Wong [8] for the problem from [33]

Employee/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun
1 D D D D D D D
2 D D D D D
3 D D D
4 D D D D D D
5 N N N N
6 N N N N N
7 N N N
8 A A A A | AJ] A A
9 A A | A| A A
10 A A A
11 D D D D D D D
12 N N N N N
13 N N N N
14 N N N N
15 A A A | A| A A
16 A A | A| A A
17 A A A

generation of distributions of work and days-off blocks after 20 seconds and we
get 3 solutions. From these solutions we select the solution with the order of
blocks (76 5555555555545 5). The first solution (steps 3 and 4) is
generated after 0.73 seconds and the first 50 solutions after 4.67 seconds. The
first solution is given in Table 4.9.

As you can see the solution has a much worse distribution of weekends than
the solution from [8] but our solution has no blocks of length 8 and has many
optimal blocks (of length 5). Our solutions also have not more than 5 successive
night shifts (seven night shifts are considered too much).

Much better distributions of weekends-off can be found with FCS if the
maximum length of work days is increased to 8. In this case step 2 of FCS takes
longer because it depends directly on the number of blocks.

One disadvantage of FCS is that the user has to try many class solutions to
find an optimal solution. However, the time to generate solutions in each step is so
short that interactive use is possible. Other advantages of interactively solving
these scheduling problems is the possibility to include the user in the decision



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 66

Table 4.9: First Class Scheduler solution for the problem from [33]

—
=

w2
=
=

Employee/day || Mon | Tue | Wed u i
D D

D

w

> > g0 g

S EsEi=li=li=li=liEs

Dl ale|lc| o] o s |w| | —
2| 2| 2| =] | | | o] o| o|o| &
2| z| 2| =] | 2| | > o|o|o

—_
N

O 2| 2| Z|»=| = 2| > J|J

—_
w

=
z

—_
(@5

—_
(=2

> OO O] 2| 2|2 = >
> > O O 2122
Z| | 2| > 2

Z|e| 2|22

3
> O

process. For example one may prefer longer blocks but better distribution of
weekends to shorter work blocks but worse distribution of weekends.

One disadvantage of FCS is that the user has to try many class solutions
to find an optimal solution. However, the time to generate solutions in each
step is so short that interactive exploration of alternatives is possible. Another
advantage of the interactive solving of scheduling problems of this type is the
possibility to include the user in the decision-making process. For example one
may prefer longer work blocks but better distribution of weekends to shorter work
blocks but worse distribution of weekends. Moreover, this interaction facilitates
a better understanding of how requirements can shape the solution space. The
system thereby helps to relax requirements when the solution space is very tight.
For some well-known scheduling problems with only very few good solutions (e.g.,
metropolitan and continental rota [22]) FCS finds exactly these required solutions.
However, further work will be needed to improve early identification of dead ends.

With FCS one can model all the important constraints that arise with shift
scheduling problems in the central European context. The different legal require-



CHAPTER 4 EFFICIENT GENERATION OF ROTATING ... 67

ments in the U.S. have yet to be taken into account (see [24]). Nevertheless, the
package is already internationally recognized and German, English, Finnish, and
soon Dutch versions are available.



Chapter 5

Local search for shift design

Designing shifts is one of the important stages in the general workforce scheduling
problem. For the problem of shift design, we are given the workforce requirements
for a certain period of time, constraints about the possible start and the length
of shifts, and an upper limit for the average number of duties per week per
employee. The aim is to generate solutions that contain shifts (and the number
of employees per shift) that fulfill all hard constraints about the shifts, as well
as minimize the number of shifts, over- and understaffing, and differences in the
average number of duties per week. In this chapter we consider solving this
problem by using iterative improvement methods. First we propose repair steps
(moves) to explore the neighborhood of solutions for this problem. In order to
generate the neighborhood and accept the solution for the next iteration, basic
principles of the tabu search technique are used. However, while tabu search
can find acceptable solutions for this problem, the complete exploration of the
neighborhood (using all defined moves) in each iteration is very time consuming.
We proposed a new approach in combination with tabu search in order to make
the search more effective. The basic idea is to exploit the knowledge about the
shift design problem during the search. Based on the temporal workforce of
the current solution and given workforce requirements (distance of the current
solution to the optimal solution with respect to the most important criteria),
selecting repair steps during each iteration is guided so that the repair steps
that have a greater chance to improve the solution are used. As a result of this
knowledge about the problem, the neighborhood is selectively explored during
each iteration, which makes the search more effective. Furthermore, we propose
an algorithm for generating a good initial solution, which further improves the
effectiveness of the search. Computational results in a real life problems and
in randomly generated problems show the advantages of these ingredients. The

68



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 69

algorithms are part of a commercial product and the system has shown to work
well in real life problems.

5.1 Introduction

Like we described in the Chapter 3 the typical process of planning and scheduling
a workforce in an organization consists of several stages [66]. The fist stage in
this process is to determine the temporal requirements. In this stage the number
of needed employees of each qualification is found for every time slot of the plan-
ning period (e.g., every Monday between 6:00-10:00 there should be 4 employees
at work). After this stage one can proceed to determine the total number of
employees needed, interrelated with designing the shifts and then assigning these
shifts and days-off to employees. There exist different approaches in the literature
how to solve these stages. One of the approaches is to coordinate the design of
the shifts and the assignment of the shifts to the employees, and to solve it like
one problem [29, 37]. Other approaches consider days-off scheduling and shift
scheduling only after the shifts are designed [8, 46, 55]. One of the disadvantages
of the second approach is that considering the design of shifts separately does
not guarantee that a feasible solution for the assignment of these shifts can be
found. However, solving the workforce scheduling problem in several separate
stages makes the problem of general workforce scheduling easier to tackle.

In this chapter we consider the problem of designing the shifts. We have
given a detailed description of the problem we consider in this thesis in Chapter
3. Let us briefly remind here the definition of this problem. For this problem we
are given:

e The temporal requirements for each slot for each day during the planning
period.

e A collection of shift types. A shift type determines the minimum and max-
imum length and the earliest and latest start of a shift.

e An upper limit for the average number of working shifts per week per em-
ployee.

The aim is to generate a set of shifts which fulfill all constraints specified by
the shift types and the number of workers for each day such that the following
numbers are minimized:

e Sum of the excesses of workers in each time interval during the planning
period.



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 70

e Sum of the shortages of workers in each time interval during the planning
period.

e Number of shifts k.

e Distance of the average number of duties per week in case it is above a
certain threshold.

The problem that includes constraints for the minimization of the number
of shifts is NP hard and also hard to approximate. This is the reason why we
rely on local search techniques for solving this problem.

The appropriate neighborhood structure is one of the most important fea-
tures to reach ‘good’ solutions for local search techniques. In this chapter we
propose moves (repair steps) that will be used to explore the neighborhood of the
current solution. We use basic principles of the well-known tabu search method
for the exploration of the neighborhood, where tabu solutions will not be accepted
for a number of iterations to make possible escaping from a local optimum, ex-
cept if the solution has a better cost than the best current one. A procedure for
generating a good initial solution for this problem was also developed. In order
to make the search more effective, we introduced a new method that guides the
search during the exploration of the neighborhood. A basic feature of the guided
search procedure is that the search is concentrated only in the days in which a
shortage or excess is present. Moreover, some of the moves are applied only to
specific shift types in the region in which the shortage or excess appears. In the
computational results, we show results of experiments concerning different kinds
of tabu mechanisms, lengths of the tabu list, initial solutions etc. Computational
results show that the effectiveness of the search and the quality of the solution is
improved by including the knowledge about the problem during the search and
also the initial solution. These techniques were implemented in a commercial
product called Operating Hours Assistant.

5.2 Local search for shift design

The basic idea of local search techniques [2, 26, 27, 28, 39, 59] is to improve
initial solution iteratively during the search. A descendant of the current solution
is selected from the neighborhood of the solution, which is constructed through
changing the current solution using so called ‘moves’. Basically, the differences
between individual local search techniques are found in the way they explore the
neighborhood and the criteria on how to accept the descendant of the current
solution. The appropriate neighborhood structure for these techniques is one



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 71

of the most important features to reach ‘good’ solutions. In this section, we
first give definitions of the moves used for exploring the neighborhood for the
shift design problem. Afterwards, we describe other features of the technique we
used concerning the generation of neighborhood, acceptance of the descendant
solutions and aspiration criteria.

5.2.1 Neighborhood relations

A solution in the shift design problem consists of shifts and the duties of the
shifts for each day during the planning period. The neighborhood of the solution
is obtained by introducing altogether new shifts, removing a shift, or changing
one of the three main features of a shift, namely, start, length, and duties per
day. Basic moves presented below change these features.

‘ChangeDuty’:

The duties of the shift for the particular day are decreased or increased for
1 employee. For example, suppose that shift F1 was assigned 5 employees during
the first day. By applying this move to shift F1 (on the first day) two new shifts
that respectively are assigned 4 and 6 employees in the first day can be obtained.

‘ChangeLength’:

The length of the shift is made longer or shorter for one time unit. For
example suppose that the length of shift F1 is 8 hours and a time unit of 30
minutes is used. By applying this move to shift F1, two new shifts with lengths
7,5 h and 8,5 h can be obtained.

‘ChangeStart’:

The starting time of a shift is moved forward or backward by one time unit
(the length is left unchanged). For example, suppose that the shift F1 begins at
8:00 and the time unit is 15 minutes. By applying this move to shift F1 two new
shifts can be obtained, starting at 8:15 and 7:45.

‘CreateShift’:

A new shift not having all duties empty is created. This move is implemented
indirectly, such that for each shift type we always keep a so called ‘reserve’ shift
which has all duties 0 and exists only as a virtual shift in the solution. A new shift
can be created for example by applying the move ‘ChangeDuty’ to the reserve
shift. From the following two other moves that will be defined later, new shifts
can be created too: ‘EzchangeDuties’ and ‘SplitShift’.

‘RemoveShift’:



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 72

One shift is removed from the solution. This move is implemented in an
indirect way, such that only one reserve shift (for each shift type) is kept in a
solution. Double shifts are always joined every second iteration.

The moves we defined before are basic moves. Next, we define the composite
moves, which are combinations of basic moves.

‘MoveBorders’:

The borders of two shifts is shifted right or left. The starting time of first
shift (shift that begins earlier) and the end of the second shift remain fixed.
For example, suppose that the solution contains shifts F1: (6:00-14:30) and S1:
(14:30-23:00). By shifting the border of these two shifts for 30 minutes backwards,
two new shifts will be created: F1: (6:00-14:00) and S1: (14:00-23:00)

‘ExchangeDuties’:

In a particular day, one duty is passed from one shift to the other. For
example, suppose that shift F1 has these duties (2 2 3 3 3 3 0) and shift F2 these
duties (1 11111 1), where each element of array represents duties of shifts for
particular day. Shifts F1 and F2 will have new duties by applying this move on
these shifts and day 1: F1: (1233330); F2: (2111111).

‘JoinShifts’:

Whole duties of one shift (X) are added to the other one and the shift X
is eliminated from the solution. For example, suppose that a solution contains
shifts F1: (8:00-16:00) (3 3 3 3 3 3 3) and T1: (9:00-17:00) (2111111). By

applying this move the shift T1 is deleted and shift F1 becomes: F1: (8:00- 16:00)
(5444444).
‘SplitShift’:

A shift is divided into two different shifts. Newly created shift differs from the
original shift by one time unit in the start or length (four possibilities). When
possible, one duty per day is transferred from the original shift to the newly
created shift. For example, by applying this move to shift F1: (7-15) (2333 3

3 3), one of obtained solutions will contain shifts F1: (7-15) (1 222 2 2 2) and
F2: (7-15:30) (111111 1), the time unit being 30 minutes.

‘ChangeStartKeepEndFiz’:

The start of a shift is moved forwards or backwards, while its end is kept
fixed. For example if we use a time unit of 30 minutes, by applying this move
to shift F1: (7:00-15:00), a new shift F2: (6:30-15:00) or F3: (7:30-15:00) can be
obtained.

Moves ‘ChangeDuty’ and ‘ExchangeDuties’ may be still enhanced by apply-
ing these moves for a specific number larger than one of days.



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 73

5.2.2 Generation of neighborhood

We experimented with different variants for the generation of the neighborhood.
In a first variant, only basic moves are applied in every iteration. In another
variant, all moves (basic and composite ones) are applied to generate a neigh-
borhood of solutions. However, in this case, for each move, not all neighborhood
solutions are generated. Indeed, in all moves except the move ‘ChangeDuty’ the
exploration of neighborhood is interrupted as soon as a new better solution than
the previous one is found.

5.2.3 Tabu mechanism

In order to avoid cycles during the search, a tabu list is used. The tabu list
prohibits some of the solutions in the neighborhood to be accepted for the next
iteration unless they fulfill certain criteria. We have experimented with two kinds
of tabu lists. In the first variant, for each of the moves described above, we add
the inverse move to the list. For example, the inverse of the move that increases
by 1 the duty of shift X on day i, is the move that decreases by 1 the duty of
shift X on day i. For each applied move in memory an inverse move is stored,
including to which shifts the move was applied (one or two shifts) and also the
day the move has been applied. The stored move in memory will be tabu for a
certain number of iterations. In the second variant, certain characteristics of a
solution itself are considered tabu in combination with each other: the number
of shifts, the difference of the duties in each time slot, and the average number
of duties per week. Solutions with the same features are considered tabu for a
specified number of iterations.

5.2.4 Selection criteria

The best solution from the neighborhood, if it is not tabu, becomes the current
solution in the next iteration. The tabu solution will be accepted only if it has
the best fitness found so far (aspiration criteria).

5.2.5 Fitness function

The fitness function is a scalar function which combines four weighted criteria.

Fitness = W1 x EzxcessinMinutes + W2 x ShortagelnMinutes +
W3 x NumberOFShifts + W4 x Difference OfDutiesPer Week



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 74

For a more efficient calculation of the excess and the shortage, a history of
change of the solution is stored and these parameters are updated based on this
history.

5.3 Including the knowledge about the problem dur-
ing the search

In this section, we describe a new approach that guides the search for the shift
design problem, intending to make the search more effective. Furthermore, the
algorithm for generating a good initial solution is presented.

The amount of neighborhood that should be explored during every iteration
with defined moves can be reduced by using the knowledge about the problem
during the search. The basic idea is to take moves which probably will most
improve the solution. A similar technique for constraint satisfaction problems
was used by Minton et al. [52]. This method is based on analyzing the ‘distance’
of the current solution to the optimal solution, with respect to the shortage and
excess, which are the most important criteria in this problem. Just to give an
idea, suppose that on day 7 between time 8:00-16:00 one employee is missing.
A complete neighborhood search, among other moves, will perform also moves
that decrease the duties of the shift for each day, which cannot contribute to
any improvement in this situation. Furthermore, while this shortage appears
at a particular day and particular shift, it is better to take moves that include
only this day and shift types which cover this region: If, for example, the night
shift ranges from 23:00-7:00, the moves in this shift probably will not bring any
improvement in this situation. Our technique, based on the shortage/excess and
shift types that could be used, determines the moves and other parameters that
should be used for the neighborhood exploration of the current solution. Below
we describe our technique in detail.

1. Find the shortage/excess with the longest length.

2. Determine the contribution of each shift type in the shortage or excess:
high, middle, small.

3. Begin with the shift type that has the highest contribution to the short-
age/excess.

4. Determine the position of the shift types that contributes in the short-
age/excess relative to the shortage/excess: left, middle, right.



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 75

5. Shortage/excess is classified in short, middle, or long relative to the shift
type for which the neighborhood will be generated.

6. Based on the shortage/excess properties, position, and contribution of the
shift type relative to the shortage/excess, determine moves, days, and a
shift type with which the neighborhood will be explored.

7. If there exist improvements, repeat the steps from the beginning, or else
if there exist no improvements, but still shift types that contribute in the
shortage/excess then take the next shift type and continue with step 4. In
case there exist no improvements and no more shift types that contribute
to shortage/excess, then, for the next iteration do a complete exploring of
the neighborhood (like in basic tabu search).

The result of this technique is that the neighborhood will be generated us-
ing only some of the moves, and that these will be applied only to particular
days and for particular shift types. One other important issue is the order of
the moves. Since the procedure exits from the iteration for some of the moves
as soon as a better solution than the current one is found, the moves that have
more chances to improve the solution should be tried in the beginning. However,
it is not always clear how to determine the order of the moves. For example, if
the shortage/excess is long and the contribution of a certain shift type is high,
then, logically, to improve the solution at this specific shortage/excess point, a
move that increases/decreases duties of that particular shift type could be used.
However, suppose we have an example where the shortage/excess is short. This
kind of shortage/excess can be repaired for example by a moves ‘ChangeDuty’,
‘ExchangeDuties’, ‘ChangeLength’, ‘MoveBorders’, etc. and here the order of the
moves is not clear. According to the properties of the shortage/excess, the con-
tribution of shift types and their relative position, there exist 27 possible com-
binations (each of the properties is classified in three classes). Some of these
combinations are almost the same regarding the conclusion about the moves that
should be taken. In our technique, the order of the moves is the logical order
when possible. In cases when is not completely clear which order of the moves
should be taken, the order of the moves is taken like in the case of basic tabu
search described previously. Note that if no improvement can be found through
this procedure, a complete search of neighborhood is done to allow the acceptance
of solutions with worse fitness and thus make an escape from a local optimum
possible.

Ezample: In Figure 5.1 the requirements are given (only the first two days
can be seen) for the first problem among the 30 randomly generated problems for
which we will give computational results later. Applying the above procedure, the



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 76

Monday - Tuesday

204
18+
16
144
121
10

Maonday

Persans

| | o ) e E— ) | —

S:00 0700 0900 11:00 13:00 1500 17:00 19:00 21:00 23:00 0100 03:00 05:00 0700 0900 11:00 135:00 15:00 17:00 19:00 21:00 23:00
Time

[ == T VN -

Figure 5.1: Requirements in example 1 for Monday and Tuesday

longest shortage found would be the one that starts in the first day at 22:00, with
length 8 hours which has a shortage of one employee. The highest contribution
in this shortage is from the night shift. The shortage is long and in the middle
of the region of a night shift. The guided search procedure explores first the
neighborhood that is constructed by applying the move ‘ChangeDuty’ (duties
are only increased) only for day one.

5.3.1 Initial Solution

Another ingredient given to the techniques described above is a ‘good’ initial
solution. The basic idea in constructing a ‘good’ initial solution is that in every
change of the requirements there should begin or end a shift. Initial solutions
constructed in this manner, of course, do not always contain all shifts needed to
construct an optimal solution but contain at least some of those which could have
either the correct start or end. Below, the procedure that generates the initial
solution is described.

e Detect all time points (day:hour:minute) in the planning period in which a
positive difference of requirements (increase of the requirements) exist. The
increases that begin at the same time (hour:minute) but on different days
are considered like an increase even if they have different values (values of
increase for each day are stored).

e For each increase from the previous step, determine all shift types with start
regions to which the increase belongs. For each such shift type construct one
shift with starting time at the point of time of the increase (time where the
increase begins) and optimal length (based on the shift type). Additionally,



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 7

mark the starting time of all shifts constructed in this step as constant
during the search.

e For each increase detected in step 1, select the first shift among the shifts
constructed for that increase in the previous step. Give to the shift the
duties which correspond to the values of increase for each day.

e Detect all time points (day:hour:minute) in the planning period in which
a negative difference of requirements (decrease of the requirements) exist.
The decreases that begin at the same time (hour:minute) but on the differ-
ent days are considered like a decrease even if they have different values.

e From the decreases from the previous step, eliminate decreases that can be
reached with any of the shifts constructed before, based in the increase of
duties.

e For each remaining decrease determine all shift types, the end region (which
is the time interval in which the shift type can have its end) of which con-
tains the decrease and for each determined shift type construct one shift
with end corresponding to the time of decrease as well as having minimal
legal length (determined from the constraints for the shift types). Addi-
tionally, mark the end of each shift constructed in this step as constant
during the search.

5.4 Computational results

In this section, we report computational results for 30 artificial examples gener-
ated by the random generator. Additionally we report computational results for
one real world example. The randomly generated examples can be found on the
site http://www.dbai.tuwien.ac.at/proj/Rota/. We describe first how the ran-
dom examples are generated. Later, we show results of experiments that were
conducted with basic and composite moves and the different types of tabu lists.
Further, we investigate the impact of the initial solution and guidance of the
search by including the knowledge about the problem. The techniques we de-
scribed in this chapter are implemented in a software package called Operating
Hours Assistant of Ximes! Corp. and the system works well on real life examples.
All our results in this section have been obtained on an Intel P2 333 Mhz.

"http://www.ximes.com/



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 78

5.4.1 Randomly generating problem instances

The basic idea for random examples is to generate for each shift type a specific
number of time intervals which fulfill constraints about the start and length of
the shifts. Each time interval corresponds to one legal shift. Randomly, 1-5
time intervals are generated for each shift type. The start of the time interval
is generated randomly from the possible starts in the start region of a shift type
and the length of time intervals is one random possible length (determined by
the shift type). We use four shift types, and thus the optimal solutions to the
problem can have from 1 to 20 shifts. In Table 5.1 constraints for shift types are
given. The time interval is taken randomly to be 15, 30 or 60 minutes.

Duties for each time interval are generated such that initially, for each time
interval, a random number between 1-5 is generated with equal probability. The
time interval will have assigned (as number of employees) this random number for
each day during the week with probability 0.9 (probability that the duties change
from the standard value is 0.1). If this value should change, the new value is again
generated randomly using the same probability distribution. During the weekend
the probability that the value changes is 0.6. If the value should change, again a
new random number is generated (the probability that either Sunday or Saturday
changes from this number is again 0.1 percent).

Weights for shortage and excess are 1, for number of shifts the weigth is
equal to the length of the time unit in minutes (15, 30, or 60) and for duties
per week it is 1000. The maximum number of duties per week is set to 5. The
average number of hours per week is 38,5. As we want to generate the problems
for which we can calculate the fitness in advance, if the duties per week exceed
5 (for optimal solution regarding excess, shortage and number of shifts), we put
the weights of the duties per week to be 0. This means we consider indeed only
minimizing the shortage, excess and number of shifts.

Table 5.1: Constraints about shifts for the random generator

Shift type Earliest begin | Latest begin | Shortest length | Longest length
M (Morning shift) 05:00 08:00 07:00 09:00
D (Day shift) 09:00 11:00 07:00 09:00
A (Afternoon shift) 13:00 15:00 07:00 09:00
N (Night shift) 21:00 23:00 07:00 09:00




CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 79

5.4.2 Computational results over random examples

In this section, we give results of four experiments over 30 randomly generated
examples. The aim of these experiments was to determine the impact of com-
posite moves, the length of the tabu list, and variants of the tabu mechanism.
Techniques are compared regarding the dependence of the fitness from the num-
ber of evaluations and quality of the solution found after a certain number of
evaluations. All results are given for one run of the algorithm, as the latter is
deterministic. For each technique the algorithm is allowed to begin the next
iteration only if a maximum number of 100000 evaluations is not exceeded for
each example and the search is interrupted each time if after 200 seconds no
improvements could be found.

Let us note that during the search the position and length of reserve shifts
is changed if no improves can be made to the solution.

Basic moves

In this experiment the basic tabu search technique is used. During every iteration,
by using only basic steps, a complete neighborhood of the solution is generated.
For each of the tabu variants four different length of tabu list are used (5,10,20,40).

Results of this experiment over 30 examples were not satisfiable. While in
two tabu variants the results were improved with increasing the tabu length, the
best results were poor. In order to improve the results, we included the composite
moves. The results are shown in the next experiment.

Impact of composite moves

In this experiment, tabu search is used and all moves are applied (basic and
composite moves) for the generation of the neighborhood. However, we do not
now explore the complete neighborhood for each move. Indeed, in all moves
except the move ‘ChangeDuty’ the exploration of neighborhood is interrupted
as soon as a new better solution than the previous one if found. The order
of the moves in tabu search is the same like the order they were described in
Section 5.2.1, except that move ‘ChangeStartKeepEndFiz’ is tried after move
‘ChangeLength’. The experiment was conducted for two variants of tabu search
and four possible lengths of the tabu list (5, 20, 40, 70).

The best results were obtained by applying the second variant of the tabu
list (solution tabu) and with a length of the tabu list of 20. These results are
shown in Table 5.2. For each example, information for the best fitness found,



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 80

number of evaluations needed, and time for finding this fitness is given. In the
second column the fitness of the best-known solution is given (although this is
most of the time an optimal solution, we cannot fully guarantee it). The best
results obtained by applying the first variant of the tabu list (moves tabu) were
slightly weaker. When using all moves, the tabu list has not such a high impact
as in the case when only the basic moves are used.

Impact of the initial solution

The aim of this experiment is to investigate the impact of the initial solution in
the technique, which was applied in the previous experiment. In the previous
experiment the initial solution is a simple one. For each shift type it contains
one empty shift template. Now the search begins from the good initial solution
which is generated like described in the Section 5.3.1. Length of tabu list is taken
to be 20 and the variant of making solution tabu is applied.

In Table 5.4.2 the results of the tabu search with good initial solution are
shown. These results are better (compared to the results in Table 5.2 with respect
to the fitness of solutions number of evaluations and time needed to generate best
solutions.

Including the knowledge about the problem during the search

In this experiment, we show the results obtained by exploiting the knowledge
about the problem (see Section 5.3) in the tabu search with good initial solution
(TSwIS). We will call this technique tabu search and guided search with initial
solution (TSaGSwIS).

In Table 5.4 the results of TSaGSwIS are presented. This techniques show
the best results with respect to all criteria: fitness of solutions, number of found
optimal solutions, number of evaluations per solution, and the time in which
these solution were found. With this technique, 50 % of the optimal solutions
are found in only one run.

5.4.3 Computational results on real-world problems

In this section we present the results for one real world problem taken from a call
center.

Problem 1: This problem is a real problem from a call center. Temporal
requirements for this problem are given in Table 5.5. Constraints about the shift



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 81

Table 5.2: Results for 30 examples using TS with the variant of a solution-type
tabu list

Tabu Search with solution tabu
Ex. | Best known fitness || Fitness | Number of evaluations | Time in sec
1 480 2040 22322 126
2 300 750 62191 390
3 600 600 79326 470
4 480 1590 100388 660
5 480 480 25045 146
6 420 480 19175 102
7 270 1080 41525 245
8 150 195 100597 665
9 150 300 54318 350
10 330 1620 93847 578
11 30 30 2531 13
12 90 90 21550 124
13 105 105 24745 153
14 195 4305 100193 680
15 180 180 2045 10
16 225 540 100779 728
17 540 3600 100019 680
18 720 720 97919 611
19 180 2970 69726 473
20 540 540 53840 327
21 120 195 34349 237
22 75 75 9301 56
23 150 2430 75001 520
24 480 480 28656 165
25 480 2160 94991 635
26 600 720 46458 288
27 480 540 80685 495
28 270 1380 72192 429
29 360 1620 69738 431
30 75 75 6774 41

types which can be used in the solution are given in Table 5.6. Weights of the
criteria are: W1 =W2 =1, W3 = 30, W4 = 1000. Average number of working



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 82

Table 5.3: Results for 30 examples using TS with good initial solution

Tabu Search with good initial solution
Ex. | Best known fitness || Fitness | Number of evaluations | Time in sec
1 480 480 10012 54
2 300 390 36182 219
3 600 1020 80854 453
4 480 1590 101057 617
5 480 480 8613 47
6 420 420 5977 30
7 270 570 15497 100
8 150 615 15631 116
9 150 225 13034 85
10 330 450 80666 502
11 30 30 346 2
12 90 90 11976 70
13 105 105 2197 16
14 195 495 90481 628
15 180 180 148 1
16 225 540 73411 480
17 540 1170 75119 488
18 720 720 18979 129
19 180 195 34173 220
20 540 540 20790 109
21 120 120 2674 19
22 75 90 4158 23
23 150 570 39309 248
24 480 480 10120 60
25 480 1050 46090 309
26 600 660 31033 211
27 480 480 8537 48
28 270 270 7297 46
29 360 390 23856 148
30 75 75 986 6

hours is 38.5 and an upper limit of the average number of duties per week is 5.

In Table 5.7 the solution produced from the TsaGSwIS is shown. The second



CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN

Table 5.4: Results for 30 examples using TSaGSwIS

83

Tabu search and guided search with good init. solut.
Ex. | Best known fitness || Fitness | Number of evaluations Time in sec
1 480 480 691 8
2 300 420 2623 30
3 600 900 85917 552
4 480 1170 67207 508
5 480 480 2299 18
6 420 420 887 6
7 270 630 17468 116
8 150 180 5722 80
9 150 225 10348 109
10 330 510 69811 503
11 30 30 68 1
12 90 90 1664 15
13 105 105 2494 21
14 195 390 46569 449
15 180 180 10 0
16 225 375 41182 289
17 540 1110 51679 471
18 720 720 1759 21
19 180 195 6985 73
20 540 540 27534 186
21 120 120 279 3
22 75 105 2414 19
23 150 540 3026 38
24 480 480 8674 52
25 480 690 29465 286
26 600 600 4151 26
27 480 480 7755 54
28 270 270 694 8
29 360 390 9461 81
30 75 75 379 4

variant of the tabu mechanism (solution tabu) is used and the length of the tabu

list is 20.




CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 84

Table 5.5: Temporal requirements for the call center problem

Time interval/day || Mon | Tue | Wed | Thu | Fri | Sat | Sun
07:00-08:00 5 5 5 5 5 1 1
08:00-08:30 10 | 10 | 10 10 | 10 | 4 4
08:30-09:30 12 12 12 12 | 12 | 4 4
09:30-10:00 14 14 14 14 | 14| 4 4
10:00-12:00 17 17 17 17 | 17 | 4 4
12:00-13:00 17 17 17 17 | 17 9 9
13:00-17:00 20 | 20 | 20 20 |20 ] 9 9
17:00-18:00 18 | 18 | 18 18 | 18 | 8 8
18:00-18:30 20 | 20 | 20 20 |20 ] 5 5
18:30-19:30 18 | 18 | 18 18 | 18 | 5 5
19:30-20:00 16 | 16 | 16 16 | 16 | 5 5
20:00-22:00 13 13 13 13 | 13| 5 )

Table 5.6: Constraints about shifts in the call center problem

Shift type Earliest begin | Latest begin | Shortest length | Longest length
M (Morning shift) 05:00 08:00 07:00 09:00
D (Day shift) 09:00 11:00 07:00 09:00
A (Afternoon shift) 13:00 15:00 07:00 09:00

Table 5.7: Solution for the call center problem with TSaGSwIS

Shift Time Mon | Tue | Wed | Thu | Fri | Sat | Sun
M1 || 07:00-15:00
M2 || 08:00-15:00
D1 09:00-17:00
D2 10:30-19:30
D3 || 09:00-18:00
E1l 15:00-22:00 | 10 10 10 10 | 10
E2 13:00-22:00 3 3 3 3 3 5 5

Ol DNo| Ot Ot
Ol DNo| Ot Ot
Ol DN | Ot Ot
Ol DN | Ot Ot
Ol DN | Ot Ot

wliolo|lol -
(V] Bewll Newl Nel i op




CHAPTER 5. LOCAL SEARCH FOR SHIFT DESIGN 85

The produced solution has no excess and a shortage of 3.99 % . The average
number of duties per week is 4.82. The solution is generated after 3771 evaluations
and in about 40 seconds.



Chapter 6

Practical Applications

Algorithms described in Chapters 4 and 5 are included in a software packages First
Class Scheduler (FCS) and Operating Hours Assistant (OPA). The consultants of
Ximes Corp. have already successfully used these systems in several organizations
for shift design and the construction of rotating workforce schedules. The systems
are also installed in several companies in Austria, Germany, Switzerland, Holland
and UK. In this chapter, we give a brief description of these applications with
illustrative examples.

6.1 First Class Scheduler

First class scheduler (FCS) is a part of the commercial product SHIFTPLAN-
ASSISTANT (SPA 4.0) of Ximes Corp. (This company is specialized in devel-
oping software and in consulting work-hours arrangements, especially for shift-
models). FCS supports semiautomatic generation of rotating workforce schedules.
In this system, the generation of rotating schedules is conducted by interacting
with the decision maker based on the new framework and algorithms that we have
already presented in Chapter 4. In FCS most important constraints in the central
European context can be modeled. This package is already internationally highly
appreciated and exists in German, English, Finnish and Dutch. The product is
used successfully since the year 2000 in several organizations by the consultants
of Ximes Corp. for generating rotating workforce schedules. The system is also
installed and works in many organizations such as for example, VOEST ALPINE
AG, Osterreichische Post AG, NOVARTIS Pharma AG, Opel Austria GmbH,
Semperit Reifen Ges.m.b.H., Ciba Spezialitatenchemie AG, Fachklinik Schleswig
etc. Next we introduce the this system with an illustrative example.

86



CHAPTER 6. PRACTICAL APPLICATIONS 87

Ezample: There are three non overlapping shifts D (day shift), A(afternoon
shift), and N(night shift) and 8 groups (each group has 3 employees). For shifts
D and A, 6 employees are required each day, whereas for Night shift (N), 3 em-
ployees are required each day. The non-permitted sequences of shifts are: “N
D”,“N A”,“A D”,“N-N" “N-D”,“N-A”. All these data are provided from the
SHIFTPLAN-ASSISTANT to the FCS. Further in the FCS, the weekly rotat-
ing workforce schedules are generated in interaction with the decision maker as
follows.

Definition of hard constraints

The constraints concerning length of work, day off blocks and length of blocks
of consecutive shifts should be defined by the decision maker (see Figure 6.1).
In this example, the work blocks are not allowed to be longer than 6 days and
shorter than 4. The day off blocks should be between 2 and 4 days. Blocks of
consecutive shifts should be of length 2-6, 2-5 and 2-4, respectively, for the D, A
and N shifts.

Choosing a set of lengths of work blocks

The possible set of work blocks (see Figure 6.2) are generated with the algorithm
described in Chapter 4 under given constraints about the requirements and the
lengths of the work and day off blocks. In this stage, the decision maker should
select a preferable set of work blocks based on his/her preferences, but the order
of the work blocks is not yet determined. From the possible set of work blocks
(class solution), in the next step, the order of these blocks is determined based
on the weekend features (number of weekends off and number of long weekends
off). Note that before the set of work blocks is generated it should be tested in
case at least one possible distribution of day off exist for these work blocks, such
that temporal requirements for work and rest are fulfilled. For this example, in
this stage, the class solution {6 6 5 5 5 4 4} is selected.

Choosing a particular sequence of work and day off blocks among those
that have optimal weekend characteristics

Different solutions regarding distribution of day off can be found for given work
blocks. Based on the algorithm described in Chapter 4, for each possible order
of work blocks, the best distribution of day off blocks subject to a number of
weekends off, a number of long weekends off and a distribution of weekends during
the planning period is found. In Figure 6.3, the best possible solutions for different



CHAPTER 6. PRACTICAL APPLICATIONS 88

< Step 1 of 4 =] B3

Restrictions

P Maimum |~ | Here you define the minimurm and maximum

Shifttype Full name black length | black length [~ | number of periods of successive shifts.
D Day 2 5 Example: There should be at least 2 night shifts in
A Afternoon z 5 rove, but at the most B,
M Might 2 4

— It should always be

I : EE
at least 4 = i work days in a row and no more than 6= |
= i =
at leask 2 [= I.da'y's off in & row and no move than Eli— |

_ S l _ | : | i I - _

Figure 6.1: Definition of hard constraint in First Class Scheduler

orders of work blocks for the class solution selected in Step 2 are represented. The
decision maker is also here included to select one of the solutions based on his
preferences.

Generation of schedules

After the distribution of the day off and work blocks is determined, the assignment
of shifts to employees can be done. This is the last phase of the generation of
rotating workforce schedules. Internally, before the algorithm assigns the shifts
to the employees, possible shift sequences for the chosen work blocks subject to
shift change constraints and bounds on sequences of shifts are enumerated. In
Figure 6.4, a bunch of the generated schedules is shown on the left side. These
schedules fulfill all hard constraints and have same characteristics subject to
weekends off. However, these schedules are built up from different shift sequences.
On the right side the shift sequences of these schedules are shown. The user can



CHAPTER 6. PRACTICAL APPLICATIONS 89

<. Step 2 of 4 =] B3

Class solutions for base series

Rota length Work blocks

8 weeks 1 Block 5
16 weeks 2 Blocks 5.5
16 weeks 2 Blocks 6 s 4

s 2 Mare base seties |
Classical solutions for weekly rotas

Rota length Work blocks
8 weeks 7 Blocks 5555555
g weeks 7 Blocks 6 « 55 555 « ¢4
v O weeks 7 Blocks 5 6 « 5 55 « 4 4
8 weeks 7 Blocks 6 6 6 ¢« 5 « 4 4 4
8 weeks & Blocks 6 6 6 6 6 s 5

_ S l . | B | i I - _

Figure 6.2: Selecting of the possible length of work blocks in First Class Scheduler

eliminate some of them by his/her preferences. If, for example, we eliminate some
of these sequences only some schedules will remain (see Figure 6.5. One of these
schedules is presented in Figure 6.6.

In the system FCS, rotating workforce schedules are usually generated in a
reasonable amount of the time. Moreover, these schedules are of high quality.
The system provides interaction with the decision maker and, thus, including
soft preferences through this interaction is possible. The system is also very
flexible as it allows for the relaxation of constraints and the generation of rotating
workforce schedules for a wide range of constraints. According to the consultants
of the Ximes Corp. FCS can solve successfully 80 to 90% of problems of rotating
workforce schedules that appear in practice.



CHAPTER 6. PRACTICAL APPLICATIONS 90

<. Step 3 of 4 =] B3
Possible distribution of work blocks
Dislfrihul:ion of working Saturday and Mumber of long Distribution of weekends off
periods Sunday off weekends off
+ 6655544 3 F W - - -
6655445 3 Fowomwm - - -
6654554 3 FOWO -y
6654455 3 R Y]
E645545 3 FWWWW - - -
6644555 3 FowWo - -y
6565454 3 Fowoaw - -y
6564545 3 J WA - - -
6556544 3 I WA - - -
6556445 3 Fowo - - -y
6555644 3 Fowo - - -
6555464 3 Fowow - -y
6554645 3 3N - - -
6554564 3 R Y]
6546545 3 Fowo - - -y
6546455 3 Fowo- - -
6545645 3 J WA - - -
6545564 3 FW- -
6464555 3 AR
6645554 3 Z WA - -
6564554 3 A T Y]
6554654 3 L Y]
6456455 3 W
6556454 2 2 WA - -
| |
T EEEEeE

Figure 6.3: Selecting of possible distribution of work and day off blocks based on
the weekend characteristics

6.2 Operating Hours Assistant

The generation of shifts is one of the main features of commercial product Oper-
ating Hours Assistant(OPA). This product includes also other tools, which will
not be described here. For the generation of shifts the algorithms described in
the Chapter 5 are used. The OPA is in use since early 2001 by the consultants
of the Ximes Corp. and it has been successfully applied in several organizations.
The system is also installed and works in several organizations like, for example,
Eurostar, Semperit Reifen Ges.m.b.H. Fachchklinik Schleswig etc. In Figure 6.7
the screenshot of the OPA is given. Further, we describe the process of the
generation of shifts in OPA.



CHAPTER 6. PRACTICAL APPLICATIONS 91

<. Step 4 of 4 =] B3

Please, select one rotal

1 L1111 ]2

Sa | Su | Mo

g.—
=
=
=~
@
i
=
o
o
=
= ra
@
=
Fra
T ra
L
o
0
=
=
=
@
I
St
T
L
£
T

WIDD A&

WIDDHN

WA AN

WlAANN

MMM

MDODDD
WDDDAA
WIDDDMN
WIDDAAA
WIDDNMNN
MABAAA
MAAANN
o | |#aannn
WDDDDDD
WDDDDAA
WDDDDNN
WIDDDAAA
WIDDDMMN
WIDDAAAR
WIDDAANN
WIDDHNMHN
MABAANN
- - - MAAANNN
MABNNNN

[ =~ = s = e = s = s = i =]
TR O O S T

\

.

P ZEEEEEEE
22z =

\

.
Do o g o oo
[ T i e I e e | A
OO0 OO0

'
(=T

o
'

=
'

I

FrE=ZEZrFr=zZF=F=2PF 2|ER
[ = = R

oo oo oooooog
2000000000

OO0 0 OB oo
b=
F
b=
*
P EEE 0 PE =0
[ e v I = e I e B

h=d
L= = T = B

'
F

[T = N = R
*
'

[T = s = R

[t
=
'
[ S
B .
[

[ =N =
=
'
=
'
'
OFFOOPFPFRPOO0C02200FrF 00000000

OO0 00000000 0000000000 oQgogjlo

'

'

pl
ZZ2PrPrPZ2Z2rPrPrPE2rPrrPrrPE2rPr2rPPE2P2r=
UDhUUDI’UUUZZUUI’I’UUUUUDUELAJ

Do oo oooooo,
=2 2rFrFrF2=2FFF=
OFF0O0FFOOO.

'
L=}
[ B
=}
'
[ = = R

-
>
*
>
-
4

o l - | & | _ I . _

Figure 6.4: Generated schedules that fulfill all constraints

Definition of temporal requirements

As was described in Chapter 5, the first step for designing shifts is to define
temporal requirements (see Figure 6.8). Typically, the temporal requirements
would be given for a week, but they can also be given for one day or less then
seven days. In our case, when the temporal requirements are given for a week,
the cycle should be used in consideration (night shift that begins on Sunday at
23:00 is 8 hours long, impacts the first day of the week). In the example we show
here, the temporal requirements are defined for one week.

Constraints regarding shift types

Shift types determine the possible start and length of the real shifts. In this case
(see Figure 6.9), we define four shift types, morning shift, day shift, evening shift,
and night shift. Shifts generated by algorithms should fulfill the criteria exposed



CHAPTER 6. PRACTICAL APPLICATIONS

%= Step 4 of 4

Please, select one rotal

111]1

=~
{=]

Tu |We | Th

1

1

Fr

Sa

£y
=

Su | Mo

]

-
{at}
(o]

0

Su | Mo

A4
a
A A

*

A A

O o oo oQgoglo
oo ooooo

o

a

>
*
Zr=zrr=z=Z=2

]
o
B =
=
=

Zrzrzzz|Em
=
z

Or0Fro0o|faw
oroOPRroO0CO|Ew

oOrFrO0 o OO

92

B[ E3

Fk O O O
WIDD A&
WIDDHN
WA AN
ClAANN
MMM
MDODDD
WDDDAA
WIDDDMN
WIDDAAA
CIDDNMN
MABAAA
MAAANN
WlAANNN
WDDDDDD
WDDDDAA
WDDDDNN
WIDDDAAA
CIDDDMMN
CIDDAAAR
CIDDAANN
CIDDNMHN
ClasaaNN
ClaBANNN
ClaABNMNN

Cancel

L

Figure 6.5: Remaining schedules after eliminating of some the shift sequences

=)

o

™

L

m

-

o

oL

Mo

Tu

We

1

Th

Fr

53

Su

> |ZE D

x

Lo R o e =

0,

OO ZFE I

i O3 F

P ZE OO

> ZxOO

Figure 6.6: Week representation of one schedule that fulfills all constraints



CHAPTER 6. PRACTICAL APPLICATIONS 93

T2 Operating Hours Assistant 1.0 - [Caver 1] [_ o] x]
b Fie Edt View Fomat Took Tabls Mindow Help e 5||
Ded|S] s pe# o= =55 s Il e
General = aﬂ Session 1 Cover: Cover 1 Created 25.06.01, 2315

1 B Qperating Hours 1 Changed 25.06.01, 23:18
i -4l Caver 1

Ll Cover 3
= @ Session 2
- Operating Hours 2 8

Lgd Cover 2
12
10
-
o
44

)
05:00 07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 03:00 11:00 13:00 15:00 17:00

Monday - Tuesday

Monday

Employees

Tirme
i i
Annual
Planning
{ Types Ofshifts | Restrictions Mew Salution Tmprove Solution | Check Solution Duplicate
i Characteristics of current cover
Duties per week 4,50
High cover 212 %
Low cover 4.86 %
Number of shifts 10
Generation | Cover I Calculations | Notes I

Figure 6.7: Screenshot of Operating Hours Assistant

by the shift types. For example, morning shift can start between 5:00-8:00 and
their length should be from 7-9 hours.

Weights of criteria

Just as we have described in Chapter 5, the solution to the shift design problem is
evaluated with a scalar function, which combines four weighted criteria: excess in
minutes, shortage in minutes, number of shifts and distance from average number
of duties per week. OPA offers the possibility to change the importance of these
criteria (Figure 6.10) that depend from his preferences easily.

Generation of shifts

After the constraints have been defined, the algorithm for the generation of shifts
(Chapter 5) can be called. This algorithm iteratively improves the initial solution.
The process of improvement is shown to the user (the graphical representation



CHAPTER 6. PRACTICAL APPLICATIONS

Monday - Tuesday

Employvess

94

i}
05:00 07:00 0%:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00 1300 15:00 17:00 1%:00

Time

Ji3|

From

To

Skand-by duky

Man

Tue

Wed

Thu

Fri

Sat

Sun

Camment

10:00
07:15
0715
06:00
13:00
14:00
15:00
22115
22:30

17:00
15:00
16:00
14:00
20:00
22:00
23:00
0600
06:00

BT RN SR SRR TR S RS R

E RS SRR R R RN RS R

BB L = LD R

B L3 L L e

B L) L) L )

E R AR A R AR R ]

E R R R R R R

-

I

Figure 6.8: Definition of temporal requirements in

Operating Hours Assistant

was implemented by the Ximes Corp. team). The algorithm can be stopped at
any time and started all over again from any solution. In case the decision maker
is not satisfied with the solution, the weights can be changed and attempts could
be made to improve the current solution.

For the given requirements, constraints and weights (which we represented
in the screenshots), algorithm which combine basic tabu search and guided search
and starts with a good initial (see Chapter 5) generates the solution shown in
Figure 6.11.

The OPA is suitable for generation of shifts in different areas. It has been
already successfully used in call centers, hospitals etc.



CHAPTER 6. PRACTICAL APPLICATIONS 95

¥5a Types OF Shifts H=] 3
[ B@ cEm | + |33 8-

Types Of Shifts

abbr. Naha Optimumn | Earliest | Lastest | Optimwm | Minimum | Maximum | Unpaid o Stand-by | Travelto | =
skark stark skark length length length | break duty wirk.

1 IMarming Shift 0600 0s:00 08:00 2:00 F:00 900 100.00 Mo Yes —
o Day shift 10:00 0900 11:00 §:00 F:00 9:00 100,00 Mo Yes
E Evening shift 14:00 13:00 15:00 :00 7:00 900 100.00 Mo Yes
M Might shift: 2200 Z1:00 2300 500 Fo 9100 100,00 Mo Yes

v

oK I Cancel I

Figure 6.9: Definition of shift types in Operating Hours Assistant



CHAPTER 6. PRACTICAL APPLICATIONS 96

Operating Hours Assistant

Figure 6.10: Definition of weights about the criteria in Operating Hours Assistant



CHAPTER 6. PRACTICAL APPLICATIONS

Monday - Thursday

97

14+ & & ko
124 = 2 5
10+
&
£ g
=]
E 6
w
4
2
1}
05:00 15:00 01:00 11:00 21:00 07:00 17:00 03:00 13:00
Tirne
Al »]
Abbr Full name Start | End 2 2 o | e | e Mon | Tue |Wed | Thu Sat | Sun [ Sum =
: whole | breaks inh duky wark J
1 Marning Shift 07:15  15:00 010000 745 Mo es 5 & & 7 7 7 7 45
Mz IMarning Shift 07:00  14:00 010000 700 Mo es 1 1
M3 Marning Shift 0715 16:00 0100000 545 Mo Yes 2 2 2 3 3 3 3 13
01 Dary shift 10:000 17:00 0 100,000 700 Mo es 3 3 3 3 3 3 3 21
E1l Ewening shift 1300 20:00 0100000 700 Mo ‘fes z2 2 1 1 1 1 1 =
E2 Evening shift 15:00) 23:00 0/ 100,00 &S00 Mo Yes 3 3 ) 3 3 3 3 21
E3 Evening shift 1500 2230 0100000 730 Mo ‘fes Z 3 ) 3 3 3 3 20
M1 Might shift 22300 06:00 0 100,00 730 Mo ‘es 3 4 4 4 i 4 4 27
M2 Might shift 22:30 07:15 0/ 100.00) &:45 Mo Yes 3 3 3 3 3 3 3 21
) Might shift 22:15 06;00 0/ 100,000 745 Mo ‘fes 1 1 1 1 1 1 1 7

Figure 6.11:

Solution generated using guided search with an initial solution



Chapter 7

Conclusions

In this thesis, we used intelligent search methods to investigate the computerized
generation of solutions for two specific problems in workforce scheduling: rotating
workforce scheduling and shift design problems.

In Chapter 4 we proposed a new framework for solving the problem of ro-
tating workforce scheduling. We showed that this framework is very powerful for
solving real life problems. The main features of this framework are the possibil-
ity to generate high quality schedules through the interaction with the human
decision-maker and to solve real cases in a reasonable amount of time. Apart from
the fact that the generated schedules meet all hard constraints, it also allows to
incorporate preferences of the human decision-maker regarding soft constraints
that are more difficult to assess and to model otherwise. In step 1 an enhanced
view of possible solutions subject to the length of work blocks is given. In step 2
preferred sequences of work blocks in connection with features of weekends off can
be selected. In step 3, possible shift sequences for the chosen work blocks subject
to shift change constraints and bounds on sequences of shifts are enumerated.
Finally, in step 4 bounds for successive shifts and shift change constraints can be
specified with much more precision because the decision maker has a complete
view on terms (shift sequences) that are used to build the schedules. Step 2 of
our framework can be solved very efficiently because of the existence of step 1.
Furthermore, we showed that the assignment of shifts to employees in step 4 can
be done very efficiently using backtracking algorithms even for large instances
if sequences of shifts for work blocks are generated first. When the number of
employees is very large they can be grouped into teams and thus this framework
can still be applied.

In Chapter 5, we presented a local search approach for the shift design prob-
lem. We proposed basic and composite moves for the generation of the neigh-

98



CHAPTER 7. CONCLUSIONS 99

borhood during every iteration. Experiments over randomly generated examples
confirmed that composite moves improve the quality of the generated solutions.
To avoid cycles during the search, we used basic principles of tabu search and
experimented with different mechanisms for prohibiting the solutions to be de-
scendant of the current solution. We also experimented with different lengths
of tabu lists for each variant of tabu list. Experiments showed that the length
of tabu list had much more impact in case where only basic moves were used.
Furthermore, we proposed a procedure for the generation of good initial solution,
which has shown to improve the results compared to the basic tabu search over
the randomly generated examples. In order to make the search more effective,
we proposed a method which exploits knowledge about the problem during the
search. Using this method the neighborhood of a solution is explored only selec-
tively during every iteration. Experimental results confirmed that this method
improves the search effectiveness. Probably, local search still can be refined for
this problem to give better results, but the aim here was to show that that knowl-
edge about the problem can significantly contribute to the search by using it in
combination with classical techniques. In Chapter 5, we also proposed set of
randomly generated examples for the shift design problem, which can be used
further by other researchers to compare their results with ours.

We have implemented an optimization framework for the generation of rotat-
ing workforce schedules in a software package called First Class Scheduler (FCS),
which is part of a general shift scheduling package Shift-Plan-Assistant (SPA)
of Ximes Corp. The package has been very well received internationally, and
German, English, Finnish, and Dutch versions of it are in daily use throughout
Europe. We implemented algorithms for the shift design problem in a software
package called Operating Hours Assistant. This product is in early stages of use
and has seen first application in several organizations.

Even though the framework for rotating workforce schedules is appropriate
for most real cases, for large instances of problems optimal solution for weekends
off cannot always be guaranteed because of the large size of the search space. One
way to solve this problem more efficiently could be to stop backtracking when
one solution that has the maximum number of weekends off — or close to the
maximum — is found (for a given problem we always know the maximum number
of weekends off from the temporal requirements). Once we have a solution with
most weekends off, other search techniques like local search heuristics can be used
to improve the distribution of weekends off. Finally we can extend this framework
by introducing new constraints.

One further interesting point for research in the future is to consider shift
design and assignment of the shifts and days-off to employees as one problem,
and to solve both in coordination with each other.



Bibliography

[1]

2]

3]

E. Aarts and J. Korst. Simulated annealing and Boltzman Machines. John
Wiley and Sons, 1989.

Emile Aarts and Jan Karl Lenstra, editors. Local Search in Combinatorial
Optimization. Wiley, 1997.

S. Abdennadher and H. Schlenker. Interdip - an interactive constraint based
nurse scheduler. In In PACLP-99: Proceedings of the International Con-
ferenceon Practical Applications of Constraint Practical Applications Ezpo,
London, 1999.

Hashem K. Alfares. Days-off employee scheduling over a three-week work
cycle. In Proceedings of the 3rd international conference on the practice and
theory of automated timetabling Konstanze, Germany, 2000.

Harald Meyer auf’m Hofe. Solving rostering tasks as constraint optimization.
In Proceedings of the 3rd international conference on the practice and theory
of automated timetabling Konstanze, Germany, 2000.

Turgut Aykin. Optimal shift scheduling with multiple break windows. Man-
agament Science, 42(4):591-602, 1996.

Turgut Aykin. A comparative evaluation of modeling approaches to the
labor shift scheduling problem. FEuropean Journal of Operational Research,
125:381 —397, 2000.

Nagraj Balakrishnan and Richard T. Wong. A network model for the rotating
workforce scheduling problem. Networks, 20:25-42, 1990.

Roberto Battiti. Reactive search: Toward self-tuning heuristics. In V. J.
Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith, editors, Mod-
ern Heuristic Search Methods, pages 61-83. John Wiley & Sons Ltd., Chich-
ester, 1996.

100



BIBLIOGRAPHY 101

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

22]

Jacobs-L.W. Bechtold, S.E. Implicit modeling of flexible break assignments
in optimal shift scheduling. Management Science, 36(11):1339 —1351, 1990.

BEST. Guidelines for shiftworkers. Bulletin of European Time Studies
No. 3, European Foundation for the Improvement of Living and Working
Conditions, 1991.

J. Bitner. Backtracking programming techniques. Communications of the
ACM, 18(11):651-656, 1975.

Leonard Bolc and Jerzy Cytowski. Search methods for Artificial Intelligence.
Academic Press Limited, 1992.

J. Brusco and L. Jacobs. A simulated annealing approach to the cyclic
staff-scheduling problem. Nawval Research Logistics, 40:69-84, 1993.

B. Butler. Computerized manpower scheduling. Master’s thesis, University
of Alberta, Canada, 1978.

Tolga Cezik, Oktay Ginliikk, and Hanan Luss. An integer programming
model for the weekly tour scheduling problem, to appear in Naval Res. Log.

Marko Chiarandini, Andrea Schaerf, and Fabio Tiozzo. Solving employee
timetabling problems with flexible workload using tabu search. In Pro-
ceedings of the 3rd international conference on the practice and theory of
automated timetabling 298-302, Konstanze, Germany, 2000.

Stephen A. Cook. The complexity of theorem-proving procedures. In Con-
ference Record of Third Annual ACM Symposium on Theory of Computing,
pages 151-158, Shaker Heights, Ohio, 3—5 1971 1971.

G.B. Danzig. A comment on eddie’s traffic delays at toll booths. Operations
Research, 2:339 —341, 1954.

K. Dowsland. Simulated annealing. chapter 2 in C.R. Reeves, editor, 1995.

Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman and Co., 1979.

J. Gartner, M. Kundi, S. Wahl, K. Horwein, M. Janke, H. Conrad, 1. Carl-
berg, Handbuch Schichtpline: Planungstechnik, Entwicklung, Ergonomie,
Umfeld. vdf, Hochschulverlag AG an der ETH Ziirich, 1998.

J. Gartner and S. Wahl. The significance of rota representation in the design
of rotas. Scandinavian Journal of Work, Environment and Health, 24(3):96—
102, 1998.



BIBLIOGRAPHY 102

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

33]

[34]

[35]

[36]

[37]

Johannes Gartner and Stephen Popkin. Influence of law on shift sched-
ule design: USA and Europe. XIV International Symposium on Night and
Shiftwork, Wiesensteig, Germany, 1999.

Fred Glover. Future paths for integer programming and links to artificial
intelligence. Computers & Operations Res., 5:533-549, 1986.

Fred Glover. Tabu search-part I. ORSA Journal on Computing, 1(3):190-
206, 1989.

Fred Glover. Tabu search—part II. ORSA Journal on Computing, 2(1):4-32,
1989.

Fred Glover and Manuel Laguna. Tabu search. Kluwer Academic Publishers,
1997.

Fred Glover and Claude McMillan. The general employee scheduling prob-
lem: An integration of MS and AI. Comput. Ops. Res., 13(5):563-573, 1986.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

P. Hansen. The steepest ascent mildest descent heuristic for combinatorial
programming. In Congress on Numerical Methods in Combinatorial Opti-
mization, 1986.

R. Haralick and G. Elliot. Increasing tree seach efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

N. Heller, J. McEwen, and W. Stenzel. Computerized scheduling of police
manpower. St. Louis Police Department, St. Louis, MO, 1973.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

R. Hung. A three-day workweek multiple-shift scheduling model. J Opl Res
Soc, (44):141-146, 1993.

R. Hung. A multiple-shift workforce scheduling model under 4-day workweek
with weekday and weekend labour demands. J Opl Res Soc, (45):1088-1092,
1994.

W. Ken Jackson, William S. Havens, and Harry Dollard. Staff scheduling:
A simple approach that worked. Technical Report CMPT97-23, 1997.



BIBLIOGRAPHY 103

[38]

[39]

[40]
[41]

[46]

[47]

[48]

[49]

[50]

[51]

Richard M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Computations,
pages 85-103, New York, 1972. Plenum Press.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, 1983.

P. Knauth. Designing better shift systems. Appl Ergonom, (27):39-44, 1996.

Guy Kortsarz and Wolfgang Slany. The minimum shift design problem
and its relation to the minimum edge-cost flow problem. Unpublished
manuscript.

P. Laarhoven and E. Aarts. Simulated Annealing: Theory and Applications.
Kluwers Academic Publishers, Dordrecht, The Netherlands, 1987.

G. Laporte. The art and science of designing rotating schedules. Journal of
the Operational Research Society, 50:1011-1017, 1999.

G. Laporte, Y. Nobert, and J. Biron. Rotating schedules. Fur. J. Ops. Res.,
4:24-30, 1980.

Hoong Chuin Lau. Combinatorial aproaches for hard problems in manpower
scheduling. Journal of Operations Research Society of Japan, 39(1):88-98,
1996.

Hoong Chuin Lau. On the complexity of manpower scheduling. Computers.
Ops. Res., 23(1):93-102, 1996.

Hoong Chuin Lau and Seet Chong Lau. Efficient multi-skill crew rostering via
constrained sets. In In Proceedings of the Second ILOG Solver and Scheduler
Users Conference. Paris., 1997.

K. Marriott and P. Stuckey. Programming with Constraints. MIT Press,
1998.

A. Meisels and N. Lusternik. FExperiments on networks of employee
timetabling problems. Lecture Notes in Computer Science, 1408:130-141,
1998.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations for fast computing machines. Journal
of Chemical Physics, 21:1087-1092, 1953.

7. Michalewicz and B. F. Fogel. How to solve it: modern heuristics. Springer-
Verlag, 2000.



BIBLIOGRAPHY 104

[52]

[53]

[54]

[55]

[58]

[59]

[60]

[61]

Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird.
Minimizing conflicts: a heuristic repair method for constraint satisfaction
and scheduling problems. Artificial Intelligence, 58:161-205, 1992.

L. Moondra. An Ip model for work force scheduling for bank. Journal of
bank Research, 7:299-301, 1976.

J. Morris and M. Showalter. Simple approaches to shift, days-off and tour
scheduling problems. Management Science, 29(8):942-951, 1983.

Nysret Musliu, Johannes Gartner, and Wolfgang Slany. Efficient genera-
tion of rotating workforce schedules. Technical Report DBAI-TR-2000-35,
Institut fur Informationssysteme der Technischen Universitat Wien, 2000.
http://www.arXiv.org/abs/cs.OH/0002018.

R. Nanda and J. Browner, editors. Introduction to Employee Scheduling.
Van Nostrand Reinhold, New York,, 1992.

K. Nonobe and T. Ibaraki. A tabu search approach to the constraint satisfac-
tion problem as a general problem solver. European Journal of Operational

Research, 106:599-623, 1998.

D.T. Pham and D. Karaboga. Intelligent Optimisation Techniques. Springer-
Verlag, 2000.

Colin R. Reeves, editor. Modern Heuristic Techniques for Combinatorial
Problems. Halsted Pr., 1993.

Stuart Russell and Peter Norvig. Artifical Intelligence: A Modern Approach,.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Andrea Schaerf and Amnon Meisels. Solving employee timetabling problems
by generalized local search. In Paper presented at AT*IA’99, Bologna, Italy,
1999.

Claude E. Shannon. Programming a computer for playing chess. Philosoph-
ical Magazine, (Series 7)(41):256-275, 1950.

B. M. Smith and S. Bennett. Combining constraint satisfaction and local
improvement algorithms to construct anaesthetists’ rotas. In Proc. of the
Eighth Conference on Artificial Intelligence for Application CAIA-92, pages
106-112, Monterey, CA, 1992.

G. Thompson. Improved implicit modeling of the labor shift scheduling
problem. Management Science, 41(4):595-607, 1995.



BIBLIOGRAPHY 105

[65]

[68]

[69]

G. Thompson. A simulated-annealing heuristic for shift scheduling using
non continuously available employees. Computers and Operations Research,
23(3):275-288, 1996.

James M. Tien and Angelica Kamiyama. On manpower scheduling algo-
rithms. SIAM Review, 24(3):275-287, 1982.

E. Tsang and C. Voudouris. Fast local search and guided local search and
their application to british telecom’s workforce scheduling problem. Opera-
tions Research Letters, 20:119-127, 1997.

Edward Tsang. Foundations of Constraint Satisfaction. Academic Press,
1993.

Georges Weil and Kamel Heus. Eliminating interchangeable values in the
nurse scheduling problem formulated as a constraint satisfaction In Paper
presented at the workshop CONSTRAINT’95, Melbourne Beach, Florida,
USA, 1995.



Curriculum Vitae

Personal Data:

Name:

Born:

Parents:
Brothers:
Nationality:
Marital status:
Languages:
Address:
Email:

Education:

1978-1986:
1986-1990:

1990-1996:

Summer 1996:

since 1998:

Nysret Musliu.

February 2, 1973, in Lebané, Kosova.

Avdi Musliu and Bahtije Musliu.

Xhevdet and Valdet Musliu.

Albanian (from Kosova).

Single.

Albanian, English, German, Croatian.

Lorenz Miiller Gasse 1a/18, A-1200 Wien, Austria
musliu@dbai.tuwien.ac.at

Primary School ”Nexhmi Mustafa”, Besi, Kosova.
Secondary school ”Gjimnazi Sami Frasheri”, Prishtiné,
Kosova.

The Faculty of Electrical Engineering (field of computer
sciences and telecommunications), University of Prishtina,
Kosova.

Graduation as a degree ’inxhinier i diplomuar’ (equivalent
with Dipl.-Ing).

Ph.D. student at the Vienna University of Technology.

Work Experience:

1996-1997:  Designer and Programmer in Faculty of Agriculture in Pr-
ishtina and Infotrade Corp. in Prishtina, Kosova.
since 1999: Research assistant at the Vienna University of Technology.

106



CVRRICVLVM VITAE 107

Publications:

1. Nysret Musliu, Johannes Gartner, Wolfgang Slany. Efficient generation of
rotating workforce schedules. Discrete Applied Mathematics, to appear.
Also in Proceedings of the 3rd international conference on the practice and
theory of automated timetabling (PATAT 2000), pages 314-332, August
2000

2. Ruth Fingerlos, Johannes Géartner, Nysret Musliu, and Wolfgang Slany.
Zyklische Schichtplanung. KI Journal, to appear.

3. Johannes Gartner, Nysret Musliu, and Wolfgang Slany. Rota: A research
project on algorithms for workforce scheduling and shift design optimisa-
tion. Artificial Intelligence Communications, to appear.

4. Wahl S., Musliu N., Angelova R., Slany W., Herber G., Janke M. Shift-
planassistant 4.0 - State of development. XIV International Symposium on
Night and Shiftwork, 1999 Wiesensteig, Germany

5. Nysret Musliu, Andrea Schaerf, Wolfgang Slany. Local search for shift
design (extended abstract). MIC’2001 - 4th Metaheuristics International
Conference Porto (Portugal), 2001 July 16-20

6. Nysret Musliu, Johannes Gartner, Wolfgang Slany. Shift scheduling from
a combinatorial optimization point of view (extended abstract). Third
Alio-Euro Workshop on Applied Combinatorial Optimization, Erice-Italy,
November 1999

7. Wolfgang Slany, Nysret Musliu, Guy Kortsarz, and Johannes Gartner. The-
ory and practice of shift scheduling (invited paper). RIMS Kokyuroku of
the Research Institute of Mathematical Sciences, Kyoto University, to ap-
pear.

Talks:

1. Shift scheduling from a combinatorial optimization point of view (extended
abstract). Nysret Musliu, Johannes Géartner, Wolfgang Slany. Third
Alio-Euro Workshop on Applied Combinatorial Optimization, Erice-Italy,
November 1999

2. Shiftplanassistant 4.0 - State of devolepment. Wahl S., Musliu N., Angelova
R., Slany W., Herber G., Janke M. XIV International Symposium on Night
and Shiftwork, 1999 Wiesensteig, Germany



CVRRICVLVM VITAE 108

3. Efficient generation of rotating workforce schedules. Nysret Musliu, Jo-
hannes Gartner, Wolfgang Slany. 3rd international conference on the prac-
tice and theory of automated timetabling (PATAT 2000), pages 314-332,
August 2000

4. Local search for shift design (extended abstract). Nysret Musliu, Andrea
Schaerf, Wolfgang Slany. MIC’2001 - 4th Metaheuristics International Con-
ference Porto (Portugal), 2001 July 16-20



