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Motivation

We've seen that we are limited in many things we want
to do when it comes to powerful languages like FO/RA.

et us instead study a restricted subclass of queries
that lies at the core of important data retrieval tasks.



Conjunctive Queries

(Can also contain constants.)

/

LV 132 Ri(X) A Ry(Xp) A -+- AR (%) }

We call queries of this form Conjunctive Queries (CQs).

That is, conjunctive gueries are FO gueries using only the connectives 4 and A.



Conjunctive Queries
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(Assuming attributes for R; are Xx;, otherwise simply rename)



Conjunctive Queries
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Conjunctive gueries correspond so-called join queries in RA.
That is, RA queries that only use projection, renaming, selection, and joins.




Conjunctive Queries

Recall our SQL example in the lecture on the relational model.

SELECT course.name, student.name

FROM course, student, enrolled

WHERE course.name = enrolled.course AND
course.sem = enrolled.sem AND
student.1d = enrolled.student AND
enrolled.sem = 'WS24°';



Conjunctive Queries

SELECT course.name, student.name

FROM course, student, enrolled

WHERE course.name = enrolled.course AND
course.sem = enrolled.sem AND
student.1d = enrolled.student AND
enrolled.sem = 'WS24°';

N

{(c,s) | Asid, I, dob, active . Enrolled(c, WS24, sid) A
Course(c, WS24, [) A Student(sid, s, dob, active)}



Conjunctive Queries

SELECT course.name, student.name

FROM course, student, enrolled CQs cover the core part
WHERE course.name = enrolled.course AND P

course.sem = enrolled.sem AND of most SQL queries!

student.id = enrolled.student AND
enrolled.sem = 'WS24"':

N

{(c,s) | Asid, I, dob, active . Enrolled(c, WS24, sid) A
Course(c, WS24, [) A Student(sid, s, dob, active)}



Conjunctive Queries

4+ Conjunctive queries form the key part
of most data retrieval tasks. 4+ Join queries

+ Datalog rule bodies are CQs

4+ Basis for many other query languages,
e.g., Conjunctive Regular Path Queries.




Conjunctive Queries R

partsupp,

supplier,

nation,
4+ Conjunctive gueries form the key part region

of most data retrieval tasks.

p_partkey ps_partkey

L L . key  ps_suppkey
. S_supp
Optimising CQs can help to optimise s nationkey  n_nationkey

the most expensive part of practical n_regionkey  r_regionkey
join evaluations r_name  'Asia’

Real systems will evaluate a CQ
first and then evaluate the min
aggregate on the result of the CQ.




Conjunctive Queries

+ Conjuncti
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min(ps_supplycost)

partsupp,
supplier,
nation,
region

p_partkey ps_partkey
S_suppkey  ps_suppkey
s_nationkey n_nationkey
n_regionkey r_regionkey
r _name 'As1a’

The query intuitively will be at least as
hard to solve as the underlying CQ
(without the min aggregate).




Equivalence & Containment



Query Containment

4+ For queries g, g, we say that g, is contained in g, (in symbols, g; C @,) if
q,(D) C g,(D) for every database D.

4+ Equivalence of two queries ¢4, g, (in symbols, g; = g,) is defined as

9 =49 < q, S g andg, C g

See the Trakthenbrot

exercise sheet!

Given g1, ¢, in RA, there is no algorithnm to decide g; € g».

But if ¢y, g, are CQs then the problem is decidable!



Query Containment Example

Consider the following two gueries R
g := {(x,y) | IzR(H,x) AR(x,2)} ? Lza
¢ = {0y | R(y,x) AR, y)} 2 i

Intuitively it seems clear that g, describes a

q:(D) =1 (2,1),(3,2),(3,3)}
¢,(D) =1 (3,3)}

weaker requirement: x only needs to reach some Z,
whereas it needs to reach specifically y in g,.

We would therefore suspect that g,(D) C g,(D)

for all D. But how to prove it?



The Tableau of a CQ

Basic Idea: we can represent a CQ as a database.

he tableau Tbl(g) of a CQ ¢ is the database where the tuples of relation R are all of the term

lists that occur for R in the query (+ a relation for the output variables).

Consider the following query:

{ (&, y) | dwz B(x,y) AR(y,2) AR(y,w) AR(w,y) }

We write TbI*(¢) Out B R
for the tables without : , 1 ” 1 2
the special Out relation for ) . . y y Z
output variables. y W
W y




Homomorphisms

A homomorphism of two databases Dy, D, is a function
h : Dom(D,) - Dom(D,) such that:

(¢iy...,c,) € R?Y = (h(cy),...,h(c)) € R”> VR € Rel



Example

A homomorphism of two databases Dy, D, is a function

h : Dom(D,) — Dom(D,) such that:
(Cy...,C,) E RP — (h(cy), ..., h(c,)) € R":

R R
Name | Age Name | Age
ANNAO 54 D(]Vid 35
pen_ | 26 clire | a4

|

S S
Parent | Child Parent | Child

David | David
Ben ANNG Anna | Claire

VR € Rel

D,



Example

A homomorphism of two databases Dy, D, is a function

h : Dom(D,) — Dom(D,) such that:

(cy...5C,) E R = (h(c)), ..., h(c,)) € R":

D,

R
Name | Age
ANnNa o4

Ben 20

Parent

Child

Ben

AnNna

Anna — Claire
Ben — Anna

54 — 34
26 — 40

R
Name | Age
David 85
ANnNa 40
Claire 34
S
Parent | Child
David | David
Anna | Claire

VR € Rel

D,



Example

A homomorphism of two databases Dy, D, is a function

h : Dom(D,) — Dom(D,) such that:

(cy...5C,) E R = (h(c)), ..., h(c,)) € R":

D,

R
Name | Age
ANnNa o4

Ben 20

Parent

Child

Ben

AnNna

Anna — David
Ben — David
54 — 85

26 — 85

R
Name | Age
David 85
ANnNa 40
Claire 34
S
Parent | Child
David | David
Anna | Claire

VR € Rel

D,



Example

A homomorphism of two databases Dy, D, is a function

h : Dom(D,) — Dom(D,) such that:

(cy...5C,) E R = (h(c)), ..., h(c,)) € R":

D,

R
Name | Age
ANnNa o4

Ben 20

Parent

Child

Ben

AnNna

Not a hom!

Anna — Claire
Ben — Claire
54 — 34

26 > 34

R
Name | Age
David 85
ANnNa 40
Claire 34
S
Parent | Child
David | David
Anna | Claire

VR € Rel

D,



Homomorphism Theorem

Theorem
Let g, g, be CQs. Then

g, € g, ifandonlyif Tbl(g,) hony Tbl(g,)

As a result we have an “easy” algorithm for deciding containment for CQs: Careful!
Only holds for

set semantics!

1. Compute Tbl( - ) for both queries (trivial).

2. Check if there is a homomorphism (in NP).



Homomorphism Theorem

Consider the following two queries

g = 1Yy | dzR(Q,x) AR(x,2)}

g, = {(xy) | Iwu Ry, x) A R(w,x) A R(x,u)}
Tbl(g,) Tbl(g,)
Out R Out R
1 2 1 2 1 2 1 2
X % \ X X v \ X




Homomorphism Theorem

Tbl(g;) Tbl(g,)
Out R Out R
T 2 T é) 1 2 C:) é)
OO} 8 Z OO CWD 5

Since Out has only one tuple, a homomorphism A2 must necessarily have
h(x) =xand h(y) = y.



Homomorphism Theorem

Tbl(g,) Tbl(g,)
Out R Out R

1 2 1 2 1 2 1

® oMo
elfoli{oMe clolffolio

\}u

Since Out has only one tuple, a homomorphism A must necessarily have
h(x) =xand h(y) = y.

hom

With A(w) = y and h(u) = z we get a homomorphism Tbl(g,) — Tbl(g,).



Homomorphism Theorem

Tbl(g,) Tbl(g,)
Out R Out R

1 2 1 2 1 2 1

ONOINIONO OO @8

| -
\/@,u

Since Out has only one tuple, a homomorphism A must necessarily have
h(x) =xand h(y) = y.

hom

With A(z) = y and h(u) = z we get a homomorphism Tbl(g,) — Tbl(g,).



Homomorphism Theorem

Consider the following two queries

¢ := {(xy)|3JzR(y,x) AR(x,2)}
¢ = {(xy)| Iwu R(y,x) AR(w,x) A R(x,u)}
hom hom

We've seen that Tbl(g;) — Tbl(g,) and Tbl(g,) — Tbl(g,).
By the Homomorphism Theorem that means g; € g, and g, € ¢4, i.e., ¢ = @,!




VWhye

Important observation
et g be a CQ with free variables y. For any database D, we have ¢ € g(D)

if and only if there is a homomorphism A from Tbl*(q) to D such that A(y) = c.

¢ = {(xy) | Iwu R(y,x) ARw,x) A R(x,u)}

(a, b) € g,(D) means that there is an interpretation I such that
1. RU(y),I(x)) € D, RU(w),I(x)) € D, and R(I(x),I(n)) € D.

2.and I(x) = aand I(y) = b. | | |
So [ is precisely a homomorphism

from Tbl*(qz) to D!



Proof |dea

f g, C gy then Thl(gy) =2 Tbl(g,)

By assum

of g;. We

h(x) = x, h(y) =y, h(z) = 2

—_—

Tbl'(¢;) R
1 2
\ X
X /

So (x,y) € q,(Tbl (g)))

Tbl (g,

1

Y

X

otion g(D) C g,(D). So take Tbl*(ql) as database D. Let y be the free variables
nave that (x,y) € ql(TbI*(ql)) since we can just map every variable to itself.

Example queries from before

91 -=
4> -=

1(x,y)
1(x,y)

2 R(y, x) A R(x,2)}
dwu R(y,x) A R(w,x) A R(x, u)



Proof |dea

fg; C g,, then Tbl(g,) hon Tbl(g,)

By assumption g;(D) C g,(D). So take Tbl*(ql) as database D. Let y be the free variables of
q,- We have that (x,y) € ql(JbI*(ql)) since we can just map every variable to itself.

Then also (x,y) € qz(TbI*(ql)). By the key observation:
_ % % hom &
y € g(Tbl (q,)) < Tbl (g,) — Tbl (¢,)

That is, the tuple in the Out relation of Tbl(g,) maps into a tuple of Out of Tbl(g,).

Furthermore, that homomorphism maps the free variables of g, to the free variables of g;.

hom

We then have Tbl(g,) — Tbl(g,).



Example queries from before

PrOOF |ded g, = {0y | JZR(,x) AR(x, 2)}

¢ = {(x,y)| dwu R(y,x) A R(w,x) A R(x, u)

hom

f Tbl(g,) — Tbl(g,), then g, C ¢,

f & is an answer of g; on some database D then there is a homomorphism & : Tbl (g;) — D

that maps the output variables of g, to .

Let g be the homomorphism from Tbl(g,) to Tbl(g,). Itis not hard to see that h e g is

homomorphism from Tbl*(qz) to D that also maps the output of variables of g, to ¢.

Tbl}ng) Tbl(g,) D

R

homomorphism A
1 2 homomorphism g -

1

Ty | X 1|2 |
Cw_ | x % vV | X ‘
Q X Z 7\—/’ &
B 4

Orj— W [ —IN




Proof |dea

Tbl(g,)

R

1

2

Y[ X !
S ss—
x

homomorphism g

Example queries from before

q1 -
q, -

N W N | — |-

o1 |l— W |—=|IN

{(x,y) [ AZR(y, x) A R(x,2)}
{(x,y) | dwu R(y,x) A R(w,x) A R(x,u)

O |— W= IN

Still a homomorphism!

Output variables map
to the same values in D!



Example queries from before

PrOOF |deO g, = {0y | JZR(,x) AR(x, 2)}

¢ = {(,y) | Iwu R(y,x) ARw,x) A R(x,u)

hom

f Tbl(g,) — Tbl(g,), then g, C ¢,

If ¢ is an answer of g; on some database there is a homomorphism A : Tbl*(ql) — D

that maps the output variables of g, to .

Let g be the homomorphism from Tbl(g,) to Tbl(g,). Itis not hard to see that h e g is
homomorphism from Tbl*(qz) to D that also maps the output of variables of g, to C.

Tbl}ng) Tbl(g,) D

homomorphism A
! 2 homomorphism g p

Q_ ._ 1 2 /—\
m—-——— Y | X
Q X Z \_/

R

N TWIN |— |-
Ol = W= [N




Time for a break.

Turn to your neighbour: briefly discuss the lecture
tretch, grab ater, reset




Query Minimisation



Minimising@

Goal:

Given a CQ g, we want the equivalent CQ g’ with the least amount of
atoms.

Formally, a CQ g is minimal if there does not exist a CQ g’ such that:

a) g' = q

b) g’ has fewer atoms (=terms in the conjunction) than g



We would like to replace a CQ with its
minimal equivalent CQ before evaluating it.

How do we find this minimal equivalent CQ?



To minimise CQ g, it is enough to
check only those queries obtained

py deleting atoms from ¢!



Minimisation by Delefion

Assumne CQ g = { 7| 32 Ry(F) A Ry(B) A -+ A R(F)) ).
Furthermore, assume g has an equivalent CQ
g =1y |37 §,G) ASE) A -+ A SJ-()'c]f) }withj < k.

By the Homomorphism Theorem there are homomorphisms:

f:Tbl(g) = Tbl(g) and g : Tbl(g") — Tbl(g)



Minimisation by Delefion

We have that g : Tbl(g") = Tbl(g) maps every S (X)) € Tbl(g’) into some
R; (x;) € Tbl(g) with §, = R; and X; = h(X,).

51(X71) A S55(%5) A S5(x3) A S4(x4)

the mapping 5 X; —K

R{(X{) A Ry(X5) A R3(X3) A Ry(X4) A R5(X5)



Minimisation by Delefion

We have that g : Tbl(g") = Tbl(g) maps every S (X)) € Tbl(g’) into some
R; (x;) € Tbl(g) with §, = R; and X; = h(X,).

Let Img(g) = {R, (x ), lz(x )s s R (x )} be the set of all such images of the mapping

g applied to the terms of g’ and observe that |Img(g)| < j < k

510¢1) A Sr(x5) A S55(X3) A S4(xy

the mapping g

Img(g)



Minimisation by Delefion

Let us definethe query g” = {y | 42 R; (X;) AR, (X)) A - AR, (X;) } consisting of the

terms in Img(g). We see that g” can be obtained by simply deleting some terms from g.

51(X1) A S5(X5) A S3(x3) A S4(X4

the mapping g ;

Img(e)  CR(x))




Minimisation by Delefion

We use the Homomorphism Theorem to show that g” is also equivalent to g:

4+ Thereis a trivial homomorphism Tbl(g”) — Tbl(g):
simply map every variable to itself.

qg’': R;(X)) AR;(Xx3) A Rs(Xs)

N

qg: R{(XxX) ARyXy) A Ry(X3) A Ry(%y) A Rs(X5)



Minimisation by Delefion

We use the Homomorphism Theorem to show that g” is also equivalent to g:

4+ Thereis a trivial homomorphism Tbl(g”) — Tbl(g):
simply map every variable to itself.

+ gof —ie, the function composition g(f( - )) — is a homomorphism
Tbl(g) — Tbl(g"):
- function f maps every R(x;) in g intoan S, (x,) in g’ by definition,

- function g maps every §_(X,) in g’ into an atom of g” by construction.



+ gof —ie, the function composition g(f( - )) — is a homomorphism
Tbl(g) — Tbl(g"):
- function f maps every R:(X;) in g intoan S (X,) in g’ by definition,

- function g maps every S,(x,) in g’ into an atom of g” by construction.

R{(X{) A Ry(X5) A R3(X3) A Ry(X;) A Rs(X5)

e T

51(X1) A SH(X5) A S3(53) A Syu(X,

the mapping g ; 5 l/ ;

q": R{(X)) A R;(X3) A R5(X5)



+ gof —ie, the function composition g(f( - )) — is a homomorphism
Tbl(g) — Tbl(g"):
- function f maps every R(X;) in g intoan §_(X,,) in g’ by definition,

- function g maps every §,(X,) in g’ into an atom of g” by construction.

R{(X;) A R, (X5) A R3(X3) A Ry(X4) A R5(X5)

—KIF

q"': R{(X)) A R;(X3) A R5(X5)



Minimisation by Delefion

INnteresting consegquence: there is always a unigue minimal equivalent query.
We call this minimal equivalent subqguery of g the core of g.



An Algorithm for Minimisation

Algorithm 1: Query Minimisation
Input: Conjunctive query q

Result: A minimal conjunctive query ¢’ with ¢ = q In plain text
q < q
repeat Delete terms ffom th.e CQ
for Term R(Z) in ¢’ do as long as th.efe s still a
¢ ¢ without R(%) homomorphism .to the
if there is a homomorphism Tbl(q') — Tbl(q”) then guery after deletion.
‘ q/ — q// .
end Once this is no longer
end 0ossible, the minimum is
reached.

until no change to q’
return ¢’



CQ Minimisation Example

qg=1{(x,y,2) | dapy R(x,y,a) AR(p,y,y) AR(p,y,2) }

Tbl(g) Tbl()\{(x, y, @)}
A B C A B C
X y a Homomorphism? X y &
g y Y —> B y Y
3 y 4 B y z

No, because h(x) = x, the first row can't be
mapped into the right-hand tableau.




CQ Minimisation Example

qg=1{(x,y,2) | dapy R(x,y,a) AR(p,y,y) AR(p,y,2) }

Tbl(g) Tol(O\{(B.y. 1)}
A B C A B
X y a Homomorphism? X y
B y ¥ —> B y
e

Yes! x, v, z, f map to themselves and A(y) = z




CQ Minimisation Example
g = 1(xy,2) | 3af R(x,y, ) AR(S,y,2) }

Tbl(g’)

Homomorphism?

X y A —

Both times no.
Hence, g’ is minimall

A
X
B
or
A B
X y
B y




Complexity of CQs




Data vs Combined Complexity

Recall, in classical computational complexity theory we study algorithm
oehavior (time/space/etc.) relative to the size of the input.

IN query answering problems there are different variants of this problem:

DB
’_'rO

T

USeE

Eval(q, D)

Input size is the sum of the query size
and database size

Matches natura
MS, w

nere gu

~and a

settings such as o

eries anc

‘e arbitra

data come

fy.

q-Eval(D)

INput size is only the database!

Motivated by the fact that
queries are usually much
smaller than the databases.




Data vs Combined Complexity

Recall, in classical computational complexity theory we study algorithm
oehavior (time/space/etc.) relative to the size of the input.

IN query answering problems there are different variants of this problem:

Combined Complexity

Input size is the sum of the query size
and database size

Matches natura

settings such as o

eries anc

DBMS, where gL
from user and a

‘e arbitra

data come

fy.

Data Complexity

INput size is only the database!

Motivated by the fact that
queries are usually much
smaller than the databases.




Our Focus Now

. CQ-EVAL
Input:  Conjunctive query g, database D (of same schema)é

Output: g(D) # @

Recall, this corresponds to combined complexity.



NP-Membership

LYV 1 3Z Ri(X) ARy(Xp) A -+ AR (Xp) }

When is g(D) # @7
f there is any homomorphism from Tbl*(q) toD.

NP-membership is straightforward: guess and check a homomorphism.



NP-Hardness

4+ Thereis an easy reduction from
3-Colourability.

4+ 3-Colourability takes a graph Gas

input and decides whether G is 3-
colourable. Not a 3-colouring Valid 3-colouring

That is, can we color the vertices of G
with red, green, and blue such that
No edge is between two vertices of
the same colour?




NP-Hardness

4+ 3-Colourability is equivalent to

triangle graph.

having a homomorphism into the

4+ The three nodes of the triangle

intuitively represent the three colours.

+ Note that if there is an edge between

v and u, then v, u can't

e mapped to

the same vertex, i.e., adjacent
vertices can't be mapped to the

same colour.



NP-Hardness

This homomorphism into the triangle can be trivially expressed as a conjunctive query.

4+ Take an input for 3-Colourability, i.e., a graph G.

A B
red green

+ Create a database with relation E for the triangle: green red
red blue

blue red

4+ Encode the graph as a conjunctive query: green blue
q={0137  \  EG.v) AEGv) ) e L e

WV 1 €E(G)

4+ There is a homomorphism Tbl*(q) — D if and only if G is 3-colourable.



Complexity of CQ -Eval

Theorem
CQ-Eval is NP-complete in combined complexity.

Moreover, the NP-hardness holds already for
schemas with a single binary relation symbol.




Complexity of CQ Containment

Recall the Homomorphism Theorem:
hom
q, € g, < Tbl(g,) — Tbl(g))

Same reduction applies here too: check whether the query g, that represents the triangle is

contained in the query g, that represents graph G.

Theorem

Deciding CQ Containment is NP-complete.




Complexity of CQ Minimisation

Theorem

Checking whether a query g is minimal is
co-NP-complete.

Intuition: We need to check w
iNto any query obtained by de

AlS

etl

ther there are no homomorphisms

ng atoms.



Structure of CQs




Structurec

The nu
the on

mber of joins is Not

vy important factor

in how difficult it is to
evaluate a CQ.

g =1 | Rx,y,2) ANS(z,w,u) A R(u, v, x) }

Which is easier to evaluate 4 47

5 =1{ @) | Rx,v,2) AS(z,w,u) A R(u, v, x

ANT(x,y,z,w,u) }

g, can be solved in time linear in the database

¢, cannot (under standard assumptions from
fine-grained complexity theory).



Structure

To understand why, we need to understand how the
structure of CQs is connected to their evaluation.

But what is the structure of a CQ?



Hypergrapns

Fxample hypergraph H

+ Ahypergraph His a pair (Vy, Ey). Vi =1{x,y,z,u,w}

+ V, is the set of vertices, By = 165,20, 1, u, (X, U, W

just as in a grapn.

4+ The set of hyperedges Ey; C QVIH)
IS some set of sets of vertices.

4+ Graphs are a special case of
nypergraphs where every hyperedge
NAS size exactly 2.




CQs as Hypergrapns

g =1y |3dZR (X)) ANRyXy) A -- AR(Xp) }

We capture the structure of g as hypergraph H in the following way:

+ V,, =vars(qg), i.e, we have a vertex for each variable in the query.

4+ For every atom R(xy, ..., xsp) we add the hyperedge { Xy, ..., Xup } 10 Ep;.



Example

g =1 | Rx,v,2) AS(z,w,u) A R(u, v, x) }

Vi =vars(q,)

Add edges for each atom.

R(x,v, z) becomes edge {x, y, z}.
and so on.




Example

¢ =1 x| RXx,v,2) AS(z,w,u) A R(u, v, x)
ANT(x,y,z,w,u) }




Whenis the structure or a CQ
good for evaluation?



Join Trees &
Yannakakis Algorithm




Acyclic Hypergraphs

A join tree for a hypergraph H is a tree T with a labelling function 4 : V(T') - E(H)

that labels every node of the tree with a an edge of H such that:

) Foreverye € E(H) there is exactly one node n of the tree T such that A(n) = ¢

i) Forevery vertex v € V(H), the nodes for which v € A(n) are connected.
(connectedness condition)

We say that a hypergraph H is a-acyclic if it has a join tree.



We will denote
the A labels like this

Example join tree for H,;

| et’s check the two conditions:

+ Fvery edge is mapped to some label V4

4+ Connectedness condition?



We will denote
the A labels like this

Example join tree for H,;

| et’s check the two conditions:

Nodes that contain x
+ Fvery edge is mapped to some label V4

n
4+ Connectedness condition? n/\4 Connected v
) 3



We will denote
the A labels like this

Example join tree for H,;

| et’s check the two conditions:

Nodes that contain y
+ Fvery edge is mapped to some label V4

4+ Connectedness condition? n,  Connected v

Same for v and z



We will denote
the A labels like this

Example join tree for H,;

| et’s check the two conditions:

+ Fvery edge is mapped to some label V4

+ Connectedness condition V



Example 2

H, has no join tree!

visin the blue and yellow node but not in the red.

Violates connectedness condition!



Example 2

H, has no join tree!

z is in the blue and red node but not in the yellow.

Violates connectedness condition!



Example 2

H, has no join tree!

This covers all possible trees

on three nodes. We see that none
of them is a ioin tree! Violates connectedness condition!

y isin the yellow and red node but not in the blue.




Example 3

H; has ajoin treel

That is, the triangle
+the edge {y, v, 7}

Hs is a-acyclic even though it contains
a cyclic subhypergraph!



Back to Queries

=1 )| RXxvy,2) ANS(z,w,u) A R(u, v, x)
A T(x,y,z, w, I/t) }

T(x,y,z,w,u)

Join tree of CQ ¢




VWe can use join frees to design
etticient algorithms tor CQ evaluation.



The Semi-join Operation X

RIXS = attr(R)(R X S)

Instead of creating the combined tuples as in a join,
a semi-join only keeps the rows in R that have a join partner in $
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The Semi-join Operation X

R X S = Ty (R X S)

Instead of creating the combined tuples as in a join,
a semi-join only keeps the rows in R that have a join partner in §

Unlike a join, a semi-join cannot create larger relations:
IRX S| <|R]

In fact, we can compute any semi-join in
O(nlogn)time, wheren = |R| + | S|




Yannakakis' Algorithm

Let (T, A) be ajoin tree of a CQ g and root it arbitrarily.

Given a database D we can decide g(D) # @ as follows:

1. Assign to each node labeled with atom A(X) the relation A”
(and rename columns according to the variables in the respective atom).

We write rel(IN) for the relation associated to node n.

2. In abottom-up traversal: update rel(n) to (rel(n)>< rel(cl)) X -+ X rel(cy)

where ¢y, ..., C, are the children of n

3. Atthe end, for the root r we have rel(r) # @ if and only if g(D) # @&.



llustration of Yannakakis" Algorithm

R(v,2) AS(z,y) ARy, V) AT(v, v, 2)




llustration of Yannakakis" Algorithm

R(v,2)) AS(z,y) ARy, V) AT(v,V, 2)

1. Assign to each node labeled with

atom A(¥) the relation A”

(and rename columns according to
the variables in the respective
atom).

We write rel(N) for the relation
associated to node n.

N (W W |— X
N (WO N W<

rel(n,) = R”

rel(n,) = T"

Ol | d | W |W |<
O N W I
O |—=|H|IN|N

N (W[ W |— <
N (WO N [W N

rel(ny) = RP

>~ (N[ —|N
O W W|IN I

0
rel(ny) = SP



llustration of Yannakakis" Algorithm

rel(n,) = TP
R(v,2) AS(2,¥) AR(y,v) ANT(v,y,2) Cly |
3 1 2
3 3 4
7/ 2 1
5 9 O
2. In a bottom-up traversal: X
update rel(n) to (rel(n)lx
rel(cl)) X -+ X rel(c,) y | v v | z z |y
1 3 1 3 1 2
where ¢y, ..., Cpare the 3 | 2 3 | 2 2 | 3
| 3 3 3 3 4 3
children of n 2 | 7 2 | 7 o | o

rel(n,) = RP rel(ny) = RP rel(n,) = sP
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llustration of Yannakakis" Algorithm

rel(n,) = T"
R(v,2)) AS(z,y) ARy, V) AT(v,V, 2)

v y y 4

3 1 2

3 3 4

7/ 2 1

5 9 O

2. In a bottom-up traversal: X
update rel(n) to (rel(n)lx

rel(cl)) X -+ X rel(c,) y | v v | z z |y
1 3 1 3 1 2
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llustration of Yannakakis" Algorithm

rel(n,) = T"
R(v,2)) AS(z,y) ARy, V) AT(v,V, 2)

O INN W |-
O | = |[PH |IN [N

2. In a bottom-up traversal:
update rel(n) to (rel(n)lx

X

X

rel(c))) x -+ x rel(c,)

where ¢y, ..., Cp are the

N (W W |— X
N WIN W <
N (W[ W |— <
N WO IN W IN
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llustration of Yannakakis" Algorithm

rel(n,) = T"
R(v,2)) AS(z,y) ARy, V) AT(v,V, 2)

v y y 4
3 1 2
3 3 4
/ 2 1
5 9 O x
2. In a bottom-up traversal:
update rel(n) to (rel(n)lx X
rel(cl)) X -+ X rel(c,) y | v v | z z |y
1 3 1 3 1 2
where ¢y, ..., Cpare the 3 | 2 3 | 2 2 | 3
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llustration of Yannakakis" Algorithm

rel(n,) = T"
R(v,2) AS(z,y) ARQy,v) AT(v,y,2) rel(n,) = @ and vy |
therefore the query 3 | 1 | 2
Nas No answers! S
7 2 1
5 9 O
3. At the end, for the root r we
have rel(r) # @ if and only if ' ; ‘ ; z |y
1 2
qD) # QD 3 | 2 3 | 2 > | 3
3 3 3 3 4 3
2 7 2 7 0 9

rel(n,) = RP rel(ny) = RP rel(n,) = sP



llustration of Yannakakis" Algorithm

rel(n,) = TP
R(v,2) AS(z,y) AR(y,v) AT(v,y,2) rel(n;) = @ anad vy |
therefore the query 3 | 1| 2
nas no answers! S
7 2 1
5 9 O
How much did it cost to run the algorithm?
Atoms(g) — 1 many semi-joins. v | v v |z 2 |y
Semi-joins each require O(nlog n) time. 1 1 L
3 | 3 3 | 3 42 | 3
In general: O(|Atoms(q) | - | D). A big S S 0 | 9
improvement over NP. rel(n,) = R” rel(ny) = R” rel(ng) = SV



Beyond a-Acyclicity

INn most real-world settings the vast majority of

[1] Bonifati, Angela, Wim Martens, and Thomas Timm.

queries are a-acyclic. A large study [1] of over 56mio  an analytical study of large SPARQL query logs”

: - N : vidb. |db/vol11/p149-bonifati.pdf
unigue SPARQL queries (a graph query language) ftps:/fwwwyidb.org/pvido/volfl/pl4s-bonitati.p
found that over 99.9% of queries were acyclic.

However, cyclic queries do come up, and we would like to
<now it we can do something like Yannakakis” algorithm
for those queries. This has lead to the development of
hypertree decompositions and related notions. They
generalize what we've seen here beyond acyclicity!




A Glimpse Beyona

4+ The connection between structure
and complexity has been an active
research topic over the last decades.

4+ Thereis arich theory generalising the

concept of a-acyclicity to not only
identity linear time queries.

Not FPT

Submodular Width FPT CQ Answering

Fractional

Hypertree Width Polynomial time

CQ Answering

Generalised
Hypertree Width

Hypertree Width Recognisable
iNn polynomial time

a-Acyclic
Treewidth



Enumerating Answers



Efficient decision is nice, but what
It we want to get the answers?



-numeration

4+ For enumeration, quantification of variables will matter again.

+ We will focus on the special case of full CQs, i.e., queries where no variables are
existentially quantified.

Example full CQ

g=1{0,x,v,2) | Rv,2) AS(z,y) ARV, V) NT(v,y,2) A P(x,V) }



Yannakakis’ Algorithm — tor Enumeration

Let (T, A) be ajoin tree of a CQ g and root it arbitrarily.
Given a database D we can decide g(D) # @ as follows:

1. Assign to rel(n) to each node n as before.

2. In abottom-up traversal: update rel(n) to (rel(n)lx rel(cl)) X -+ X rel(cy)

where ¢y, ..., C, are the children of n.

3. In atop-down traversal: update rel(n) to (rel(n)lx rel(p))

where p is the parent of n.

4. Every tuple left after this process will be part of an output,
we can collect them one by one in a final bottom-up process.




Example

g=1{0,x,v,2) | Rv,2) AS(z,y) AR, V) NT(v,y,2) A P(x,V) }




llustration of Yannakakis" Algorithm

7D
R(v,2) AS(z,y) AR(y,v) AT(v,y,2) A P(x,V) rel(n)) =T

v 4 V4

2 7 3

2 7 7

1 2 3

2 3 1
X v y v v 4 7 y
1 1 1 3 1 3 3 2
9 7 2 7 2 7 7 .

rel(ns) = PP rel(n,) = RP rel(ny) = RP rel(n,) = sP



llustration of Yannakakis" Algorithm

R(v,2) AS(z,y) AR(Y,v) AT(v,y,2) A P(x,V)

v y V4
2 7/ 3
2 / 7/
2. The bottom up T o | 3
Semi-joins 2 | 3 | 1
X v y v v Z
: 1 1 3 1 3
3 1 D< 7/ 2 7/ 2
3 2 2 1 2 1
9 7 2 7 2 7

N (W (N W (N

N (N W DN
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llustration of Yannakakis" Algorithm

R(v,2) AS(z,y) AR(Y,v) AT(v,y,2) A P(x,V)

v y Z
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llustration of Yannakakis" Algorithm

R(v,2) AS(z,y) AR(Y,v) AT(v,y,2) A P(x,V)

v y y 4
4. All tuples that are left-over are P e
oart of a solution. Joining the 1 | 2 | 3
tables now creates no
intermediate results that are not
nart of the output.
X v y v v 4
1 1 1 3
3 1 7 2
2 7




llustration of Yannakakis" Algorithm

Answers g(D):
y
2 | 3| 7 | 7
2 7 7
1 3 | 2 | 3 : ) 3
2 | 3
y Z
1 1 3
3 1 7/ 2
3 2 2 1
2 7




How Efficient is ThisS

After both semi-join phases of Yannakakis” Algorithm, we are left only with
tuples that are part of answers. That means that no unnecessary effort is
oerformed it we now join the left-over tuples to compute the answer in

time O(| D | + | g(D)|) for a fixed a-acyclic query.

However, with our tree structure we can do something more refined. We
can enumerate the answers with small delay between answers. That is,
the algorithm produces tuples one after another, where the time between

outputting each tuple does not depend on the database.




Quantification Matters

Consider a version of our example guery with existential quantification:

q=1(x2) | Ivy R(v,2) AS(z,y) AR(y,v) ANT(v,y,2) A P(x,v) }

When collecting the final answers,
we need to create intermediate results

that extend to y, v to connect the two parts
of the join tree that contain the output variables.




Quantification Matters

Let’s simplity our example to see how this can break the linear behaviour of Yannakakis.

g =1 (u,2)| Ivxy T(u,v) AR(v,x) AS(x,y) AR(z,y)}




Assume these relations after the semi-join phase

O | 0 | O |0 |X

O | 0 | O |0 (X



To see which assignments to u and z work together,
we need to compute joins over variables that are unrelated
to the output.

X y
@) @)
u v v X 74 y
a 1 1 @) 1 0
a 2 2 0 2 0
a @) 0
a n n 0 n O

Joiningrthese three tables-ereates a relation

of size n?



The actual result tuples are: (a,1), (a,2), ..., (a,n).

Meaning | g(D) | = n, but creating the joins requires @(n?) time!
The time bound O(| D | + | g(D)|) doesn't hold

even though the query is a-acyclic!

X y

N

u v v X < y
a T T O 1 0
a 2 2 0 2 O
a 0 O
a n n 0 n 0

Joiningrthese three tables-ereates a relation

of size n?



Quantification Details

+ We can obtain the same guarantees (and in particular constant-delay enumeration) only

on a limited number of a-acyclic CQs when there is existential quantification!

+ Intuitively, this requires the part of the join tree that contains the output variables to be
connected:

With u, z as output: No

T(u,v) AR(v,x) ANS(x,y) A R(z,V)
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on a limited number of a-acyclic CQs when there is existential quantification!
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Summary

4+ CQs are the core element of many data retrieval tasks.

+ Unlike FO/RA queries, we can decide containment, equivalence and
even minimality of CQs.

+ Answering CQs is NP-complete, but acyclic queries can always be
answered efficiently —> Structure of CQs is a key factor in their

complexity.

+ Yannakakis” Algorithm!

4 Enumeration or count;

ke quantification anc

ng versions bring their own challenges with them
more fine-grained notions of complexity.



