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Database Theory
Conjunctive Queries



Motivation

We’ve seen that we are limited in many things we want 
to do when it comes to powerful languages like FO/RA. 

Let us instead study a restricted subclass of queries 
that lies at the core of important data retrieval tasks.



Conjunctive Queries

We call queries of this form Conjunctive Queries (CQs). 

That is, conjunctive queries are FO queries using only the connectives  and .∃ ∧

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

(Can also contain constants.)



Conjunctive Queries

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

πȳ (R1 ⋈ R2 ⋈ ⋯ ⋈ Rk)
(Assuming attributes for  are , otherwise simply rename)Ri x̄i



Conjunctive Queries

πȳ (R1 ⋈ R2 ⋈ ⋯ ⋈ Rk)
Conjunctive queries correspond so-called join queries in RA. 

That is, RA queries that only use projection, renaming, selection, and joins.

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }



Conjunctive Queries

Recall our SQL example in the lecture on the relational model.



Conjunctive Queries

{(c, s) ∣ ∃sid, l, dob, active . Enrolled(c, WS24, sid) ∧
Course(c, WS24, l) ∧ Student(sid, s, dob, active)}



Conjunctive Queries

{(c, s) ∣ ∃sid, l, dob, active . Enrolled(c, WS24, sid) ∧
Course(c, WS24, l) ∧ Student(sid, s, dob, active)}

CQs cover the core part 
of most SQL queries!



Conjunctive Queries

✦ Conjunctive queries form the key part 
of most data retrieval tasks. ✦ Join queries 

✦ Datalog rule bodies are CQs 

✦ Basis for many other query languages, 
e.g., Conjunctive Regular Path Queries. 



Conjunctive Queries

✦ Conjunctive queries form the key part 
of most data retrieval tasks. 

✦ Optimising CQs can help to optimise 
the most expensive part of practical 
join evaluations

Real systems will evaluate a CQ 
first and then evaluate the min 
aggregate on the result of the CQ.



Conjunctive Queries

✦ Conjunctive queries form the key part 
of most data retrieval tasks. 

✦ Optimising CQs can help to optimise 
the most expensive part of practical 
join evaluations 

✦ Complexity for results for CQs also 
give us lower bounds for more 
complex queries that often have CQs 
at their core.

The query intuitively will be at least as 
hard to solve as the underlying CQ 
(without the min aggregate).



Equivalence & Containment



Query Containment

✦ For queries  we say that  is contained in  (in symbols, )  if 

 for every database . 

✦ Equivalence of two queries ,  (in symbols, ) is defined as 

 

q1, q2 q1 q2 q1 ⊆ q2
q1(D) ⊆ q2(D) D

q1 q2 q1 ≡ q2
q1 ≡ q2 ⟺ q1 ⊆ q2 and q2 ⊆ q1

Given  in RA, there is no algorithm to decide . 

But if  are CQs then the problem is decidable!

q1, q2 q1 ⊆ q2
q1, q2

See the Trakthenbrot 
exercise sheet!



Query Containment Example

Consider the following two queries 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ R(y, x) ∧ R(x, y)}

A B
1 2

3 3

2 3

R

q1(D) = { (2,1), (3,2), (3,3)}
q2(D) = { (3,3)}

Intuitively it seems clear that  describes a 

weaker requirement:  only needs to reach some , 
whereas it needs to reach specifically  in . 

We would therefore suspect that  

for all . But how to prove it?

q1
x z

y q2

q2(D) ⊆ q1(D)
D



The Tableau of a CQ

Basic Idea: we can represent a CQ as a database. 

The tableau  of a CQ  is the database where the tuples of relation  are all of the term 
lists that occur for  in the query (+ a relation for the output variables).

𝖳𝖻𝗅(q) q R
R

1 2

x y

1 2
y z

y w

w y

RB
1 2

x y

𝖮𝗎𝗍

{ (x, y) ∣ ∃wz B(x, y) ∧ R(y, z) ∧ R(y, w) ∧ R(w, y) }
Consider the following query:

We  write  
for the tables without 
the special  relation for 
output variables.

𝖳𝖻𝗅*(q)

𝖮𝗎𝗍



Homomorphisms

A homomorphism of two databases  is a function 

 such that: 

D1, D2
h : Dom(D1) → Dom(D2)

(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅



Example
A homomorphism of two databases  is a function 

 such that: 

D1, D2
h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54

Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S
?



Example
A homomorphism of two databases  is a function 

 such that: 

D1, D2
h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54

Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ Claire
Ben ↦ Anna

54 ↦ 34
26 ↦ 40

May seem weird in 
meaning but the 
“structure” is preserved!



Example
A homomorphism of two databases  is a function 

 such that: 

D1, D2
h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54

Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ David
Ben ↦ David

54 ↦ 85
26 ↦ 85

Nothing says the 
function must be 
injective



Example
A homomorphism of two databases  is a function 

 such that: 

D1, D2
h : Dom(D1) → Dom(D2)
(c1, …, cn) ∈ RD1 ⟹ (h(c1), …, h(cn)) ∈ RD2 ∀R ∈ 𝖱𝖾𝗅

Name Age
Anna 54

Ben 26

Parent Child

Ben Anna

R

S

Name Age
David 85
Anna 40
Claire 34

Parent Child
David David
Anna Claire

D1 D2

R

S

Anna ↦ Claire
Ben ↦ Claire

54 ↦ 34
26 ↦ 34

But that doesn’t 
always work

Not a hom!



Homomorphism Theorem

As a result we have an “easy” algorithm for deciding containment for CQs: 

1. Compute  for both queries (trivial). 

2. Check if there is a homomorphism (in NP).

𝖳𝖻𝗅( ⋅ )

Theorem 
Let  be CQs. Then 

    if and only if     

q1, q2

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

Careful!  
Only holds for  
set semantics!



Homomorphism Theorem

Consider the following two queries 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2

y x

x z

R
1 2

y x

w x

x u

R

𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍



Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R

𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since  has only one tuple, a homomorphism  must necessarily have 
 and . 

𝖮𝗎𝗍 h
h(x) = x h(y) = y



Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R

𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since  has only one tuple, a homomorphism  must necessarily have 
 and . 

With  and  we get a homomorphism .

𝖮𝗎𝗍 h
h(x) = x h(y) = y

h(w) = y h(u) = z 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)



Homomorphism Theorem

1 2

y x

x z

R
1 2

y x

w x

x u

R

𝖳𝖻𝗅(q1) 𝖳𝖻𝗅(q2)

1 2

x y

𝖮𝗎𝗍
1 2

x y

𝖮𝗎𝗍

Since  has only one tuple, a homomorphism  must necessarily have 
 and . 

With  and  we get a homomorphism .

𝖮𝗎𝗍 h
h(x) = x h(y) = y

h(z) = y h(u) = z 𝖳𝖻𝗅(q1)
hom 𝖳𝖻𝗅(q2)



Homomorphism Theorem

We’ve seen that  and . 

By the Homomorphism Theorem that means  and , i.e., !

𝖳𝖻𝗅(q1)
hom 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q2)

hom 𝖳𝖻𝗅(q1)
q1 ⊆ q2 q2 ⊆ q1 q1 ≡ q2

Consider the following two queries 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}
q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}



Why?

Important observation 
Let  be a CQ with free variables . For any database , we have   

if and only if there is a homomorphism  from  to  such that .
q ȳ D c̄ ∈ q(D)

h 𝖳𝖻𝗅*(q) D h(ȳ) = c̄

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

   means that there is an interpretation  such that 

1. , , and .  

2. and  and .

(a, b) ∈ q2(D) I
R(I(y), I(x)) ∈ D R(I(w), I(x)) ∈ D R(I(x), I(u)) ∈ D

I(x) = a I(y) = b
So  is precisely a homomorphism 
from  to !

I
𝖳𝖻𝗅*(q2) D



Proof Idea

If , then  
 
By assumption . So take  as database . Let  be the free variables 

of . We have that  since we can just map every variable to itself.

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1(D) ⊆ q2(D) 𝖳𝖻𝗅*(q1) D ȳ
q1 (x, y) ∈ q1(𝖳𝖻𝗅*(q1))

1 2

y x

x z

R𝖳𝖻𝗅*(q1)
1 2

y x

x z

R𝖳𝖻𝗅*(q1)

h(x) = x, h(y) = y, h(z) = z
Example queries from before 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

So  (x, y) ∈ q1(𝖳𝖻𝗅*(q1))



Proof Idea

If , then  
 
By assumption . So take  as database . Let  be the free variables of 

. We have that  since we can just map every variable to itself. 

Then also . By the key observation: 

  

That is, the tuple in the  relation of  maps into a tuple of  of . 

Furthermore, that homomorphism maps the free variables of  to the free variables of . 

We then have .

q1 ⊆ q2 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1(D) ⊆ q2(D) 𝖳𝖻𝗅*(q1) D ȳ
q1 (x, y) ∈ q1(𝖳𝖻𝗅*(q1))

(x, y) ∈ q2(𝖳𝖻𝗅*(q1))

ȳ ∈ q2(𝖳𝖻𝗅*(q1)) ⟺ 𝖳𝖻𝗅*(q2)
hom 𝖳𝖻𝗅*(q1)

𝖮𝗎𝗍 𝖳𝖻𝗅(q2) 𝖮𝗎𝗍 𝖳𝖻𝗅(q1)
q2 q1

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)



Proof Idea

If , then  

If  is an answer of  on some database  then there is a homomorphism  

that maps the output variables of  to . 

Let  be the homomorphism from  to . It is not hard to see that  is 

homomorphism from  to  that also maps the output of variables of  to .

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1) q1 ⊆ q2

c̄ q1 D h : 𝖳𝖻𝗅*(q1) → D
q1 c̄

g 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q1) h ∘ g
𝖳𝖻𝗅*(q2) D q2 c̄

Example queries from before 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h



Proof Idea
Example queries from before 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h

1 2
y x
w x
x u

𝖳𝖻𝗅(q2)
R 1 2

1 1
2 3
3 1
4 5

D
h ∘ g Still a homomorphism!

Output variables map 
to the same values in !D



Proof Idea

If , then  

If  is an answer of  on some database  then there is a homomorphism  

that maps the output variables of  to . 

Let  be the homomorphism from  to . It is not hard to see that  is 

homomorphism from  to  that also maps the output of variables of  to .

𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1) q1 ⊆ q2

c̄ q1 D h : 𝖳𝖻𝗅*(q1) → D
q1 c̄

g 𝖳𝖻𝗅(q2) 𝖳𝖻𝗅(q1) h ∘ g
𝖳𝖻𝗅*(q2) D q2 c̄

Example queries from before 

 q1 := {(x, y) ∣ ∃z R(y, x) ∧ R(x, z)}

q2 := {(x, y) ∣ ∃wu R(y, x) ∧ R(w, x) ∧ R(x, u)}

1 2
y x
x z

R
1 2
y x
w x
x u

R
𝖳𝖻𝗅(q1)𝖳𝖻𝗅(q2)

1 2
1 1
2 3
3 1
4 5

D

homomorphism g homomorphism h



Turn to your neighbour: briefly discuss the lecture 
Stretch, grab water, reset

Time for a break.



Query Minimisation



Minimising?

Goal: 
Given a CQ , we want the equivalent CQ  with the least amount of 

atoms. 

Formally, a CQ  is minimal if there does not exist a CQ  such that: 

a)  

b)  has fewer atoms (=terms in the conjunction) than 

q q′￼

q q′￼

q′￼ ≡ q

q′￼ q



We would like to replace a CQ with its 
minimal equivalent CQ before evaluating it. 

How do we find this minimal equivalent CQ?



To minimise CQ , it is enough to 
check only those queries obtained 

by deleting atoms from !

q

q



Minimisation by Deletion

Assume CQ . 

Furthermore, assume  has an equivalent CQ 
 with . 

 
By the Homomorphism Theorem there are homomorphisms: 

      and       

q = { ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }
q

q′￼ = { ȳ′￼ ∣ ∃z̄′￼ S1(x̄′￼1) ∧ S2(x̄′￼2) ∧ ⋯ ∧ Sj(x̄′￼j) } j < k

f : 𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′￼) g : 𝖳𝖻𝗅(q′￼) → 𝖳𝖻𝗅(q)



Minimisation by Deletion
We have that  maps every  into some 

 with  and .

g : 𝖳𝖻𝗅(q′￼) → 𝖳𝖻𝗅(q) Sα(x̄′￼α) ∈ 𝖳𝖻𝗅(q′￼)
Riα(x̄iα) ∈ 𝖳𝖻𝗅(q) Sα = Riα x̄iα = h(x̄′￼α)

S1(x̄′￼1) ∧ S2(x̄′￼2) ∧ S3(x̄′￼3) ∧ S4(x̄′￼4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping g



Minimisation by Deletion
We have that  maps every  into some 

 with  and . 

Let  be the set of all such images of the mapping 

 applied to the terms of  and observe that .

g : 𝖳𝖻𝗅(q′￼) → 𝖳𝖻𝗅(q) Sα(x̄′￼α) ∈ 𝖳𝖻𝗅(q′￼)
Riα(x̄iα) ∈ 𝖳𝖻𝗅(q) Sα = Riα x̄iα = h(x̄′￼α)

Img(g) = {Ri1(x̄i1), Ri2(x̄i2), …, Riℓ(x̄iℓ)}
g q′￼ | Img(g) | ≤ j < k

S1(x̄′￼1) ∧ S2(x̄′￼2) ∧ S3(x̄′￼3) ∧ S4(x̄′￼4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)Img(g)

the mapping g



Minimisation by Deletion
Let us define the query  consisting of the 

terms in . We see that  can be obtained by simply deleting some terms from .

q′￼′￼ = { ȳ ∣ ∃z̄ Ri1(x̄i1) ∧ Ri2(x̄i2) ∧ ⋯ ∧ Riℓ(x̄iℓ) }
Img(g) q′￼′￼ q

S1(x̄′￼1) ∧ S2(x̄′￼2) ∧ S3(x̄′￼3) ∧ S4(x̄′￼4)

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)Img(g)

the mapping g

q′￼′￼ = {ȳ ∣ R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)



Minimisation by Deletion

We use the Homomorphism Theorem to show that  is also equivalent to : 

✦ There is a trivial homomorphism : 
simply map every variable to itself.

q′￼′￼ q

𝖳𝖻𝗅(q′￼′￼) → 𝖳𝖻𝗅(q)

q : R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

q′￼′￼ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)



Minimisation by Deletion

We use the Homomorphism Theorem to show that  is also equivalent to : 

✦ There is a trivial homomorphism : 
simply map every variable to itself. 

✦   — i.e., the function composition  —  is a homomorphism 
:  

 - function  maps every  in   into an  in  by definition,  

 - function  maps every   in   into an atom of  by construction.

q′￼′￼ q

𝖳𝖻𝗅(q′￼′￼) → 𝖳𝖻𝗅(q)

g ∘ f g( f( ⋅ ))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′￼′￼)

f Ri(x̄i) q Sα(x̄α) q′￼

g Sα(x̄α) q′￼ q′￼′￼



✦   — i.e., the function composition  —  is a homomorphism 
:  

 - function  maps every  in   into an  in  by definition,  

 - function  maps every   in   into an atom of  by construction.

g ∘ f g( f( ⋅ ))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′￼′￼)

f Ri(x̄i) q Sα(x̄α) q′￼

g Sα(x̄α) q′￼ q′￼′￼

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping f

S1(x̄′￼1) ∧ S2(x̄′￼2) ∧ S3(x̄′￼3) ∧ S4(x̄′￼4)

the mapping g

q′￼′￼ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)



✦   — i.e., the function composition  —  is a homomorphism 
:  

 - function  maps every  in   into an  in  by definition,  

 - function  maps every   in   into an atom of  by construction.

g ∘ f g( f( ⋅ ))
𝖳𝖻𝗅(q) → 𝖳𝖻𝗅(q′￼′￼)

f Ri(x̄i) q Sα(x̄α) q′￼

g Sα(x̄α) q′￼ q′￼′￼

R1(x̄1) ∧ R2(x̄2) ∧ R3(x̄3) ∧ R4(x̄4) ∧ R5(x̄5)

the mapping g ∘ f

q′￼′￼ : R1(x̄1) ∧ R3(x̄3) ∧ R5(x̄5)



Minimisation by Deletion
Lemma 

Assume CQ . 

Furthermore, assume  has a semantically equivalent CQ
. 

Then  is also semantically equivalent to a CQ that can obtained 
by deleting atoms from .

q = { ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }

q
q′￼ = { ȳ′￼ ∣ ∃z̄′￼ S1(x̄′￼1) ∧ S1(x̄′￼1) ∧ ⋯ ∧ Sj(x̄′￼j) }

q q′￼′￼

q

Interesting consequence: there is always a unique minimal equivalent query. 
We call this minimal equivalent subquery of  the core of .q q



An Algorithm for Minimisation

In plain text 

Delete terms from the CQ 
as long as there is still a 
homomorphism to the 
query after deletion. 

Once this is no longer 
possible, the minimum is 
reached.



CQ Minimisation Example

q = {(x, y, z) ∣ ∃αβγ R(x, y, α) ∧ R(β, y, γ) ∧ R(β, y, z) }

A B C

x y 𝛼

β y ɣ

β y z

A B C

x y 𝛼

β y ɣ

β y z

𝖳𝖻𝗅(q) 𝖳𝖻𝗅(q)∖{(x, y, α)}

Homomorphism? 
⟶

No, because , the first row can’t be 
mapped into the right-hand tableau.

h(x) = x



CQ Minimisation Example

q = {(x, y, z) ∣ ∃αβγ R(x, y, α) ∧ R(β, y, γ) ∧ R(β, y, z) }

A B C

x y 𝛼

β y ɣ

β y z

A B C

x y 𝛼

β y ɣ

β y z

𝖳𝖻𝗅(q) 𝖳𝖻𝗅(q)∖{(β, y, γ)}

Homomorphism? 
⟶

Yes!  map to themselves and x, y, z, β h(γ) = z



CQ Minimisation Example

q′￼ = {(x, y, z) ∣ ∃αβ R(x, y, α) ∧ R(β, y, z) }

A B C

x y 𝛼

β y z

𝖳𝖻𝗅(q′￼)

Homomorphism? 
⟶

A B C

x y 𝛼

β y z

A B C

x y 𝛼

β y z

or

Both times no. 
Hence,  is minimal!q′￼



Complexity of CQs



Data vs Combined Complexity
Recall, in classical computational complexity theory we study algorithm 
behavior (time/space/etc.) relative to the size of the input. 

In query answering problems there are different variants of this problem:

Eval(q, D) q-Eval(D)
Input size is the sum of the query size 
and database size 

Matches natural settings such as a 
DBMS, where queries and data come 
from user and are arbitrary.

Input size is only the database! 

Motivated by the fact that 
queries are usually much 
smaller than the databases.



Data vs Combined Complexity
Recall, in classical computational complexity theory we study algorithm 
behavior (time/space/etc.) relative to the size of the input. 

In query answering problems there are different variants of this problem:

Combined Complexity Data Complexity
Input size is the sum of the query size 
and database size 

Matches natural settings such as a 
DBMS, where queries and data come 
from user and are arbitrary.

Input size is only the database! 

Motivated by the fact that 
queries are usually much 
smaller than the databases.



Our Focus Now

CQ-EVAL 

Input:      Conjunctive query , database  (of same schema) 

Output:    

q D
q(D) ≠ ∅

Recall, this corresponds to combined complexity.



NP-Membership

When is ? 
If there is any homomorphism from  to . 

NP-membership is straightforward: guess and check a homomorphism.

q(D) ≠ ∅
𝖳𝖻𝗅*(q) D

{ ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }



NP-Hardness

✦ There is an easy reduction from 
3-Colourability. 

✦ 3-Colourability takes a graph as 
input and decides whether  is 3-
colourable. 
That is, can we color the vertices of  
with red, green, and blue such that 
no edge is between two vertices of 
the same colour?

G
G

G
Valid 3-colouringNot a 3-colouring

‼



NP-Hardness

✦ 3-Colourability is equivalent to 
having a homomorphism into the 
triangle graph. 

✦ The three nodes of the triangle 
intuitively represent the three colours. 

✦ Note that if there is an edge between 
 and , then  can’t be mapped to 

the same vertex, i.e., adjacent 
vertices can’t be mapped to the 
same colour.

v u v, u



NP-Hardness

This homomorphism into the triangle can be trivially expressed as a conjunctive query. 

✦ Take an input for 3-Colourability, i.e., a graph . 

✦ Create a database with relation  for the triangle: 

✦ Encode the graph as a conjunctive query: 
 

✦ There is a homomorphism  if and only if  is 3-colourable.

G

E

q = { () ∣ ∃v̄ ⋀
{vi,vj}∈E(G)

E(vi, vj) ∧ E(vj, vi) }

𝖳𝖻𝗅*(q) → D G

A B
red green

green red
red blue
blue red

green blue
blue green



Complexity of CQ -Eval

Theorem 
CQ-Eval is NP-complete in combined complexity. 
Moreover, the NP-hardness holds already for 
schemas with a single binary relation symbol.



Complexity of CQ Containment

Recall the Homomorphism Theorem: 
 

Same reduction applies here too: check whether the query  that represents the triangle is 

contained in the query  that represents graph .

q1 ⊆ q2 ⟺ 𝖳𝖻𝗅(q2)
hom 𝖳𝖻𝗅(q1)

q1
q2 G

Theorem 
Deciding CQ Containment is NP-complete.



Complexity of CQ Minimisation

Theorem 
Checking whether a query  is minimal is 
co-NP-complete.

q

Intuition: We need to check whether there are no homomorphisms 
into any query obtained by deleting atoms.



Structure of CQs



Structure?

q1 = { (x) ∣ R(x, y, z) ∧ S(z, w, u) ∧ R(u, v, x) }

q2 = { (x) ∣ R(x, y, z) ∧ S(z, w, u) ∧ R(u, v, x)
∧ T(x, y, z, w, u) }

The number of joins is not 
the only important factor 

in how difficult it is to 
evaluate a CQ.

Which is easier to evaluate ⬆⬇?

 can be solved in time linear in the database 

 cannot (under standard assumptions from 
      fine-grained complexity theory).

q2
q1



Structure

To understand why, we need to understand how the 
structure of CQs is connected to their evaluation. 

But what is the structure of a CQ?



Hypergraphs

✦ A hypergraph  is a pair . 

✦  is the set of vertices, 
just as in a graph. 

✦ The set of hyperedges  
is some set of sets of vertices. 

✦ Graphs are a special case of 
hypergraphs where every hyperedge 
has size exactly 2.

H (VH, EH)

VH

EH ⊆ 2V(H)

Example hypergraph H

VH = {x, y, z, u, w}

x y z

w
u

EH = { {x, y, z}, {y, u}, {x, u, w} }



CQs as Hypergraphs

We capture the structure of  as hypergraph  in the following way: 

✦ , i.e., we have a vertex for each variable in the query. 

✦ For every atom  we add the hyperedge  to .

q H

VH = vars(q)

R(x1, …, x#R) {x1, …, x#R} EH

q = { ȳ ∣ ∃z̄ R1(x̄1) ∧ R2(x̄2) ∧ ⋯ ∧ Rk(x̄k) }



Example

q1 = { (x) ∣ R(x, y, z) ∧ S(z, w, u) ∧ R(u, v, x) }

x y z

w

u

v

VH = vars(q1)

Add edges for each atom. 
 becomes edge , 

and so on.
R(x, y, z) {x, y, z}



Example

q2 = { (x) ∣ R(x, y, z) ∧ S(z, w, u) ∧ R(u, v, x)
∧ T(x, y, z, w, u) }

x y z

w

u

v



When is the structure of a CQ 
good for evaluation?



Join Trees & 
Yannakakis Algorithm



Acyclic Hypergraphs

A join tree for a hypergraph  is a tree  with a labelling function  
that labels every node of the tree with a an edge of  such that: 

i) For every  there is exactly one node  of the tree  such that  

ii) For every vertex , the nodes for which  are connected. 
(connectedness condition) 

We say that a hypergraph  is -acyclic if it has a join tree.

H T λ : V(T) → E(H)
H

e ∈ E(H) n T λ(n) = e

v ∈ V(H) v ∈ λ(n)

H α



Example

x

y

z v

H1
Example join tree for H1

n1x, z

x, vn2 x, yn3

We will denote 
the  labels like thisλ

n1

Let’s check the two conditions: 

✦ Every edge is mapped to some label   ✔  

✦ Connectedness condition?



Example

x

y

z v

H1
Example join tree for H1

n1x, z

x, vn2 x, yn3

We will denote 
the  labels like thisλ

n1

Let’s check the two conditions: 

✦ Every edge is mapped to some label   ✔  

✦ Connectedness condition?

Nodes that contain x

n1

n3n2

Connected ✔



Example

x

y

z v

H1
Example join tree for H1

n1x, z

x, vn2 x, yn3

We will denote 
the  labels like thisλ

n1

Let’s check the two conditions: 

✦ Every edge is mapped to some label   ✔  

✦ Connectedness condition?

Nodes that contain y

n3 Connected ✔

Same for  and v z



Example

x

y

z v

H1
Example join tree for H1

n1x, z

x, vn2 x, yn3

We will denote 
the  labels like thisλ

n1

Let’s check the two conditions: 

✦ Every edge is mapped to some label   ✔  

✦ Connectedness condition    ✔ 



Example 2

y
z v

H2

y, z

y, v z, v

 has no join tree!H2

 is in the blue and yellow node but not in the red. 

Violates connectedness condition!

v



Example 2

y
z v

H2

y, z

y, v z, v

 has no join tree!H2

 is in the blue and red node but not in the yellow. 

Violates connectedness condition!

z



Example 2

y
z v

H2

y, z

y, v z, v

 has no join tree!H2

 is in the yellow and red node but not in the blue. 

Violates connectedness condition!

yThis covers all possible trees 
on three nodes. We see that none 
of them is a join tree! 



Example 3

y
z v

H3

That is, the triangle 
+ the edge {y, v, z}

y, v, z

y, v v, z y, z

 has a join tree!H3

 is -acyclic even though it contains 
a cyclic subhypergraph!

H3 α



Back to Queries
q2 = { (x) ∣ R(x, y, z) ∧ S(z, w, u) ∧ R(u, v, x)

∧ T(x, y, z, w, u) }

x y z

w

u

v

x, y, z, w, u

x, y, z z, w, u x, v, u

T(x, y, z, w, u)

R(x, y, z) S(z, w, u) R(u, v, x)

Join tree of CQ q



We can use join trees to design 
efficient algorithms for CQ evaluation.



The Semi-join Operation ⋉

R ⋉ S := π𝖺𝗍𝗍𝗋(R)(R ⋈ S)
Instead of creating the combined tuples as in a join, 

a semi-join only keeps the rows in  that have a join partner in R S

A B C

3 2 5

6 7 9

5 5 5

B C D

1 9 1

2 5 3

5 5 1

1 3 2

⋉ =
A B C

3 2 5

6 7 9

5 5 5



The Semi-join Operation ⋉

Unlike a join, a semi-join cannot create larger relations: 
 

In fact, we can compute any semi-join in  
 time, where .

|R ⋉ S | ≤ |R |

O(n log n) n = |R | + |S |

R ⋉ S := π𝖺𝗍𝗍𝗋(R)(R ⋈ S)
Instead of creating the combined tuples as in a join, 

a semi-join only keeps the rows in  that have a join partner in R S

Show this in a  theory exercise!



Yannakakis’ Algorithm

Let  be a join tree of a CQ  and root it arbitrarily. 
Given a database  we can decide  as follows: 

1. Assign to each node labeled with atom  the relation  
(and rename columns according to the variables in the respective atom). 
We write  for the relation associated to node . 

2. In a bottom-up traversal: update  to ⋉  ⋉  ⋉   

where  are the children of  

3. At the end, for the root  we have  if and only if .

(T, λ) q
D q(D) ≠ ∅

A(x̄) AD

rel(N) n

rel(n) (rel(n) rel(c1)) ⋯ rel(cℓ)
c1, …, cℓ n

r rel(r) ≠ ∅ q(D) ≠ ∅



Illustration of Yannakakis’ Algorithm

y
z v y, v, z

y, v v, z y, z

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)



Illustration of Yannakakis’ Algorithm

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)
v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

1. Assign to each node labeled with 
atom  the relation  

(and rename columns according to 
the variables in the respective 

atom). 
We write  for the relation 

associated to node .

A(x̄) AD

rel(N)
n



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal: 
update  to ⋉ 

 ⋉  ⋉   

where  are the 

children of 

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal: 
update  to ⋉ 

 ⋉  ⋉   

where  are the 

children of 

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉
✔

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal: 
update  to ⋉ 

 ⋉  ⋉   

where  are the 

children of 

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉
✔

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal: 
update  to ⋉ 

 ⋉  ⋉   

where  are the 

children of 

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉
✔

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal: 
update  to ⋉ 

 ⋉  ⋉   

where  are the 

children of 

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉❌

No join partner 
Row is deleted  
by semi.join

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal: 
update  to ⋉ 

 ⋉  ⋉   

where  are the 

children of 

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal: 
update  to ⋉ 

 ⋉  ⋉   

where  are the 

children of 

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

✔



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal: 
update  to ⋉ 

 ⋉  ⋉   

where  are the 

children of 

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

❌



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal: 
update  to ⋉ 

 ⋉  ⋉   

where  are the 

children of 

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

❌



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

2. In a bottom-up traversal: 
update  to ⋉ 

 ⋉  ⋉   

where  are the 

children of 

rel(n) (rel(n)
rel(c1)) ⋯ rel(cℓ)

c1, …, cℓ
n

⋉

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)

❌



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

3. At the end, for the root  we 
have  if and only if 

.

r
rel(r) ≠ ∅

q(D) ≠ ∅

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)  and 
therefore the query 
has no answers!

rel(n1) = ∅



Illustration of Yannakakis’ Algorithm

v y z
3 1 2
3 3 4
7 2 1
5 9 0

y v
1 3
3 2
3 3
2 7

v z
1 3
3 2
3 3
2 7

z y
1 2
2 3
4 3
0 9

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z)  and 
therefore the query 
has no answers!

rel(n1) = ∅

How much did it cost to run the algorithm? 

 many semi-joins. 
Semi-joins each require  time. 

In general: . A big  
improvement over NP.

Atoms(q) − 1
O(n log n)

Õ( |Atoms(q) | ⋅ |D | )



Beyond -Acyclicityα

[1] Bonifati, Angela, Wim Martens, and Thomas Timm. 
"An analytical study of large SPARQL query logs.” 
https://www.vldb.org/pvldb/vol11/p149-bonifati.pdf

Explore more in a  literature exercise!

In most real-world settings the vast majority of 
queries are -acyclic. A large study [1] of over 56mio 
unique SPARQL queries (a graph query language)  
found that over 99.9% of queries were acyclic.

α

However, cyclic queries do come up, and we would like to 
know if we can do something like Yannakakis’ algorithm 
for those queries. This has lead to the development of 
hypertree decompositions and related notions. They 
generalize what we’ve seen here beyond acyclicity!



A Glimpse Beyond

✦ The connection between structure 
and complexity has been an active 
research topic over the last decades. 

✦ There is a rich theory generalising the 
concept of -acyclicity to not only 
identify linear time queries.

α

Hypertree Width

Treewidth

Generalised 
Hypertree Width

Fractional 
Hypertree Width

Submodular Width

Recognisable 
in polynomial time

Polynomial time 
CQ Answering

FPT CQ Answering

Not FPT

-Acyclicα



Enumerating Answers



Efficient decision is nice, but what 
if we want to get the answers?



Enumeration

✦ For enumeration, quantification of variables will matter again. 

✦ We will focus on the special case of full CQs, i.e., queries where no variables are 
existentially quantified. 

Example full CQ

q = { (v, x, y, z) ∣ R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v) }



Yannakakis’ Algorithm — for Enumeration

Let  be a join tree of a CQ  and root it arbitrarily. 
Given a database  we can decide  as follows: 

1. Assign to  to each node  as before. 

2. In a bottom-up traversal: update  to ⋉  ⋉  ⋉   

where  are the children of . 

3. In a top-down traversal: update  to ⋉  

where  is the parent of . 

4. Every tuple left after this process will be part of an output, 
we can collect them one by one in a final bottom-up process.

(T, λ) q
D q(D) ≠ ∅

rel(n) n

rel(n) (rel(n) rel(c1)) ⋯ rel(cℓ)
c1, …, cℓ n

rel(n) (rel(n) rel(p))
p n



Example

q = { (v, x, y, z) ∣ R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v) }

y
z v x

y, v, z

y, v v, z y, z

x, v



Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

z y
3 2
7 3
3 7
7 7

rel(n4) = SD

rel(n1) = TD

rel(n3) = RDrel(n2) = RD

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

x v
1 1
3 1
3 2
9 7

rel(n5) = PD
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4. All tuples that are left-over are 
part of a solution. Joining the 
tables now creates no  
intermediate results that are not 
part of the output.

R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v)

z y
3 2
7 3
3 7
7 7



Illustration of Yannakakis’ Algorithm

v y z
2 7 3
2 7 7
1 2 3
2 3 1

y v
1 3
7 2
2 1
2 7

v z
1 3
7 2
2 1
2 7

x v
1 1
3 1
3 2
9 7

z y
3 2
7 3
3 7
7 7

Answers :q(D)

v x y z

2 3 7 7

1 3 2 3

1 1 2 3



How Efficient is This?

After both semi-join phases of Yannakakis’ Algorithm, we are left only with 
tuples that are part of answers. That means that no unnecessary effort is 
performed if we now join the left-over tuples to compute the answer in 
time  for a fixed -acyclic query. 

However, with our tree structure we can do something more refined. We 
can enumerate the answers with small delay between answers. That is, 
the algorithm produces tuples one after another, where the time between 
outputting each tuple does not depend on the database.

Õ( |D | + |q(D) | ) α

Explore more in a  literature exercise!



Quantification Matters

Consider a version of our example query with existential quantification: 

q = { (x, z) ∣ ∃vy R(v, z) ∧ S(z, y) ∧ R(y, v) ∧ T(v, y, z) ∧ P(x, v) }

y, v, z

y, v v, z y, z

x, v

When collecting the final answers, 
we need to create intermediate results 
that extend to  to connect the two parts 
of the join tree that contain the output variables.

y, v



Quantification Matters

Let’s simplify our example to see how this can break the linear behaviour of Yannakakis. 

q = { (u, z) ∣ ∃vxy T(u, v) ∧ R(v, x) ∧ S(x, y) ∧ R(z, y)}

x, y

v, x y, zu, v



v x

1 0

2 0

… 0

n 0

Assume these relations after the semi-join phase

x y

0 0

u v

a 1

a 2

a ..

a n

z y

1 0

2 0

… 0

n 0



v x

1 0

2 0

… 0

n 0

To see which assignments to  and  work together, 
we need to compute joins over variables that are unrelated 
to the output.

u z

x y

0 0

z y

1 0

2 0

… 0

n 0

Joining these three tables creates a relation 
of size !n2

u v

a 1

a 2

a ..

a n



v x

1 0

2 0

… 0

n 0

The actual result tuples are: .  
Meaning , but creating the joins requires  time! 
The time bound  doesn’t hold 
even though the query is -acyclic!

(a,1), (a,2), …, (a, n)
|q(D) | = n Θ(n2)

Õ( |D | + |q(D) | )
α

x y

0 0

z y

1 0

2 0

… 0

n 0

Joining these three tables creates a relation 
of size !n2

u v

a 1

a 2

a ..

a n



Quantification Details

✦ We can obtain the same guarantees (and in particular constant-delay enumeration) only 
on a limited number of -acyclic CQs when there is existential quantification! 

✦ Intuitively, this requires the part of the join tree that contains the output variables to be 
connected:

α

With  as output: Nou, z
x, y

v, x y, zu, v

T(u, v) ∧ R(v, x) ∧ S(x, y) ∧ R(z, y)
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α

With  as output: Yes!x, y
x, y

v, x y, zu, v

T(u, v) ∧ R(v, x) ∧ S(x, y) ∧ R(z, y)



Quantification Details

✦ We can obtain the same guarantees (and in particular constant-delay enumeration) only 
on a limited number of -acyclic CQs when there is existential quantification! 
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With  as output: Yes!x, y
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Summary

✦ CQs are the core element of many data retrieval tasks. 

✦ Unlike FO/RA queries, we can decide containment, equivalence and 
even minimality of CQs. 

✦ Answering CQs is NP-complete, but acyclic queries can always be 
answered efficiently —> Structure of CQs is a key factor in their 
complexity. 

✦ Yannakakis’ Algorithm! 

✦ Enumeration or counting versions bring their own challenges with them 
like quantification and more fine-grained notions of complexity.


