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Abstract. We present an automated algorithm selection method based
on machine learning for the graph coloring problem (GCP). For this
purpose, we identify 78 features for this problem and evaluate the per-
formance of six state-of-the-art (meta)heuristics for the GCP. We use the
obtained data to train several classification algorithms that are applied
to predict on a new instance the algorithm with the highest expected
performance. To achieve better performance for the machine learning al-
gorithms, we investigate the impact of parameters, and evaluate different
data discretization and feature selection methods. Finally, we evaluate
our approach, which exploits the existing GCP techniques and the auto-
mated algorithm selection, and compare it with existing heuristic algo-
rithms. Experimental results show that the GCP solver based on machine
learning outperforms previous methods on benchmark instances.
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1 Introduction

Many heuristic algorithms have been developed to solve combinatorial optimiza-
tion problems. Usually, such techniques show different behavior when solving
particular instances. According to the no free lunch theorems [44], no algorithm
can dominate all other techniques on each problem. In practice, this raises new
issues, as selecting the best (or most appropriate) solver for a particular in-
stance may be challenging. Often, the “winner-take-all” strategy is applied and
the algorithm with the best average performance is chosen to solve all instances.
However, this methodology has its drawbacks, because the distribution of tested
instances effects the average performance, and usually in practice only a special
class of instances are solved.

One possible approach to obtain better solutions on average is to select for
each particular instance the algorithm with the highest expected performance.
This task is known as algorithm selection (AS) and one emerging and very
promising approach that is used for AS is based on machine learning methods.
These techniques are able to learn a model based on previous observations an
then predict on a new and unseen instance the best algorithm.
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In this paper, we address AS using classification algorithms for the well-
known Graph Coloring Problem (GCP). The GCP is a classical NP-hard prob-
lem in computer science. The task for this problem is to assign a color to each
node of a given graph such that (a) no adjacent nodes received the same color
and (b) the number of colors used is minimized. Various heuristic algorithms to
solve GCP have been developed in the literature. However, recent studies [7,26]
show that the performance of different heuristics highly depend on attributes
of the graph like for example the density or the size. Therefore, the aim of this
paper is to apply automated algorithm selection for this problem. We evaluate
experimentally different heuristics and classification algorithms and show that
our solver that includes algorithm selection is able to achieve much better per-
formance than the underlying heuristics.

The rest of this paper is organized as follows: Section 2 gives a short introduc-
tion into the GCP, AS and the related work. In Section 3, we present features of
a GCP instance and describe our AS approach for the GCP. The experimental
results are given in Section 4 while Section 5 concludes our work and describes
the future work.

2 Background and Related Work

2.1 The Graph Coloring Problem

Given a graph G = (V,E), a coloring of G is an assignment of a color c ≤ k to
each vertex v ∈ V such that no vertices sharing an edge e ∈ E receive the same
color. The Graph Coloring Problem (GCP) deals with finding a coloring for G
whereby it can occur as decision problem (also known as k-coloring problem),
where the number of colors k is fixed, or as optimization problem (the chromatic
number problem), where k has to be minimized. Instances of the k-coloring prob-
lem are, unlike other NP-complete problems (e.g. the Hamilton path problem),
“hard on average” [42], meaning that also random instances tend to be difficult
to solve. Moreover, approximating the chromatic number itself is very hard [14],
although many different approaches for this task exist (see [36] for more details).

Graph coloring has many applications like scheduling [25,47], register alloca-
tion [5], circuit testing [17] etc.

There exist many exact methods for solving the GCP (see [29] for more de-
tails). However, all these approaches are only usable in general on small graphs up
to 100 vertices [7]. Consequently, many solvers apply heuristic algorithms. Early
approaches in this context are greedy constructive heuristics (e.g. DSATUR [3] or
RLF [25]) while recent algorithms use more sophisticated techniques. Especially,
local search methods like tabu search [21,1] provide good results. Moreover, also
several population-based and hybrid algorithms have been proposed [16,28,45].
For a survey on different heuristics, we refer to [35], [29] and [26].

2.2 Algorithm Selection

The Algorithm Selection Problem postulated by Rice [37] deals with this ques-
tion: Given different algorithms to solve a problem, which one should be selected
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for a particular instance? For this purpose, Rice identified four important com-
ponents, namely
– the set of candidate algorithms A,
– the instances of a problem, the problem space P ,
– measurable attributes of an instance, denoted as feature space F , and
– the performance space Y .

For solving this problem, it is necessary to use relevant features f(x) ∈ F of
an instance x ∈ P that model the performance of an algorithm a ∈ A with
respect to a performance criteria Y . For a concrete application of algorithm
selection, the problem space P and the performance space Y are usually given.
Designing the algorithm portfolio A is also usually not so hard, because in most
cases the available algorithms are limited and a good selection procedure will
not use suboptimal solvers anyway. More challenging is the choice of appropriate
features F and to find a good selection procedure (denoted as S).

Unfortunately, there exist no automatic way to find good features [34], as
this requires usually deep domain knowledge and analytical skills. Nevertheless,
some approaches seem to be useful across different problems and sometimes,
even features of related problems can be reused. Concerning features for the
GCP, in [39] various properties of a graph that may be useful are introduced.
We also adapted some other features that can be found in [46], and additionally
introduced some new features.

Regarding the selection procedure, there exist different methods that for ex-
ample use analytical aspects or complexity parameters [12]. One successfully and
widely used solution is the application of machine learning techniques. Usually,
either classification or regression techniques are used. Classification techniques
classify the new instances into one category, which is the recommended algo-
rithm. In contrast to this, regression techniques model the behavior of each al-
gorithm and predict the result (e.g. runtime, solution quality) on a new instance.
Based on this prediction the algorithm with the best performance is selected.
Both paradigms have been successfully applied for algorithm selection. Appli-
cations of regression include [46,31,4]. Classification techniques have been used
among others in [30,41,23,40,19,18]. However, none of these approaches is spe-
cially designed for the GCP and although some also consider graph properties,
there exist no specific features regarding special aspects of the graph colorabil-
ity. In this paper we present new attributes of a graph that can be calculated in
polynomial time and are suitable to predict the most appropriate heuristic for
GCP.

3 Algorithm Selection for the GCP

First step in algorithm selection is to identify characteristic features that can be
calculated in reasonable time. Furthermore, we collect performance information
about each algorithm on a representative set of benchmark instances and deter-
mine for each graph the most suited algorithm. Then, we use machine learning
to train classification algorithms that act as selection procedure. To predict the
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best algorithm on a new instance, the proposed system extracts the features of
that instance and then determines the corresponding class, which corrosponds
to the most appropriate algorithm.

3.1 Instance features

We identify 78 features that are grouped in eight categories: graph size, node de-
gree, maximal clique, clustering coefficient, local search probing features, greedy
coloring, tree decomposition, and lower- and upper bound. Figure 1 gives a
more detailed view on the different attributes. The first two groups, graph size

Graph Size Features:
1: no. of nodes: n
2: no. of edges: m
3,4: ratio: n

m , mn
5: density: 2·m

n·(n−1)

Node Degree:
6-13: nodes degree statistics: min, max,
mean, median, Q0.25, Q0.75, variation coeffi-
cient, entropy

Maximal Clique:
14-20: normalized by n: min, max, median,
Q0.25, Q0.75, variation coefficient, entropy
21: computation time
22: maximum cardinality

Clustering Coefficient
23: global clustering coefficient [27]
24-31: local clustering coefficient: min, max,
mean, median, Q0.25, Q0.75, variation coeffi-
cient, entropy
32-39: weighted local clustering coefficient:
min, max, mean, median, Q0.25, Q0.75, variation
coefficient, entropy
40: computation time

Local Search Probing Features:
41, 42: avg. impr.: per iteration, per run
43: avg no. iterations to LOa per a run
44, 45: no. conflict nodes: at LO, at end
46, 47: no. conflict edges: at LO, at end
48: no. LO found
49: computation time

Greedy Coloring:
50,51: no. colors needed: kDSAT , kRLF

52, 53: computation time: tDSAT , tRLF

54, 55: ratio:
kDSAT
kRLF

,
kRLF
kRLF

56: best coloring: min(kDSAT , kRLF )
57-72: independent-set size: min, max, mean,
median, Q0.25, Q0.75, variation coefficient, en-
tropy

Tree Decomposition:
73: width of decomposition
74: computation time

Lower- and Upper Bound:

75, 76: distance:
(Bl−Bu)

Bl
,

(Bu−Bl)

Bu

77, 78: ratio:
Bl
Bu

, Bu
Bl

a local optima

Fig. 1. Basic features for an instance of the GCP.

and node degree contain classical features that are also used in other systems
(e.g [46]). For the maximal clique features, we calculate for each node a maximal
clique by using a simple greedy algorithm and take statistical information about
the size of these cliques as relevant attributes. Regarding the local clustering
coefficient [43] of a node, we use, besides the classical value, a modified version
denoted as weighted clustering coefficient, where the coefficient of the node is
multiplied with its degree. The local search probing features are extracted from
10 executions of a simple 1-opt best-improvement local search on the k-coloring
problem. The greedy coloring attributes are based on the application of DSATUR
and RLF. For these features, we take, besides the number of used colors, also the
sizes of the independent sets into account and calculate statistical information
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like the average size or the variation coefficient. Furthermore, we consider at-
tributes of a tree decomposition obtained by a minimum-degree heuristic. Such
features have been used successfully by [32] for AS in Answer Set Program-
ming. The last category builds on a lower bound of k, denoted as Bl, which is
the cardinality of the greatest maximal clique found, and an upper bound Bu,
which is the minimum number of colors needed by the two greedy algorithms.
Apart from features we decribed above, we also take the computation times of
some feature classes as additional parameters.

Note that we also experimented with attributes based on the betweenness cen-
trality [15] and the eccentricity [20] of the nodes. Unfortunately, the algorithms
we implemented to calculate these features required during our tests much time,
for which reasons we did not use them in our approach.

It is widely accepted that the performance of learning algorithms depend on
the choice of features, and that using irrelevant features may lead to suboptimal
results. Therefore, we apply a feature subset selection using a forward selection
with limited backtracking and a genetic search to reduce the set of basic features.
Both techniques are applied with the CfsSubsetEval criteria as evaluation func-
tion. Only features that are selected by one of these methods are used further.
Additionally, for each pair of features xj , xk, k > j we create two new features
that represent the product xj ·xk and the quotient xj/xk, respectively. This idea
is based on a similar technique used in [46], where also the product of two fea-
tures is included as an additional attribute. Finally, we apply feature selection
on these expanded attributes to eliminate unnecessary attributes. In the end, we
obtain 90 features, including 8 basic features and 82 composed attributes.

3.2 Algorithm Portofolio

To demonstrate our approach, we use six state-of-the-art (meta)heuristics for
the GCP, namely: HEA [16], ILS [8], MAFS [45], MMT [28] (only the component
containing the genetic algorithm), FOO-PARTIALCOL [1] (further abbreviated to
FPC), and TABUCOL [21] (further denoted as TABU).

For each of these algorithms, we use parameter settings proposed in the orig-
inal publications and that are suggested by their developers. The main reason
for selecting the TABU solver is the fact that this technique is one of the most-
studied heuristics and is often used as local search in various population-based
algorithms for the GCP. In addition, according to a comparison by Chiaran-
dini [6], TABU is besides HEA and ILS the most effective algorithm for random
graphs. HEA is chosen because it shows good performance on flat graphs and it
is used as basis for many other evolutionary heuristics that are applied for GCP.
We selected FPC and MMT because we also wanted to use algorithms working
with partial colorings and these two candidates are the correspondent versions
of TABU and HEA. The last competitor, MAFS, is included because it shows good
performance on large graphs.
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3.3 Benchmark Instances

As training instances, we take three different publicly available sets: The first
set, further denoted as dimacs, consists of 174 graphs from the Graph Coloring
and its Generalizations-series (COLOR02/03/04) 1 which builds up on the well-
established Dimacs Challenge [22]. This set includes instances from the coloring
and the clique part of the Dimacs Challenge. The second and third set of in-
stances, denoted as chi500 and chi1000, are used by a comparative study [9]
of several heuristics for the GCP and contain 520 instances with 500 nodes and
740 instances with 1000 nodes respectively2. These instances are created using
Culberson’s [10] random instance generator by controlling various parameters
like the edge density (p = {0.1, 0.5, 0.9}) or the edge distribution (resulting in
three groups of graphs: uniform graphs (G), geometric graphs (U) and weight
biased graphs (W )).

For the final evaluation of our algorithm selection approach with the un-
derlying algorithms, we use a test set comprising complete new instances of
different size, density and type, generated with Culberson’s instance generator.
We constructed uniform (G), geometric (U) and weight biased (W ) graphs of dif-
ferent sizes n = {500, 750, 1000, 1250} and density values p = {0.1, 0.5, 0.9}. For
each parameter setting we created 5 graphs, leading to a total of 180 instances.

In order to ensure practicable results and prevent excessive computational
effort, we use a maximal time limit per color tmax = min(3600,

√
|E| · x) where

|E| is the number of edges and x is 15, 5 and 3 for the sets dimacs, chi500 and
chi1000, respectively. For the test set which contains graphs of different size,
we stick to the values used for chi1000 (x = 3). These values for x are obtained
experimentally. In this context, we want to note that the average time needed
for the best solution on the hard instances is only 21.58% of the allowed value
tmax and 90% of the best solutions are found within 62.66% of tmax.

Regarding the feature computation, we do not use any time limitations except
for the local search probing, although this might be reasonable for practical
implementations. However, for our test data the median calculation time is 2 s,
the 95th percentile is 18 s and the 99th percentile is 53 s.

In total, we collected 1443 graphs of variable size and density as training
data. We removed instances where an optimal solution has been found by one of
the two greedy algorithms or where the heuristics did not find better colorings
than obtained by the greedy algorithms. We further excluded all instances where
at least four heuristics (more than 50%) yield the best solution in less than five
seconds. These seem to be easy instances which can be solved efficiently by most
heuristics. Therefore, they are less interesting for algorithm selection. In the end,
our training data consist of 859 hard instances.

Note that during our experiments, we discovered instances where several
heuristics obtain best result. For machine learning, this is rather uncomfort-
able, as the training data should contain only one recommended algorithm per

1 available at http://mat.gsia.cmu.edu/COLOR04/, last visited on 22.10.2012
2 available at www.imada.sdu.dk/~marco/gcp-study/, last visited on 28.10.2012

http://mat.gsia.cmu.edu/COLOR04/
www.imada.sdu.dk/~marco/gcp-study/
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instance. One solution for this issue is using multi-labeled classification [23].
However, we follow a different strategy where we prioritize the algorithms ac-
cording to their average rank on all instances. Thus, in case of a tie, we prefer
the algorithm with the lower rank. Concerning the performance evaluation of the
classifiers, we have to take into account that there might be several “best” algo-
rithms. For that reason, we introduce a new performance measurement, called
success rate, that is defined as follows: Given for each instance i ∈ I a set of
algorithms Bi that obtains best result on i. Then, the success rate sr of a clas-

sifier c on a set of instances I is sr = |{i∈I:c(i)∈Bi}|
|I| where c(i) is the predicted

algorithm for the instance i. Furthermore, the success rate of a solver is the ratio
between the number of instances for which the solver achieves the best solution
and the total number of instances.

3.4 Classification Algorithms

For the selection procedure itself, we test six popular classification algorithms:
Bayesian Networks (BN), C4.5 Decision Trees (DT), k-Nearest Neighbor (kNN),
Multilayer Perceptrons (MLP), Random Forests (RF), and Support-Vector Ma-
chines (SVM). For all these techniques, we use the implementation included in
the Weka software collection [2], version 3.6.6. Furthermore, we manually iden-
tify important parameters of these learning algorithms and experimented with
different settings. We refer the reader to [38] for more details regarding different
parameter settings that we used for classification algorithms.

3.5 Data Discretization

Apart from selection of relevant features, a different, but also important issue
is whether to use the original numeric attributes or to apply a discretization
step to transform the values into nominal attributes. Besides the fact that some
classification algorithms can not deal with numeric features, research has clearly
shown that some classifiers achieve significant better results when applied with
discretized variables [11]. In this work, we experimented with two different super-
vised discretization techniques. The first one is the classical minimum-descriptive
length (MDL) method [13], while the second method is a derivation of MDL us-
ing a different criteria [24] (further denoted as Kononenko’s criteria (KON)).

4 Experimental Results

All our experiments have been performed on a Transtec CALLEO 652 Server
containing 4 nodes, each with 2 AMD Opteron Magny-Cours 6176 SE CPUs
(2 · 12 = 24 cores with 2.3GHz) and 128 GB memory.

Concerning the heuristic for the GCP, we execute each algorithm n = 10
times (n = 20 for the dimacs instances) using different random seeds. The result
of each algorithm is the lowest number of colors that has been found in more
than 50% of the trials. Furthermore, we take the median time needed within the
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n executions as required computation time. In cases of a timeout, we take tmax

as computation time.

4.1 Parameter Configuration and Discretization

Regarding the effect of data discretization, we compare the success rate of the
best parameter configuration for each of the three methods on several data sets
(e.g. using different feature subsets). The experimental results clearly show that
most classifiers achieve a higher accuracy on data with nominal attributes.

Table 1 gives an overview regarding the impact of discretization. The col-
umn avg shows the improvement regarding the average success rate, whereas
the column best represents the gap between the best value obtained using nu-
merical values and the best value achieved with the discretized data sets. Both

Method
BN C4.5 kNN

avg best avg best avg best

MDL +2.40 +2.30 +6.34 +7.15 +9.41 +7.00

KON +4.93 +4.85 +5.78 +6.23 +11.09 +8.92

MLP RF SVM

MDL +4.16 +5.42 +2.25 +2.25 +2.96 +1.75

KON −20.33 +4.37 +3.95 +4.38 +4.71 +4.20

Table 1. Improvements of the success rate sr (in percent) when using discretized data
in relation to the results achieved with non-discretized data on the training set using
cross validation.

discretization variants improve the best reached success rate. The classical MDL
method improves the sr on average by 5.15%, while Kononenko’s criteria by
4.35%. However, for some classifiers, the benefits of discretized values are up
to +9.41% with MDL and even +11.09% using KON. The only classifier which
does not benefit from a discretization is MLP. Its training time increases dramat-
ically (up to several hours). Even more, when using KON, the average success
rate decreases by 20.33%. Nevertheless, as KON provides for the most classifiers
slightly better results than MDL, we decided to use Kononenko’s criteria for all
further experiments.

As mentioned before, we experimented with different parameter configura-
tions for each classifier. Based on these tests, we selected for the remaining tests
the most successful configuration. In detail, the maximum number of parent
nodes that we used for BN is 5. For the DT the minimum number of objects per
leave was set to 3. Regarding the kNN, the size of the neighborhood is set to 5
and for the RF, we set the number of trees to 15. For the MLP and SVM, and
other remaining parameters, we used the default settings from the Weka system.
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4.2 Results on the Training Data

To show the performance on the training data set, we tested each classifier 20
times using a 10-fold cross validation. The results of these experiments are given
in Figure 2, which shows the average number of correct predictions for each
classifier and instance set. The figure also gives a comparision with the existing
solvers for the GCP regarding the number of instances on which the best solution
is achieved. The diagram shows that 5 of 6 tested classifiers achieve good results.

Fig. 2. Prediction of the best algorithm by different classifiers on the training data
and their comparision with the existing (meta)heuristics. Please note that the MLP
classifier is only tested once, because of time reasons.

Only the MLP gives very weak results. This method requires more than 24
hours for one run of cross-validation and its results are even below those of the
existing heuristics. Nevertheless, other approaches show very good performance
by obtaining on up to 625.9 (72.86%) instances the best solution. Compared with
MMT, which is the best heuristic for the GCP, an improvement on 259 instances
(30%) is reached. Even more, this performance increase can be observed on all
three instance sets.

For a more detailed statistical analysis, we applied a corrected resampled T-
test [33] on the results of the 10-fold cross-validation (except the MLP). These
experiments, applied with a level of significance of α = 0.05, reveal that BN, kNN
and RF are significant better than DT while all other pairwise comparisons do
not show significant differences.
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4.3 Evaluation on the Test Set

In the next step, we trained the classifiers with the complete training set and
evaluate the performance of them on the test set. The corresponding results are
shown in Figure 3 that shows the number of instances on which the solvers show
the best performance. From this figure, we can see that all learning strategies
except MLP accomplish a higher number of best solutions than any existing
solver for the GCP. The most successful classifiers are RF, BN and kNN which
predict on up to 70.39% of the 152 graphs the most appropriate algorithm.

Fig. 3. Number of instances from the test set on which a solver shows best perfor-
mance.

A more detailed view on the results using different metrics is given in Table 2.
Besides the success rate, we also consider the distance to the best known solution,
err(χ̂, G) [6], and the average rank.

The figures point out that MMT is the best single heuristic with respect to the
number of best solutions. Moreover, it accomplishes the lowest average distance
err(χ̂, G) with a larger gap to the other approaches. Surprisingly, when we look
at the average rank, MMT is not ranked first because TABU and HEA show both
a lower value. Thus, it seems that although MMT obtains often solution with a
low number of colors (resulting in a low err(χ̂, G)), it is not always ranked first.
One possible explanation for this is that MMT is a method which is powerful,
but rather slow. Consequently, on instances where other heuristics (e.g. TABU or
HEA) find equal colorings, MMT requires more computation time and is therefore,
ranked behind its competitors.

Compared with our solver that applies all algorithms and an automated
algorithm selection mechanism, we can see that for all considered metrics except
err(χ̂, G) at least one system shows a stronger performance than the best single
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Solver
No. Best sr err(χ̂, G) Rank
Solution (%) (%) avg σ

Heuristics (H)

FPC 17 11.18 25.43 3.28 1.39

HEA 34 22.37 15.25 2.67 1.34

ILS 1 0.66 21.97 3.79 1.17

MAFS 7 4.61 31.71 4.80 1.57

MMT 56 36.84 4.63 2.73 1.77

TABU 43 28.29 19.47 2.55 1.22

Algorithm Selection (AS)

BN 102 67.11 5.85 1.57 0.77

C4.5 76 50.00 4.90 2.14 1.19

IBK 100 65.79 4.88 1.57 0.74

MLP 52 34.21 22.92 3.12 1.35

RF 107 70.39 6.44 1.48 0.68

SVM 82 53.95 9.37 2.01 1.10

Best (H) 56 36.84 4.63 2.55 1.22

Best (AS) 107 70.39 4.88 1.48 0.68

Table 2. Performance metrics of the algorithm selection and the underlying heuristics
on the test set.

heuristic. The best selection mechanism provides clearly RF, which is on all
criteria except err(χ̂, G) better than the other classifiers. In detail, this system
achieves a success rate of 70.39% (+33.55% compared with MMT) and an average
rank of 1.48 (−1.07 compared with TABU). Only on the metric err(χ̂, G), MMT
shows with 4.63% a lower value than RF, which predictions have an average
distance of 6.44%. Surprisingly, the approach based on a DT, which performs
suboptimal concerning sr and the ranking criteria, has with 4.90% one of the
lowest value of err(χ̂, G) from all solvers based on algorithm selection. Only
kNN achieves with 4.88 a slightly lower value. The worst performance among the
classifiers shows clearly MLP, which results concerning the number of instances
where it finds the best solution are even below those of MMT. These data confirm
that this machine learning technique in combination with KON is not suited for
the GCP. This does not imply that MLP is in general inappropriate for AS. The
results using data sets with continuous attributes show that this classifier can
achieve competitive results compared to the other tested classifiers. However,
when using nominal features, its training time usually increases dramatically
while the accuracy decreases.

For a more detailed analysis, we group the graphs according to their density
and graph class and evaluate the performance of RF, which is the best classifier,
and compare it with the existing heuristics. Figure 4 shows the amount of graphs
on which the different methods show the best performance. The figure shows that
our solver based on algorithm selection is on 5 of the 9 subsets better or equal
compare to the best heuristic. On the groups G-0.5 and W-0.5 our approach is
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Fig. 4. Number of instances of the test set on which a solver shows the best perfor-
mance, grouped by the graph type and the density. The dark bar denotes that our
approach is at least as successful as the best single solver.

not able to achieve competitive results compare to the best single solver. This
is surprising as the best heuristic on these instances is HEA, which shows also
on the corresponding training data good results. Consequently, it seems that
the classifier is not able to learn this pattern correctly. On the groups U-0.9

and W-0.1 the algorithm selection fails by predicting on only 3 of 10 and 6 of
20 graphs the correct algorithm. The reason for this bad results on the former
subset might be in the performance of algorithms: In contrast to the training
data, where MMT is the dominant method, on the test instances also MAFS obtains
in 4 cases the best solution. Thus, the trained patterns might not fit and this
leads the classifier to mispredictions.

However, it is hard to explain the suboptimal prediction rate on the latter
subset, as FPC is also in related subset W-0.1 of the training data the best
algorithm. Thus, is seems that the classifier is just not able to learn this pattern
correctly.

Nevertheless, we can see that in many cases, the classifier is able to predict
the most appropriate algorithm, which leads to a better performance compare
to any single heuristic.

5 Conclusion

In this paper, we presented a novel approach based on machine learning to
automate algorithm selection for the GCP. Given a set of algorithms and a set
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of specific features of a particular instance, such a system selects the algorithm
which is predicted to show the best performance on that instance. Our proposed
approach applies a classification algorithm as selection procedure that assigns a
new instance to one of the available algorithms based on a previously learned
model. For this purpose, we identified 78 attributes for the GCP that can be
calculated in reasonable time and that have impact on solving of the GCP.

To demonstrate our approach, we evaluated the performance of six state-of-
the-art (meta)heuristics on three publicly available sets of instances and showed
that no algorithm is dominant on all instances. We further applied machine
learning to build an automated selection procedure based on the obtained data.
For that purpose, we experimented with six well known classification algorithms
that are used to predict on a new instance the most appropriate algorithm.
Our experiments clearly showed that a solver that applies machine learning
yield a significant better performance compared with any single heuristic. We
further demonstrated that using data discretization increases the accuracy of
most classifiers.

Regarding future work, we plan to investigate a regression-based approach
using runtime and solution quality predictions. This technique, which is suc-
cessfully used for other systems, is an alternative to our classification-based ap-
proach. Also worth considering is a hybridization of our method with automated
parameter selection and the combination of heuristic and exact techniques for
the GCP in a system that applies automated algorithm selection.
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