
Matthias Lanzinger, 2025

Database Theory
Conjunctive Queries

Motivation

We’ve seen that we are limited in many things we want
to do when it comes to powerful languages like FO/RA.

Let us instead study a restricted subclass of queries
that lies at the core of important data retrieval tasks.

Conjunctive Queries

We call queries of this form Conjunctive Queries (CQs).

That is, conjunctive queries are FO queries using only the connectives and .∃ ∧

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

(Can also contain constants.)

Conjunctive Queries

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

πȳ (R1 ⋈ R2 ⋈ ⋯ ⋈ Rk)
(Assuming attributes for are , otherwise simply rename)Ri x̄i

Conjunctive Queries

πȳ (R1 ⋈ R2 ⋈ ⋯ ⋈ Rk)
Conjunctive queries correspond so-called join queries in RA.

That is, RA queries that only use projection, renaming, selection, and joins.

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

Conjunctive Queries

Recall our SQL example in the lecture on the relational model.

Conjunctive Queries

{(c, s) ∣ ∃sid, l, dob, active . Enrolled(c, WS24, sid) ∧
Course(c, WS24, l) ∧ Student(sid, s, dob, active)}

Conjunctive Queries

{(c, s) ∣ ∃sid, l, dob, active . Enrolled(c, WS24, sid) ∧
Course(c, WS24, l) ∧ Student(sid, s, dob, active)}

CQs cover the core part
of most SQL queries!

Conjunctive Queries

✦ Conjunctive queries form the key part
of most data retrieval tasks. ✦ Join queries

✦ Datalog rule bodies are CQs

✦ Basis for many other query languages,
e.g., Conjunctive Regular Path Queries.

Conjunctive Queries

✦ Conjunctive queries form the key part
of most data retrieval tasks.

✦ Optimising CQs can help to optimise
the most expensive part of practical
join evaluations

Real systems will evaluate a CQ
first and then evaluate the min
aggregate on the result of the CQ.

Conjunctive Queries

✦ Conjunctive queries form the key part
of most data retrieval tasks.

✦ Optimising CQs can help to optimise
the most expensive part of practical
join evaluations

✦ Complexity for results for CQs also
give us lower bounds for more
complex queries that often have CQs
at their core.

The query intuitively will be at least as
hard to solve as the underlying CQ
(without the min aggregate).

Equivalence & Containment

Query Containment

✦ For queries we say that is contained in (in symbols,) if

 for every database .

✦ Equivalence of two queries , (in symbols,) is defined as

q1, q2 q1 q2 q1 ⊆ q2
q1(D) ⊆ q2(D) D

q1 q2 q1 ≡ q2
q1 ≡ q2 ⟺ q1 ⊆ q2 and q2 ⊆ q1

Given in RA, there is no algorithm to decide .

But if are CQs then the problem is decidable!

q1, q2 q1 ⊆ q2
q1, q2

See the Trakthenbrot
exercise sheet!

Query Containment Example

Consider the following two queries

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ R(y, x) ∧ R(x, y)}

A B
1 2

3 3

2 3

R

q1(D) = { (2,1), (3,2), (3,3)}
q2(D) = { (3,3)}

Intuitively it seems clear that describes a

weaker requirement: only needs to reach some ,
whereas it needs to reach specifically in .

We would therefore suspect that

for all . But how to prove it?

q1
x z

y q2

q2(D) ⊆ q1(D)
D

The Tableau of a CQ

Basic Idea: we can represent a CQ as a database.

The tableau of a CQ is the database where the tuples of relation are all of the term
lists that occur for in the query (+ a relation for the output variables).

𝖳𝖻𝗅(q) q R
R

1 2

x y

1 2
y z

y w

w y

RB
1 2

x y

𝖮𝗎𝗍

{ (x, y) ∣ ∃wz B(x, y) ∧ R(y, z) ∧ R(y, w) ∧ R(w, y) }
Consider the following query:

We write
for the tables without
the special relation for
output variables.

𝖳𝖻𝗅*(q)

𝖮𝗎𝗍

Homomorphisms

A homomorphism of two databases is a function

 such that:

D1, D2
h : Dom(D1) → Dom(D2)

(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Example
A homomorphism of two databases is a function

 such that:

D1, D2
h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54

Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S
?

Example
A homomorphism of two databases is a function

 such that:

D1, D2
h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54

Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ Claire
Ben ↦ Anna

54 ↦ 34
26 ↦ 40

May seem weird in
meaning but the
“structure” is preserved!

Example
A homomorphism of two databases is a function

 such that:

D1, D2
h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54

Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ David
Ben ↦ David

54 ↦ 85
26 ↦ 85

Nothing says the
function must be
injective

Example
A homomorphism of two databases is a function

 such that:

D1, D2
h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54

Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ Claire
Ben ↦ Claire

54 ↦ 34
26 ↦ 34

But that doesn’t
always work

Not a hom!

Homomorphism Theorem

As a result we have an “easy” algorithm for deciding containment for CQs:

1. Compute for both queries (trivial).

2. Check if there is a homomorphism (in NP).

𝖳𝖻𝗅(⋅)

Theorem
Let be CQs. Then

 if and only if

q1, q2

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

Careful!
Only holds for
set semantics!

Homomorphism Theorem

Consider the following two queries

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2

y x

x z

R
1 2

y x

w x

x u

R

𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R

𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since has only one tuple, a homomorphism must necessarily have
 and .

𝖮𝗎𝗍 h
h(x) = x h(y) = y

Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R

𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since has only one tuple, a homomorphism must necessarily have
 and .

With and we get a homomorphism .

𝖮𝗎𝗍 h
h(x) = x h(y) = y

h(w) = y h(u) = z 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R

𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since has only one tuple, a homomorphism must necessarily have
 and .

With and we get a homomorphism .

𝖮𝗎𝗍 h
h(x) = x h(y) = y

h(z) = y h(u) = z 𝖳𝖻𝗅(q1)
hom 𝖳𝖻𝗅(q2)

Homomorphism Theorem

We’ve seen that and .

By the Homomorphism Theorem that means and , i.e., !

𝖳𝖻𝗅(q1)
hom 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q2)

hom 𝖳𝖻𝗅(q1)
q1 ⊆ q2 q2 ⊆ q1 q1 ≡ q2

Consider the following two queries

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

Why?

Important observation
Let be a CQ with free variables . For any database , we have

if and only if there is a homomorphism from to such that .
q ȳ D c̄ ∈ q(D)

h 𝖳𝖻𝗅*(q) D h(ȳ) = c̄

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

 means that there is an interpretation such that

1. , , and .

2. and and .

(a, b) ∈ q2(D) I
R(I(y), I(x)) ∈ D R(I(w), I(x)) ∈ D R(I(x), I(u)) ∈ D

I(x) = a I(y) = b
So is precisely a homomorphism
from to !

I
𝖳𝖻𝗅*(q2) D

Proof Idea

If , then

By assumption . So take as database . Let be the free variables

of . We have that since we can just map every variable to itself.

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1(D) ⊆ q2(D) 𝖳𝖻𝗅*(q1) D ȳ
q1 (x, y) ∈ q1(𝖳𝖻𝗅*(q1))

1 2

y x

x z

R𝖳𝖻𝗅*(q1)
1 2

y x

x z

R𝖳𝖻𝗅*(q1)

h(x) = x, h(y) = y, h(z) = z
Example queries from before

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

So (x, y) ∈ q1(𝖳𝖻𝗅*(q1))

Proof Idea

If , then

By assumption . So take as database . Let be the free variables of

. We have that since we can just map every variable to itself.

Then also . By the key observation:

That is, the tuple in the relation of maps into a tuple of of .

Furthermore, that homomorphism maps the free variables of to the free variables of .

We then have .

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1(D) ⊆ q2(D) 𝖳𝖻𝗅*(q1) D ȳ
q1 (x, y) ∈ q1(𝖳𝖻𝗅*(q1))

(x, y) ∈ q2(𝖳𝖻𝗅*(q1))

ȳ ∈ q2(𝖳𝖻𝗅*(q1)) ⟺ 𝖳𝖻𝗅*(q2)
hom 𝖳𝖻𝗅*(q1)

𝖮𝗎𝗍 𝖳𝖻𝗅(q2) 𝖮𝗎𝗍 𝖳𝖻𝗅(q1)
q2 q1

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

Proof Idea

If , then

If is an answer of on some database then there is a homomorphism

that maps the output variables of to .

Let be the homomorphism from to . It is not hard to see that is

homomorphism from to that also maps the output of variables of to .

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1) q1 ⊆ q2

c̄ q1 D h : 𝖳𝖻𝗅*(q1) → D
q1 c̄

g 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q1) h ∘ g
𝖳𝖻𝗅*(q2) D q2 c̄

Example queries from before

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h

Proof Idea
Example queries from before

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h

1 2
y x
w x
x u

𝖳𝖻𝗅(q2)
R 1 2

1 1
2 3
3 1
4 5

D
h ∘ g Still a homomorphism!

Output variables map
to the same values in !D

Proof Idea

If , then

If is an answer of on some database then there is a homomorphism

that maps the output variables of to .

Let be the homomorphism from to . It is not hard to see that is

homomorphism from to that also maps the output of variables of to .

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1) q1 ⊆ q2

c̄ q1 D h : 𝖳𝖻𝗅*(q1) → D
q1 c̄

g 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q1) h ∘ g
𝖳𝖻𝗅*(q2) D q2 c̄

Example queries from before

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h

Turn to your neighbour: briefly discuss the lecture
Stretch, grab water, reset

Time for a break.

Query Minimisation

Minimising?

Goal:
Given a CQ , we want the equivalent CQ with the least amount of

atoms.

Formally, a CQ is minimal if there does not exist a CQ such that:

a)

b) has fewer atoms (=terms in the conjunction) than

q q′￼

q q′￼

q′￼ ≡ q

q′￼ q

We would like to replace a CQ with its
minimal equivalent CQ before evaluating it.

How do we find this minimal equivalent CQ?

To minimise CQ , it is enough to
check only those queries obtained

by deleting atoms from !

q

q

Minimisation by Deletion

Assume CQ .

Furthermore, assume has an equivalent CQ
 with .

By the Homomorphism Theorem there are homomorphisms:

 and

q = { ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }
q

q′￼ = { ȳ′￼ ∣ ∃z̄′￼ S1(x̄′￼1) ∧ S2(x̄′￼2) ∧ ⋯ ∧ Sj(x̄′￼j) } j < k

f : 𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′￼) g : 𝖳𝖻𝗅(q′￼) → 𝖳𝖻𝗅(q)

Minimisation by Deletion
We have that maps every into some

 with and .

g : 𝖳𝖻𝗅(q′￼) → 𝖳𝖻𝗅(q) Sα(x̄′￼α) ∈ 𝖳𝖻𝗅(q′￼)
Riα(x̄iα) ∈ 𝖳𝖻𝗅(q) Sα = Riα x̄iα = h(x̄′￼α)

S1(x̄′￼1) ∧ S2(x̄′￼2) ∧ S3(x̄′￼3) ∧ S4(x̄′￼4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping g

Minimisation by Deletion
We have that maps every into some

 with and .

Let be the set of all such images of the mapping

 applied to the terms of and observe that .

g : 𝖳𝖻𝗅(q′￼) → 𝖳𝖻𝗅(q) Sα(x̄′￼α) ∈ 𝖳𝖻𝗅(q′￼)
Riα(x̄iα) ∈ 𝖳𝖻𝗅(q) Sα = Riα x̄iα = h(x̄′￼α)

Img(g) = {Ri1(x̄i1), Ri2(x̄i2), …, Riℓ(x̄iℓ)}
g q′￼ | Img(g) | ≤ j < k

S1(x̄′￼1) ∧ S2(x̄′￼2) ∧ S3(x̄′￼3) ∧ S4(x̄′￼4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)Img(g)

the mapping g

Minimisation by Deletion
Let us define the query consisting of the

terms in . We see that can be obtained by simply deleting some terms from .

q′￼′￼ = { ȳ ∣ ∃z̄ Ri1(x̄i1) ∧ Ri2(x̄i2) ∧ ⋯ ∧ Riℓ(x̄iℓ) }
Img(g) q′￼′￼ q

S1(x̄′￼1) ∧ S2(x̄′￼2) ∧ S3(x̄′￼3) ∧ S4(x̄′￼4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)Img(g)

the mapping g

q′￼′￼ = {ȳ ∣ R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)

Minimisation by Deletion

We use the Homomorphism Theorem to show that is also equivalent to :

✦ There is a trivial homomorphism :
simply map every variable to itself.

q′￼′￼ q

𝖳𝖻𝗅(q′￼′￼) → 𝖳𝖻𝗅(q)

q : R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

q′￼′￼ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)

Minimisation by Deletion

We use the Homomorphism Theorem to show that is also equivalent to :

✦ There is a trivial homomorphism :
simply map every variable to itself.

✦ — i.e., the function composition — is a homomorphism
:

 - function maps every in into an in by definition,

 - function maps every in into an atom of by construction.

q′￼′￼ q

𝖳𝖻𝗅(q′￼′￼) → 𝖳𝖻𝗅(q)

g ∘ f g(f(⋅))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′￼′￼)

f Ri(x̄i) q Sα(x̄α) q′￼

g Sα(x̄α) q′￼ q′￼′￼

✦ — i.e., the function composition — is a homomorphism
:

 - function maps every in into an in by definition,

 - function maps every in into an atom of by construction.

g ∘ f g(f(⋅))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′￼′￼)

f Ri(x̄i) q Sα(x̄α) q′￼

g Sα(x̄α) q′￼ q′￼′￼

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping f

S1(x̄′￼1) ∧ S2(x̄′￼2) ∧ S3(x̄′￼3) ∧ S4(x̄′￼4)

the mapping g

q′￼′￼ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)

✦ — i.e., the function composition — is a homomorphism
:

 - function maps every in into an in by definition,

 - function maps every in into an atom of by construction.

g ∘ f g(f(⋅))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′￼′￼)

f Ri(x̄i) q Sα(x̄α) q′￼

g Sα(x̄α) q′￼ q′￼′￼

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping g ∘ f

q′￼′￼ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)

Minimisation by Deletion
Lemma

Assume CQ .

Furthermore, assume has a semantically equivalent CQ
.

Then is also semantically equivalent to a CQ that can obtained
by deleting atoms from .

q = { ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

q
q′￼ = { ȳ′￼ ∣ ∃z̄′￼ S1(x̄′￼1) ∧ S1(x̄′￼1) ∧ ⋯ ∧ Sj(x̄′￼j) }

q q′￼′￼

q

Interesting consequence: there is always a unique minimal equivalent query.
We call this minimal equivalent subquery of the core of .q q

An Algorithm for Minimisation

In plain text

Delete terms from the CQ
as long as there is still a
homomorphism to the
query after deletion.

Once this is no longer
possible, the minimum is
reached.

CQ Minimisation Example

q = {(x, y, z) ∣ ∃αβγ R(x, y, α) ∧ R(β, y, γ) ∧ R(β, y, z) }

A B C

x y 𝛼

β y ɣ

β y z

A B C

x y 𝛼

β y ɣ

β y z

𝖳𝖻𝗅(q) 𝖳𝖻𝗅(q)∖{(x, y, α)}

Homomorphism?
⟶

No, because , the first row can’t be
mapped into the right-hand tableau.

h(x) = x

CQ Minimisation Example

q = {(x, y, z) ∣ ∃αβγ R(x, y, α) ∧ R(β, y, γ) ∧ R(β, y, z) }

A B C

x y 𝛼

β y ɣ

β y z

A B C

x y 𝛼

β y ɣ

β y z

𝖳𝖻𝗅(q) 𝖳𝖻𝗅(q)∖{(β, y, γ)}

Homomorphism?
⟶

Yes! map to themselves and x, y, z, β h(γ) = z

CQ Minimisation Example

q′￼ = {(x, y, z) ∣ ∃αβ R(x, y, α) ∧ R(β, y, z) }

A B C

x y 𝛼

β y z

𝖳𝖻𝗅(q′￼)

Homomorphism?
⟶

A B C

x y 𝛼

β y z

A B C

x y 𝛼

β y z

or

Both times no.
Hence, is minimal!q′￼

Complexity of CQs

Data vs Combined Complexity
Recall, in classical computational complexity theory we study algorithm
behavior (time/space/etc.) relative to the size of the input.

In query answering problems there are different variants of this problem:

Eval(q, D) q-Eval(D)
Input size is the sum of the query size
and database size

Matches natural settings such as a
DBMS, where queries and data come
from user and are arbitrary.

Input size is only the database!

Motivated by the fact that
queries are usually much
smaller than the databases.

Data vs Combined Complexity
Recall, in classical computational complexity theory we study algorithm
behavior (time/space/etc.) relative to the size of the input.

In query answering problems there are different variants of this problem:

Combined Complexity Data Complexity
Input size is the sum of the query size
and database size

Matches natural settings such as a
DBMS, where queries and data come
from user and are arbitrary.

Input size is only the database!

Motivated by the fact that
queries are usually much
smaller than the databases.

Our Focus Now

CQ-EVAL

Input: Conjunctive query , database (of same schema)

Output:

q D
q(D) ≠ ∅

Recall, this corresponds to combined complexity.

NP-Membership

When is ?
If there is any homomorphism from to .

NP-membership is straightforward: guess and check a homomorphism.

q(D) ≠ ∅
𝖳𝖻𝗅*(q) D

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

NP-Hardness

✦ There is an easy reduction from
3-Colourability.

✦ 3-Colourability takes a graph as
input and decides whether is 3-
colourable.
That is, can we color the vertices of
with red, green, and blue such that
no edge is between two vertices of
the same colour?

G
G

G
Valid 3-colouringNot a 3-colouring

‼

NP-Hardness

✦ 3-Colourability is equivalent to
having a homomorphism into the
triangle graph.

✦ The three nodes of the triangle
intuitively represent the three colours.

✦ Note that if there is an edge between
 and , then can’t be mapped to

the same vertex, i.e., adjacent
vertices can’t be mapped to the
same colour.

v u v, u

NP-Hardness

This homomorphism into the triangle can be trivially expressed as a conjunctive query.

✦ Take an input for 3-Colourability, i.e., a graph .

✦ Create a database with relation for the triangle:

✦ Encode the graph as a conjunctive query:

✦ There is a homomorphism if and only if is 3-colourable.

G

E

q = { () ∣ ∃v̄ ⋀
{vi,vj}∈E(G)

E(vi, vj) ∧ E(vj, vi) }

𝖳𝖻𝗅*(q) → D G

A B
red green

green red
red blue
blue red

green blue
blue green

Complexity of CQ -Eval

Theorem
CQ-Eval is NP-complete in combined complexity.
Moreover, the NP-hardness holds already for
schemas with a single binary relation symbol.

Complexity of CQ Containment

Recall the Homomorphism Theorem:

Same reduction applies here too: check whether the query that represents the triangle is

contained in the query that represents graph .

q1 ⊆ q2 ⟺ 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1
q2 G

Theorem
Deciding CQ Containment is NP-complete.

Complexity of CQ Minimisation

Theorem
Checking whether a query is minimal is
co-NP-complete.

q

Intuition: We need to check whether there are no homomorphisms
into any query obtained by deleting atoms.

Structure of CQs

Structure?

q1 = { (x) ∣ R(x, y, z) ∧ S(z, w, u) ∧ R(u, v, x) }

q2 = { (x) ∣ R(x, y, z) ∧ S(z, w, u) ∧ R(u, v, x)
∧ T(x, y, z, w, u) }

The number of joins is not
the only important factor

in how difficult it is to
evaluate a CQ.

Which is easier to evaluate ⬆⬇?

 can be solved in time linear in the database

 cannot (under standard assumptions from
 fine-grained complexity theory).

q2
q1

Structure

To understand why, we need to understand how the
structure of CQs is connected to their evaluation.

But what is the structure of a CQ?

Hypergraphs

✦ A hypergraph is a pair .

✦ is the set of vertices,
just as in a graph.

✦ The set of hyperedges
is some set of sets of vertices.

✦ Graphs are a special case of
hypergraphs where every hyperedge
has size exactly 2.

H (VH, EH)

VH

EH ⊆ 2V(H)

Example hypergraph H

VH = {x, y, z, u, w}

x y z

w
u

EH = { {x, y, z}, {y, u}, {x, u, w} }

CQs as Hypergraphs

We capture the structure of as hypergraph in the following way:

✦ , i.e., we have a vertex for each variable in the query.

✦ For every atom we add the hyperedge to .

q H

VH = vars(q)

R(x1, …, x#R) {x1, …, x#R} EH

q = { ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

Example

q1 = { (x) ∣ R(x, y, z) ∧ S(z, w, u) ∧ R(u, v, x) }

x y z

w

u

v

VH = vars(q1)

Add edges for each atom.
 becomes edge ,

and so on.
R(x, y, z) {x, y, z}

Example

q2 = { (x) ∣ R(x, y, z) ∧ S(z, w, u) ∧ R(u, v, x)
∧ T(x, y, z, w, u) }

x y z

w

u

v

When is the structure of a CQ
good for evaluation?

Join Trees &
Yannakakis Algorithm

Acyclic Hypergraphs

A join tree for a hypergraph is a tree with a labelling function
that labels every node of the tree with a an edge of such that:

i) For every there is exactly one node of the tree such that

ii) For every vertex , the nodes for which are connected.
(connectedness condition)

We say that a hypergraph is -acyclic if it has a join tree.

H T λ : V(T) → E(H)
H

e ∈ E(H) n T λ(n) = e

v ∈ V(H) v ∈ λ(n)

H α

Example

x

y

z v

H1
Example join tree for H1

n1x, z

x, vn2 x, yn3

We will denote
the labels like thisλ

n1

Let’s check the two conditions:

✦ Every edge is mapped to some label ✔

✦ Connectedness condition?

Example

x

y

z v

H1
Example join tree for H1

n1x, z

x, vn2 x, yn3

We will denote
the labels like thisλ

n1

Let’s check the two conditions:

✦ Every edge is mapped to some label ✔

✦ Connectedness condition?

Nodes that contain x

n1

n3n2

Connected ✔

Example

x

y

z v

H1
Example join tree for H1

n1x, z

x, vn2 x, yn3

We will denote
the labels like thisλ

n1

Let’s check the two conditions:

✦ Every edge is mapped to some label ✔

✦ Connectedness condition?

Nodes that contain y

n3 Connected ✔

Same for and v z

Example

x

y

z v

H1
Example join tree for H1

n1x, z

x, vn2 x, yn3

We will denote
the labels like thisλ

n1

Let’s check the two conditions:

✦ Every edge is mapped to some label ✔

✦ Connectedness condition ✔

Example 2

y
z v

H2

y, z

y, v z, v

 has no join tree!H2

 is in the blue and yellow node but not in the red.

Violates connectedness condition!

v

Example 2

y
z v

H2

y, z

y, v z, v

 has no join tree!H2

 is in the blue and red node but not in the yellow.

Violates connectedness condition!

z

Example 2

y
z v

H2

y, z

y, v z, v

 has no join tree!H2

 is in the yellow and red node but not in the blue.

Violates connectedness condition!

yThis covers all possible trees
on three nodes. We see that none
of them is a join tree!

Example 3

y
z v

H3

That is, the triangle
+ the edge {y, v, z}

y, v, z

y, v v, z y, z

 has a join tree!H3

 is -acyclic even though it contains
a cyclic subhypergraph!

H3 α

Back to Queries
q2 = { (x) ∣ R(x, y, z) ∧ S(z, w, u) ∧ R(u, v, x)

∧ T(x, y, z, w, u) }

x y z

w

u

v

x, y, z, w, u

x, y, z z, w, u x, v, u

T(x, y, z, w, u)

R(x, y, z) S(z, w, u) R(u, v, x)

Join tree of CQ q

We can use join trees to design
efficient algorithms for CQ evaluation.

The Semi-join Operation ⋉

R ⋉ S := π𝖺𝗍𝗍𝗋(R)(R ⋈ S)
Instead of creating the combined tuples as in a join,

a semi-join only keeps the rows in that have a join partner in R S

A B C

3 2 5

6 7 9

5 5 5

B C D

1 9 1

2 5 3

5 5 1

1 3 2

⋉ =
A B C

3 2 5

6 7 9

5 5 5

The Semi-join Operation ⋉

Unlike a join, a semi-join cannot create larger relations:

In fact, we can compute any semi-join in
 time, where .

|R ⋉ S | ≤ |R |

O(n log n) n = |R | + |S |

R ⋉ S := π𝖺𝗍𝗍𝗋(R)(R ⋈ S)
Instead of creating the combined tuples as in a join,

a semi-join only keeps the rows in that have a join partner in R S

Show this in a theory exercise!

Yannakakis’ Algorithm

Let be a join tree of a CQ and root it arbitrarily.
Given a database we can decide as follows:

1. Assign to each node labeled with atom the relation
(and rename columns according to the variables in the respective atom).
We write for the relation associated to node .

2. In a bottom-up traversal: update to ⋉ ⋉ ⋉

where are the children of

3. At the end, for the root we have if and only if .

(T, λ) q
D q(D) ≠ ∅

A(x̄) AD

rel(N) n

rel(n) (rel(n) rel(c1)) ⋯ rel(cℓ)
c1, …, cℓ n

r rel(r) ≠ ∅ q(D) ≠ ∅

Illustration of Yannakakis’ Algorithm

y
z v y, v, z

y, v v, z y, z

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

Illustration of Yannakakis’ Algorithm

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)
v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

1. Assign to each node labeled with
atom the relation

(and rename columns according to
the variables in the respective

atom).
We write for the relation

associated to node .

A(x̄) AD

rel(N)
n

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal:
update to ⋉

 ⋉ ⋉

where are the

children of

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal:
update to ⋉

 ⋉ ⋉

where are the

children of

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉
✔

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal:
update to ⋉

 ⋉ ⋉

where are the

children of

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉
✔

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal:
update to ⋉

 ⋉ ⋉

where are the

children of

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉
✔

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal:
update to ⋉

 ⋉ ⋉

where are the

children of

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉❌

No join partner
Row is deleted
by semi.join

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal:
update to ⋉

 ⋉ ⋉

where are the

children of

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal:
update to ⋉

 ⋉ ⋉

where are the

children of

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

✔

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal:
update to ⋉

 ⋉ ⋉

where are the

children of

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

❌

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal:
update to ⋉

 ⋉ ⋉

where are the

children of

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

❌

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal:
update to ⋉

 ⋉ ⋉

where are the

children of

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

❌

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

3. At the end, for the root we
have if and only if

.

r
rel(r) ≠ ∅

q(D) ≠ ∅

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) and
therefore the query
has no answers!

rel(n1) = ∅

Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) and
therefore the query
has no answers!

rel(n1) = ∅

How much did it cost to run the algorithm?

 many semi-joins.
Semi-joins each require time.

In general: . A big
improvement over NP.

Atoms(q) − 1
O(n log n)

Õ(|Atoms(q) | ⋅ |D |)

Beyond -Acyclicityα

[1] Bonifati, Angela, Wim Martens, and Thomas Timm.
"An analytical study of large SPARQL query logs.”
https://www.vldb.org/pvldb/vol11/p149-bonifati.pdf

Explore more in a literature exercise!

In most real-world settings the vast majority of
queries are -acyclic. A large study [1] of over 56mio
unique SPARQL queries (a graph query language)
found that over 99.9% of queries were acyclic.

α

However, cyclic queries do come up, and we would like to
know if we can do something like Yannakakis’ algorithm
for those queries. This has lead to the development of
hypertree decompositions and related notions. They
generalize what we’ve seen here beyond acyclicity!

A Glimpse Beyond

✦ The connection between structure
and complexity has been an active
research topic over the last decades.

✦ There is a rich theory generalising the
concept of -acyclicity to not only
identify linear time queries.

α

Hypertree Width

Treewidth

Generalised
Hypertree Width

Fractional
Hypertree Width

Submodular Width

Recognisable
in polynomial time

Polynomial time
CQ Answering

FPT CQ Answering

Not FPT

-Acyclicα

Enumerating Answers

Efficient decision is nice, but what
if we want to get the answers?

Enumeration

✦ For enumeration, quantification of variables will matter again.

✦ We will focus on the special case of full CQs, i.e., queries where no variables are
existentially quantified.

Example full CQ

q = { (v, x, y, z) ∣ R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v) }

Yannakakis’ Algorithm — for Enumeration

Let be a join tree of a CQ and root it arbitrarily.
Given a database we can decide as follows:

1. Assign to to each node as before.

2. In a bottom-up traversal: update to ⋉ ⋉ ⋉

where are the children of .

3. In a top-down traversal: update to ⋉

where is the parent of .

4. Every tuple left after this process will be part of an output,
we can collect them one by one in a final bottom-up process.

(T, λ) q
D q(D) ≠ ∅

rel(n) n

rel(n) (rel(n) rel(c1)) ⋯ rel(cℓ)
c1, …, cℓ n

rel(n) (rel(n) rel(p))
p n

Example

q = { (v, x, y, z) ∣ R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v) }

y
z v x

y, v, z

y, v v, z y, z

x, v

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

z y
3 2
7 3
3 7
7 7

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

x v
1 1
3 1
3 2
9 7

rel(n5) = PD

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

2. The bottom up
semi-joins

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

⋉
z y
3 2
7 3
3 7
7 7

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

2. The bottom up
semi-joins

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

⋉

z y
3 2
7 3
3 7
7 7

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

2. The bottom up
semi-joins

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

⋉

z y
3 2
7 3
3 7
7 7

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

2. The bottom up
semi-joins

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

⋉

z y
3 2
7 3
3 7
7 7

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

2. The bottom up
semi-joins

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

z y
3 2
7 3
3 7
7 7

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

3. The top-down
semi-joins.
Recall, only from
parent to child.

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

z y
3 2
7 3
3 7
7 7

⋉

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

3. The top-down
semi-joins.
Recall, only from
parent to child.

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

z y
3 2
7 3
3 7
7 7

⋉

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

3. The top-down
semi-joins.
Recall, only from
parent to child.

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

z y
3 2
7 3
3 7
7 7

⋉

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

3. The top-down
semi-joins.
Recall, only from
parent to child.

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

z y
3 2
7 3
3 7
7 7

⋉

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

3. The top-down
semi-joins.
Recall, only from
parent to child.

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

z y
3 2
7 3
3 7
7 7

⋉

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

4. All tuples that are left-over are
part of a solution. Joining the
tables now creates no
intermediate results that are not
part of the output.

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

z y
3 2
7 3
3 7
7 7

Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

z y
3 2
7 3
3 7
7 7

Answers :q(D)

v x y z

2 3 7 7

1 3 2 3

1 1 2 3

How Efficient is This?

After both semi-join phases of Yannakakis’ Algorithm, we are left only with
tuples that are part of answers. That means that no unnecessary effort is
performed if we now join the left-over tuples to compute the answer in
time for a fixed -acyclic query.

However, with our tree structure we can do something more refined. We
can enumerate the answers with small delay between answers. That is,
the algorithm produces tuples one after another, where the time between
outputting each tuple does not depend on the database.

Õ(|D | + |q(D) |) α

Explore more in a literature exercise!

Quantification Matters

Consider a version of our example query with existential quantification:

q = { (x, z) ∣ ∃vy R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v) }

y, v, z

y, v v, z y, z

x, v

When collecting the final answers,
we need to create intermediate results
that extend to to connect the two parts
of the join tree that contain the output variables.

y, v

Quantification Matters

Let’s simplify our example to see how this can break the linear behaviour of Yannakakis.

q = { (u, z) ∣ ∃vxy T(u, v) ∧ R(v, x) ∧ S(x, y) ∧ R(z, y)}

x, y

v, x y, zu, v

v x

1 0

2 0

… 0

n 0

Assume these relations after the semi-join phase

x y

0 0

u v

a 1

a 2

a ..

a n

z y

1 0

2 0

… 0

n 0

v x

1 0

2 0

… 0

n 0

To see which assignments to and work together,
we need to compute joins over variables that are unrelated
to the output.

u z

x y

0 0

z y

1 0

2 0

… 0

n 0

Joining these three tables creates a relation
of size !n2

u v

a 1

a 2

a ..

a n

v x

1 0

2 0

… 0

n 0

The actual result tuples are: .
Meaning , but creating the joins requires time!
The time bound doesn’t hold
even though the query is -acyclic!

(a,1), (a,2), …, (a, n)
|q(D) | = n Θ(n2)

Õ(|D | + |q(D) |)
α

x y

0 0

z y

1 0

2 0

… 0

n 0

Joining these three tables creates a relation
of size !n2

u v

a 1

a 2

a ..

a n

Quantification Details

✦ We can obtain the same guarantees (and in particular constant-delay enumeration) only
on a limited number of -acyclic CQs when there is existential quantification!

✦ Intuitively, this requires the part of the join tree that contains the output variables to be
connected:

α

With as output: Nou, z
x, y

v, x y, zu, v

T(u, v) ∧ R(v, x) ∧ S(x, y) ∧ R(z, y)

Quantification Details

✦ We can obtain the same guarantees (and in particular constant-delay enumeration) only
on a limited number of -acyclic CQs when there is existential quantification!

✦ Intuitively, this requires the part of the join tree that contains the output variables to be
connected:

α

With as output: Yes!x, y
x, y

v, x y, zu, v

T(u, v) ∧ R(v, x) ∧ S(x, y) ∧ R(z, y)

Quantification Details

✦ We can obtain the same guarantees (and in particular constant-delay enumeration) only
on a limited number of -acyclic CQs when there is existential quantification!

✦ Intuitively, this requires the part of the join tree that contains the output variables to be
connected:

α

With as output: Yes!x, y
x, y

v, x y, zu, v

T(u, v) ∧ R(v, x) ∧ S(x, y) ∧ R(z, y)

Summary

✦ CQs are the core element of many data retrieval tasks.

✦ Unlike FO/RA queries, we can decide containment, equivalence and
even minimality of CQs.

✦ Answering CQs is NP-complete, but acyclic queries can always be
answered efficiently —> Structure of CQs is a key factor in their
complexity.

✦ Yannakakis’ Algorithm!

✦ Enumeration or counting versions bring their own challenges with them
like quantification and more fine-grained notions of complexity.

