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Abstract

In recent years the research field of argumentation has become a major topic in the study
of artificial intelligence (AI). This is not only due to recent applications such as legal
reasoning and medicine, but also because of fundamental connections to other areas of
AI research such as nonmonotonic reasoning. AI and automated reasoning can be helpful
to various tasks within the argumentation process, but the focus of this work is on the
evaluation of the acceptability of conflicting arguments. The most prominent approach to
this problem is the formal model of abstract argumentation frameworks (AFs) introduced
by Dung. An AF is a directed graph where nodes represent arguments and directed edges
represent conflicts between arguments. Conditions for the acceptability of arguments are
given by argumentation semantics. Several semantics have been defined over the years.
The central question, given an AF, is which sets of arguments (so-called extensions) can
be jointly accepted under a certain semantics.

While Dung’s argumentation frameworks enjoyed and still enjoy great popularity, their
conceptual simplicity also imposes certain limitations, which has led to a considerable
number of generalizations of Dung’s AFs. In particular, abstract dialectical frameworks
(ADFs) constitute a very powerful generalization of AFs by additionally assigning to each
argument an acceptance condition in the form of a propositional formula.

In this work we contribute to the advancement of the study of abstract argumentation
by addressing aspects of expressiveness and dynamics of argumentation semantics in
AFs as well as in ADFs. In terms of expressiveness we first complement recent work
on realizability in AFs. Moreover, we investigate the role of arguments that do not
appear in any extension, so-called rejected arguments, and study the induced class of
compact argumentation frameworks. We give full pictures of the relations between
the compact AF classes and between the expressiveness of the various semantics when
restricted to compact AFs. Then, we lift the study of expressiveness to the concept of
input-output AFs and give, for the major semantics, exact characterizations of functions
which are realizable in this setting. Finally, we present a unifying algorithmic approach
to realizability capturing AFs and ADFs as well as intermediate formalisms in a modular
way, which is also implemented in answer set programming. These results not only
contribute to the systematic comparison of semantics, but can also provide the theoretical
basis for the advancement of solving techniques for problems in argumentation.

ix



Taking into account the dynamic nature of argumentation, we study two central issues
therein: revision and splitting. For revision we apply the seminal AGM theory of belief
change to argumentation. We are the first to present a representation theorem for revision
operators which guarantee to result in a single framework. For AFs we give a generic
solution which applies to many prominent semantics. For ADFs we study revision under
preferred and admissible semantics as well as a novel hybrid approach. We also present
concrete belief change operators and analyze their computational complexity. Finally,
we study splitting of ADFs, aiming for optimization of computation by incremental
computation of semantics. We provide suitable techniques for directional splitting under
all standard semantics of ADFs as well as for general splitting under selected semantics.



Kurzfassung

Die Argumentationstheorie hat sich in den vergangenen Jahren als eines der zentralen
Themen auf dem Gebiet der Künstlichen Intelligenz (KI) etabliert. Dies ist nicht nur
auf jüngste Anwendungen im Rechtswesen oder in der Medizin, sondern auch auf grund-
legende Überschneidungen mit anderen Gebieten der KI-Forschung, wie zum Beispiel
dem Nichtmonotonen Schließen, zurückzuführen. Während durch KI und automatisiertes
Schließen verschiedene Aspekte des Argumentationsprozesses unterstützt werden können,
liegt das Hauptaugenmerk dieser Arbeit auf der Evaluierung in Konflikt stehender Ar-
gumente. Die von Dung eingeführten abstract argumentation frameworks (AFs) stellen
hierfür das am weitesten verbreitete formale Modell dar. Ein AF ist ein gerichteter Graph,
dessen Knoten Argumente repräsentieren und dessen gerichtete Kanten Konflikte zwischen
Argumenten darstellen. Argumentationssemantiken, derer viele in den letzten Jahren
eingeführt wurden, beschreiben die Bedingungen für die Akzeptanz von Argumenten. Für
ein gegebenes AF lautet die zentrale Frage, welche Mengen von Argumenten (sogenannte
extensions) in Bezug auf eine Semantik gemeinsam akzeptiert werden können.

Auch wenn sich Dungs AFs anhaltender Popularität erfreuen, führt ihr konzeptioneller
Minimalismus zu gewissen Einschränkungen, was zu zahlreichen Versuchen, diese zu
erweitern, geführt hat. Eine sehr mächtige Generalisierung von AFs stellen abstract dia-
lectical frameworks (ADFs) dar, in welchen jedes Argument um eine Akzeptanzbedingung
in Form einer aussagenlogischen Formel erweitert wird.

In dieser Arbeit leisten wir einen Beitrag zur Weiterentwicklung der Abstrakten Ar-
gumentationstheorie, indem wir uns mit Aspekten der Ausdrucksstärke und Dynamik
von Argumentationssemantiken, sowohl für AFs als auch für ADFs, beschäftigen. Im
Bereich der Ausdrucksstärke ergänzen wir zuerst jüngste Resultate zu realizability in AFs.
Weiters untersuchen wir die Rolle von Argumenten, die in keiner extension vorkommen,
sogenannter rejected arguments, und studieren die sich dadurch ergebenden Klassen
von compact argumentation frameworks. Wir präsentieren einen vollständigen Überblick
der Beziehungen zwischen den compact-AF -Klassen sowie zwischen der Ausdrucksstär-
ke verschiedener Semantiken in diesen Klassen. Danach wenden wir die Untersuchung
der Ausdrucksstärke auf die sogenannten input-output AFs an und präsentieren exakte
Charakterisierungen der darin realisierbaren Funktionen. Schlussendlich beschreiben
wir einen algorithmischen Ansatz für das realizability-Problem, der auf modulare Art
und Weise AFs, ADFs, sowie dazwischenliegende Formalismen abdeckt. Eine Implemen-
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tierung in answer set programming ist verfügbar. All diese Resultate tragen nicht nur
zur systematischen Analyse der verschiedenen Semantiken bei, sondern können auch
als theoretische Basis für die Weiterentwicklung von Softwaresystemen zur Lösung von
Argumentationsproblemen dienen.

Unter Berücksichtigung des dynamischen Charakters von Argumentation beschäftigen wir
uns mit zwei dafür maßgeblichen Aspekten: revision und splitting. Im Bereich von revision
wenden wir die als Standard etablierte AGM-Theorie für belief change auf die Argumen-
tationstheorie an. In dieser Arbeit zeigen wir erstmals ein Repräsentationstheorem für
revision operators, welche nur ein AF bzw. ADF als Resultat liefern. Für AFs präsentieren
wir eine generische Lösung, die auf viele Standardsemantiken angewandt werden kann.
Für ADFs untersuchen wir revision für die preferred und admissible Semantik sowie einen
hybriden Ansatz. Weiters präsentieren wir konkrete revision operators und untersuchen
deren Komplexität. Schließlich untersuchen wir splitting für ADFs, mit dem Ziel eine
Optimierung durch inkrementelle Berechnung der Semantiken zu erreichen. Wir erzielen
positive Resultate für directional splitting für alle Standardsemantiken, sowie für general
splitting für ausgewählte Semantiken.
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CHAPTER 1
Introduction

1.1 Setting the Stage
The study of argumentation and its role in human reasoning lies in the intersection of
disciplines such as philosophy, logic, and legal reasoning. It is “concerned with how
assertions are proposed, discussed, and resolved in the context of issues upon which
several diverging opinions may be held” [33]. In particular, argumentation has become
an important subfield of artificial intelligence (AI) [177, 39]. This is not only due to the
intrinsic interest of this topic and recent applications, but also because of fundamental
connections to other areas of AI research, in particular knowledge representation [35],
multi-agent systems [152], and nonmonotonic reasoning [94]. Computational models of
argumentation aim to provide methods for automated reasoning within the argumentation
process. Among other things that can be concerned with the identification of arguments
and their interrelations, the distinction of legitimate from invalid arguments, the resolution
of conflicts between arguments, and, based on these tasks, also with drawing conclusions
from the arguments. Applications lie in the fields of legal reasoning [34], medicine [137],
decision support [6], and case-based reasoning [79].

As an illustrative example of argumentation and its connection to artificial intelligence
we consider an imaginary discussion about the legitimacy of awarding the Nobel Prize
in literature to the musician Bob Dylan (which has indeed been the case in 2016). The
arguments brought forward during this discussion are listed in Table 1.1. Someone
could come up with argument a, supporting the decision of the Nobel Committee. As
a counterargument, the statement b, challenging the superiority of Dylan’s songwriting
could be brought forward. Statements c and d are uttered in order to defend a by
attacking the argument b. Seemingly unrelated to this stream of arguments, someone
might come up with the traditionalist argument e, conflicting with argument a. AI can
support the analysis and resolution of this argumentative dialogue in various steps. First,
assuming the dialogue is given in natural language, argument mining techniques can be

1



1. Introduction

Table 1.1: Statements from an imaginary discussion about Bob Dylan and the Nobel
Prize.

a Bob Dylan is the greatest songwriter of the 20th century, therefore he deserves
the Nobel Prize.

b The Beatles had better songs.

c The Beatles consisted of four people.

d The Beatles didn’t write anything close to “It’s Alright, Ma (I’m Only Bleeding)”.

e The Nobel price for literature should be reserved for writers, therefore Dylan
should not get the Nobel price.

employed to extract the arguments from the text (see e.g. [59]). Then, the identification
of conflicts between arguments, e.g. in the form of rebuts and undercuts [172] has to
make use of the structure of arguments [173]. Based on these conflicts, coherent positions,
i.e. sets of jointly acceptable arguments can be identified in an automated way. From
these, conclusions on the original issue of the argumentation dialogue can be drawn.

The argumentation process can therefore be structured into the following steps [63]:

1. Identify and construct arguments from a knowledge base.

2. Determine the conflicts among the arguments.

3. Evaluate the acceptability of the different arguments.

4. Conclude or identify the justified conclusions.

For the steps (1) and (2) various approaches can be found in the literature. They
are concerned with instantiating argumentation systems from possibly inconsistent
knowledge bases. Among them we mention deductive argumentation [38], assumption-
based argumentation (ABA+) [47, 79], ASPIC+ [155], and extended defeasible logic
programming (E-DeLP) [72]. In order to (3) evaluate the acceptability of arguments,
all of these approaches then abstract away from the inner structure of arguments. The
evaluation of these abstract argumentation systems is where the focus of this thesis lies
in.

The by far most prominent approach for the formalization of abstract arguments and
their relations are (abstract) argumentation frameworks, AFs for short, as introduced
by Dung [94]. An AF is composed of a set of abstract arguments and a directed
conflict relation among these arguments, containing the attacks. The instantiation of
the discussion in Table 1.1 could contain the arguments a, b, c, d, and e (in this case
coinciding with the statements, which is not necessarily the case) and attacks from b to

2



1.1. Setting the Stage

c

d

b a e

Figure 1.1: The AF modeling the discussion from Table 1.1.

a, c to b, d to b, as well as a mutual attack between a and e. We use the fact that AFs
are conceptually directed graphs for their depiction. Figure 1.1 shows the AF described
by representing arguments by nodes and attacks by directed edges.

The evaluation of AFs is concerned with conflict resolution, i.e. finding (maximal) sets of
jointly acceptable arguments, so-called extensions. Different conditions that make a set
of arguments acceptable are captured by different argumentation semantics. The most
basic concept underlying nearly all semantics is conflict-freeness: a set of arguments is
conflict-free (an extension under conflict-free semantics) if there is no attack between
any two arguments of the set. Extensions under the naive semantics are then these
conflict-free sets which are maximal with respect to set inclusion. Considering the AF
depicted in Figure 1.1, the naive extensions are given by {a, c, d}, {b, e}, and {c, d, e}.
Another prominent semantics is the stable semantics, which, besides conflict-freeness,
requires a set of arguments to attack all arguments not contained in the set. Again
considering the AF from Figure 1.1, we see that the stable extensions indeed differ from
the naive extensions. The stable extensions are {a, c, d} and {c, d, e}, both having no
attack among members and attacking all “outside” arguments, i.e. {b, e} and {a, b},
respectively. The naive extension {b, e}, however, is not stable since it fails to attack c
and d.

Following the original semantics introduced by Dung [94], i.e. conflict-free, admissible,
complete, grounded, stable, and preferred semantics, a wealth of alternative semantics
have been proposed in the literature [196, 65, 95, 16, 64, 61, 13, 106]. Subsequently, the
choice of semantics was often based on the desired treatment of particular examples. In
order to get more insights on the distinctive features of the different semantics available,
a systematic comparison of semantics under various aspects has been initiated and
is still in progress. Most notably, the work by Baroni and Giacomin [11] provided a
comprehensive account of argumentation semantics by introducing certain principles
and studying their fulfillment by the different semantics. Moreover, the computational
complexity of reasoning tasks under semantics was studied [97, 105], showing remarkable
differences between semantics. Other aspects in the analysis of semantics involve the
characterization of semantics by means of equations [37] or the fulfillment of rationality
postulates [63]. Finally, the work on realizability [146, 99] analyzes the capabilities of
semantics to express certain outcomes in terms of sets of extensions. This will be the
basis for the first part of this work.

Due to the fact that AFs increasingly become the centerpiece of advanced higher-level
argumentation systems, there is a growing interest in efficient solving techniques for

3



1. Introduction

reasoning tasks within AFs. This is also witnessed by 18 software systems participating
in the first solver competition1 [192] and the second edition being conducted at the
time of writing [124]. As the reasoning problems involved are, in general, intractable,
advanced algorithms are required to cope with real-world-sized data within reasonable
performance. A recent survey on solving methods for AFs [71] distinguishes between
reduction approaches and direct approaches. Reduction approaches translate problem
instances into instances of problems of other formalisms in order to exploit existing
sophisticated software. Target formalisms of existing solvers are among Boolean sat-
isfiability (SAT) [36, 104, 69], constraint satisfaction (CSP) [42, 43], and answer set
programming (ASP) [113, 122]. Direct approaches (see [162] for an example), on the
other hand, implement genuine algorithms for the respective reasoning tasks. While the
results of the first competition saw mainly reduction approaches in the top positions,
a recent in-depth analysis [70] suggests that also existing direct approaches are most
efficient in certain domains. It is one of the objectives of this work to provide theoretical
basics for the advancement of such direct solving techniques.

Despite currently available systems work on static instances of abstract argumentation
frameworks, argumentation is an inherently dynamic process. Therefore recent years
have seen an increasing number of studies on different problems in the dynamics of
argumentation frameworks. These works deal with enforcement [23, 20, 24, 21, 41, 78, 198],
i.e. the question of whether and how to make sure that certain sets of arguments become
extensions, variants thereof [142, 161], different forms of specific syntactic change [40, 68],
AGM-style revision [76, 77, 25, 83], logical frameworks to express change [51, 93], and other
topics [45, 164, 178, 179]. All these works consider scenarios where the argumentation
framework under consideration is undergoing some change. This can be of syntactic
and semantic form (intervention and observation according to Rienstra [178]). In the
former case new arguments or attacks are added, e.g. since another point is being made
in a discussion or the instantiated defeasible theory is being extended. Here the main
challenge is of computational nature. Semantic information about the AF before the
change might be beneficial for the computation of semantics of the AF involving the
changes. The latter form of change is concerned with revision of an argumentation
framework due to new information describing (a part of) the desired outcome of the
framework. Here one of the main challenges is the incorporation of this new knowledge
in the argumentation framework, which usually underlies certain constraints such as
minimality of change.

A reason why Dung’s argumentation frameworks enjoyed and still enjoy great popularity
is their conceptual simplicity. This, however, also imposes certain limitations to their abil-
ities to model argumentation scenarios. This is because the relations between arguments
might be more divers than individual attack. For instance, an argument might not be
strong enough to defeat another argument, but need a second argument to jointly defeat
it. Getting back to the discussion in Table 1.1 one could take the stance that neither of

1International Competition on Computational Models of Argumentation (ICCMA) http://
argumentationcompetition.org/
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1.1. Setting the Stage

the statements c and d are strong enough to defend a from b, but both together do the
job – a situation that can not be directly modeled in AFs. Or, one might want to model
support explicitly as a relation between arguments instead of packing it into the (hidden)
structure of arguments. For instance, the argument a from Table 1.1 might be regarded
as two statements a1, “Bob Dylan is the greatest songwriter of the 20th century”, and
a2, “he deserves the Nobel Prize”, with a1 supporting a2. Although this approach of
modeling the structure of arguments as support is often approached with scepticism
(see e.g. [174]), certain scenarios might call for such a treatment. Therefore, since the
publication of [94], a considerable number of generalizations of AFs have been proposed.
These include formalisms that extend AFs by the ability to model preferences [5, 153, 7],
weights [98, 75], collective attacks [158], or recursive attacks [15]. Moreover, AFs have
been enriched by various forms of support [46, 163, 171], for instance in bipolar argu-
mentation frameworks [66, 67]. An overview of AF generalizations has been given in [56].
Moreover, a comprehensive account of intertranslatability between formalisms among the
plethora of generalizations of Dung’s AFs has been presented by Polberg [169, 170].

Among the most powerful generalizations of AFs are abstract dialectical frameworks
(ADFs), first introduced by Brewka and Woltran [53] and further refined in [55]. These
ADFs offer any type of links between arguments: individual attack (as in AFs), collective
attacks (as in SETAFs [158]), and individual and collective support, to name just a few.
This is achieved by associating each argument with a so-called acceptance condition. The
actual relationship between arguments is then specified by these acceptance conditions,
usually in the form of propositional formulas. For instance, the acceptance condition of
an argument receiving several individual attacks would be the conjunction of negated
atoms, one for each argument. Or, if two arguments c and d jointly defeat argument b,
then acceptance condition of b would be ¬(c ∧ d). By providing such a flexible way of
modeling relations between arguments, ADFs unify several of the different approaches
mentioned before. In particular, they generalize AFs in a principled and systematic way.
The semantics of ADFs [185] have shown to be proper generalizations of AF semantics,
and are, in general, three-valued, similar to labelling-based semantics of AFs [64]. Within
their brief lifespan ADFs, the “lovechild of AFs and logic programs” [188], have been
employed in several different contexts. These include the instantiation of defeasible
theories [186], applications in legal reasoning [1, 2, 3] as well as text exploration [60], and
connections to other area such as judgement aggregation [48] and causal calculus [44].
The wide range of modeling capacities of ADFs naturally come with the price of increased
complexity [190, 123], with reasoning tasks for ADFs lying one level higher in the
polynomial hierarchy than the corresponding tasks for AFs. This makes efficient solving
even more challenging, but first attempts have already been presented. They are based on
ASP, like DIAMOND [116] and YADF [57], or, as QADF [88, 90], on quantified Boolean
formulas (QBF).

5



1. Introduction

1.2 Contributions
The purpose of this work is to study aspects of expressiveness and dynamics of argu-
mentation formalisms. The main objectives are to get a better understanding of the
particularities of semantics and to provide theoretical foundations for advanced solving
methods. Taking into account the dynamic nature of argumentation, we study two
central issues therein: revision and splitting. For revision we study how one can incor-
porate new information into argumentation framework while following the principle of
minimal change. Splitting is concerned with whether the semantics of argumentation
frameworks can be computed incrementally, in the positive case allowing for optimization
of computation when syntactic change is involved.

We present every main topic of this thesis, i.e. expressiveness, revision, and splitting,
for both AFs and ADFs. The choice of these formalisms is due to the simplicity and
prominence of AFs on the one hand, and the modeling power of ADFs on the other.
We are interested in how the extended capabilities of ADFs compared to AFs affect the
central properties of semantics we study in this work.

Expressiveness. The first major topic is the investigation of the expressiveness of
argumentation formalisms. We do so by studying the signatures, and several variants
thereof, of argumentation formalisms under certain semantics. The signature of a
semantics σ in a formalism F is the collection of all results that can be achieved by
evaluating a knowledge base of F under σ:

Σσ
F = {σ(kb) | kb ∈ F}

Let us, for the moment consider Dung’s AFs as the formalism in question. Then the
aim is to find simple criteria to decide whether a given set of extensions is contained
in the signature of a particular semantics. In other words, one is interested in the
following problem: Given a semantics σ together with a collection of sets of arguments,
S, what characteristics determine if there is any AF whose σ-extensions (i.e. the result of
evaluating the AF under σ) are exactly the sets forming S? These characteristics are
reflected in the results on signatures: thus the above question can be answered yes, if
and only if, S ∈ Σσ

AF.

Studying signatures in AFs has been initiated in [146]. Strass [188] and Pührer [175]
analyzed the expressiveness of ADF under two-valued semantics and three-valued seman-
tics, respectively. In this work we continue this line of work by lifting it to a much more
general setting. We combine the mentioned works into a unifying framework, and at the
same time extend them to formalisms and semantics not considered in the respective
papers: we treat several formalisms, namely AFs, SETAFs, bipolar ADFs, and ADFs,
while the previous works all used different approaches and techniques. This is possible
because all of these formalisms can be seen as subclasses of ADFs that are obtained by
suitably restricting the acceptance conditions. We will present a general algorithm for
deciding realizability for the mentioned formalisms under standard semantics: that is the
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decision problem, for formalism F and semantics σ, if a given set of interpretations is
contained in the signature of F under σ.

Our results on realizability thus can be used in the following two ways, given a set of
interpretations V :

(i) if V ∈ Σσ
F , then there is at least one instance of F which as V as results of the

evaluation under σ;

(ii) if V /∈ Σσ
F , then there is no instance of F whose σ-results are exactly V . Thus,

for every kb ∈ F either there is some v ∈ V for which v /∈ σ(kb) or there is some
v ∈ σ(kb) for which v /∈ V .

First, these results are important for constructing AFs. Indeed, knowing whether a set
of interpretations V is contained in Σσ

F is a necessary condition which should be checked
before actually looking for an F -framework kb which realizes V under σ, i.e. σ(kb) = V .

This is of high importance when dynamic aspects of argumentation are considered, details
of which will be become clearer in a few pages. As an example, suppose an ADF D
possesses as its σ-interpretations a set V and one asks for an adaptation of the framework
D such that its σ-interpretation are given by V ∪ {v}, i.e. one interpretation is to be
added. The addition of v to V may, for instance, be desired by some agent on the grounds
that v contains a valuation of arguments which it wishes to be believed by other agents.
Before considering the adapted framework’s structure, it is obviously crucial to know
whether an appropriate framework exists at all, i.e. whether V ∪ {v} ∈ Σσ

ADF.

Second, these results add to the systematic comparison of semantics, even between
formalisms, by means of different properties. So far such properties have been limited
to AFs and largely focused on aspects of single extensions S ∈ S rather than on sets
of such. Furthermore, our results add to the growing body of work considering generic
treatments of argumentation semantics, that is with respect to shared properties rather
than from the perspective of distinguishing features. For instance, we show that most
semantics σ, both in AFs and ADFs are closed under intersection of extensions and
interpretations, respectively (more formally, for all F1, F2 ∈ F , there exists an F ∈ F
such that σ(F ) = σ(F1) ∩ σ(F2), whenever σ(F1) ∩ σ(F2) 6= ∅).

Besides the uniform approach for deciding realizability in AFs, SETAFs and (bipolar)
ADFs, we conduct a more fine-grained analysis of expressiveness of AFs. In particular,
we study the role of rejected arguments, i.e. arguments in a given AF that do not
appear in any extension. In order to have a handle for analyzing the effect of rejected
arguments, we introduce the class of compact argumentation frameworks: an AF is
compact (with respect to a semantics σ), if each of its arguments appears in at least
one σ-extension. Consider again the AF in Figure 1.1, call it F , and recall the naive
extensions of F : nai(F ) = {{a, c, d}, {c, d, e}, {b, e}}. Every argument of F occurring
in at least one naive extension means that no argument is rejected with respect to
naive semantics and therefore F is compact for nai. On the other hand, recall that
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stb(F ) = {{a, c, d}, {c, d, e}}. Hence b is rejected with respect to stable semantics and F
is not compact for stb.

Although rejected arguments are natural ingredients in typical argumentation scenarios, it
is of interest to understand in which ways rejected arguments contribute to the “strength”
of a particular semantics. In terms of expressiveness, the natural question is whether any
AF F can be transformed to an equivalent AF G, i.e. σ(F ) = σ(G) for a given semantics
σ, that is compact. For naive semantics, it is rather easy to see that any AF can be
transformed into an equivalent compact AF by just removing all self-attacking arguments.
In other words, the same outcome (in terms of the naive extensions) can be achieved by
a simplified AF without rejected arguments. For other semantics, that are considered
more mature, we will see that this transformation is not possible in general. In this case
we can conclude that the full range of expressiveness of σ indeed relies on the concept of
rejected arguments.

By introducing the class of compact AFs, for each semantics σ, we contribute to a
stream of research identifying certain fragments of AFs that show favorable behaviour.
For instance, syntactic subclasses of AFs such as acyclic, symmetric, odd-cycle-free or
bipartite AFs have been considered, as for some of these classes different semantics
collapse [73, 96]. Moreover, there are also several classes defined via properties of
extensions. Most prominent among those subclasses is the class of coherent AFs [97],
i.e. AFs where stable and preferred extensions coincide. Further examples of semantic
subclasses can be found in [12, 104].

A promising application of the results on compact AFs lies in the field of concrete
software systems for computing semantics of AFs. Preprocessing steps that remove
rejected arguments might be beneficial to the runtime of computing the extensions (which
afterwards should however be interpreted in terms of the original AF), as it leads to a
guaranteed reduction of search space. Moreover, if an AF is known to have no rejected
arguments then all of its arguments are contained in at least one extension and so
credulous as well as skeptical reasoning become easy tasks.

As another variant of expressiveness in AFs we study the functional completeness of AF
semantics from an input-output viewpoint. Baroni et al. [17] have shown that an AF
can be viewed as a set of partial interacting sub-frameworks each characterized by its
input-output behavior, i.e. a semantics-dependent function which maps each labelling of
the “input” arguments (the external arguments affecting the sub-framework) into the set
of labellings prescribed for the “output” arguments (the arguments of the sub-framework
affecting the external ones). As it turns out, sub-frameworks with the same input-output
behavior can be safely exchanged under complete, grounded, stable and (under some
mild conditions) preferred semantics. That means that replacing a sub-framework with
an equivalent one does not affect the justification status of the invariant arguments:
semantics of this kind are called transparent in [17].

As a simple example, consider an argumentation framework including a chain of 4
arguments a1, . . . , a4 where for i ∈ {2, 3, 4}, ai−1 attacks ai and ai does not receive
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other attacks, and a1 is unattacked. This chain can be seen as a sub-framework with
input argument a1 and output argument a4, which under any transparent semantics
can be replaced by any even-length chain without affecting the justification status of
the arguments outside the sub-framework. A natural question concerns the expressive
power of transparent semantics in the context of an interacting sub-framework: given
a so-called I/O-specification, i.e. a function describing an input-output behaviour by
mapping extensions (resp. interpretations) to sets of extensions (resp. interpretations), is
there an AF with designated input and output arguments realizing this function under a
given semantics?

While expressiveness from an input-output perspective further contributes to the compar-
ison of semantics, it also motivated by other aspects. First, a functional characterization
provides a common ground for different representations of the same sub-framework,
as in metalevel argumentation [154] where meta-level arguments making claims about
object-level arguments allow for equivalent characterizations of the same framework at
different levels of abstraction. One may also want to translate a different formalism to an
AF or vice versa, e.g. to express a logical system as an AF or provide an argument-free
representation of a given AF for human/computer interaction issues. In all of these cases,
it is important to know whether an input-output behavior is realizable under a given
argumentation semantics. Finally, our results can be of importance in the setting of
strategic argumentation [191], where a player may exploit the fact that for some set of
arguments certain outcomes are achievable (or non achievable) independently of other
arguments. For example, an agent may desire to achieve some goal, i.e. ensure that
a certain argument is justified. Considering arguments brought up by other agents as
input arguments, our results enable the agent to verify whether the goal is achievable
and provide one particular way for the agent to bring up further arguments in order to
succeed.

Dynamics. In the realm of dynamics we study two topics, revision and splitting, where
the first deals with the proper incorporation of change in a semantic form, and the other
mainly aims at optimizing solving techniques to react to syntactic change.

The first problem we address in this work is revising an AF when new, trusted information
is provided. Based on the AGM paradigm in belief change [4, 126], we mean by revision an
operation which incorporates the new information following certain principles (captured
by the AGM postulates) while bringing only minimal change to the original AF.

To the best of our knowledge, the issue was first addressed explicitly by Coste-Marquis
et al. [76]. In their work, AF revision is defined as follows: given a semantics, an AF and
a revision formula encoding desired changes in the status of some arguments, find a set
of AFs satisfying the revision formula, whose extensions are as close as possible to the
extensions of the input AF. Following the AGM approach, rationality postulates for a
revision operator on AFs can be formulated and Coste-Marquis et al. [76] also provide
a representation theorem. Such a result establishes a close link between obeying the
postulates and exploiting a particular type of ranking on extensions of AFs in order to
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compute the output of the revision. This approach is thus similar to the model-based
propositional revision by Katsuno and Mendelzon [141]. Our approach is inspired by the
work of Coste-Marquis et al. [76], with the notable difference that we study AF revision
operators which

• take an AF as the first input and another AF as the second input, and

• produce a single AF as output.

The motivation for this is twofold. First, it is in accordance with standard AGM revision
in fragments, where both the original formula and the revising formula stem from the
same language (see, for example, revision in the Horn fragment [84]). Second, revision
yielding a single AF is not only natural and standard, but also makes concepts of iterated
revision [81, 183] amenable to argumentation. Indeed, for an iterated application of
belief change operations, it is desirable that the input and output are of the same
type. The same point holds for persuasion, where some current state of discourse needs
to be updated such that an agent is convinced to accept a certain argument: it has
been emphasized that modeling persuasion can benefit from applying change operations
in argumentation [136]. Thus, understanding belief change of abstract argumentation
formalisms can pave the way towards a general theory of formal persuasion.

We follow the same principle when studying revision of ADFs. That is, we consider
revising ADFs when new information is provided in the form of an ADF and resulting
again in a single ADF. Due to the three-valued nature of ADF semantics, standard
revision operators from the literature are not directly transferable to ADF revision.
Therefore we define a three-valued version of Dalal’s famous operator [80] and show
that it is meaningful in the sense that it fulfills all postulates. Moreover, we present a
novel approach of combining two semantics, admissible and preferred in this case, when
revising ADFs.

Restricting the output of AF revision operators to a single knowledge base poses significant
challenges, as representation theorems from the propositional belief change literature are
not easily applicable in the new context. We will make use of insights obtained from
studying expressiveness of AF and ADF semantics in order to obtain representation
results for revision.

The other main topic within the dynamics in argumentation, splitting, is concerned with
the question whether, and under which conditions, a semantics of a formalism allow for
incremental computation of its results. The concept was first introduced in the context of
logic programs [145] and then studied for other formalisms, such for AFs by Baumann [19].
In this work we investigate whether ADF semantics are amenable for splitting. We show
that, in a restricted setting called directional splitting, all semantics behave rather nicely
and we obtain conceptually easy splitting results. The general setting turns out to be
more involved; we show valid general splitting techniques for two-valued models and
admissible semantics.
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Splitting is a fundamental principle both from a theoretical and practical point of view.
From a theoretical stance, splitting gives insights on whether local evaluation of a
semantics is possible, even if this is not directly apparent from its definition. On the
practical side, splitting techniques can be useful for solving in two different ways. In a
static setting, computing the semantics incrementally can boost the performance of the
evaluation by dividing one large task into several smaller tasks. In a dynamic setting,
splitting results allow us to recompute only those parts of the knowledge base which have
been affected, when the knowledge base undergoes change and we are interested in the
semantic results.

To summarize, the main contributions of this thesis are as follows:

• We complement the work on realizability in AFs by (i) considering two additional
semantics, complete and resolution-based grounded [16]; (ii) studying certain closure
properties of signatures; (iii) considering quantitative aspects of realizability; and
(iv) clarifying the complexity of realizability.

• Moreover, we consider the subclass of compact AFs and give full pictures of the
relations (i) between the compact AF classes under the various semantics; and
(ii) between signatures of the various semantics when realizability is restricted to
compact AFs.

• Then, for realizability in the input-output setting we characterize all realizable two-
valued I/O-specification for the majority of considered semantics and characterize
all realizable three-valued I/O-specification for preferred and grounded semantics.

• Wrapping up the results on expressiveness, we present a unifying algorithmic
approach to realizability which captures AFs and ADFs as well as the intermediate
formalisms SETAFs and bipolar ADFs. We do so in a modular way which allows
for an extension to other semantics and formalisms.

• We have implemented this approach in answer set programming and used the
implementation to obtain several novel results on the relative expressiveness of the
abovementioned formalisms.

• For revision, we present a representation result for rational revision operators by
rankings of interpretations for the general class of proper I-maximal semantics.

• For revision of ADFs we (i) provide a representation result for revision under
preferred semantics; (ii) show that there is only one rational revision operator for
admissible semantics; and (iii) present, due to unintuitive behaviour discussed for
the former approaches, a hybrid approach to revision of ADFs, combining preferred
and admissible semantics.

• Moreover, we address the complexity of Dalal’s operator for revision of AFs, showing
completeness results up to ΘP

3 .
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• Finally, for splitting of ADFs, we show that all considered semantics are amenable
for directional splitting (i.e. only allowing division between strongly connected
components) in a conceptually elegant way and provide general splitting results for
two-valued models and admissible interpretations.

1.3 Outline

This thesis is organized as follows.

In Section 2 we introduce the basis and basics of our work – the central formalisms of
this work, AFs and ADFs, as well as the methodology with which we analyze them.

In Section 3 we tackle various aspects of expressiveness. After providing some preliminaries
in Section 3.1 we will complement previous work on realizability in AFs in Section 3.2,
study compact AFs and the issue of realizability therein in Section 3.3, and view AFs and
realizability from an input-output perspective in Section 3.4. In Section 3.5 we review
and combine recent work on the realizability in ADFs allowing us to present an unifying
algorithmic approach to realizability in Section 3.6.

In Section 4 we are concerned with revision of argumentation formalisms. We first review
the general approach of AGM belief change in Section 4.1 and then study revision of AFs
capturing a wide range of semantics in Section 4.2. Then we deal with revision of ADFs
in Section 4.3, first for preferred semantics, then for admissible semantics, and finally
introduce a hybrid approach. We study the complexity of Dalal’s revision operator for
AFs in Section 4.4 and discuss some further issues in Section 4.5.

We study splitting in Section 5 by first reviewing previous work on splitting AFs in
Section 5.1 and then presenting splitting results for ADFs in Section 5.2, first directional
splitting and then general splitting.

Finally, in Section 6 we will summarize and conclude the presented results, discuss related
work, and attempt an outlook on future research directions.

1.4 Publications

Most of the results presented in this work have been published. In the following we list
the publications which contain contributions that can also be found in this thesis. We
will point to the relevant references at the beginning of each chapter.
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CHAPTER 2
Background

This chapter introduces the central concepts and notation the remainder of this work
is built upon. We will first, in Section 2.1 give some preliminaries on propositional
logic and order theory and define the kind of objects we will be working with. Then we
will introduce the necessary basics for abstract argumentation frameworks and abstract
dialectical frameworks in Sections 2.2 and 2.3, respectively. Finally, we will briefly review
the necessary background on computational complexity (of AFs) in Section 2.4.

2.1 Logic, Orders, Interpretations

We assume basic knowledge of the syntax and semantics of propositional logic. For a
comprehensive introduction we refer to [118].

For propositional formulas we make use of the standard connectives such as negation
(¬), logical and (∧), logical or (∨), implication (→), and equivalence (↔) and evaluate
formulas with respect to standard semantics of propositional logic. Given a formula ψ
and a set of atoms S, we write S |= ψ if S is a model of ψ, i.e. if ψ evaluates to true
when atoms in S are considered true and all other atoms are considered false. Moreover,
we denote the set of models of ψ by Mod(ψ). Given formulas ψ and µ we write ψ |= µ if
Mod(ψ) ⊆ Mod(µ) and ψ ≡ µ if Mod(ψ) = Mod(µ). For disjoint sets of atoms S1, . . . , Sn
we write ψ(S1, . . . , Sn) if the atoms occurring in ψ coincide with S1 ∪ · · · ∪ Sn. The set
of all propositional formulas over atoms A is given by PA.

A formula is in conjunctive normal form (CNF) if it is of the form
∧
c∈C

∨
x∈c x with

C ⊆ 2A where each c ∈ C is called a clause and each x ∈ c is a literal (i.e. an atom a
or its negation ¬a). We may abbreviate the formula in CNF as

∧
c∈C c. A formula is

in disjunctive normal form (DNF) if it is of the form
∨
d∈D

∧
x∈d x, where each d ∈ C is

called a monom and each x ∈ d is a literal. We may abbreviate the formula in DNF as

15



2. Background

∨
d∈D d. Finally, we denote the syntactic transformation of a formula ψ into an equivalent

formula in CNF (resp. DNF) as cnf(ψ) (resp. dnf(ψ)).

Moreover, we make use of standard mathematical concepts like functions, preorders,
partially ordered sets, and lattices. Given a function f : X 7→ Y we denote the update of
f with a pair (x, y) ∈ X×Y by f |xy : X 7→ Y with f |xy(x) = y, and f |xy(z) = f(z) if z 6= x.
For a function f : X 7→ Y and y ∈ Y , its preimage is f−1(y) = {x ∈ X | f(x) = y}.

Let S be a set. A preorder (on S) is a reflexive, transitive binary relation � ⊆ (S × S).
A (non-strict) partial order (on S) is a preorder on S that is antisymmetric. A preorder
on S is total if a � b or b � a for every a, b ∈ S. Given a preorder � on S, we write
a ≺ b for a, b ∈ S if a � b but b 6� a and a ≈ b for a, b ∈ S if a � b and b � a. A strict
partial order (on S) is a irreflexive, transitive, antisymmetric relation ≺ ⊆ (S × S). The
partial order � associated to the strict partial order ≺ is given by a � b if and only if
a ≺ b or a = b for a, b ∈ S.

A partially ordered set is a pair (S,�) with � a partial order on S. A partially ordered
set (S,�) is

• a complete lattice if and only if every S′ ⊆ S has both a greatest lower bound (glb)d
S′ ∈ S and a least upper bound (lub)

⊔
S′ ∈ S;

• a complete meet-semilattice if and only if every non-empty subset S′ ⊆ S has a
greatest lower bound

d
S′ ∈ S (the meet) and every ascending chain C ⊆ S has a

least upper bound
⊔
C ∈ S.

Throughout this work, we assume a countably infinite domain A of arguments. Unless
stated differently, A ⊆ A is a finite set of arguments. In Sections 2.2 and 2.3 we will
introduce formalisms to model relations between arguments A with the ultimate goal
to obtain a acceptance status of the arguments. Interpretations describe such a status
by assigning one of the three truth values true (t), false (f) or undecided1 (u) to each
statement.

Definition 1. An interpretation (over A) is a mapping v : A 7→ {t, f ,u}. The set of all
interpretations (over A) is denoted by V. The set of all interpretations over S ⊂ A is
denoted by V(S). An interpretation-set is a set of interpretations over the same finite set
of arguments.

When listing sets of interpretations in examples, for the sake of readability we represent
three-valued interpretations by sequences of truth values, tacitly assuming that the
underlying vocabulary is given and has an associated total ordering. For example, for
A = {a, b, c} we represent the interpretation {a 7→ t, b 7→ f , c 7→ u} by the sequence tfu.

In general, interpretations are three-valued. If the truth value u is not assigned we call
them two-valued.

1Sometimes the truth value u is also referred to as unknown.
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Definition 2. An interpretation v is two-valued if v(a) ∈ {t, f} for each a ∈ A. The set
of all two-valued interpretations (over A) is denoted by V2.

We introduce some further notation for interpretations.

Definition 3. Given an interpretation v over A and a truth value x ∈ {t, f ,u}, we refer
to the set of arguments a ∈ A such that v(a) = x as vx = {a ∈ A | v(a) = x}. The
interpretation assigning the same value x ∈ {t, f ,u} to each argument is denoted by
vx : A 7→ {x}. The negation of an interpretation v, denoted by ¬v, is defined such that
(¬v)t = vf , (¬v)f = vt, and (¬v)u = vu.

Definition 4. Given an interpretation v over S ⊆ A and a set S′ ⊂ S, we define v|S′ as
the interpretation over S′ such that v|S′(a) = v(a) for each a ∈ S′. For sets S1, S2 ⊆ A
with S1 ∩ S2 = ∅ and interpretations v1 over S1 and v2 over S2 we denote by v1 ∪ v2 the
interpretation over S1∪S2 such that (v1∪v2)(a) = v1(a) if a ∈ S1 and (v1∪v2)(a) = v2(a)
if a ∈ S2.

Two-valued interpretations v can be used to evaluate propositional formulas ϕ following the
standard semantics of propositional logic. Therefore they assign truth values v(ϕ) 7→ {t, f}
to propositional formulas according to standard evaluation.

The three truth values are partially ordered according to their information content.

Definition 5. The truth values are strictly ordered by <i such that u <i t and u <i f
and no other pair in <i. The information ordering ≤i is the partial order associated to
<i. The information ordering extends to interpretations v1, v2 ∈ V over S ⊆ A in a way
that

v1 ≤i v2 iff v1(a) ≤i v2(a) for all a ∈ S.

We say for two interpretations v1, v2 that v2 extends v1 iff v1 ≤i v2. The set of all
two-valued interpretations that extend a given interpretation v is denoted by [v]2, i.e.

[v]2 = {v′ ∈ V2 | v ≤i v′}.

Intuitively, the information ordering means that the Boolean truth values, t and f , contain
more information than the truth value undecided.

The pair ({t, f ,u},≤i) forms a complete meet-semilattice with the information meet
operation ui. This meet can intuitively be interpreted as consensus and assigns tui t = t,
f ui f = f , and returns u otherwise.

The set V of all interpretations over A forms a complete meet-semilattice (V,≤i) with
respect to the information ordering≤i. The consensus meet operation ui of this semilattice
is given by

v1 ui v2 = v such that v(a) = v1(a) ui v2(a) for all a ∈ A.
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2. Background

The least element of (V,≤i) is the interpretation vu mapping all statements to undecided
– the least informative interpretation. The ≤i-maximal elements of the meet-semilattice
(V,≤i) are the two-valued interpretations V2. For each interpretation v, the elements of
[v]2 form an ≤i-antichain with greatest lower bound v =

d
i[v]2.

Definition 6. Given a set of interpretations V over S ⊆ A, we define max≤i V =
{v ∈ V | @v′ ∈ V : v <i v′}. Moreover, for any truth value x ∈ {t, f ,u}, we define
V x = {vx | v ∈ V }. Finally the restriction of V to S′ ⊆ S is V |S′ = {v|S′ | v ∈ V }.

Example 1. Consider the set of interpretations V = {v1, v2, v3} over A = {a, b, c} with
v1 = tuu, v2 = fuu, and v3 = ftu. Then we have max≤i V = {v1, v3}. Moreover,
V t = {∅, {a}, {b}}, V f = {∅, {a}}, and V u = {{c}, {b, c}}. ♦

We use the following notions to compare interpretations.

Definition 7. Given interpretations v1, v2 ∈ V, we say that v1 and v2 are

• comparable if v1 ≤i v2 or v2 ≤i v1;

• incomparable if they are not comparable;

• compatible if vt
1 ∩ vf

2 = vf
1 ∩ vt

2 = ∅;

• incompatible if they are not compatible.

A set of interpretations V is called (pairwise) incomparable (resp. incompatible) if all
v1, v2 ∈ V with v1 6= v2 are incomparable (resp. incompatible).

Note that if a pair of interpretations is comparable then it is also compatible, while
the reverse does not hold. Conversely, a pair (resp. a set) of interpretations being
incompatible implies that it is incomparable, but not the other way round.

Example 2. Consider the interpretations v1 = tu and v2 = uf over A = {a, b}. It holds
that v1 and v2 are compatible since vt

1 ∩ vf
2 = vf

1 ∩ vt
2 = ∅, but they are incomparable

since neither v1 ≤i v2 nor v2 ≤i v1. Moreover, no set V ⊇ {v1, v2} containing the
interpretations v1 and v2 is incompatible. ♦

Lemma 1. Any set of two-valued interpretations V ⊆ V2 is incompatible.

Proof. Let V ⊆ V2 and v1, v2 ∈ V with v1 6= v2. Since both, v1 and v2, are two-valued,
there must be some a ∈ A with v1(a) = t and v2(a) = f , or v1(a) = f and v2(a) = t.
Hence v1 and v2 are incompatible. As they were chosen arbitrarily we conclude that V is
incompatible.
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2.1. Logic, Orders, Interpretations

On the two classical truth values t and f , we define the truth ordering f <t t. Consequently,
the operations tt and ut are defined as f tt t = t and f ut t = f . These operations
extend to two-valued interpretations as usual, i.e. (v1 tt v2)(a) = v1(a) tt v2(a) and
(v1 ut v2)(a) = v1(a) ut v2(a). Again, the reflexive version of <t is denoted by ≤t. The
pair (V2,≤t) of two-valued interpretations ordered by the truth ordering forms a complete
lattice with glb ut and lub tt. This complete lattice has the least element vf , the
interpretation mapping all arguments to false, and the greatest element vt, mapping all
arguments to true, respectively.

When dealing with interpretations which are two-valued, i.e. assigning only the values
t and f , we will identify an interpretation v just by the arguments which are assigned
t, i.e. by the set S = vt. In particular, we do so when presenting work on abstract
argumentation frameworks (cf. Section 2.2) under extension-based semantics.

For collections of sets of arguments, we define notions for the set of all arguments
occurring in the collections and the set of all pairs of arguments occurring together in
some set. Moreover, we will call such collections extension-sets in the finite case.

Definition 8. Given S ⊆ 2A, we use

• ArgsS to denote
⋃
S∈S S, and

• PairsS to denote {(a, b) | ∃S ∈ S : {a, b} ⊆ S}.

S is called an extension-set (over A) if ArgsS is finite.

While |S| denotes the number of extensions in S, ‖S‖ stands for |ArgsS|. The restriction
of S to some T ⊆ ArgsS is given by {S ∩ T | S ∈ S}.

The remaining definitions recall properties of extension-sets presented in [146].

Definition 9. Let S ⊆ 2A. The downward-closure, dcl(S), of S is given by {S′ ⊆ S | S ∈
S}. We call S

• downward-closed if S = dcl(S), and

• incomparable if all elements S ∈ S are pairwise incomparable, i.e. for each S, S′ ∈ S,
S ⊆ S′ implies S = S′.

Note that the notion of incomparability is defined both for sets of interpretations and
for sets of sets of arguments. However, there is no one-to-one correspondence, as sets of
arguments do not necessarily have a distinct corresponding interpretation.

Definition 10. An extension-set S ⊆ 2A is tight if for all S ∈ S and a ∈ ArgsS it holds
that if S ∪ {a} /∈ S then there exists an s ∈ S such that (a, s) /∈ PairsS.
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2. Background

Definition 11. A set S ⊆ 2A is called conflict-sensitive2 if for each A,B ∈ S such that
A ∪B /∈ S it holds that ∃a, b ∈ A ∪B : (a, b) /∈ PairsS.

2.2 Abstract Argumentation Frameworks
In this section we recall the basic definitions of abstract argumentation frameworks
(AFs) [94] as well as subsequent work on argumentation semantics such as [196, 65, 95,
16, 64]. For an excellent overview on argumentation semantics we refer to [14].

Definition 12. An (abstract) argumentation framework (AF) is a pair F = (A,R) where
A ⊆ A is a finite set of arguments and R ⊆ A×A is the attack relation. The collection
of all AFs over A is given by AFA.

Let F = (B,Q) be an AF. We use AF to refer to B and RF to refer to Q. Moreover, we
write a →F b, and say that a attacks b, if (a, b) ∈ RF ; for S ⊆ AF , we write S →F a
(resp. a→F S), and say that S attacks a (resp. a attacks S), if there exists some s ∈ S
such that s →F a (resp. a →F s). Moreover, we will occasionally denote symmetric
attacks (a, b), (b, a) ∈ RF as 〈a, b〉 ∈ RF .

Definition 13. Given an AF F ∈ AFA and a set of arguments S ⊆ AF , the range of S
(in F ) is defined as S+

F = S ∪ {a | S →F a}.

Definition 14. Given an AF F ∈ AFA, an argument a ∈ AF is defended (in F ) by a
set S ⊆ AF (or, S defends a) if for each b ∈ AF such that b→F a, also S →F b. A set of
arguments T ⊆ AF is defended (in F ) by S if each a ∈ T is defended by S (in F ).

We will make use of the following observation.

Lemma 2 ([102]). Given an AF F = (A,R) and two sets of arguments S, T ⊆ A. If S
defends itself in F and T defends itself in F , then S ∪ T defends itself in F .

Extension-based semantics of AFs, as defined by Dung [94], map each AF to a set of
two-valued interpretations. We call these interpretations extensions and denote them just
by sets of arguments, containing the arguments which are accepted. That is, a semantics
σ is a function σ : AFA 7→ 22A , where the elements E ∈ σ(F ) are the extensions of F
under σ (or σ-extensions for short).

In the following we introduce the semantics we study in this work. These are conflict-free,
admissible,3 naive, stable, complete, grounded, preferred, semi-stable [65], stage [196],
ideal [95], and resolution-based grounded [16] semantics, which we will abbreviate by cf,

2 An equivalent property was called adm-closed in [146, 101]. In the interest of adequacy to its
content we stick to the term conflict-sensitive.

3In the literature, conflict-freeness and admissibility are often regarded as properties rather than
semantics. We will use the properties, but at the same time treat them as semantics with cf(F ) and
adm(F ) denoting the conflict-free and admissible extensions, respectively.
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2.2. Abstract Argumentation Frameworks

a b c d

e f

g h

Figure 2.1: An argumentation framework.

adm, nai, stb, com, grd, prf, sem, stg, idl, and grd∗, respectively. For a given semantics σ
and an AF F , we denote the set of σ-extensions of F by σ(F ).

Definition 15. Given an AF F ∈ AFA, a set of arguments S ⊆ AF is conflict-free (in
F ), S ∈ cf(F ), if there are no arguments a, b ∈ S such that (a, b) ∈ RF . A conflict-free
set S ∈ cf(F ) is admissible (in F ), S ∈ adm(F ), if S defends itself.

• S ∈ nai(F ), if S ∈ cf(F ) and there is no T ∈ cf(F ) with T ⊃ S;

• S ∈ stb(F ), if S ∈ cf(F ) and S →F a for all a ∈ AF \ S;

• S ∈ com(F ), if S ∈ adm(F ) and a ∈ S for all a ∈ A defended by S;

• S ∈ grd(F ), if S =
⋂
com(F );

• S ∈ prf(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with T ⊃ S,

• S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with T+
F ⊃ S

+
F ;

• S ∈ stg(F ), if S ∈ cf(F ) and there is no T ∈ cf(F ) with T+
F ⊃ S

+
F ;

• S ∈ idl(F ), if S ∈ adm(F ), S ⊆
⋂
prf(F ) and there is no T ∈ adm(F ) with T ⊃ S

and T ⊆
⋂
prf(F ).

Note that grounded and ideal semantics are unique status semantics since every AF has
exactly one extension under these semantics. All other semantics considered in this work
are multiple status semantics. AFs may have no extensions under stable semantics, while
all other semantics always yield at least one extension.

Example 3. To illustrate the semantics, consider the following AF:

F = ({a, b, c, d, e, f, g, h},
{(a, b), (b, a), (b, c), (c, d), (d, e), (d, g), (e, c), (e, f), (f, f), (g, g), (g, h), (h, g)}).

F is depicted in Figure 2.1, where nodes represent arguments and directed edges represent
attacks. First, the conflict-free sets of F are as follows:

cf(F ) = {∅, {a}, {b}, {c}, {d}, {e}, {h}, {a, c}, {a, d}, {a, e}, {a, h}, {b, d}, {b, e},
{b, h}, {c, h}, {d, h}, {e, h}, {a, c, h}, {a, d, h}, {a, e, h}, {b, d, h}, {b, e, h}}.
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2. Background

Note that no set containing f or g can be conflict-free, since both f and g are self-attacking.
Among the conflict-free sets, the following sets are admissible:

adm(F ) = {∅, {a}, {b}, {h}, {a, h}, {b, d}, {b, h}, {b, d, h}}.

The empty set is always conflict-free and admissible. The conflict-free set {a, d}, for
instance, is not admissible since d is attacked by c in F , but {a, d} does not attack c, i.e.
it does not defend d. The naive extensions are just the ⊂-maximal conflict-free sets:

nai(F ) = {{a, c, h}, {a, d, h}, {a, e, h}, {b, d, h}, {b, e, h}}.

For stable semantics, it can be checked, that there is no conflict-free set of arguments in
F attacking all other arguments, hence

stb(F ) = ∅.

The complete extensions of F are those admissible sets, which do not defend any argument
not contained in the set:

com(F ) = {∅, {a}, {h}, {a, h}, {b, d, h}}.

For instance, the admissible set {b, d} is not complete since it defends h. As no argument
of a is unattacked, the grounded extension is empty:

grd(F ) = {∅}.

The preferred extensions are just the ⊆-maximal admissible sets, which always coincide
with the ⊆-maximal complete extensions:

prf(F ) = {{a, h}, {b, d, h}}.

The semi-stable and stage extensions of F are given as follows:

sem(F ) ={{b, d, h}}
stg(F ) ={{a, e, h}, {b, e, h}, {b, d, h}}

Note that the set of semi-stable extensions are always a subset of the set of preferred
extensions, and likewise for stage and naive. {b, d} is then the only semi-stable extension
of F by {a, h}+F = {a, b, g, h} ⊂ {a, b, c, d, e, g, h} = {b, d, h}+F . Likewise, for instance,
{a, c, h} /∈ stg(F ) since {a, c, h}+F = {a, b, c, d, g, h} ⊂ {a, b, c, d, e, g, h} = {b, d, h}+F .
Finally, {h} =

⋂
prf(F ) and {h} is admissible, hence

idl(F ) = {{h}}.

♦
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a b c d
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g h

Figure 2.2: A resolution of the AF in Figure 2.1.

The family of resolution-based semantics introduced by Baroni et al. [16] is a parametric
approach defined based on the notion of a resolution.4 A resolution results from selecting
exactly one direction for every symmetric attack and removing the attack going in the
other direction.

Definition 16. Given an AF F ∈ AFA, a resolution of F is an AF F ′ with RF ′ ⊆ RF ,
such that each (a, a) ∈ RF is also contained in RF ′ and for each (a, b) ∈ RF with a 6= b
either (a, b) ∈ RF ′ or (b, a) ∈ RF ′ , but not both. We denote the set of all resolutions of
F as γ(F ).

The extensions of an AF F under the resolution-based version of a semantics σ are now
given by the subset-minimal σ-extensions among all σ-extensions of any resolution of F .

Definition 17. Given a semantics σ, the resolution-based σ semantics is given by σ∗
such that, for any AF F ∈ AFA,

• S ∈ σ∗(F ), if S ∈
⋃
F ′∈γ(F ) σ(F ′) and there is no T ∈

⋃
F ′∈γ(F ) σ(F ′) with T ⊂ S.

We will consider the grounded instance of this family of semantics grd∗, which is also the
most prominent one.

Example 4. Consider again the AF F depicted in Figure 2.1. For computing grd∗(F ),
we need to check all resolutions of F . Since there are two symmetric attacks in F , it
has four resolutions. One resolution F ′ ∈ γ(F ) is depicted in Figure 2.2. It holds that
grd(F ′) = {b, d, h}. For the the other resolutions we get the grounded extensions {a},
{a, h}, and {b, d, h}, respectively. We obtain

grd∗(F ) = {{a}, {b, d, h}},

as the resolution-based grounded semantics selects the minimal elements among the
grounded extensions of resolutions. We recall at this place that the resolution-based
grounded semantics obviously is multiple-status. ♦

4We use a slightly different, but equivalent, presentation compared to Baroni et al. [16].
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Figure 2.3: Relations between semantics of AFs.

Further notable semantics not considered in this work include the cf2 [13, 121] and
stage2 [106] (both being instantiations of the SCC-recursive schema for argumenta-
tion semantics [13]), as well as the eager semantics [61] (a parametric version of ideal
semantics [100]), prudent semantics [74] and strongly admissible sets [11, 62].

An alternative definition of most of the semantics from Definition 15 can be given via
the characteristic function [94] of argumentation frameworks.

Definition 18. Given an AF F ∈ AFA, the characteristic function ΓF : 2AF 7→ 2AF is
defined as

ΓF (S) = {a ∈ AF | a is defended by S}.

The original semantics of [94] are then certain fixed points of the characteristic function.

Proposition 1 ([94]). Given an AF F ∈ AFA and a conflict-free set of arguments
S ∈ cf(F ), it holds that

• S ∈ grd(F ) iff S is the least fixed point of ΓF ;

• S ∈ adm(F ) iff S ⊆ ΓF (S);

• S ∈ com(F ) iff S = ΓF (S);

• S ∈ prf(F ) iff S = ΓF (S) and there is no T ∈ cf(F ) with T ⊃ S and T = ΓF (T ).

In particular, this means that we can compute the grounded extension of an AF F in
polynomial time by an algorithm which, starting with the empty set, iteratively applies
the characteristic function until a fixed point is reached.

Proposition 2. In accordance with Figure 2.3, for any AF F ∈ AFA, the following
relations hold:
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2.2. Abstract Argumentation Frameworks

• stb(F ) ⊆ stg(F ) ⊆ nai(F ) ⊆ cf(F );

• stb(F ) ⊆ sem(F ) ⊆ prf(F ) ⊆ com(F ) ⊆ adm(F ) ⊆ cf(F );

• grd(F ) ⊆ com(F );

• idl(F ) ⊆ com(F );

• grd∗(F ) ⊆ com(F ).

For each semantics there is also a three-valued version of the semantics, giving a more
fine-grained view of the acceptance status of arguments. This concept was introduced
by the work on labellings by Caminada and Gabbay [64]. A labelling of an AF is an
assignment of one label among in, out, and undec to each of the arguments. In this
work, however, we identify labellings by three-valued interpretations as introduced in
Section 2.1. Essentially, just the names of the labels change by that. At some points we
will still refer to three-valued interpretations in the AF context as labellings.

As already mentioned there is a labelling-based counterpart to each extension-based
semantics. The following one-to-one-correspondence between extensions and three-valued
interpretations defines the labelling-based semantics. The set of σ-interpretations (or
σ-labellings) of an AF F is denoted by σ3(F ).

Definition 19. Given an AF F ∈ AFA, let S ⊆ AF . The labelling corresponding to S is
called e2l(S) and is defined as (e2l(S))t = S, (e2l(S))f = S+

F \S, and (e2l(S))u = AF \S+
F .

For a semantics σ, its three-valued (or labelling-based) version σ3 is defined such that
E ∈ σ(F ) iff e2l(E) ∈ σ3(F ).

In words, the labelling corresponding to an extension is such that an argument is labelled
in if it is contained in the extension, out if it is attacked by an argument which is
contained in the extension, and undec otherwise.

Caminada and Gabbay [64] define labelling-based semantics independently from the
extension-based ones by giving conditions for arguments to be t, f , and u, respectively.
However, they show a correspondence to extension-based semantics, which gives rise to a
characterization as in Definition 19.

Example 5. Again consider the AF from Figure 2.1. Recall from Example 3 that
prf(F ) = {{a, h}, {b, d, h}}. The interpretations, or labellings, corresponding to {a, h}
and {b, d, h} are

v1 ={a 7→ t, b 7→ f , c 7→ u, d 7→ u, e 7→ u, f 7→ u, g 7→ f , h 7→ t}, and
v2 ={a 7→ f , b 7→ t, c 7→ f , d 7→ t, e 7→ f , f 7→ u, g 7→ f , h 7→ t},

respectively. We write that prf3(F ) = {v1, v2}. ♦

We define a few syntactic operations on AFs.

25



2. Background

Definition 20. Given AFs F, F ′ ∈ AFA and a set of arguments S ⊆ AF , define

• the union of F and F ′, F ∪ F ′ = (AF ∪AF ′ , RF ∪RF ′);

• the restriction of F to S, F |S = (S,RF ∩ (S × S));

• the subtraction of S from F , F − S = (AF \ S,RF ∩ ((AF \ S)× (AF \ S))).

Being syntactically a directed graph, it can be of interest to identify the strongly connected
components (SCCs) of an AF.

Definition 21. Given an AF F ∈ AFA, let %F be the relation defined over AF ×AF such
that %F (a, b) holds iff x = y or there are directed paths from a to b and from b to a in F .
The set of strongly connected components of F is given by SCCs(F ) = {F |[a] | a ∈ A},
where [a] is the equivalence class of a in %F .

In words the SCCs of an AF F are given by the AFs corresponding to the equivalence
classes of the reachability relation %F .5

Finally, certain syntactic subclasses of AFs will be of interest.

Definition 22. An AF F ∈ AFA is

• symmetric if for each (a, b) ∈ RF also (b, a) ∈ RF ;

• self-attack-free if there is no a ∈ AF such that (a, a) ∈ RF ;

AFs with sets of attacking arguments. A straightforward generalization of AFs
was introduced by Nielsen and Parsons [158]. The basic idea of their formalism is that
attacks are not performed by single arguments but by sets of arguments.

Definition 23. A SETAF is a pair S = (A,X) where A is a finite set of arguments and
X ⊆ (2A \ {∅})×A is the (set) attack relation.

A set attack from a set of arguments B to argument a is successful only if all arguments
in B are accepted. Based on this convention, we define what it means for an argument
to be (un)acceptable.

Definition 24. Let S be a SETAF. Given a statement a ∈ A and an interpretation v,
we say that a is acceptable (in S) with respect to v if and only if ∀(B, a) ∈ X∃a′ ∈ B :
v(a′) = f and a is unacceptable (in S) with respect to v if and only if ∃(B, a) ∈ X∀a′ ∈
B : v(a′) = t.

5Note that here we deviate from standard notions in graph theory, where an SCC denotes just the
vertices without the involved edges.
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We define three-valued counterparts of the semantics introduced by Nielsen and Par-
sons [158], following the same conventions as in labelling-based semantics of AFs [64]
and argumentation formalisms in general (cf. Definition 19).

Definition 25. For an interpretation v : A→ {t, f ,u} it holds that

• v ∈ adm3(S) iff for all a ∈ A, a is acceptable wrt. v if v(a) = t and a is unacceptable
wrt. v if v(a) = f ;

• v ∈ com3(S) iff for all a ∈ A, a is acceptable wrt. v iff v(a) = t and a is unacceptable
wrt. v iff v(a) = f ;

• v ∈ prf3(S) iff v is ≤i-maximal admissible;

• v ∈ stb3(S) iff v ∈ adm(F ) and @a ∈ A : v(a) = u.

2.3 Abstract Dialectical Frameworks
In this section we give the basic definitions of abstract dialectical frameworks (ADFs)
as introduced in [53, 55]. A more comprehensive account of ADF semantics and their
origins in approximation fixpoint theory [87] can be found in [185].

We begin with the original notation for ADFs from [53].

Definition 26. An abstract dialectical framework (ADF) is a tuple D = (A,L,C) where

• A ⊆ A is a finite set of arguments,

• L ⊆ A×A,

• C = {Ca}a∈S is a set of total functions Ca : 2parD(a) 7→ {t, f}, the acceptance
condition of a.

For an argument a ∈ A, parD(a) = {b ∈ A | (b, a) ∈ L}.

We will, however, use the following alternative, more compact, notation for ADFs, which
is also common in the literature (see e.g. [175]):

Definition 27. An abstract dialectical framework (ADF) D is a set of tuples {〈a, ϕa〉}a∈A
where A is the set of arguments and ϕa is a propositional formula over A – the acceptance
condition of a. The collection of all ADFs over arguments A is given by ADFA.

It can be seen that these two notions are equivalent. First, the set of links L is implicitly
given by the atoms occurring in the acceptance conditions. That is, whenever argument b
occurs as an atom in the acceptance condition ϕa of argument a, we have that (b, a) ∈ L.
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a

¬a ∨ c

b

a ∧ (c ∨ ¬c)

c

(a ∧ b) ∨ (¬a ∧ ¬b)

Figure 2.4: An abstract dialectical framework.

Second, a propositional formula ϕa is just a compact way of representing the Boolean
function Ca.

For an ADF D, we will occasionally refer to its set of arguments by AD, to its set of
links by LD, and to the acceptance condition of an argument a ∈ AD by ϕDa . Given a set
of arguments S ⊆ AD such that there is no link (b, c) ∈ LD with b ∈ AD ⊆ S and c ∈ S,
D|S denotes the restriction of D to S, i.e. D|S = {〈a, ϕa〉 | a ∈ S}.

Example 6. Consider the ADF

D = {〈a,¬a ∨ c〉, 〈b, a ∧ (c ∨ ¬c)〉, 〈c, (a ∧ b) ∨ (¬a ∧ ¬b)〉}.

The set of links which is implicitly given by the acceptance conditions ϕa, ϕb, and ϕc is
L = {(a, a), (a, b), (a, c), (b, c), (c, a), (c, b)}. The annotated directed graph in Figure 2.4
depicts D. It does so by representing, similarly as for AFs, arguments by nodes and links
by directed edges. The acceptance conditions are written next to the nodes corresponding
to the respective arguments. We will use this graphical representation of ADFs throughout
this work. ♦

While links in ADFs are abstract in the sense that their meaning is determined solely by
the acceptance condition of the arguments, we distinguish certain link types.

Definition 28. Given an ADF D, a link (b, a) ∈ LD is

• supporting (in D) iff for all v ∈ V , we have v(ϕa) = t implies v|bt(ϕa) = t;

• attacking (in D) iff for all v ∈ V , we have v(ϕa) = f implies v|bt(ϕa) = f .

The set of supporting links in D is denoted by sup(D). The set of attacking links in D is
denoted by att(D).
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Intuitively, a link from b to a is supporting if accepting b, and leaving the acceptance
status of all other arguments unchanged, never switches a from being accepted to being
rejected. Likewise, link (b, a) is attacking if acceptance of b never causes a to be accepted,
when it was rejected before. It can be seen there is also the possibility for a link to be
neither supporting nor attacking, called a dependent link, or to be both supporting and
attacking, called a redundant link. The following example illustrates the link types.

Example 7. Again consider the ADF D discussed in Example 6 and depicted in
Figure 2.4. We obtain the following sets of supporting and attacking links:

• sup(D) = {(c, a), (a, b), (c, b)};

• att(D) = {(a, a), (c, b)}.

Observe that the links (a, c) and (b, c) are dependent. Consider, for instance the link
(a, c): for interpretation v1 = {a 7→ f , b 7→ f} we have v1(c) = t, but v1|at(c) = f , hence
(a, c) is not supporting; for interpretation v2 = {a 7→ f , b 7→ t} we have v2(c) = f , but
v2|at(c) = t, hence (a, c) is not attacking. Moreover, the link (c, b) ∈ sup(D) ∩ att(D) is
redundant. As the name suggests, the acceptance status of c has no influence on the
evaluation of ϕb. ♦

Bipolar ADFs are now defined as ADFs which contain only supporting and attacking
links.

Definition 29. A bipolar ADF (BADF) is an ADF D such that sup(D) ∪ att(D) = LD.
It is denoted by (D,LD \ att(D), LD \ sup(D)).

In order to utilize the computational advantages of bipolar ADFs (see [190]) the link
types have to be known, since determining whether a link is supporting (resp. attacking)
is intractable in general. Therefore we explicitly list the links which are not attacking
and the links which are not supporting for bipolar ADFs. The remaining links are then
redundant.

Example 8. Continuing Example 7 by again considering the AF D from Figure 2.4,
we observe that D is not bipolar, since (a, c), (b, c) /∈ sup(D) ∪ att(D). Let us alter
the acceptance condition of c to ϕc = ¬a ∧ ¬b and let D′ denote the newly obtained
ADF . We get sup(D′) = {(c, a), (a, b), (c, b)} and att(D′) = {(a, a), (c, b), (a, c), (b, c)}
and therefore observe that D′ is bipolar. The notation with explicit link types is then
(D′, {(c, a), (a, b)}, {(a, a), (a, c), (b, c)}). ♦

The semantics of ADFs are defined via the characteristic operator Γ over three-valued
interpretations.
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a b c d
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Figure 2.5: ADF D discussed in Example 9.

Definition 30. Given an ADF D and an interpretation v, the characteristic operator
ΓD : V 7→ V is defined as

ΓD(v) = v′ such that v′(a) =
l

w∈[v]2

w(ϕa).

Intuitively, the operator returns, for each argument a, the consensus truth value of the
evaluation of the acceptance formula ϕa under each two-valued interpretation extending
v. It generalizes the characteristic function for AFs (cf. Definition 18).

The semantics of ADFs can now be defined as follows:

Definition 31. Given an ADF D, an interpretation v is

• admissible for D iff v ≤i ΓD(v),

• complete for D iff v = ΓD(v),

• preferred for D iff v is admissible for D and each v′ ∈ V with v <i v
′ is not

admissible for D,

• grounded for D iff v is complete for D and each v′ ∈ V with v′ <i v is not complete
for D,

• a (two-valued) model of D iff v is two-valued and v = ΓD(v),

• a stable model of D iff v is a model of D and vt = wt, where w is the grounded
interpretation of D−v = {〈a, ϕa[x/⊥ : v(x) = f ]〉 | a ∈ vt}.

We denote the admissible, complete, preferred, and grounded interpretations, and two-
valued and stable models, of an ADF D by adm3(D), com3(D), prf3(D), grd3(D),
mod3(D), and stb3(D), respectively. We therefore have counterparts to most of the
AF semantics given in Definition 15, in their three-valued form (cf. Definition 19).

Observe that we denote the (two-valued) models and the stable models of ADFs by mod3
and stb3, respectively, although they are obviously two-valued. We do so in the interest of
uniformity among ADF semantics, for which the candidates are, in general, three-valued
interpretations.

30



2.3. Abstract Dialectical Frameworks

Example 9. Consider the ADF

D = {〈a,¬b〉, 〈b,¬a〉, 〈c,¬b ∧ d〉, 〈d,¬c〉}

depicted in Figure 2.5. Moreover, let

v1 = {a 7→ u, b 7→ u, c 7→ u, d 7→ u}.

Concerning the application of ΓD(v1), observe that we can find, for each acceptance
condition ϕ of D, two-valued interpretations extending v1 under which ϕ evaluates to t
(resp. f ). For instance, consider ϕa = ¬b. For any w1 ∈ [v1]2 such that w1(b) = f we have
that w1(ϕa) = t, and for any w′1 ∈ [v1]2 such that w1(b) = t we have that w1(ϕa) = f .
Hence

d
w∈[v1]2 w(ϕa) = u. This means that ΓD(v1) = v1 and consequently, by definition

of grounded interpretations, grd3(D) = {v1}. The other interpretations such that the
characteristic operator returns an interpretation with at least as much information, i.e.
ΓD(v) ≥i v are as follows:

v1 ={a 7→ u, b 7→ u, c 7→ u, d 7→ u},
v2 ={a 7→ t, b 7→ f , c 7→ u, d 7→ u},
v3 ={a 7→ t, b 7→ f , c 7→ f , d 7→ f},
v4 ={a 7→ t, b 7→ f , c 7→ t, d 7→ t},
v5 ={a 7→ f , b 7→ t, c 7→ u, d 7→ u},
v6 ={a 7→ f , b 7→ t, c 7→ f , d 7→ u},
v7 ={a 7→ f , b 7→ t, c 7→ f , d 7→ f},
v8 ={a 7→ u, b 7→ u, c 7→ f , d 7→ f}.

The admissible interpretations of D are therefore adm3(D) = {v1, . . . , v8}. On the
other hand, let v9 = {a 7→ f , b 7→ t, c 7→ f , d 7→ u} and observe that ΓD(v9) = {a 7→
f , b 7→ t, c 7→ u, d 7→ f}. For the evaluation of ϕc we have that for w9 = ftft it holds
that w9(ϕc) = t and for w′9 = ftf f it holds that w9(ϕc) = f , hence

d
w∈[v9]2 w(ϕc) =

u. It follows that v9 is not an admissible interpretation of D. In order to check
the complete interpretations consider v5 and observe that for all w ∈ [v5]2 we have,
due to v5(b) = t, that w(b) = t and, consequently, ΓD(v5)(c) =

d
w∈[v5]2 w(ϕc) = f .

Hence ΓD(v5) >i v5 and v5 is not complete. Indeed, the complete interpretations of D
are com(D) = {v1, v2, v3, v4, v7, v8}. The ≤i-maximal elements among the admissible
interpretations give rise to the preferred interpretations: prf3(D) = {v3, v4, v7}. As
all preferred interpretations are two-valued, we have mod3(D) = prf3(D). Finally
we are interested in the stable models. To this end we check for each two-valued
model if it is also a stable model. Considering v3, we get D−v3 = {〈a,¬⊥〉}. Hence
grd(D−v3) = {t} and v3 is stable. On the other hand, consider v4 and observe that
D−v4 = {〈a,¬⊥〉, 〈c,¬⊥ ∧ d〉, 〈d, c〉}. We get grd(D−v4) = {tf f} and therefore v4 is not
stable. As also v7 can checked to be stable, we conclude that stb3(D) = {v3, v7}. ♦

The ADF semantics presented in Definition 31 are proper generalizations of the corre-
sponding AF semantics. To state this formally we first introduce the ADF associated
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Figure 2.6: Relations between semantics of ADFs.

to an AF. Capturing the nature of attacks, the acceptance conditions of this ADF are
conjunctions of negated atoms.

Definition 32. Given an AF F = (A,R), the ADF associated to F is given by DF =
{〈a, ϕa〉 | a ∈ A} where

ϕa =
∧

(b,a)∈R
¬b

for each argument a ∈ A.

The correspondence between semantics is established by the following result.

Proposition 3 ([55]). For any AF F = (A,R) it holds that σ3(F ) = σ3(DF ), where
σ ∈ {adm, com, prf, stb}. Moreover it holds that mod3(DF ) = stb3(DF ).

The intuition behind stable models, inspired by logic programming [129], is to disallow
cyclic support within a model. Due to the lack of support relations in ADFs associated
to AFs, two-valued models and stable models coincide. Therefore both are proper
generalizations of the stable semantics of AFs.

The relations between semantics also carry over from AFs to ADFs:

Proposition 4 ([55]). In accordance with Figure 2.6, for any ADF D ∈ ADFA, the
following relations hold:

• stb3(D) ⊆ mod3(D) ⊆ prf3(D) ⊆ com3(D) ⊆ adm3(D);

• grd3(F ) ⊆ com3(F ).
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Also SETAFs can be seen as a certain subclass of ADFs. Sets of attacking arguments are
captured in the acceptance conditions of these ADFs as conjunctions of disjunctions of
negated atoms.

Definition 33. Given a SETAF S = (A,X), the ADF associated to S is given by
DS = {〈a, ϕa〉 | a ∈ A} where

ϕa =
∧

(B,a)∈X

∨
b∈B
¬b

for each argument a ∈ A.

Proposition 5. For any SETAF S = (A,X) it holds that σ3(S) = σ3(DS), where
σ3 ∈ {adm3, com3, prf3, stb3}. Moreover it holds that mod3(Ds) = stb3(DS).

Proof. Given interpretation v and argument a, it holds that ΓDS (v)(a) = t if and
only if ∀w ∈ [v]2 : w(ϕa) = t. The latter holds, by construction of ϕa, if and only if
∀(B, a) ∈ X∃b ∈ B : v(b) = f , meaning, by Definition 24, that a is acceptable wrt. v.
On the other hand, it holds that ΓDS (v)(a) = f if and only if ∀w ∈ [v]2 : w(a) = f .
The latter holds if and only if ∃(B, a) ∈ X ∀b ∈ B : v(b) = t, which means that
a is unacceptable wrt. v. Hence σ3(S) = σ3(DS) for σ3 ∈ {adm3, com3, prf3} and
stb3(S) = mod3(DS). Moreover, given some two-valued model v ∈ mod3(DS), we have
to check the grounded interpretation of D−v = {〈a, ϕa[x/⊥ : v(x) = f ]〉 | a ∈ vt} in
order to verify if also v ∈ stb3(DS). Observing that ∀(B, a) ∈ X∃b ∈ B : v(b) = f ,
we get that acD−va ≡ >. Hence grd3(D−v) = {a 7→ t | a ∈ vt}. We conclude that
stb3(Ds) = mod3(DS) = stb3(S).

Note that the ADFs associated to AFs and SETAFs, respectively, only contain attacking
links and are therefore bipolar ADFs.

For two ADFs D and D′, their union D ∪D′ is defined straightforwardly, but only for
the case that their sets of arguments are disjoint, i.e. AD ∪ AD′ = ∅. Likewise, given
some S ⊆ AD, the restriction of D to S, D|S , is only defined if for all a ∈ S it holds that
parD(a) ⊆ S, i.e. S receives no links from AD \ S.

2.4 Complexity
We assume familiarity with standard complexity concepts, such as P, NP and completeness.
For comprehensive introductions we refer to [166] and [10]. In this section we recall the
notions needed in this work.

Given a complexity class C, a C-oracle decides a given problem from C in one computation
step. The class PC contains the problems that can be decided in polynomial time by
a deterministic Turing machine with unrestricted access to a C-oracle. The class NPC
contains the problems that can be decided in polynomial time by a non-deterministic
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Figure 2.7: Relations between complexity classes in the polynomial hierarchy.

Turing machine with unrestricted access to a C-oracle. Finally, the class coNPC contains
the problems whose complementary problems can be decided in polynomial time by a
non-deterministic Turing machine with unrestricted access to a C-oracle. This gives rise
to the classes of the polynomial hierarchy as follows:

• ΣP
0 = ΠP

0 = ∆P
0 = P ;

• ∆P
k = PΣP

k−1 for k ≥ 1;

• ΣP
k = NPΣP

k−1 for k ≥ 1;

• ΠP
k = coNPΣP

k−1 for k ≥ 1.

In particular, note that ΣP
1 = NP and ∆P

2 = PNP. The classes ∆P
k have been refined by

the classes ΘP
k , in which the number of oracle calls is bounded by O(logn), where n is

the size of the input. They are therefore sometimes also denoted as ∆P
k [O(logn)]. Finally,

L is the class of problems that can be decided by a Turing machine restricted to use an
amount of memory which is logarithmic in the size of the input. The relations between
the classes are depicted in Figure 2.7.

The complexity classes in the polynomial hierarchy have complete problems involving
quantified Boolean formulas (QBFs).

Definition 34. By a k-existential QBF we denote a QBF of the form

Q1X1 . . . QkXk ϕ(X1, . . . , Xk)

with Q1 = ∃, Q2, . . . , Qk ∈ {∃,∀}, Qi 6= Qi+1 for 1 ≤ i < k, and

(i) if Qk = ∀ then ϕ is in DNF containing no monoms which are trivial for X1 ∪ · · · ∪
Xk−1;

(ii) if Qk = ∃ then ϕ is in CNF containing no clauses which are trivial for X1∪· · ·∪Xk−1.

We call a monom m (resp. a clause c) trivial for X if all atoms occurring in m (resp. c)
are contained in X.
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Table 2.1: Complexity of reasoning with AFs.

σ Credσ Skeptσ Verσ
cf in L trivial in L
nai in L in L in L
adm NP-c trivial in L
com NP-c P-c in L
prf NP-c ΠP

2 -c coNP-c
grd P-c P-c P-c
stb NP-c coNP-c in L
stg ΣP

2 -c ΠP
2 -c coNP-c

sem ΣP
2 -c ΠP

2 -c coNP-c
idl in ΘP

2 in ΘP
2 in ΘP

2

grd∗ NP-c coNP-c P-c

In particular, a 1-existential QBF is of the form ∃Xϕ(X) with ϕ being in CNF without
empty clauses. It is true if and only if ϕ(X) is satisfiable.

The classes ΘP
k+1 (for k ≥ 1) have the following complete problems [114, 197, 184], which

we will make use of in the hardness proofs in Section 4.4:

Given: k-existential QBFs Φ1, . . . ,Φm such that Φi being false implies
Φi+1 being false for 1 ≤ i < m,

Decide: whether max{1 ≤ i ≤ m | Φi is true} is odd.

The main reasoning tasks within argumentation formalisms are credulous and sceptical
acceptance as well as the verification problem, each of them parametrized by a semantics
σ. For AFs they are defined as follows:

• Credσ: Given an AF F and an argument a ∈ AF , decide whether there exists some
E ∈ σ(F ) such that a ∈ E.

• Skeptσ: Given an AF F and an argument a ∈ AF , decide whether for all E ∈ σ(F )
it holds that a ∈ E.

• Verσ: Given an AF F and a set of arguments S ⊆ AF , decide whether S ∈ σ(F ).

The complexity of the reasoning problems for AFs has been studied in [92, 97, 65, 108, 105]
and is summarized in Table 2.1 for the semantics considered in this work. For a complexity
class C, we write C-c if the problem is complete for C.

The complexity of the respective reasoning tasks for ADFs is usually one level higher
in the polynomial hierarchy. However, it turns out that this does not hold for bipolar
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ADFs, which have (almost) the same complexity as AFs. A comprehensive analysis of
the complexity of ADFs can be found in [190, 123].
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CHAPTER 3
Expressiveness

There are various ways to assess the capabilities of knowledge representation formalisms.
One way is to check their ability to model certain instances within application areas.
Another, more systematic approach is to study the computational complexity of the
involved reasoning tasks. In this section we study another property of knowledge
representation formalisms and their semantics, namely the expressiveness in terms of
the outcomes that can be achieved. Realizability is the ability of a formalism under
a semantics to express specific desired sets of models. Signatures capture the exact
expressiveness of a formalism under a semantics by collecting all sets of models that can
be realized.

In formal argumentation, this line of research was initiated in [146] by not only comparing,
but also exactly characterizing the expressiveness of most of the standard semantics of
AFs. After introducing some preliminary notions in Section 3.1, we will complement
this work on realizability in AFs in Section 3.2 in several ways: first we will study the
expressiveness of two semantics that have been disregarded in [146], the complete and
the resolution-based grounded semantics; then, we will establish some implications from
the exact characterizations of signatures, in particular closure properties which will be of
importance in Chapter 4; finally we will deal with complexity issues. Section 3.3 considers
the intuitive subclass of compact AFs, where the set of arguments is assumed to be fixed,
and shows the influence of this restriction on the expressiveness of semantics in AFs.
Viewing AFs from an input-output perspective [17], we study the ability of semantics
to map assignments of input arguments to sets of assignments of output arguments in
Section 3.4.

The remainder of this chapter is then concerned with the question whether the increased
modeling capacity of more advanced argumentation formalisms, in particular ADFs,
also carries over to the expressiveness in our terms. Section 3.5 reviews and combines
recent work on the realizability in ADFs [175, 188] and states a few implications thereof.
Section 3.6 then presents an algorithmic approach to realizability which captures AFs
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and ADFs as well as the intermediate formalisms of SETAFs and bipolar ADFs in a
modular way. It also allows us to derive additional relations with respect to realizability
both within and between formalisms.

In the following we provide an overview of the publications concerning the results presented
in this chapter. Section 3.2 is made up of results from [102] and [110]. Section 3.3
contains results from [30, 149, 31] as well as complementary unpublished results. The
main results presented in Section 3.4 have been published in [130]. Section 3.5 reviews
work by Pührer [175] and Strass [187, 189, 188] and states some observations combining
these streams of work. Finally, Section 3.6 is based on [150].

3.1 Preliminaries

In this section we recall and define the general idea of realizability and signatures as
originally introduced for AFs in [146]. The central notion is that of realizability, that is,
the ability of a formalism to express a certain state of affairs.

Definition 35. Let F be a formalism and σ be a semantics of that formalism. A set of
interpretations I is realizable in F under σ if there is some kb ∈ F with σ(kb) = I. We
say that kb realizes I in F under σ.

The task of realizing a set of interpretations I under a semantics σ is to find a concrete
knowledge base kb which has σ(kb) = I. Intuitively, this is the inverse operation of
evaluating a knowledge base under the semantics.

Signatures have been introduced to characterize the expressiveness of a formalism under
a semantics by collecting all sets of interpretations which are realizable, i.e. the sets of
interpretations which can be the outcome of the evaluation of a knowledge base of the
formalism.

Definition 36. Let F be a formalism and σ be a semantics of that formalism. The
signature Σσ

F of σ in F is defined as

Σσ
F = {σ(kb) | kb ∈ F}.

An exact characterization of the signature of a semantics σ in a formalism F is achieved
by finding a condition for sets of interpretations I which is necessary and sufficient for I
to be realizable in F under σ. In other words, the condition γ has to be such that σ(kb)
fulfills γ for every kb ∈ F and there is some kb ∈ F with σ(kb) = I whenever I is a set of
interpretations fulfilling γ. Moreover, it is desirable that γ is minimal in the sense that it
does not contain redundant subconditions.

Finally, we define the generic function for realizing specific sets of interpretations in a
given formalism, leaving the exact construction of the realizing knowledge base open.
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Definition 37. Let F be a formalism and σ a semantics of that formalism. The realizing
function ρFσ maps sets of interpretations for F to knowledge bases of F such that

• ρFσ (I) = kb with σ(kb) = I if I ∈ Σσ
F , and

• unspecified otherwise.

3.2 General Realizability in AFs
In the following, we begin with recalling results on realizability in AFs from from [146].
Then we will first complement these results by considering realizability under complete
and resolution-based grounded semantics. After that we will argue that preferred and
semi-stable are among the most expressive “reasonable” semantics. Finally, we will study
certain closure properties of signatures, give quantitative limits of realizability, and show
the complexity of deciding realizability.

3.2.1 Recalling Previous Results

The signatures of most of the standard semantics in AFs have been characterized in [146].
Here the objects of interest are sets of sets of arguments, called extension-sets, for which
necessary and sufficient conditions for realizability under the respective semantics have
been proven. We recall them for conflict-free, naive, stable, stage, admissible, preferred
and semi-stable semantics in the following theorem. There have been some problems with
the results for complete semantics in [146]. Therefore the next subsection is dedicated to
complete semantics.

Theorem 1 ([146]). The signatures are given by the following collections of extension-
sets:

Σcf
AF = {S ⊆ 2A | S 6= ∅, S is downward-closed and tight}

Σnai
AF = {S ⊆ 2A | S 6= ∅, S is incomparable and dcl(S) is tight}

Σstb
AF = {S ⊆ 2A | S is incomparable and tight}

Σstg
AF = {S ⊆ 2A | S 6= ∅, S is incomparable and tight}

Σadm
AF = {S ⊆ 2A | S 6= ∅, S is conflict-sensitive and contains ∅}

Σprf
AF = {S ⊆ 2A | S 6= ∅, S is incomparable and conflict-sensitive}

Σsem
AF = {S ⊆ 2A | S 6= ∅, S is incomparable and conflict-sensitive}

Besides these exact characterizations of signatures, [146] also featured canonical re-
alizations for extension-sets contained in the signatures. For instance, realizing a
set of interpretations S ∈ Σσ

AF for σ ∈ {cf,nai} is achieved by the AF Fcf(S) =
(ArgsS, (ArgsS ×ArgsS) \ PairsS), i.e. the AF containing the arguments that occur in any
element of S and an attack between any pair of arguments which does not occur together
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in an element of S. Constructions for the other semantics build up on Fcf, but use more
involved concepts in addition. The general notion of a realizing function for AFs follows
Definition 37. It also leaves the exact constructions unspecified but gives a concrete AF
for extension-sets which are not realizable:

Definition 38. Given a semantics σ, the AF realizing function ρAF
σ : 22A 7→ AFA maps

extension-sets to AFs such that

• ρAF
σ (S) = F with σ(F ) = S if S ∈ Σσ

AF, and

• ρAF
σ (S) = (∅, ∅) otherwise.

The signatures given in Theorem 1 are related to each other as follows.

Theorem 2 ([146]). The signatures of AF semantics are related as follows:

• Σnai
AF ⊂ Σstg

AF = Σstb
AF \ {∅} ⊂ Σsem

AF = Σprf
AF,

• Σcf
AF ⊂ Σadm

AF ,

• Σσ
AF ∩ Στ

AF = {{∅}} for σ ∈ {nai, stg, stb, sem, prf} and τ ∈ {cf, adm}.

These relations are in line with the ones obtained from intertranslatability of argumenta-
tion semantics [109, 107]. Given two AF semantics σ and τ , the authors are interested in
translations from AFs to AFs such that the τ -extensions of the transformed AF coincide
with the σ-extensions of the original AF. If such a translation exists, then τ is at least as
expressive as σ, that is Σσ

AF ⊆ Στ
AF in our terms.

Remark 1. We use this opportunity for a clarification of an issue which lead to major
misunderstandings. That is the fact that there is a fundamental difference, given two
semantics σ and τ , between the statement σ(F ) ⊆ τ(F ) for each F ∈ AFA and the
statement Σσ

AF ⊆ Στ
AF. The latter statement makes no claims about the σ- and τ -

extensions of a particular AF, but says that for each AF F , there exists an AF G such
that σ(F ) = τ(G). For instance, it holds for each AF F ∈ AFA that sem(F ) ⊆ prf(F ) and
for certain AFs this relation is even proper, but on the other hand we have Σsem

AF = Σprf
AF,

i.e. semi-stable and preferred semantics are able to express exactly the same set of
extension-set.

3.2.2 Complete Semantics

An exact characterization of the signature of complete semantics in AFs turns out to be
way more intricate. We narrow it down by giving necessary conditions for extension-sets
to be contained in the signature.

In contrast to admissible semantics, extension-sets obtained from complete semantics are
not necessarily conflict-sensitive, as illustrated in the following example.
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a

b

a′

b′
c

Figure 3.1: Argumentation framework F discussed in Examples 10 and 12.

Example 10. Consider the AF F depicted in Figure 3.1. It can be checked that
com(F ) = {∅, {a}, {b}, {a, b, c}}. Moreover observe that {a} ∪ {b} /∈ com(F ), but
(a, a), (a, b), (b, a), (b, b) ∈ Pairscom(F ). Hence com(F ) is not conflict-sensitive. ♦

We introduce a property which is less restrictive than conflict-sensitivity, which we then
show to be a necessary condition for extension-sets to be realizable under complete
semantics and therefore to be contained in the com-signature.

Definition 39. Given an extension-set S ⊆ 2A and E ⊆ A. We define the completion-sets
CS(E) of E in S as the set of ⊆-minimal sets S ∈ S with E ⊆ S.

In words, completion-sets just give the “next” (in terms of supersets) elements contained
in S.

Definition 40. A set S ⊆ 2A is called com-closed if for each T ⊆ S the following holds:
if (a, b) ∈ PairsS for each a, b ∈ ArgsT, then ArgsT has a unique completion-set in S, i.e.
|CS(ArgsT)| = 1.

The following example illustrates the idea of com-closed extension-sets.

Example 11. Consider the following extension-set:

S = {∅, {a}, {b}, {c}, {a, b, d}, {a, c, e}, {b, c, f}}.

In order to check if S is com-closed, we have to consider the sets {a} ∪ {b}, {a} ∪ {c},
{b}∪{c}, and {a}∪{b}∪{c}, as all pairs of arguments in these sets are contained in PairsS,
but the sets themselves are not contained in S. We observe that CS({a}∪{b}) = {{a, b, d}},
CS({a} ∪ {c}) = {{a, c, e}}, and CS({b} ∪ {c}) = {{b, c, f}}, but CS({a} ∪ {b} ∪ {c}) = ∅.
Hence S is not com-closed. Adding, for instance, {a, b, c, g} to S solves the problem.
Then, CS∪{{a,b,c,g}}({a} ∪ {b} ∪ {c}) = {{a, b, c, g}} and the other completion sets remain
unchanged, hence S ∪ {{a, b, c, g}} is com-closed. Finally, adding another set {a, b, c, h}
means that CS∪{{a,b,c,g},{a,b,c,h}}({a} ∪ {b} ∪ {c}) = {{a, b, c, g}, {a, b, c, h}}, i.e. there is
no unique completion set for {a} ∪ {b} ∪ {c}, hence S ∪ {{a, b, c, g}, {a, b, c, h}} is not
com-closed. ♦

The intuitive meaning of an extension-set being com-closed is the following. Consider
an extension-set S and a set of elements T thereof. Now assume S gives no evidence
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of a conflict between arguments in ArgsT. Then, in contrast to the case when S is
conflict-sensitive, S does not necessarily have to contain ArgsT, but has to contain a
unique superset of ArgsT, the completion-set.

Lemma 3. Each conflict-sensitive extension-set is com-closed.

Proof. Consider a conflict-sensitive extension-set S and an arbitrary subset T ⊆ S. Then
(a, b) ∈ PairsS for each a, b ∈ ArgsT implies ArgsT ∈ S, i.e. CS(ArgsT) = {ArgsT}. Hence
S is com-closed.

Note that in case of incomparable sets, the notions conflict-sensitive and com-closed
coincide. In anticipation of the following result, this coincidence reflects the fact that all
preferred extensions are complete.

Proposition 6. For each AF F , it holds that com(F ) 6= ∅, com(F ) is com-closed and⋂
com(F ) ∈ com(F ).

Proof. First note that there is always at least one complete extension, namely the
grounded extension. Moreover the grounded extension is the unique ⊆-minimal complete
extension and hence

⋂
com(F ) ∈ com(F ). Finally consider a set of complete extensions

E ⊆ com(F ) such that (a, b) ∈ Pairscom(F ) for each a, b ∈ ArgsE. By Lemma 2, ArgsE is
an admissible set and thus can be extended to a unique complete extension E′ ⊇ ArgsE
by iteratively adding all defended arguments. Therefore com(F ) is com-closed.

Example 12. Again consider the AF F depicted in Figure 3.1 and recall that com(F ) =
{∅, {a}, {b}, {a, b, c}}. While we have seen in Example 10 that com(F ) is not conflict-
sensitive, it turns out that it is com-closed, confirming Proposition 6. In particular,
{a} ∪ {b} has a unique completion set, i.e. Ccom(F )({a} ∪ {b}) = {{a, b, c}}. ♦

Each extension-set S which is realizable under the admissible semantics, can also be
realized under the complete semantics: given the AF F realizing S under adm, we extend
F in such a way that for each a ∈ ArgsS we add a self-attacking argument with an attack
from and to a. This has the effect that every argument needs itself to be defended, hence
every admissible extension is also complete. The formal details can be taken from the
translation from adm to com in [108]. Together with Example 10 the following result
immediately follows.

Theorem 3. It holds that Σadm
AF ⊂ Σcom

AF .

However, the property of being com-closed (cf. Definition 40) so far only gives an
approximation of the sets which can be realized. It is not a sufficient condition for
realizability under complete semantics, as the following example shows.
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a

b d
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f e

Figure 3.2: AF F such that grd∗(F ) = {{a, b}, {a, d, e}, {b, c, e}} /∈ Σstb
AF.

Example 13. Let S = {∅, {a}, {b}, {c}, {a, b, c}, {a, d, e}, {b, d, f}, {x, c}, {x, d}}. S is
com-closed and satisfies

⋂
S = ∅ ∈ S. We argue that S is not com-realizable. Towards a

contradiction consider an AF F such that com(F ) = S. First, as {x, c}, {x, d} ∈ S and
no superset of {x, c, d} is contained in S, there must be a conflict between c and d. In
case (c, d) ∈ RF and (d, c) /∈ RF , {x, d} is not admissible (as (x, c) ∈ PairsS). Similar
for (d, c) ∈ RF and (c, d) /∈ RF . Thus (c, d), (d, c) ∈ RF . Now consider {a, b} which
must be admissible as {a} and {b} are admissible and (a, b) ∈ PairsS. But as {a, b} /∈ S
it has to defend argument c (CS({a, b}) = {{a, b, c}}). But we have (d, c) ∈ RF and
(a, d), (b, d) ∈ PairsS. Hence {a, b} cannot defend c, meaning that some S ⊆ {a, b} with
c /∈ S is a complete extension of F , a contradiction to com(F ) = S. ♦

Reflecting on Theorem 3 and Example 13, we conclude that, in order to exactly charac-
terize Σcom

AF , it is necessary to come up with a condition which is more restrictive than
com-closed but less demanding than conflict-sensitive. The exact formulation of this
condition is subject to future research.

3.2.3 Resolution-based Grounded Semantics

Realizability under the resolution-based grounded semantics was left open in [102]. In
this subsection we relate its signature to the signatures of the other semantics and show
a rather strong necessary condition for realizability.

The first observation is that evaluation under the resolution-based grounded semantics
can lead to outcomes which are not possible under stable semantics.

Proposition 7. It holds that Σgrd∗
AF 6⊆ Σstb

AF.

Proof. Consider the AF F depicted in Figure 3.2. One can check that grd∗(F ) =
{{a, b}, {a, d, e}, {b, c, e}}. However, grd∗(F ) is not tight, since we have {a, b} ∈ grd∗(F )
and {a, b, e} /∈ grd∗(F ), but both (a, e) and (b, e) are contained in Pairsgrd∗(F ). Thus,
grd∗(F ) /∈ Σstb

AF and, consequently, Σgrd∗
AF 6⊆ Σstb

AF.

In other words, the resolution-based grounded semantics is capable of realizing extension-
sets which are not realizable by stable semantics or weaker semantics such as stage or
naive semantics. Next, we will show that, in contrast, Σgrd∗

AF ⊆ Σprf
AF holds.
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To this end we recall some definitions and results from [16], using slightly different
notation though. The initial SCCs of an AF are those strongly connected components
which receive no attacks from an argument of any other SCC (cf. Definition 21).

Definition 41. Given an AF F , the set of initial SCCs I(F ) ⊆ SCCs(F ) contains
exactly those SCCs of F which have no incoming attacks, i.e. F ′ ∈ I(F ) if and only if
there is no (a, b) ∈ RF with a ∈ (AF \AF ′) and b ∈ AF ′ . The set of relevant initial SCCs
I∗(F ) ⊆ I(F ) contains exactly those G ∈ I(F ) which are self-attack-free, symmetric and
the underlying graph is acyclic.

The following lemma containing an alternative, recursive definition of grd∗ is immediate
by Theorem 2 and Lemma 9 of [16]. Thereby cutS(F ) is defined, given an AF F and
S ⊆ AF , as F |(AF \S+

F ).

Lemma 4. Let F ∈ AFA such that grd∗(F ) 6= grd(F ). It holds that

1. I∗(cutgrd(F )(F )) is non-empty; and

2. S ∈ grd∗(F ) iff S = (T ∪ U ∪ V ) where T = grd(F ), U ∈ stb(
⋃
I∗(cutgrd(F )(F ))),

and V ∈ grd∗(cut(T∪U)(F )).

Lemma 4 gives a more computational perspective of resolution-based grounded semantics.
Intuitively, it states that the resolution-based grounded extensions can be computed
by iteratively (i) computing the grounded extension and eliminating its range and (ii)
computing the stable extensions of the initial SCCs and eliminating their range. It also
helps to show the following important observation.

Lemma 5. Given an AF F ∈ AFA and sets of arguments S1, S2 ⊆ AF with S1 6= S2.
Then, S1, S2 ∈ grd∗(F ) implies S1 →F S2.

Proof. Consider an AF F with S1, S2 ∈ grd∗(F ) such that S1 6= S2. First observe that
grd(F ) 6= grd∗(F ). Now let T = grd(F ) and F ′ =

⋃
I∗(cutT (F )) (note that I∗(cutT (F ))

is non-empty by Lemma 4.1). We follow by Lemma 4.2 that, for i ∈ {1, 2}, T ⊂ Si and
∃Ui ∈ stb(F ′) : Ui ⊆ Si. If U1 6= U2 we are done because U1, being stable in F ′, must
attack all arguments in U2 \ U1. On the other hand if U1 = U2, let F ′′ = cut(T∪U1)(F ) =
cut(T∪U2)(F ). We have, also by Lemma 4.2, that (Si \ (T ∪ Ui)) ∈ grd∗(F ′′) and we can
reason as above. Since F is finite, we must reach a point where indeed U1 6= U2 and U1
attacks U2. Hence S1 →F S2.

This is enough to show that everything realizable under the resolution-based grounded
semantics is also realizable under the preferred semantics.

Proposition 8. It holds that Σgrd∗
AF ⊆ Σprf

AF.
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Proof. For any AF F , grd∗(F ) is by definition an incomparable and non-empty extension-
set. It remains to show that grd∗(F ) is conflict-sensitive. By Lemma 5, for any distinct
S1, S2 ∈ grd∗(F ) it is the case that S1 →F S2 holds. Hence, by conflict-freeness of
resolution-based grounded extensions, ∃s1, s2 ∈ (S1 ∪ S2) : (s1, s2) /∈ Pairsgrd∗(F ).

The following result concerning realizability shows certain and severe limits of expressive-
ness the resolution-based grounded semantics suffers from.

Proposition 9. Let F be an AF and S ⊂ AF . There are no pairwise disjoint sets
S1, S2, S3 ⊆ AF such that {(S ∪ S1), (S ∪ S2), (S ∪ S3)} ⊆ grd∗(F ).

Proof. Assume there are pairwise disjoint sets S1, S2, S3 ⊆ AF , i.e. S1 ∩ S2 = S1 ∩ S3 =
S2 ∩ S3 = ∅, such that {(S ∪ S1), (S ∪ S2), (S ∪ S3)} ⊆ grd∗(F ). Let T = grd(F ).
By Lemma 4, for F ′ =

⋃
I∗(cutT (F )) and i ∈ {1, 2, 3}, it holds that T ⊆ S and

∃Ui ∈ stb(F ′) : Ui ⊆ (S ∪ Si). Note that each Ui has full range in F ′ (i.e. (Ui)+
F ′ = AF ′).

Hence (AF ′ \ Ui) ∩ Si = ∅ for each i ∈ {1, 2, 3}, since otherwise, if there existed an
si ∈ (AF ′ \ Ui) ∩ Si, this si would have to be attacked by Ui, a contradiction to conflict-
freeness of S ∪ Si.

First assume all U1, U2, and U3 are pairwise different. All of them being stable in F ′ and
S1, S2, S3 being pairwise disjoint means that, for every i ∈ {1, 2, 3}, each ui ∈ (Ui \ S)
must be attacked by each Uj \ S for j ∈ ({1, 2, 3} \ {i}). But this means that there must
be a cycle in the undirected graph underlying F ′, a contradiction.

Next assume that two Uis coincide and the third is different, w.l.o.g. U1 = U2 and
U1 6= U3. U1 = U2 means, since S1 ∩ S2 = ∅, that U1, U2 ⊆ S. U1 6= U3 means, on the
other hand, that there must be some u3 ∈ (U3 ∩ S3). But this contradicts U1 and U2
being stable, since S cannot attack u3 due to (S ∪ S3) ∈ grd∗(F ).

Finally, assume U1 = U2 = U3 (i.e. Ui ⊆ S) and let F ′′ = cut(T∪Ui)(F ) for any i ∈ {1, 2, 3},
and S′ = S \ (T ∪Ui). By Lemma 4.2 we get {(S′ ∪ S1), (S′ ∪ S2), (S′ ∪ S3)} ⊆ grd∗(F ′′).
Hence we can reason as above. Since F is finite and U1, U2, U3 6= ∅, we must arrive at a
contradiction of the former two cases at some point.

This already suggests quite strong limitations concerning the structural diversity of
extension-sets under the resolution-based grounded semantics. Two particular cases of
this impossibility are given by the following corollaries.

Corollary 1. Let S be an extension-set containing three pairwise disjoint sets S1, S2,
and S3. There is no AF F such that grd∗(F ) ⊇ {S1, S2, S3}.

Corollary 2. Given an AF F and arguments a, b ∈ AF such that {a}, {b} ∈ grd∗(F ).
Then, grd∗(F ) = {{a}, {b}}.

Proof. If {a}, {b} ∈ grd∗(F ) then any further extension would have to be either disjoint
or not incomparable to {a} and {b}, both contradictions to previous observations.
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Figure 3.3: Venn diagram illustrating relations between signatures.

Example 14. Consider, as in Proposition 9, sets of arguments S, S1, S2, S3 ⊆ A such
that S1 ∩ S2 = S1 ∩ S3 = S2 ∩ S3 = ∅. In contrast to grd∗, the extension-set given by
{(S ∪ S1), (S ∪ S2), (S ∪ S3)} is realizable under nai, stb, prf, sem, and stg. The realizing
AF is F = (S ∪ S1 ∪ S2 ∪ S3, {(si, sj) | i, j ∈ {1, 2, 3}, i 6= j, si ∈ Si, sj ∈ Sj}). It is easy
to see that each S ∪ Si is maximally conflict-free and has full range in F . ♦

As a concrete instance, our results show that there is no AF F , such that grd∗(F ) =
{{a}, {b}, {c}}, while the other semantics are indeed able to express this extension-set,
in particular, stable and preferred semantics when applied to a clique {a, b, c}.

The following relations now immediately follow.

Corollary 3. Σgrd∗
AF ⊂ Σprf

AF and Σstb
AF 6⊆ Σgrd∗

AF .

We leave an exact characterization of Σgrd∗
AF for future work.

3.2.4 Relations and Upper Bounds of Expressiveness

The previous considerations on complete and resolution-based grounded semantics com-
plement the picture of relations between signatures presented in Theorem 2. The relations
are depicted in the Venn diagram in Figure 3.3. The right side of the figure shows the
signatures of these semantics providing only incomparable extension-sets. The only
extension-set they have in common with the signatures of conflict-free and admissible
semantics is the one only containing the empty extension. On the other hand, the inter-
section with Σcom

AF contains all extension-sets S with |S| = 1. This is also the signature of
single status semantics such as grounded and ideal. Finally note the isolated position of
{∅}, i.e. the extension-set containing no extension. It is only contained in Σstb

AF.
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All semantics considered in this work as well as most semantics in the literature1 follow
the principle of conflict-freeness of extensions. That means that the set of extensions of
any AF F must be contained in cf(F ). A related property is shared by those semantics
which always yield incomparable extension-sets, i.e. the naive, stable, stage, preferred,
semi-stable and resolution-based grounded semantics. That is, given an arbitrary AF F ,
between any two extensions of F there must be at least one attack. If there was not, their
union would be an extension instead. This property can be seen as another principle
in the spirit of [11] which should be fulfilled by every reasonable semantics for abstract
argumentation. The following proposition shows that these principles are captured by
the concept of conflict-sensitivity, i.e. extension-sets under such semantics are always
conflict-sensitive.

Proposition 10. Consider an arbitrary semantics σ : AFA 7→ 22A such that for any
F ∈ AFA it holds that σ(F ) ⊆ cf(F ) and for all S1, S2 ∈ σ(F ) with S1 6= S2 there exist
a, b ∈ S1∪S2 with (a, b) ∈ RF . Then for each AF F it holds that σ(F ) is conflict-sensitive.

Proof. Let F ∈ AFA and S1, S2 ∈ σ(F ). By assumption there exist w.l.o.g. a ∈ S1 and
b ∈ S2 with (a, b) ∈ R. Now since σ(F ) ⊆ cf(F ), there is no T ∈ σ(F ) with T ⊇ {a, b},
hence (a, b) /∈ Pairsσ(F ). Therefore σ(F ) is conflict-sensitive.

The characterization of the signatures of preferred and semi-stable semantics also shows
that these semantics enjoy maximal expressiveness within reasonable semantics as defined
in Proposition 10. That is, no semantics which does not allow conflicts within extensions
and at the same time always guarantees a conflict between two different extensions can
express more than preferred and semi-stable semantics, respectively.

Theorem 4. Consider an arbitrary semantics σ : AFA 7→ 22A such that for any F ∈ AFA

it holds that σ(F ) 6= ∅, σ(F ) ⊆ cf(F ) and for all S1, S2 ∈ σ(F ) with S1 6= S2 there exist
a, b ∈ S1 ∪ S2 with (a, b) ∈ RF . It holds that Σσ

AF ⊆ Σprf
AF and Σσ

AF ⊆ Σsem
AF .

Proof. Given any AF F , the fact that for all S1, S2 ∈ σ(F ) with S1 6= S2 there are
a, b ∈ S1 ∪ S2 with (a, b) ∈ R means, since also S1, S2 ∈ cf(F ), that a /∈ S2 and b /∈ S1
(or the other way round), hence σ(F ) is incomparable. Therefore the result follows from
Theorem 1 and Proposition 10.

3.2.5 Closure Properties of Signatures

With the results on signatures at hand, we now provide some interesting implications. In
particular, we will study closure of signatures under subset as well as under intersection.
Being of interest of its own, it will be fundamental in Section 4.2, when rationality
postulates require revision operators to realize a certain subset of an extension-set or the
intersection of extension-sets.

1Exceptions can be found in [138, 9, 133].

47



3. Expressiveness

We begin by studying the question whether an arbitrary subset of an extension-set can
be realized. More practically, that is, given an AF F , whether we can change F in a
way to remove certain extensions. The following two lemmas will allow us to answer this
question positively for stable, stage, preferred and semi-stable semantics.

Lemma 6. For an incomparable extension-set S ⊆ 2A it holds that if S is tight then each
S′ ⊆ S is tight.

Proof. Consider some tight and incomparable extension-set S and some S′ ⊆ S. Then
PairsS′ ⊆ PairsS and, as S is incomparable, S ∪ {a} /∈ S iff S ∪ {a} /∈ S′ for all S ∈ S,
a ∈ ArgsS. Thus, since S is tight by the hypothesis, S′ is tight.

Lemma 7. For an incomparable extension-set S ⊆ 2A, it holds that if S is conflict-
sensitive then each S′ ⊆ S is conflict-sensitive.

Proof. Recall that for incomparable S, checking conflict-sensitivity reduces to check for
each A,B ∈ S with A 6= B, whether there exist a, b ∈ A ∪B such that (a, b) 6∈ PairsS. It
is easy to see that this property still holds for S′ ⊆ S, since then, PairsS′ ⊆ PairsS.

The above lemmas give rise to the following result.

Theorem 5. Given an arbitrary AF F it holds that

• for any S ⊆ stb(F ) there exists an AF F ′ such that stb(F ′) = S;

• for any S ⊆ σ(F ) with S 6= ∅ there exists an AF F ′ such that σ(F ′) = S, where
σ ∈ {stg, prf, sem}.

Proof. Inspecting the characterizations of signatures in Theorem 1, the result follows
from Lemma 6 for stb and stg and from Lemma 7 for prf and sem.

Resolution-based grounded semantics appears to be closed under subset as well, due to
the lack of an exact characterization we have to leave the definite answer open though.
Conflict-free, admissible and complete as well as naive semantics are not closed under
subset.

Example 15. First consider the AF F = ({a, b}, {(a, b), (b, a)}) and a semantics σ ∈
{cf, adm, com}. It holds that σ(F ) = {∅, {a}, {b}}. Now let S = {{a}, {b}} ⊆ σ(F ) and
observe S /∈ Σσ

AF, since S is not downward-closed (for σ = cf), ∅ /∈ S (for σ = adm), and⋂
S /∈ S (for σ = com).

For naive semantics consider the AF G depicted in Figure 3.4 which has nai(G) =
{{a, b′, c′}, {a′, b, c′}, {a′, b′, c}, {a′, b′, c′}}. Now it holds that the extension-set T =
{{a, b′, c′}, {a′, b, c′}, {a′, b′, c}} ⊆ nai(G) is not realizable under the naive semantics:
{a′, b′} ∈ dcl(T) and {a′, b′, c′} /∈ dcl(T), but (a′, c′), (b′, c′) ∈ Pairsdcl(T) = PairsT, hence
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a b c

a′ b′ c′

Figure 3.4: AF G with nai(G) = {{a, b′, c′}, {a′, b, c′}, {a′, b′, c}, {a′, b′, c′}}.

dcl(T) is not tight. In practical terms, any AF trying to realize T must not have attacks
between arguments {a′, b′, c′}, since (a′, b′), (b′, c′), (a′, c′) ∈ PairsT, hence there is some
naive extension E ⊇ {a′, b′, c′}. Therefore T /∈ Σnai

AF. ♦

The second result examines the question whether the intersection of two extension-sets
under a given semantics σ can always be realized. The answer is clearly yes for those
semantics which are closed under subset (cf. Theorem 5). With the exact characterizations
of signatures in Theorem 1 at hand we can answer this question positively also for the
other semantics, except complete, for which we will provide a counterexample.

Theorem 6. Given arbitrary AFs F1 and F2 it holds that

• there exists an AF F such that σ(F ) = σ(F1) ∩ σ(F2) if σ(F1) ∩ σ(F2) 6= ∅ for
σ ∈ {cf, adm,nai, stg, prf, sem};

• there exists an AF F such that stb(F ) = stb(F1) ∩ stb(F2).

Proof. Let S1 = σ(F1), S2 = σ(F2), and S = S1 ∩ S2. We know that S1 and S2 fulfill the
properties according to the signature of σ. We have to show that σ(F1) ∩ σ(F2) also
satisfies the properties according to the signature of σ. Existence of an AF F with the
desired extensions is then a consequence of Theorem 1.

cf: Let S = cf(F1) ∩ cf(F2). It is easy to see that S is downward-closed since cf(F1)
and cf(F2) are downward-closed. So assume S is not tight, i.e. there is some S ∈ S and
a ∈ ArgsS with S ∪ {a} /∈ S but ∀s ∈ S : (a, s) ∈ PairsS. This means that S ∈ cf(F1) and
S ∈ cf(F2), but there is an i ∈ {1, 2} such that S∪{a} /∈ cf(Fi). Since Pairscf(Fi) ⊇ PairsS,
cf(Fi) is not tight, a contradiction to Theorem 1.

adm: Towards a contradiction, assume S = adm(F1) ∩ adm(F2) is not conflict-sensitive,
i.e. there are A,B ∈ S such that (A ∪B) /∈ S, but for all a, b ∈ (A ∪B), (a, b) ∈ PairsS.
Then there is some i ∈ {1, 2}, such that A,B ∈ adm(Fi) but (A ∪ B) /∈ adm(Fi). On
the other hand, Pairsadm(Fi) ⊇ PairsS, hence ∀a, b ∈ (A ∪ B) : (a, b) ∈ Pairsadm(Fi).
Therefore adm(Fi) is not conflict-sensitive, a contradiction to Theorem 1.

nai: Let S = nai(F1) ∩ nai(F2) and assume that dcl(S) is not tight, i.e. there is some
S ∈ dcl(S) and a ∈ ArgsS with S ∪ {a} /∈ dcl(S) but ∀s ∈ S : (a, s) ∈ PairsS. This
means that there exists an S′ ⊇ S with S′ ∈ nai(F1) and S′ ∈ nai(F2) and therefore
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a a′

b b′

d1

d2

c c′

Figure 3.5: AFs F1 (everything) and F2 (excluding the dotted part) with (com(F1) ∩
com(F2)) /∈ Σcom

AF .

S ∈ dcl(nai(F1)) and S ∈ dcl(nai(F2)). Moreover, for some i ∈ {1, 2} it holds that
∀T ⊇ (S ∪ {a}) : T /∈ nai(Fi) and therefore (S ∪ {a}) /∈ dcl(nai(Fi)). Finally, since
Pairsnai(Fi) ⊇ PairsS, ∀s ∈ S : (a, s) ∈ Pairsnai(Fi). These observations sum up to
dcl(nai(Fi)) not being tight, a contradiction to Theorem 1.

The result for stb, stg, prf, and sem follows from Theorem 5.

Interestingly, the complete semantics turns out to be not closed under this form of
intersection, as the following example illustrates.

Example 16. Consider the extension-sets S = {∅, {a}, {b}, {a, b, c, d1}, {a, b, c, d2}}, S1 =
S∪{{a, b}}, and S2 = S∪{{a, b, c}}. S1 and S2 are realizable under the complete semantics.
Corresponding AFs are depicted in Figure 3.5: S1 are the complete extensions of the
entire AF, and S2 the ones of the AF without the dotted part. However, S = S1 ∩ S2 is
not com-closed (since CS({a, b}) = {{a, b, c, d1}, {a, b, c, d2}} does not provide a unique
completion-set) and therefore, by Proposition 6, no AF F exists such that com(F ) = S.

♦

Again, the question for resolution-based grounded semantics remains open. For single-
status semantics such as grounded and ideal semantics the question is rather trivial: if
σ(F1) = σ(F2) (σ ∈ {grd, idl}), then obviously σ(F1) ∩ σ(F2) ∈ Σσ

AF; otherwise, however,
σ(F1) ∩ σ(F2) = ∅ /∈ Σσ

AF.

A summary of the closure properties for AF semantics is presented in Table 3.1.

Table 3.1: Closure of AF semantics. ⊆: given AF F , whether any S ⊆ σ(F ) is realizable.
∩: given AFs F and F ′, whether S = σ(F ) ∩ σ(F ′) is realizable. y† expresses the
restriction that S 6= ∅.

cf adm nai prf com stb stg sem grd∗ grd idl
⊆ n n n y† n y y† y† ? y† y†

∩ y† y† y† y† n y y† y† ? y† y†
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a1 . . . al

s11 . . . s1n s∗1

s21 . . . s2m s∗2

Figure 3.6: Canonical realization of {S1, S2} (with S1 and S2 incomparable) under grd∗.
(S1 ∩ S2) = {a1, . . . , al}, (S1 \ S2) = {s∗1, s11, . . . , s1n}, (S2 \ S1) = {s∗2, s21, . . . , s2m}.

3.2.6 Quantitative Diversity

Our next results concern limits in expressing multiple extensions. Our first result is
positive in the sense that as long as at most two (incomparable) sets of arguments are
involved, all semantics satisfying incomparability of extensions are capable to deliver
such extensions. Under admissible and complete semantics, any extension-set containing
two arbitrary sets of arguments together with ∅ is realizable.

Proposition 11. For any extension-set S with |S| ≤ 2,

1. S ∈ Σσ
AF for σ ∈ {nai, stb, stg, prf, sem, grd∗} if S is incomparable and S 6= ∅,

2. S ∪ {∅} ∈ Στ
AF for τ ∈ {adm, com}.

Proof. (1) We begin by showing the claim for naive semantics. By Theorem 1, we need to
show that dcl(S) is tight, which trivially holds for |S| = 1. For S = {S1, S2}, let S ∈ dcl(S)
and a ∈ ArgsS such that S ∪ {a} /∈ dcl(S). W.l.o.g. assume S ⊆ S1. Then, a ∈ S2 \ S1
and S 6⊆ S2, meaning that there is some s ∈ S \ S2. Since |S| = 2, (a, s) /∈ PairsS. Hence
dcl(S) is tight.

For σ ∈ {stb, stg, prf, sem} the claim now follows from Σnai
AF ⊆ Σσ

AF.

For grd∗ we show the result, due to the lack of an exact characterization of the signature,
via a concrete realization. To this end consider an incomparable extension-set S with
|S| ≤ 2 and S 6= ∅. In case |S| = 1, i.e. S = {S}, the AF (S, ∅) trivially realizes S under
grd∗. In case |S| = 2, i.e. S = {S1, S2}, note that, since S1 and S2 are incomparable,
S1 \S2 6= ∅ and S2 \S1 6= ∅. Let s∗1 ∈ (S1 \S2) and s∗2 ∈ (S2 \S1) be dedicated arguments
contained in only one set. We define the AF

F = {S1 ∪ S2, {(s∗i , sj) | i, j ∈ {1, 2}, i 6= j, sj ∈ (Sj \ Si)}).

F is depicted in Figure 3.6. Now we observe that F has exactly two resolutions, namely
F1 = (AF , RF \ {(s∗2, s∗1)}) and F2 = (AF , RF \ {(s∗1, s∗2)}). Consider F1. Arguments
S1 ∩ S2 as well as argument s∗1 are unattacked, hence contained in grd(F1). Moreover s∗1
attacks s∗2, defending all s ∈ ((S1 \S2)\{s∗1}). Finally s∗1 attacks all s2 ∈ ((S2 \S1)\{s∗2}).
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3. Expressiveness

We conclude that grd(F1) = S1. Symmetrically, we get that grd(F2) = S2. Hence,
grd∗(F ) = {S1, S2}.

(2) We show that T = S ∪ {∅} is conflict-sensitive as long as |S| ≤ 2. This trivially holds
for |S| ≤ 1, since then for all A,B ∈ T, A∪B ∈ T. So let S = {S1, S2} with S1 6= S2 and
w.l.o.g. S1, S2 6= ∅. If S1 ⊂ S2 or S2 ⊂ S1 then S1 ∪ S2 ∈ T, hence T is conflict-sensitive.
On the other hand, if S1 and S2 are incomparable there is an a ∈ S1 and a b ∈ S2 such
that (a, b) /∈ PairsT, again showing conflict-sensitivity. Therefore T ∈ Σadm

AF . The result
for com follows from the fact that Σadm

AF ⊂ Σcom
AF (cf. Theorem 3).

The claim does not hold for conflict-free sets, as the only extension-sets of size 2 realizable
under cf are of the form {∅, {a}}, where a is an arbitrary argument.

For extension-sets of size three, the statement as in Proposition 11 does not hold for any
of the semantics. This is witnessed by the extension-set {{a, b}, {a, c}, {b, c}}, as shown
in the following example.

Example 17. Consider the extension-set S = {{a, b}, {a, c}, {b, c}} and a semantics σ,
and assume that the AF F realizes S under σ. For any semantics which requires its
extensions to be conflict-free (which holds for all semantics considered in this work) F
must not have attacks among a, b, and c. Hence {a, b, c} ∈ cf(F ). Moreover, each S ∈ S
defends itself in F , therefore also {a, b, c} ∈ adm(F ). Hence S ∪ {∅} /∈ Σadm

AF . Moreover
S /∈ Σprf

AF and, by Theorem 2 and Proposition 8, S /∈ Σσ
AF for σ ∈ {nai, stb, stg, sem, grd∗}.

Finally, there must be some T ⊇ {a, b, c} with T ∈ com(F ), hence also S ∪ {∅} /∈ Σcom
AF .

In the remainder of this section, we address the question how many extensions can
maximally be achieved by an AF under a semantics σ? Such insights ease checking
S ∈ Σσ

AF whenever the cardinality of S exceeds a certain number.

Research in this direction has been initiated by Baumann and Strass [26]. They proposed
a function giving the maximal number of stable extensions an AF with n arguments can
have. In accordance to realizability, we are interested in the number of extensions as a
function of a fixed amount of arguments occurring in any extension.

While our results on signatures give insights about the extent of structural diversity
a semantics can express, the maximal number of extensions gives, to some degree, an
answer to how much quantitative disagreement a semantics can express.

Recall that for any extension-set S, we denote the number of extensions in S as |S|, and
the number of arguments occurring in any extension of S as ‖S‖ (cf. Definition 8).

Definition 42. Given a semantics σ, we define the diversity function

∆σ(n) = max
F∈AFA,‖σ(F )‖=n

|σ(F )|.

Note that we do not restrict the number of arguments in the AF F , but only require
that at most n arguments occur in some σ-extension of F .
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Theorem 7. For σ ∈ {cf, adm, com}, it holds that ∆σ(n) = 2n

Proof. Given an extension-set S with ‖S‖ = n, the AF (ArgsS, ∅) has 2n conflict-free and
admissible sets and the AF ({a, a′ | a ∈ ArgsS}, {(a, a′), (a′, a), (a′, a′) | a ∈ ArgsS}) has
2n complete extensions, namely all subsets of ArgsS in both cases.

For the other semantics, which are the ones requiring incomparability of extensions, we
first give a technical lemma. The intuition of this lemma is that we can make any AF
symmetric without losing any preferred extensions. We might get additional ones, but
only with arguments already contained in other preferred extensions.

Lemma 8. For any AF F , there is a symmetric AF F sym with ‖prf(F )‖ = ‖prf(F sym)‖
and |prf(F )| ≤ |prf(F sym)|.

Proof. In order to get the symmetric AF F sym we transform F = (A,R) by (1) removing
all arguments a /∈ Argsprf(F ) together with adjacent attacks, and (2) adding (b, a) to R if
(a, b) ∈ R.

F sym = (Argsprf(F ), {(a, b), (b, a) | (a, b) ∈ RF } ∩ (Argsprf(F ) ×Argsprf(F )))

Obviously conflict-freeness and defense is preserved, i.e. any set admissible in F is
admissible in F sym. Moreover, as only attacks to and from arguments not occurring in
any preferred extension of F are removed, any conflict between two preferred extensions
E1, E2 ∈ prf(F ) survives the translation, therefore there must be two E′1, E′2 ∈ prf(F sym)
with E1 ⊆ E′1 and E2 ⊆ E′2. Hence |prf(F )| ≤ |prf(F sym)|. As Argsprf(F sym) coincides with
the arguments of F sym (by symmetry of F sym), it follows that ‖prf(F )‖ = ‖prf(F sym)‖.

Baumann and Strass [26] provide a function mapping numbers of arguments n to the
maximal number of stable extensions of an AF with n arguments can have. Their main
result is as follows.

Proposition 12 ([26]). For any natural number n, it holds that

max
F∈AFA,|AF |=n

|stb(F )| = Λ(n)

with

Λ(n) =


1, if n = 1
3s, if n ≥ 2 ∧ n = 3s
4 · 3s−1, if n ≥ 2 ∧ n = 3s+ 1
2 · 3s, if n ≥ 2 ∧ n = 3s+ 2.

In contrast to ∆σ, Baumann and Strass are interested in the maximal number of stable
extensions which can be achieved by an AF with n arguments, no matter how many
of these arguments occur in some extension. The AF giving the maximum number of
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extensions is basically composed of connected components of size 3 (or 2) with each
component being a clique (see [26] for details). The following result shows that the values
of the function Λ carry over to the function ∆σ for naive, stable, stage, preferred, and
semi-stable semantics. Informally, this means that additional arguments do not allow for
a greater maximal number of extensions.

Theorem 8. For σ ∈ {nai, stb, stg, prf, sem} and any natural number n, it holds that

∆σ(n) = Λ(n).

Proof. Consider a semantics σ ∈ {nai, stb, stg, prf, sem}, a natural number n and an AF
F with ‖σ(F )‖ = n. Moreover assume that F has maximal diversity, i.e. |σ(F )| = ∆σ(n).
Since Σσ

AF ⊆ Σprf
AF, we can find an AF F ′ with prf(F ′) = σ(F ), therefore |σ(F )| =

|prf(F ′)| and ‖σ(F )‖ = ‖prf(F ′)‖. Moreover, by Lemma 8, we can find a symmetric
AF F sym = (Asym, Rsym) such that ‖prf(F sym)‖ = ‖prf(F ′)‖ and |prf(F sym)| ≥ |prf(F ′)|.
In this symmetric AF it holds that prf(F sym) = σ(F sym) = stb(F sym). Moreover, each
argument occurs in at least one σ-extension, i.e. ‖σ(F sym)‖ = |Asym|. Therefore it follows
by Proposition 12 that |σ(F sym)| ≤ Λ(n). Since we assumed F having maximal diversity,
it follows that ∆σ(n) ≤ Λ(n).

Finally consider the fact that for all AFs F = (A,R) with |A| = n having |stb(F )| = Λ(n)
according to [26], it holds that each argument occurs in at least one stable extension, i.e.
‖stb(F )‖ = |A|. Moreover, F is symmetric, hence σ(F ) = stb(F ). Therefore F is an AF
with ‖σ(F )‖ = n and |σ(F )| = Λ(n), hence ∆σ(n) = Λ(n).

The diversity function for resolution-based grounded semantics gives strictly smaller values.
This can already seen in the case of n = 3 (say {a, b, c}), where, due to incomparability of
extension-sets under grd∗, the only candidates of size ∆σ(3) = 3 are {{a, b}, {a, c}, {b, c}}
and {{a}, {b}, {c}}. The former candidate is not conflict-sensitive and therefore not even
contained in Σprf

AF, the latter is not realizable under grd∗ due to Proposition 9. On the
other hand we can give the following lower bound:

∆grd∗(n) ≥ 2b
n
2 c

This is achieved by building bn2 c strongly connected components of size 2. Then each
resolution gives rise to a particular extension under grd∗.

3.2.7 Complexity

In this subsection, we consider the computational complexity of checking realizability, i.e.
given an extension-set S and a semantics σ, whether there is an AF F with σ(F ) = S.
This is equivalent with checking membership in the signature for semantics σ, so whether
S ∈ Σσ

AF holds. For most of the semantics, it is not hard to see that this can be done in
polynomial time in the size of S. The only exception is the naive semantics, since the
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characterization in Theorem 1 makes use of dcl(S) which is not polynomially bounded in
the size of S.

We provide an alternative characterization based on the ternary majority operator maj3 :

Definition 43. Given three sets S1, S2, S3 ⊆ A, the majority of these sets is defined as
maj3 (S1, S2, S3) = (S1 ∩ S2) ∪ (S2 ∩ S3) ∪ (S1 ∩ S3).

In other words, this means that s ∈ maj3 (S1, S2, S3) if and only if s appears in at least
two of the sets. Using maj3 we can show an alternative characterization of Σnai

AF.

Proposition 13. For every incomparable extension-set S ⊆ 2A it holds that dcl(S) is
tight iff for all S1, S2, S3 ∈ S there is an S ∈ S, such that maj3 (S1, S2, S3) ⊆ S.

Proof. Let S ⊆ 2A be an incomparable extension-set.

First suppose that for all S1, S2, S3 ∈ S there is some S ∈ S such that maj3 (S1, S2, S3) ⊆
S. Towards a contradiction assume that the downward-closure of S is not tight, i.e.
there exist S′ ∈ dcl(S) and a ∈ ArgsS = Argsdcl(S), such that (S′ ∪ {a}) /∈ dcl(S) and
for all s ∈ S′, (a, s) ∈ PairsS = Pairsdcl(S). Assume |S′| = 1, i.e. S′ = {s}. As
(a, s) ∈ PairsS by assumption, there is a T ∈ S with {a, s} ⊆ T , a contradiction to
S′ ∪ {a} /∈ dcl(S). Hence |S′| > 1, i.e. S′ = {s1, . . . , sn} with n > 1. By assumption,
{s1, . . . , sn, a} /∈ S, but (a, si) ∈ PairsS for each si ∈ S′. Hence, for each si ∈ S′ there
is some Si ∈ S with {a, si} ⊆ Si for i = 1 . . . n. Moreover maj3 (Si, Sj , S′) ⊇ {si, sj , a}
for each i, j ∈ {1, . . . , n} since si ∈ S′ ∩ Si, sj ∈ S′ ∩ Sj , and a ∈ Si ∩ Sj . Therefore
there is some Sij ∈ S with Sij ⊇ {si, sj , a}. Now for some k ∈ {1, . . . , n}, we get
Sijk = maj3 (Sij , Sk, S′) ⊇ {si, sj , sk, a} and Sijk ∈ S. Following this procedure for all
1 . . . n yields a T ∈ S with T ⊇ {s1, . . . , sn, a}, a contradiction to S′ ∪ {a} /∈ dcl(S).

To show the only-if-direction consider some extension-set S where dcl(S) is tight and
assume, towards a contradiction, sets S1, S2, S3 ∈ S such that maj3 (S1, S2, S3) 6⊆ S, for
all S ∈ S. Now, consider the ⊆-maximal S′ ∈ dcl(S) with S′ ⊂ maj3 (S1, S2, S3). It holds
that ∃a ∈ maj3 (S1, S2, S3) \ S′ such that S′ ∪ {a} /∈ dcl(S). Thus for each s ∈ S′ there is
some Si ∈ {S1, S2, S3} with {s, a} ⊆ Si. Hence, (s, a) ∈ PairsS for each s ∈ S′, which is,
together with the facts that S′ ∈ dcl(S) and S′ ∪ {a} /∈ dcl(S), a witness that dcl(S) is
not tight, and therefore a contradiction to the assumption.

Example 18. Consider the extension-set T = {{a, b′, c′}, {a′, b, c′}, {a′, b′, c}}. We
have already argued in Example 15 that dcl(T) is not tight. Now we observe that
maj3 ({a, b′, c′}, {a′, b, c′}, {a′, b′, c}) = {a′, b′, c′}. It turns out that there is no T ∈ T such
that {a′, b′, c′} ⊆ T , confirming Proposition 13. ♦

We obtain the following theorem.

Theorem 9. For semantics σ ∈ {cf,nai, stb, stg, adm, prf, sem}, given an extension-set
S ⊆ 2A, testing S ∈ Σσ

AF is in polynomial time.
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Proof. Given S ⊆ 2A, checking S 6= ∅ and ∅ ∈ S is clearly in polynomial time. Incompara-
bility of S can be checked via a double loop over S, in each step checking incomparability
of two elements of S. To check whether S is tight we loop over all S ∈ S and in each
such loop, we loop over all a ∈ ArgsS \ S to find some (a, s) /∈ PairsS if S ∪ {a} /∈ S
in a final loop over all s ∈ S. Similarly, to check whether S is conflict-sensitive we
loop over all A,B ∈ S and all a, b ∈ A ∪ B to test if, given A ∪ B /∈ S we find some
(a, b) /∈ PairsS. Finally, checking the majority criterion from Proposition 13 can be
done in polynomial time by looping over all triples (S1, S2, S3) stemming from S, and
testing whether maj3 (S1, S2, S3) is contained in some S ∈ S. Since these properties are,
according to Theorem 1, the ones to test when checking S ∈ Σσ

AF, the result follows.

Of course one difficulty with Theorem 9 is that one may be concerned with deciding
realizability of collections of sets, S, with such collections having size superpolynomial in
|ArgsS|. In such cases it would be more realistic to encode S in a more compact form.
We observe that there are a number of ways in which such “compact encodings” may be
treated.

1. As the models of a given propositional formula.

2. As the extensions of an AF under another argumentation semantics.

While in the first case the problem gets at most DP-hard for the semantics under
consideration, one can show hardness for the second level of the polynomial hierarchy for
certain combinations of semantics in the second case. Detailed results on these issues
can be found in [102].

3.3 Compact Realizability

In this section we deal with realizability in a subclass of AFs, namely compact argumen-
tation frameworks (CAFs). The results covered here were first presented in [30] and later
extended and round up in [31].

We will first define compact argumentation frameworks and relate the classes of AFs
induced by the respective semantics to each other. Then we will study realizability
restricted to CAFs. First, we will show that, for most semantics, additional arguments
(leading to non-compact AFs) are necessary to obtain the full expressiveness of the
semantics. Then, we will relate the signatures in CAF of the semantics under consideration
to each other, which will give a picture which is significantly different compared to general
signatures.
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a3 a1
a2 b3 b1

b2

x1 x2 x3 y1 y2 y3

z

Figure 3.7: AF discussed in Example 19, which is prf-compact but neither sem-compact
nor stg-compact.

3.3.1 Compact Argumentation Frameworks

The idea behind compact argumentation frameworks is that each argument appearing
in the framework is contained in at least one extension. In other words, they are
characterized by the absence of rejected arguments.

Definition 44. Let F ∈ AFA and σ be a semantics. An argument a ∈ AF is a rejected
argument in F under σ if a /∈ Argsσ(F ).2

It is clear that the question whether a given AF is compact can only be answered with
respect to a given semantics. Therefore each semantics σ gives rise to a specific class of
argumentation frameworks, namely the ones being compact for σ.

Definition 45. Let σ be a semantics. An AF F is called compact for σ (or σ-compact)
if Argsσ(F ) = AF . The set of all compact argumentation frameworks for σ is denoted by
CAFσ.

The main feature of compact argumentation frameworks is the absence of rejected
arguments under a given semantics. The following example illustrates this idea.

Example 19. Let us consider the AF F depicted in Figure 3.7.3 The preferred extensions
of F are prf(F ) = {{z}, {x1, a1}, {x2, a2}, {x3, a3}, {y1, b1}, {y2, b2}, {y3, b3}}, meaning
that F is prf-compact (F ∈ CAFprf) since each argument occurs in at least one preferred
extension and therefore F has no rejected arguments under preferred semantics. On
the other hand observe that stb(F ) = ∅, sem(F ) = prf(F ) \ {{z}}, and stg(F ) =
{{xi, ai, bj}, {yi, bi, aj} | 1 ≤ i, j ≤ 3}, i.e. z is not contained in any stable, semi-stable or
stage extension. Therefore F is not compact for any semantics among stable, semi-stable
and stage, that is F /∈ CAFstb, F /∈ CAFsem, and F /∈ CAFstg. ♦

As already mentioned before and indicated by Example 19, the contents of CAFσ differ
with respect to the semantics σ. Concerning relations between the classes of compact
AFs we start with an easy observation.

2Recall that this means that for all S ∈ σ(F ) it holds that a /∈ S.
3The construct in the lower part of the figure represents symmetric attacks between each pair of

distinct arguments. We will make use of this style in illustrations throughout the paper.
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CAFcfCAFnai

CAFcomCAFadmCAFprfCAFsem

CAFstb

CAFstg

CAFgrd∗

⊂
⊂ = =

⊂
=

⊂ ⊂

⊂

Figure 3.8: Relations between classes of compact AFs (cf. Theorem 10). Unconnected
pairs are incomparable.

Lemma 9. For any two semantics σ and τ such that for each AF F and every S ∈ σ(F )
there is some S′ ∈ τ(F ) with S ⊆ S′, it holds that CAFσ ⊆ CAFτ .

Proof. Suppose F ∈ CAFσ. By definition, Argsσ(F ) = AF . Now if for each S ∈ σ(F )
there is some S′ ∈ τ(F ) with S ⊆ S′, we have Argsσ(F ) ⊆ Argsτ(F ). Since Argsτ(F ) ⊆ AF
by definition, Argsτ(F ) = AF follows. Hence, F ∈ CAFτ .

Note that the case where σ(F ) ⊆ τ(F ) holds for each AF F is a special case of the
premise of Lemma 9. The next result provides a full picture of the relations between
classes of compact AFs for the semantics we consider (see also Figure 3.8).

Theorem 10. The following relations hold:

1. CAFstb ⊂ CAFσ ⊂ CAFnai for σ ∈ {prf, sem, stg};

2. CAFsem ⊂ CAFprf;

3. CAFstg 6⊆ CAFτ and CAFτ 6⊆ CAFstg for τ ∈ {prf, sem};

4. CAFprf = CAFadm = CAFcom;

5. CAFcf = CAFnai;

6. CAFgrd∗ ⊂ CAFprf;

7. CAFgrd∗ 6⊆ CAFθ and CAFθ 6⊆ CAFgrd∗ for θ ∈ {stb, stg, sem}.

Proof. (1) Let σ ∈ {prf, sem, stg}. The ⊆-relations are due to Lemma 9 together with
following facts: (a) in any AF F , stb(F ) ⊆ σ(F ); (b) each σ-extension E of an AF F is
conflict-free in F , thus there exists a naive extension E′ of F with E ⊆ E′.

CAFσ ⊂ CAFnai: The AF ({a, b}, {(a, b)}) is compact for naive semantics but not for σ.

CAFstb ⊂ CAFσ: Consider the AF F depicted in Figure 3.9. We have prf(F ) = sem(F ) =
{{x1, a1}, {x2, a2}, {x3, a3}, {y1, b1}, {y2, b2}, {y3, b3}}, and each of these extensions can
be extended to a stage extension (the former three by adding one of the arguments
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a3 a1
a2 b3 b1

b2

x1 x2 x3 y1 y2 y3

Figure 3.9: AF F ′ contained in CAFprf, CAFsem, and CAFstg but not in CAFstb.

c a b

s3 s1 s2 t3 t1 t2 u3 u1 u2

x1 x2 x3 x4 x5 x6 x7

Figure 3.10: AF F ′′ contained in CAFsem but not in CAFstg.

b1, b2, b3; the latter three by adding one of the arguments a1, a2, a3), but stb(F ) = ∅.
Thus AF = Argsσ(F ) 6= Argsstb(F ) = ∅, meaning that F ∈ CAFσ but F /∈ CAFstb.

(2) CAFsem ⊆ CAFprf is by the fact that, in any AF F , sem(F ) ⊆ prf(F ) (cf. Lemma 9).
Properness of the relation is by the AF in Figure 3.7, which is (as discussed in Example 19)
prf-compact but not sem-compact.

(3) First we show CAFstg 6⊆ CAFτ for τ ∈ {prf, sem}. To this end, consider the simple AF
F ′ = ({a, b, c}, {(a, b), (b, c), (c, a)}). We have stg(F ′) = {{a}, {b}, {c}}, thus F ′ ∈ CAFstg.
On the other hand, sem(F ′) = prf(F ′) = {∅}, thus F ′ /∈ CAFτ .

CAFprf 6⊆ CAFstg follows by the observations in Example 19.

CAFsem 6⊆ CAFstg: Consider the AF F ′′ in Figure 3.10. One can check that this AF is
sem-compact, but not stg-compact. In fact, one can verify that

stg(F ′′) ={{xi, ti, si, uj} | i, j ∈ {1, 2, 3}} ∪
{{x4, c, ui} | i ∈ {1, 2, 3}} ∪
{{xi+4, ui, sj , b} | i, j ∈ {1, 2, 3}},

while

sem(F ′′) ={{xi, si, ti} | i ∈ {1, 2, 3}} ∪
{{x4, c}} ∪
{{xi+4, ui, a} | i ∈ {1, 2, 3}} ∪
{{xi+4, ui, b} | i ∈ {1, 2, 3}}
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x3 x1 x2

a1 b1 a2 b2 a3 b3

z

Figure 3.11: AF F contained in CAFgrd∗ , but not in CAFstb, CAFstg, and CAFsem.

It can be seen that argument a does not occur in any stage extension. Although
{a, u1, x5}, {a, u2, x6}, {a, u3, x7} ∈ sem(F ′′), the range of any conflict-free set containing
a is a proper subset of the range of every stage extension of F ′′. Hence CAFsem 6⊆ CAFstg.

(4) Since preferred extensions of any given AF F are exactly the ⊆-maximal admissible and
complete extensions of F it holds that Argsprf(F ) = Argsadm(F ) = Argscom(F ). Therefore
F ∈ CAFprf iff F ∈ CAFadm iff F ∈ CAFcom.

(5) Since naive extensions of any given AF F are exactly the ⊆-maximal conflict-free sets
of F it holds that Argsnai(F ) = Argscf(F ). Therefore F ∈ CAFnai iff F ∈ CAFcf.

(6) CAFgrd∗ ⊆ CAFprf is by Lemma 9, the fact that, in any AF F , grd∗(F ) ⊆ com(F ),
and CAFprf = CAFcom (cf. (4)). Properness of the relation is witnessed by the AF given
by the symmetric triangular graph F = ({a, b, c}, {(a, b), (b, a), (b, c), (c, b), (a, c), (c, a)}),
which has prf(F ) = {{a}, {b}, {c}}, but grd∗(F ) = {∅}.

(7) Let θ ∈ {stb, stg, sem}. CAFθ 6⊆ CAFgrd∗ follows from the same AF F as in (6), which
has θ(F ) = {{a}, {b}, {c}}, but grd∗(F ) = {∅}. CAFgrd∗ 6⊆ CAFθ, on the other hand, is
witnessed by the AF F depicted in Figure 3.11. We observe that

grd∗(F ) = {{a1, a2, a3, z}, {a1, a2, b3, x3}, {a1, b2, a3, x2}, {b1, a2, a3, x1},
{a1, b2, b3, x3}, {b1, a2, b3, x1}, {b1, b2, a3, x2}, {b1, b2, b3}}.

However, θ(F ) = grd∗(F ) \ {{a1, a2, a3, z}}, since the range of {a1, a2, a3, z} misses
arguments x1, x2, and x3. Therefore z is rejected w.r.t. θ, hence F ∈ CAFgrd∗ , but
F /∈ CAFθ.

Finally a note on the relation between compact AFs and two well-known syntactic
classes of AFs (cf. Definition 22). First observe that any symmetric and self-attack-
free (i.e. having an irreflexive attack relation) AF is contained in CAFstb, as already
observed in [73, Proposition 6], and therefore also in each CAFσ for all semantics σ
under consideration. But already CAFstb contains strictly more AFs than the class
of symmetric and self-attack-free AFs, which is, for instance, indicated by the AF
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({a, b, c, d}, {(a, b), (b, c), (c, d), (d, a)}), i.e. the directed cycle of four arguments, which
is clearly not symmetric but compact for the stable semantics. On the other hand, the
class of self-attack-free AFs is just CAFcf (and CAFnai), since every argument which is
not self-attacking is always contained in a conflict-free (and naive) extension, while a
self-attacking argument never is.

3.3.2 Compact Signatures

We now turn to the issue of realizing extension-sets by compact AFs, that is, without the
use of rejected arguments. We will see that for most semantics the full expressiveness
indeed requires the use of rejected arguments. Moreover, we will show that the relations
between semantics in terms of expressiveness are dramatically changed when requiring
compactness of realizing AFs.

Definition 46. Let σ be a semantics. An extension-set S is compactly realizable under σ
if there is a compact AF F ∈ CAFσ with σ(F ) = S. The compact signature (c-signature)
Σσ

CAF of σ consists of all extension-sets that are compactly realizable under σ:

Σσ
CAF = {σ(F ) | F ∈ CAFσ}.

It is clear that Σσ
CAF ⊆ Σσ

AF holds for any semantics. We will see in the following theorem,
which summarizes and extends results from [146], that if an extension-set is realizable
under the naive or conflict-free semantics, then it is also compactly realizable under that
semantics, i.e. compact and general signatures coincide. This does not hold for the other
semantics, where we get a ⊂-relation between compact and general signatures.

Theorem 11. It holds that

1. Σσ
CAF = Σσ

AF for σ ∈ {cf,nai}, and

2. Στ
CAF ⊂ Στ

AF for τ ∈ {stb, stg, sem, prf, adm, com, grd∗}.

Proof. (1) Consider some S ⊆ 2A such that S ∈ Σnai
AF (resp. S ∈ Σcf

AF) with F being the
AF realizing S under naive (resp. conflict-free) semantics. It holds that an argument
is contained in ArgsS iff it is not self-attacking. Moreover removing any self-attacking
argument together with its associated attacks has no effect on the naive (resp. conflict-
free) extensions. Hence the AF F ′ obtained from removing all self-attacking arguments
together with their associated attacks has nai(F ′) = S and F ′ ∈ CAFnai (resp. cf(F ′) = S
and F ′ ∈ CAFcf), therefore Σnai

CAF = Σnai
AF (resp. Σcf

CAF = Σcf
AF).

(2) By definition we have Στ
CAF ⊆ Στ

AF. It remains to show that Στ
CAF 6= Στ

AF for
τ ∈ {stb, stg, sem, prf, adm, com, grd∗}.

stb, stg: Let τ ∈ {stb, stg} and consider the extension-set

S = {{a, b, c}, {a, b, c′}, {a, b′, c}, {a′, b, c}, {a, b′, c′}, {a′, b, c′}, {a′, b′, c}}.
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x

a b c

a′ b′ c′

Figure 3.12: AF F such that τ(F ) cannot be compactly realized under τ ∈ {stb, stg}.
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Figure 3.13: AF F such that τ(F ) cannot be compactly realized under τ ∈ {adm, com}.
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b d
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Figure 3.14: AF F such that τ(F ) cannot be compactly realized under τ ∈ {prf, sem, grd∗}.

S is realized under τ by the AF depicted in Figure 3.12. Assume there is an AF
F = (ArgsS, R) compactly realizing S under τ . Inspecting PairsS we infer that R ⊆
{(a, a′), (a′, a), (b, b′), (b′, b), (c, c′), (c′, c)}. Note that, for any remaining choice of R,
stb(F ) = stg(F ). Now for {a, b, c} ∈ stb(F ) we need (a, a′), (b, b′), (c, c′) ∈ R. On the
other hand, for {a′, b, c}, {a, b′, c}, {a, b, c′} ∈ stb(F ) we need (a′, a), (b′, b), (c′, c) ∈ R.
But then also {a′, b′, c′} ∈ stb(F ). Hence S /∈ Σstb

CAF and also S /∈ Σstg
CAF, witnessing

Σstb
CAF ⊂ Σstb

AF and Σstg
CAF ⊂ Σstg

AF.

adm, com: Let τ ∈ {adm, com} and consider the extension-set S = {∅, {a, b}}. The non-
compact AF depicted in Figure 3.13 realizes S under τ , hence S ∈ Στ

AF . Now assume there
is a compact AF F ∈ CAFτ with τ(F ) = S. Since a and b must not be in conflict there
is only one choice for F , namely F = ({a, b}, ∅), which has adm(F ) = {∅, {a}, {b}, {a, b}}
and com(F ) = {{a, b}}. Hence S /∈ Στ

CAF.

prf, sem, grd∗: Let τ ∈ {prf, sem, grd∗} and consider the extension-set

S = {{a, b}, {a, d, e}, {b, c, e}}.

S ∈ Στ
AF holds since Figure 3.14 shows an AF (with additional arguments) realizing S
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Σnai
CAF

Σprf
CAF

Σstg
CAF Σsem

CAF

Σstb
CAF3.18 3.19 ∪ 3.20

3.20

3.17

3.16
3.19

Figure 3.15: A Venn diagram illustrating compact signatures of naive, stable, semi-stable,
stage and preferred semantics. The numbers refer to figures showing representative AFs
for the respective area. For instance, number X in the area for Σσ

CAF \Στ
CAF means that

for the AF depicted in Figure X, say F , σ(F ) ∈ Σσ
CAF and σ(F ) /∈ Στ

CAF. Details are
explained in the proof of Theorem 12.

under τ .4 Now suppose there exists a compact AF F = (ArgsS, R) such that τ(F ) = S.
Since {a, d, e}, {b, c, e} ∈ S, it is clear that R must not contain an edge involving e. But
then, e is contained in each E ∈ τ(F ), hence {a, b} /∈ τ(F ). It follows that τ(F ) 6= S and
therefore S /∈ Στ

CAF.

Note that Σθ
CAF = Σθ

AF also holds for single-status semantics such as θ ∈ {grd, idl}, since
the canonical realization (S, ∅) of extension-sets {S} is obviously compact.

In the following we relate the compact signatures of the semantics under consideration to
each other. Recall that for general signatures it holds that Σnai

AF ⊂ Σstg
AF = (Σstb

AF \ {∅}) ⊂
Σsem

AF = Σprf
AF (cf. Theorem 2). This picture changes when considering the relationships

between compact signatures. Figure 3.15 depicts the relations between compact signatures
for naive, stable, stage, semi-stable and preferred semantics, which we will show in the
next theorem. The dashed areas represent particular intersections for which the question
of existence of extension-sets has to be left open. Also notice that stable semantics cannot
realize the empty extension-set within compact AFs.

Theorem 12. In accordance with Figure 3.15, it holds that:

1. Σnai
CAF ⊂ Σσ

CAF for σ ∈ {stb, stg, sem, prf};

2. Σstb
CAF ⊂ Σσ

CAF for σ ∈ {stg, sem};
4The self-attacking arguments a′ and b′ are not needed to realize S under prf or grd∗.

63



3. Expressiveness

a b c

a′ b′ c′

Figure 3.16: AF witnessing Σnai
CAF ⊂ Σσ

CAF for σ ∈ {stb, sem, stg, prf}.

3. Σprf
CAF \ (Σstb

CAF ∪ Σsem
CAF ∪ Σstg

CAF) 6= ∅;

4. Σstg
CAF \ (Σstb

CAF ∪ Σprf
CAF ∪ Σsem

CAF) 6= ∅;

5. Σstb
CAF \ Σprf

CAF 6= ∅;

6. (Σprf
CAF ∩ Σsem

CAF) \ (Σstb
CAF ∪ Σstg

CAF) 6= ∅;

7. Σsem
CAF \ (Σstb

CAF ∪ Σprf
CAF ∪ Σstg

CAF) 6= ∅.

Proof. (1) First recall that for a given S ∈ Σnai
CAF, the canonic AF Fcf(S) where AF = ArgsS

and RF = (ArgsS × ArgsS) \ PairsS gives S = nai(Fcf(S)) = σ(Fcf(S)), and Fcf(S) is
compact for σ, thus Σnai

CAF ⊆ Σσ
CAF. Moreover, the AF depicted in Figure 3.16, say F , is

compact for σ, since σ(F ) = {{a, b′, c′}, {a′, b, c′}, {a′, b′, c}}. On the other hand, σ(F )
cannot be realized under the naive semantics: since (a′, b′), (a′, c′), (b′, c′) ∈ Pairsσ(F ),
any AF F ′ trying to realize σ(F ) under nai must also have some E ∈ nai(F ′) with
E ⊇ {a′, b′, c′}. Hence Σnai

CAF ⊂ Σσ
CAF.

(2) Σstb
CAF ⊆ Σσ

CAF for σ ∈ {stg, sem}, follows from the fact that stg(F ) = sem(F ) = stb(F )
for every F ∈ CAFstb [65]. Properness is by (4) and (7), to be shown in the remainder of
this proof.

In the following we provide, as part of the proof, examples witnessing the remaining
statements. The general procedure is as follows: Let σ1, . . . , σn and τ1, . . . , τm be
semantics. To show that

(⋂
1≤i≤n Σσi

CAF

)
\
(⋃

1≤j≤m Στj
CAF

)
6= ∅ holds, we fix some

extension-set S ⊆ 2A, provide an AF F ∈ CAFσi with σi(F ) = S for all i ∈ {1, . . . , n},5
and show that S is not compactly realizable under any of the semantics τ1, . . . , τm.

(3) We begin by showing Σprf
CAF \ (Σstb

CAF ∪ Σsem
CAF ∪ Σstg

CAF) 6= ∅.

Example 20. Consider the extension-set

S = {{a, b}, {a, xi, si}, {b, yi, si}, {xi, yi, si} | i ∈ {1, 2, 3}}

and observe that the AF F depicted in Figure 3.17 (note that among arguments {xi, yi |
i ∈ {1, 2, 3}} all attacks but {(xi, yi), (yi, xi), (xi, xi), (yi, yi) | i ∈ {1, 2, 3}} are present)
has exactly prf(F ) = S. Since F is compact for prf we have S ∈ Σprf

CAF. Now let
5In fact, we could provide different AFs Fi ∈ CAFσi with σi(Fi) = S for each i ∈ {1, . . . , n}.
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b a

x1
x2

x3 y1

y2

y3

s3 s1 s2

Figure 3.17: AF witnessing Σprf
CAF \ (Σstb

CAF ∪ Σsem
CAF ∪ Σstg

CAF) 6= ∅.

σ ∈ {stb, stg, sem}. We show that S /∈ Σσ
CAF. Towards a contradiction assume that

there is an AF G with AG = ArgsS and σ(G) = S. First observe that there cannot
be any attack between a and b on the one hand and s1, s2, and s3 on the other.
For σ = stb we have a contradiction to σ(G) = S since s1, s2, s3 /∈ {a, b}+G. Also for
σ = stg we have a contradiction since for each i, {a, b, si} is conflict-free and {a, b, si}+G ⊃
{a, b}+G, hence {a, b} /∈ stg(G). Finally consider σ = sem. Let S = {a, x1, s1} and T =
{x1, y1, s1}. If there was no attack between a and y1 then S∪T would be conflict-free and
admissible and therefore S, T /∈ sem(G). Since both T and {a, b} must defend themselves,
necessarily both (y1, a), (a, y1) ∈ RG. By the symmetric cases we get {〈a, yi〉, 〈b, xi〉 |
i ∈ {1, 2, 3}} ⊆ RG.6 Now in order to have {a, b} ∈ sem(G), no si can be defended by
{a, b, si}, hence each si must have an attacker that is not attacked by {a, b} or si. Hence
{(sj , sk), (sk, sl), (sl, sj)} ⊆ RG for some j, k, l ∈ {1, 2, 3} with j 6= k 6= l 6= j and no other
attacks among {sj , sk, sl}. W.l.o.g. assume j = 1, k = 2, and l = 3. Now observe that S
has to defend s1 from s3, therefore (x1, s3) ∈ RG. So far we have S+

G ⊇ (ArgsS \ {x2, x3}).
S has to attack both x2 and x3 since otherwise either S would not defend itself or at
least one of S ∪ {x2} and S ∪ {x3} would be admissible and have greater range than S.
But now S+

G = ArgsS ⊃ {a, b}+G, a contradiction to {a, b} ∈ sem(G). ♦

(4) We continue with Σstg
CAF \ (Σstb

CAF ∪ Σprf
CAF ∪ Σsem

CAF) 6= ∅.

Example 21. Let ⊕ such that i⊕j = (i+j) mod 9. Consider the AF F = ({a0, . . . , a8},
{(ai, ai⊕1) | 0 ≤ i < 9, }), i.e. the directed cycle of nine arguments depicted in Figure 3.18.
We get stg(F ) = {{ai, ai⊕2, ai⊕4, ai⊕6} | 0 ≤ i < 9}. Now assume this extension-set is
compactly realizable under stable, preferred or semi-stable semantics, i.e. there is some G
with σ(G) = stg(F ) (σ ∈ {stb, prf, sem}) and AG = AF . Since ai and aj occur together
in some stage extension of F for all i, j with i⊕ 1 6= j and i 6= j ⊕ 1, the only possible
attacks in G are (ai, aj) with i⊕ 1 = j or i = j ⊕ 1. Now let Si = {ai, ai⊕2, ai⊕4, ai⊕6}.

6Recall the notation for symmetric attacks: for arguments a, b ∈ A, we use 〈a, b〉 as shortcut for
(a, b), (b, a).
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a1

a0
a8 a7 a6

a5

a4
a3a2

Figure 3.18: AF witnessing Σstg
CAF \ (Σstb

CAF ∪ Σprf
CAF ∪ Σsem

CAF) 6= ∅.

a b c

x1 x2 y1 y2 z1 z2

s3 s1 s2

Figure 3.19: AF witnessing Σstb
CAF \ Σprf

CAF 6= ∅.

In order to have Si ∈ σ(G), ai has to attack ai⊕8 and ai⊕6 has to attack ai⊕7, first
for Si (resp. (Si)+

G for stb and sem) to be maximal and second to be defended. Hence
RG = {〈ai, ai⊕1〉 | 0 ≤ i < 9}, i.e. the cycle of length 9 with all attacks being symmetric.
Consequently, σ(G) = stg(F ) ∪ {ai, ai⊕3, ai⊕6 | 0 ≤ i < 3}, showing that there is no AF
compactly realizing stg(F ) under σ. ♦

(5) The following example witnesses that Σstb
CAF \ Σprf

CAF 6= ∅.

Example 22. Consider the AF F depicted in Figure 3.19 and observe that

S = stb(F ) = {{a, b, z1, s2}, {a, b, z2, s3},
{a, c, y1, s1}, {a, c, y2, s3},
{b, c, x1, s1}, {b, c, x2, s2},
{a, y1, z1, s2}, {a, y1, z2, s1}, {a, y2, z1, s3}, {a, y2, z2, s3},
{b, x1, z1, s2}, {b, x1, z2, s1}, {b, x2, z1, s2}, {b, x2, z2, s3},
{c, x1, y1, s1}, {c, x1, y2, s1}, {c, x2, y1, s2}, {c, x2, y2, s3},
{x1, y1, z1, s2}, {x1, y1, z2, s1}, {x1, y2, z1}, {x1, y2, z2, s1},
{x2, y1, z1, s2}, {x2, y1, z2}, {x2, y2, z1, s3}, {x2, y2, z2, s3}}.

Note that {a, b, c} does not have full range and thus is not a stable extension of F .
Assume there exists some AF G compactly realizing S under preferred semantics, i.e.
prf(G) = S and AG = ArgsS. One can check that every pair of arguments in F which
does not feature an attack actually occurs in some stable extension of F (we call such an
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Figure 3.20: AF showing (Σprf
CAF ∩ Σsem

CAF) \ (Σstb
CAF ∪ Σstg

CAF) 6= ∅.

F analytic in [31]). That means that for the AF G there can only be attacks between
arguments being linked in Figure 3.19.

Now consider the extension S = {b, c, x1, s1} ∈ S. For S ∈ prf(G) there are two possible
reasons for a /∈ S. Either a is attacking or attacked by S, or a is not defended by S ∪{a}.
Assume a not to be defended by S ∪ {a}. Then (x2, a) ∈ RG and (x1, x2), (s1, x2) /∈ RG.
But then x2 /∈ S defends itself, hence S cannot be a maximal admissible set in G. It
follows that a is in conflict with S, the only possibility being a conflict with x1, hence
(x1, a) ∈ RG ((a, x1) ∈ RG is not sufficient since no other argument in S can defend x1
against a). Considering {a, y1, z1, s2} ∈ S, none of y1, z1, and s2 can defend a against x1,
hence also (a, x1) ∈ RG.

In the very same manner, one can justify the existence of symmetric attacks between a and
x2, b and yi, and c and zi (i ∈ {1, 2}), respectively. Therefore the set {a, b, c} is admissible
in G. Hence there must be some S′ ∈ prf(G) with S′ ⊇ {a, b, c}, a contradiction to S
being compactly realizable under the preferred semantics. ♦

(6) We proceed with an example showing that (Σprf
CAF ∩ Σsem

CAF) \ (Σstb
CAF ∪ Σstg

CAF) 6= ∅.

Example 23. Consider the AF F from Figure 3.20. We have

S = sem(F ) = prf(F ) = {{vi, yj , ri, sj}, {wi, xj , ti, sj}, {vi, wj , ri, tj} | 1 ≤ i, j ≤ 3}.

Let σ ∈ {stb, stg} and assume there is an AF G with σ(G) = S and and AG = ArgsS. First
note that for all i, j ∈ {1, 2, 3} each pair {vi, sj}, {wi, sj}, {ri, sj}, {ti, sj} is contained in
some element of S, hence there cannot be an attack between any of these pairs in G. Now
let S = {vi, wj , ri, tj} for some i, j ∈ {1, 2, 3}. We have S+

G ⊆ AG \ {s1, s2, s3}, hence S
cannot be a stable extension of G. Moreover, since G must be self-loop-free, S ∪ {sk}
with 1 ≤ k ≤ 3 is conflict-free and obviously has a bigger range than S. Therefore S
cannot be a stage extension in G. It follows that S cannot be compactly realized under
σ ∈ {stb, stg}. ♦
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(7) For Σsem
CAF \ (Σstb

CAF ∪ Σprf
CAF ∪ Σstg

CAF) 6= ∅ we will make use of the following lemma,
which might be of interest on its own.

Lemma 10. Let σ, τ ∈ {stb, prf, sem, stg} and F1, F2 ∈ CAFτ such that τ(F1) /∈ Σσ
CAF

and AF1 ∩AF2 = ∅. It holds that τ(F1 ∪ F2) /∈ Σσ
CAF.

Proof. Assume, towards a contradiction, there is some AF G ∈ CAFσ such that σ(G) =
τ(F1∪F2). Since AF1 ∩AF2 = ∅, it follows that τ(F1∪F2) = {E1∪E2 | E1 ∈ τ(F1), E2 ∈
τ(F2)}.7 Due to compactness of F1 and F2, every argument a ∈ AF1 occurs together with
every argument b ∈ AF2 in some τ -extension of F1 ∪ F2, meaning that G cannot contain
any attack between a and b. Hence G = G1 ∪G2 with AG1 = AF1 and AG2 = AF2 and,
consequently, σ(G) = {E1 ∪E2 | E1 ∈ σ(F1), E2 ∈ σ(F2)}. Therefore it must hold that
σ(G1) = τ(F1), a contradiction to the assumption that τ(F1) /∈ Σσ

CAF.

Now we get Σsem
CAF\(Σstb

CAF∪Σprf
CAF∪Σstg

CAF) 6= ∅ as follows: Let F = F1∪F2 where F1 is the
AF in Figure 3.19 and F2 is the AF in Figure 3.20 (observe that for AF1 ∩AF2 = ∅ some
renaming is necessary). From F1, F2 ∈ CAFsem and sem(F1) /∈ Σprf

CAF (see Example 22)
we get sem(F ) /∈ Σprf

CAF by Lemma 10. In the same way sem(F ) /∈ Σstb
CAF ∪ Σstg

CAF follows
from F1, F2 ∈ CAFsem and sem(F2) /∈ Σstb

CAF ∪ Σstg
CAF (see Example 23).

This concludes the proof of Theorem 12.

The compact signature for single-status semantics such as grd and idl is {{S} | S ⊆ A},
with S being finite, and therefore contained in all signatures covered by Theorem 12. It
is also contained in the compact signatures of resolution-based grounded semantics, of
which we also know that Σnai

CAF 6⊆ Σgrd∗
CAF. This is already witnessed by the extension-set

{{a}, {b}, {c}}, which is not (compactly) realizable under grd∗ (cf. Proposition 9), but
compactly realizable under nai.

The following theorem shows the relations between the compact signature for cf, adm,
and com, i.e. the semantics for which extension-sets are not incomparable (except {∅} or
extension-set of size 1 for com).

Theorem 13. It holds that

1. Σcf
CAF ⊂ Σadm

CAF and

2. Σcom
CAF 6⊆ Σσ

CAF and Σσ
CAF 6⊆ Σcom

CAF for σ ∈ {cf, adm}.

Proof. (1) Given an arbitrary AF F it holds that cf(F ) = adm(F sym), where F sym

is the AF obtained from making all attacks of F symmetric and removing all self-
attacking arguments, hence Σcf

CAF ⊆ Σadm
CAF. Properness of the relation is by the AF

7This property has been called well-definedness by Spanring [182] and holds for all semantics under
consideration.
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a1

a2

b1

b2

cd

Figure 3.21: AF F compactly realizing an extension-set S /∈ Σadm
CAF ∪ Σcf

CAF under com.

G = ({a, b, c, d}, {(a, b), (b, c), (c, d), (d, a)}), that is the directed cycle of four arguments,
having adm(G) = {∅, {a, c}, {b, d}}, which is an extension-set not (compactly) realizable
under cf. This is by the fact that if {a, c} is conflict-free in some AF then clearly also
{a} and {c} must be conflict-free. Hence Σcf

CAF ⊂ Σadm
CAF.

(2) Σcom
CAF 6⊆ Σσ

CAF: Any extension-set S containing exactly one non-empty set of arguments
S is compactly realizable under com by the AF (S, ∅), but not under cf and adm since ∅ is
not contained in S. The following example shows that these trivial cases are not the only
AFs in Σcom

CAF \ Σσ
CAF. To this end consider the AF F depicted in Figure 3.21. We have

com(F ) = {∅, {a1}, {a2}, {b1}, {b2}, {a1, b2}, {a2, b1}, {a1, a2, c}, {b1, b2, d}}. On the one
hand it is easy to see that F is compact for complete semantics, on the other hand observe
that both {a1}, {a2} ∈ com(F ), (a1, a2) ∈ Pairscom(F ), but {a1, a2} /∈ com(F ). So com(F )
is not conflict-sensitive. Hence com(F ) /∈ Σσ

AF and therefore also com(F ) /∈ Σσ
CAF.

Σσ
CAF 6⊆ Σcom

CAF: Let F = ({a, b, c}, {〈a, b〉, 〈b, c〉}) and observe that cf(F ) = adm(F ) =
{∅, {a}, {b}, {c}, {a, c}}. Now assume there is an AF G ∈ CAFcom with com(G) = cf(F ).
Clearly AG = {a, b, c} and RG ⊆ {(a, b), (b, a), (b, c), (c, b)}. Now for ∅ ∈ com(G) each
argument must be attacked and, moreover, the singletons {a}, {b} and {c} must defend
themselves. Hence it must be that G = F which means com(G) = {∅, {b}, {a, c}}, a
contradiction.

Comparing the insights obtained from Theorems 12 and 13 with the results on general
realizability presented in Theorem 2, we observe notable differences depending on whether
rejected arguments are allowed or not. When allowing rejected arguments (as in general
realizability), preferred and semi-stable semantics are equally expressive and at the same
time strictly more expressive than stable and stage semantics. As we have seen, this
does not carry over to the compact setting where, with the exception of Σstb

CAF ⊂ Σsem
CAF

and Σstb
CAF ⊂ Σstg

CAF, signatures among stb, prf, sem, and stg are incomparable. Moreover,
while complete semantics is strictly more expressive than admissible and conflict-free
semantics in general, the compact signatures are incomparable.

What remains an open issue is the existence of extension-sets lying in the intersection
of Σprf

CAF (resp. Σsem
CAF) and Σstg

CAF but outside of Σstb
CAF (see the dashed areas in the

Venn diagram in Figure 3.15). Due to considerations involving implicit conflicts we
conjecture in [31] that both intersections are empty, i.e. Σprf

CAF ∩ Σstg
CAF ⊂ Σstb

CAF and
Σsem

CAF ∩ Σstg
CAF = Σstb

CAF.
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3.4 Input-Output Realizability

In this section we consider realizability in the context of the decomposability of AFs.
This is based on the idea that an AF can be considered as a composition of modules and
their interconnections. Such a module is itself an AF with designated input and output
arguments, i.e. external arguments affecting resp. being affected by the module. Its
behaviour in the interplay with other modules is described by a function which maps each
acceptance status (either extensions or labellings) of the input arguments into the set
of acceptance statuses of the output arguments. Independently of the concrete module,
this behaviour will be described by what we will call I/O-specifications. The question of
interest is, given a semantics σ and an I/O-specification f, whether there is a module
(later called I/O-module) realizing f under σ, i.e. showing, when evaluated under σ,
exactly the same input-output behaviour as prescribed by f. The set of I/O-specifications
realizable by a semantics constitutes its I/O-signature and reveals the degree of functional
completeness of the semantics.

Recalling the example from the introduction, the sub-framework including the 4-length
chain realizes the mapping where {a1} is mapped to ∅ (i.e. if a1 belongs to an extension
then a4 does not belong to it) and ∅ is mapped to {a4} (i.e. if a1 does not belong to
an extension then a4 belongs to it): we call this kind of mapping a two-valued I/O-
specification. On the other hand, one may want to distinguish between “out” arguments
and “undecided” arguments. Considering the AF given by the 4-length chain, if a1 is
accepted then a4 is out, if a1 is out then a4 is in, if a1 is undecided then a4 is undecided
too. We call this kind of mapping a three-valued I/O-specification. As it will be shown
in the following, not all three-valued I/O-specifications are realizable, e.g. there is no
sub-framework realizing the variant of the mapping above where a1 undecided yields a4
accepted.

The remainder of this section is organized as follows. We will first study I/O-realizability
in the extension-based (i.e. two-valued) setting. After introducing the necessary formal
machinery we will exactly characterize all realizable two-valued I/O-specifications for
the stable, preferred, semi-stable, stage, complete, ideal, and grounded semantics. Then
we will deal with labelling-based (i.e. three-valued) I/O-realizability, giving exact charac-
terizations for the preferred and grounded semantics. Finally we will consider partial
specifications where for some inputs the output is not specified.

3.4.1 Two-valued I/O-realizability

So far we were interested in the realizability of extension-sets, i.e. finding an AF such that
the evaluation under a semantics gives a certain result. When regarding AFs as modules
within a larger system, we are rather interested in the effect of input arguments on output
arguments. To this end we introduce the notion of a two-valued I/O-specification, which
describes a desired input-output behaviour by assigning to each set of input arguments a
set of sets of output arguments. The underlying idea is that a certain subset of input
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arguments being accepted can cause several outcomes, each described by a set of accepted
output arguments.

Definition 47. A (two-valued) I/O-specification consists of two sets I,O ⊆ A and a
total8 function f : 2I 7→ 22O .

In order to realize given I/O-specifications we require AFs with dedicated input and
output argument. An I/O-module represents a (partial) AF where two sets of arguments
are identified as input and output arguments, respectively, with the restriction that input
arguments do not have any ingoing attacks.

Remark 2. Differently from an I/O-module, the notion of argumentation multipole
in [17] assumes a fixed set of incoming and outgoing attacks rather than of input
and output arguments. However, for the purposes of this work the two notions are
equivalent insofar as input (output) arguments of an I/O-module are identified with the
sources (destinations) of incoming (outgoing) attacks of the corresponding argumentation
multipole.

Definition 48. Given a set of input arguments I ⊆ A and a set of output arguments
O ⊆ A with I ∩ O = ∅, an I/O-module is an AF F = (A,R) such that I,O ⊆ A and
I−F = ∅.

In order to evaluate the effect of input arguments on output arguments we introduce the
notion of an injection, which intuitively assigns a certain status to the input arguments.
The injection of a set J ⊆ I to an I/O-module F simulates the input J in the way
that all arguments in J are accepted (none of them has ingoing attacks since F is an
I/O-module) and all arguments in (I \ J) are rejected (each of them is attacked by the
newly introduced argument z, which has no ingoing attacks).

Definition 49. Given an I/O-module F = (A,R) and a set of arguments J ⊆ I, the
(two-valued) injection of J to F is the AF

.(F, J) = (A ∪ {z}, R ∪ {(z, i) | i ∈ (I \ J)}) ,

where z is a newly introduced argument.

Now we have all the tools at hand to define what it means to realize a given I/O-
specification. In order for an I/O-module F to realize f under a semantics σ, the injection
of each J ⊆ I to F must have f(J) as its σ-extensions restricted to the output arguments.
So, informally, with input J assigned the set of outputs under σ must be exactly f(J).

Definition 50. Given I,O ⊆ A, a semantics σ and an I/O-specification f, the I/O-
module F realizes f under σ iff

∀J ⊆ I : σ(.(F, J))|O = f(J).
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Figure 3.22: I/O-module F with I = {a, b} and O = {c, d} realizing the I/O-specification
given in Example 24 under {stb, prf, sem, stg} on top and the injections of all possible
input assignments in (a) – (d).

The following example illustrates these basic concepts.

Example 24. Consider the sets I = {a, b} and O = {c, d}. A exemplary I/O-
specification is given by the function f : 2I 7→ 22O such that

f(∅) = {{d}}
f({a}) = {{c, d}}
f({b}) = {{c}, {d}}

f({a, b}) = {{c, d}, {c}}

Considering, for instance, the case of input {b}, the intended meaning of f is that
if b is accepted and a is not, then either c or d, but not both, should be accepted.
On the other hand, in the case of input {a}, i.e. a is accepted and b is not, both c
and d should be accepted. The AF F in Figure 3.22, represents an I/O-module with
dedicated input arguments {a, b} and output arguments {c, d}. It turns out that F
realizes f under stable semantics. In order to show this we have to check, for each
J ⊆ I, whether the injection of J to F , .(F, J), has exactly f(J) as stable extensions
restricted to O, i.e. stb(.(F, J))|O = f(J). Considering J = ∅ (cf. Figure 3.22c), we
have that .(F, ∅) is F together with a new argument z attacking both a and b. Hence
we have stb(.(F, ∅)) = {{z, x1, d}}, meaning that stb(.(F, ∅))|O = {{d}}, which is as
specified by f. Moreover we get stb(.(F, {a})) = {{z, a, x2, c, d}} (cf. Figure 3.22a),
stb(.(F, {b})) = {{z, b, x3, c}, {z, b, x1, d}} (cf. Figure 3.22b), and stb(.(F, {a, b})) =

8We will study the case of partial functions on its own in Section 3.4.3.
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{{z, a, b, c, d}, {z, a, b, x3, c}} (cf. Figure 3.22d). This shows that for all possible inputs,
the extensions restricted to the output arguments are as specified by f, hence F realizes f
under stable semantics.

While it is easy to verify that F also realizes f under preferred, semi-stable and stage
semantics, it does not realize f under grounded, ideal and complete semantics. For
J = {b} we have that grd(.(F, {b}))|O = idl(.(F, {b}))|O = {∅} and com(.(F, {b}))|O =
{∅, {c}, {d}}, being not in line with f (recall that f(b) = {{c}, {d}}). ♦

The question we want to address is the following: which conditions must f fulfill in order
to be realizable by some I/O-module and how can such an I/O-module be constructed?
The following generic AF will be the key concept for the forthcoming characterization
results.

Definition 51. Given an I/O-specification f, let Y = {yi | i ∈ I} and X = {xSJ | J ⊆
I, S ∈ f(J)}. The canonical I/O-module (for f) is defined as

C(f) = (I ∪O ∪ Y ∪X ∪ {w},
{(i, yi) | i ∈ I} ∪
{(yi, xSJ ) | xSJ ∈ X, i ∈ J} ∪ {(i, xSJ ) | xSJ ∈ X, i ∈ (I \ J)} ∪
{(x, x′) | x, x′ ∈ X,x 6= x′} ∪ {(x,w) | x ∈ X} ∪ {(w,w)} ∪
{(xSJ , o) | xSJ ∈ X, o ∈ (O \ S)}).

Besides the dedicated input and ouput arguments, C(f) consist of a copy of each input
argument, an argument for each combination of input and output given by f, as well as
the argument w. Intuitively, the argument xSJ shall enforce output S for input J . It does
so by attacking all other arguments in X and all output arguments except S. Moreover,
w ensures that any stable extension of (an injection to) C(f) must contain at least one
argument of X.

The following theorem shows that any I/O-specification is realizable under stable seman-
tics.

Theorem 14. Every I/O-specification f is realized by C(f) under stb.

Proof. Let I,O ⊆ A and f be an arbitrary I/O-specification. We have to show that
stb(.(C(f), J))|O = f(J) holds for any J ⊆ I. Consider such a J ⊆ I.

First let S ∈ f(J). We show that E = {z}9∪J∪{yi | i ∈ (I\J)}∪{xSJ}∪S ∈ stb(.(C(f), J)),
thus S ∈ stb(.(C(f), J))|O. E is conflict-free in .(C(f), J) since z is only in conflict with
the arguments (I \ J), a yi with i ∈ (I \ J) is only in conflict with i /∈ E, xSJ is only in
conflict with other x ∈ X, i ∈ (I \ J) and yj with j ∈ J , and arguments in S are only
in conflict with arguments from X but not from xSJ . E is stable in .(C(f), J) since xSJ

9Recall that the argument z is introduced by the injection.
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attacks w, all other x ∈ X and all o ∈ (O \ S); z attacks all i ∈ (I \ J); each yj with
j ∈ J is attacked by j.

It remains to show that there is no S′ ∈ stb(.(C(f), J))|O with S′ /∈ f(J). Towards a
contradiction assume there is some S′ ∈ stb(.(C(f), J))|O with S′ /∈ f(J). Hence there
must be some E′ ∈ stb(.(C(f), J)) with S′ ⊂ E′. Since w attacks itself, w /∈ E′, thus
by construction of C(f) there must be some xS′J ′ ∈ (X ∩ E′) attacking w, and xS′J ′ must
attack all o ∈ (O \ S′). Since S′ /∈ f(J) by assumption, it must hold that J ′ 6= J . Now
note that z ∈ E′ and j ∈ E′ for all j ∈ J , since they are not attacked by construction of
.(C(f), J). Now if J ′ ⊂ J then there is some j ∈ (J \ J ′) attacking xS′J ′ , a contradiction
to conflict-freeness of E′. On the other hand if J ′ 6⊆ J there is some j′ ∈ (J ′ \ J) which
is attacked by z. Therefore also yj′ ∈ E′, which attacks xS′J ′ , again a contradiction.

As to preferred, semi-stable and stage semantics, any I/O-specification is realizable,
provided that a (possibly empty) output is prescribed for any input.

Proposition 14. Every I/O-specification f such that ∀J ⊆ I : f(J) 6= ∅ is realized by
C(f) under σ ∈ {prf, sem, stg}.

Proof. We show that for all J ⊆ I stable, preferred, stage and semi-stable extensions
coincide in .(C(f), J), thus the result follows from Theorem 14.

First, according to the hypothesis and Theorem 14, there exists a stable extension of
.(C(f), J) for each J ⊆ I, thus stable, stage and semi-stable extensions coincide. As to
preferred semantics, we know that any stable extension is also preferred, and we show
that the reverse also holds in .(C(f), J). By construction of .(C(f), J), it is easy to see
that for any preferred extension E it holds that E = {z}∪J ∪{yi | i ∈ (I \J)}∪{xSJ}∪S,
where S is a set among f(J) and exists by the hypothesis. E is stable, since xSJ attacks
w, all other x ∈ X and all o ∈ (O \ S), z attacks all i ∈ (I \ J), and each yj with j ∈ J
is attacked by j.

Theorem 15. An I/O-specification f is realizable under σ ∈ {prf, sem, stg} iff ∀J ⊆ I :
f(J) 6= ∅.

Proof. The if-direction is a direct consequence of Proposition 14.

The only-if-direction follows directly by the fact that in every AF, particularly in any
injection of some set of arguments to an I/O-module, a σ-extension exists.

Example 25. Consider the I/O-specification f with I = {a, b} and O = {c, d, e} defined
as follows:

f(∅) = {∅}
f({a}) = {{c, e}}
f({b}) = {{c, d, e}, {d, e}}

f({a, b}) = {{c, d, e}, {c, d}}
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Figure 3.23: I/O-module realizing the I/O-specification given in Example 25 under
{stb, prf, sem, stg}.

The canonical I/O-module C(f) is depicted in Figure 3.2310. Let σ be a semantics among
{stb, prf, sem, stg}. One can verify that for every possible input J ⊆ I, the injection of
J to C(f) has exactly f(J) as σ-extensions restricted to O. As an example let J = {b}.
.(C(f), {b}) adds to C(f) the argument z attacking a. Now

σ(.(C(f), {b})) = {{z, b, ya, x{d,e}{b} , d, e}, {z, b, ya, x{c,d,e}{b} , c, d, e}},

hence σ(.(C(f), {b}))|O = {{d, e}, {c, d, e}} = f({b}). ♦

Also for complete, grounded and ideal semantics we are able to identify a necessary and
sufficient condition for realizability. While we show sufficiency of these conditions in more
detail, their necessity is by the well-known facts that the intersection of all complete
extensions is always a complete extension too and ideal and grounded semantics always
yield exactly one extension. We define the former property for I/O-specifications:

Definition 52. An I/O-specification f is closed iff for each J ⊆ I it holds that f(J) 6= ∅
and

⋂
f(J) ∈ f(J).

Example 26. Again considering the I/O-specification f given in Example 25, we observe
that f is closed, since

⋂
f(J) ∈ f(J) for each J ⊆ {a, b}. For instance,

⋂
f({b}) = {d, e}

and, indeed, {d, e} ∈ f({b}). ♦

Proposition 15. Every closed I/O-specification f is realized by C(f) under com.

Proof. Let J ⊆ I. By construction of .(C(f), J), E∗ = {z} ∪ J ∪ {yi | i ∈ (I \ J)} is
contained in all complete extensions, while the elements of (I \ J) ∪ {yi | i ∈ J} are
attacked by E∗ and thus by all complete extensions. All xS′J ′ with J ′ 6= J are attacked by
J or some yi with i ∈ (I \ J), thus they are attacked by E∗, while all xSJ with S ∈ f(J)
attack each other, and the other attacks they receive come from elements attacked by
E∗. Two cases can then be distinguished. If |f(J)| = 1 then by construction of .(C(f), J)

10Argument names such as x{c,d}{a,b} are abbreviated by xcdab.
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there is just one xSJ defended by E∗, thus the only complete extension is E∗ ∪ {xSJ} ∪ S.
If, on the other hand, |f(J)| > 1, any xSJ with S ∈ f(J) can be included, giving rise to
the complete extension E∗ ∪ {xSJ} ∪ S, or none of xSJ can be included, giving rise to the
complete extension E∗ ∪

⋂
f(J) since an xSJ attacks all o ∈ (O \ S). Taking into account

that
⋂
f(J) ∈ f(J), in both cases we have that com(.(C(f), J))|O = f(J).

Remark 3. The attentive reader might have already noticed that, for an I/O-specification
f and an input J ⊆ I, there is not necessarily a one-to-one correspondence between
com(.(C(f), J)) and f(J). There can be more than one complete extensions of the in-
jection of J to C(f) corresponding to a single output given by f(J). In particular, for
S =

⋂
f(J), there are two distinct complete extensions {z} ∪ J ∪ {yi | i ∈ (I \ J)} ∪ S

and {z} ∪ J ∪ {yi | i ∈ (I \ J)} ∪ {xSJ} ∪ S. The restriction of the complete extensions to
the output arguments takes care of the one-to-one correspondence to f(J).

Theorem 16. An I/O-specification f is realizable under com iff f is closed.

Proof. The if-direction is a consequence of Proposition 15.

The only-if-direction follows directly by the fact that in any AF, particularly in any
injection of some extension to an I/O-module, the intersection of all complete extensions
is always a complete extension too.

Proposition 16. Every I/O-specification f with |f(J)| = 1 for each J ⊆ I is realized by
C(f) under grd and idl.

Proof. Let J ⊆ I. By construction of .(C(f), J), E∗ = {z} ∪ J ∪ {yi | i ∈ (I \ J)} is
contained in all complete extensions, while the elements of (I \ J) ∪ {yi | i ∈ J)} are
attacked by E∗ and thus by all complete extensions. All xS′J ′ with J ′ 6= J are attacked by
J or some yi with i ∈ (I \ J), thus they are attacked by E∗, while the unique xSJ with
S ∈ f(J) is defended by E∗. As a consequence, there is only one complete extension, i.e.
E∗ ∪ {xSJ} ∪ S, which is consequently also the grounded and ideal extension. The result
directly follows.

Theorem 17. An I/O-specification f is realizable under grd and idl iff |f(J)| = 1 for
each J ⊆ I.

Proof. The if-direction is a consequence of Proposition 16.

The only-if-direction follows directly by the fact that in any AF, particularly in any
injection of some extension to an I/O-module, the grounded and ideal extension are
uniquely defined.

In order to compare the expressiveness of semantics in terms of I/O-realizability, we
define the notion of an I/O-signature.
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AF.

Σprf
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AF.
=

Σstg
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AF.Σgrd

AF. = Σidl
AF.

Figure 3.24: A Venn diagram illustrating the I/O-signatures of grounded, ideal, complete,
semi-stable, stage, preferred, and stable semantics.

Definition 53. Let σ be a semantics. The (two-valued) I/O-signature of σ consists of
all I/O-specifications that are realizable under σ:

Σσ
AF. = {σ.(F ) | F is an I/O-module},

where σ. is the I/O-version of σ, defined as a function mapping I/O-modules to I/O-
specifications such that, given an I/O-module F , σ.(F ) = J ⊆ I 7→ σ(.(F, J))|O.

We summarize the presented results on I/O-realizability in the following theorem.

Theorem 18. In accordance with Figure 3.24 it holds that

Σgrd
AF. = Σidl

AF. ⊂ Σcom
AF. ⊂ Σprf

AF. = Σsem
AF. = Σstg

AF. ⊂ Σstb
AF.

Proof. The relations follow from Theorems 14, 15, 16, and 17.

Note that we have disregarded I/O-realizability of admissible semantics. This is because
the concept of an injection enforcing a certain acceptance status of input arguments is
not applicable to admissible semantics.

3.4.2 Three-valued I/O-realizability

Until now we have dealt with realizing I/O-specifications mapping extensions to sets of
extensions. As explained in Section 2.2, there are two reasons why an argument does
not belong to an extension, namely either because it is attacked by the extension (i.e.
it is assigned f in the three-valued version of the semantics) or because it is undecided
due to insufficient justification (i.e. it is assigned u). This distinction impacts on the
justification status of arguments, since attacks from undecided arguments can prevent
attacked arguments from belonging to an extension, while attacks from arguments labelled
f are ineffective. Therefore, a full description of the behaviour of a module’s interaction
within a larger AF has to take into account this distinction. In order to do so, we first
provide a three-valued counterpart of the notions introduced in Definitions 47, 49, and 50.

First, 3-valued I/O-specifications maps labellings of input arguments to set of labellings
of output arguments.
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Figure 3.25: 3-valued injections to the I/O-module from Figure 3.22, as explained in
Example 27.

Definition 54. A 3-valued I/O-specification consists of two sets I,O ⊆ A and a total
function f : V(I) 7→ 2V(O).

The 3-valued injection now distinguishes between an input argument being f or u. In
the first case, it is attacked by the new argument z and in the second case, it attacks
itself and remains otherwise unattacked.

Definition 55. Given an I/O-module F = (A,R) and an interpretation v over I, the
3-valued injection of v to F is the AF

I(F, v) = (A ∪ {z}, R ∪ {(z, a) | v(a) = f} ∪ {(b, b) | v(b) = u}),

where z is a newly introduced argument.

Definition 56. Given I,O ⊆ A, a semantics σ3 and a 3-valued I/O-specification f, the
I/O-module F realizes f under σ3 iff

∀v ∈ V(I) : σ3(I(F, v))|O = f(v).

The following example illustrates these concepts.

Example 27. A possible 3-valued I/O-specification for I = {a, b} and O = {c, d} is the
function f : V(I) 7→ 2V(O) such that:

f(uu) = {ut} f(tu) = {tt} f(ut) = {ut, tf}
f(fu) = {ft} f(uf) = {ut} f(tt) = {tt, tf}
f(tf) = {tt} f(ft) = {tf , ft} f(f f) = {ft}
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Recall our notation for interpretations: a sequence of truth values denotes the inter-
pretation mapping the ith argument to the ith value in the sequence. That is, the
interpretation fu for I is short for {a 7→ f , b 7→ u}.

Inspecting f we observe that, for instance, setting a to f and b to u shall have the effect
that c evaluates to f and d evaluates to t. Setting both input arguments to t shall
have two possible outputs, namely one where both output arguments are accepted and
one with c accepted and d rejected. It turns out that the I/O-module F depicted in
Figure 3.22 realizes f under preferred semantics. The 3-valued injections to F are depicted
in Figure 3.25. Consider, for instance, the injection of fu, i.e. I(F, fu) (second row, left).
Since prf(I(F, fu)) = {{z, x1, d}} it indeed holds that prf3(I(F, fu))|O = {ft} = f(fu).

♦

By definition of the stable semantics it is clear that in order to be realized under stb3, a
3-valued I/O-specification must have empty output for all inputs including an argument
assigned to u and, as can be derived from the two-valued case, no output argument
assigned to u for inputs with each argument assigned to t or f .

Theorem 19. A 3-valued I/O-specification f is realizable under stb3 iff for each v ∈ V(I)
it holds that

• if ∃i ∈ I : v(i) = u then f(v) = ∅, and

• otherwise w(o) 6= u for all w ∈ f(v) and o ∈ O.

Proof. For the only-if-direction consider the case where ∃i ∈ I : v(i) = u. Then for any
I/O-module F , I(F, v) contains a self-attacking argument otherwise unattacked, hence
stb3(I(F, v)) = ∅. In the other case, by definition of the stable semantics it is clear that
each o ∈ O must be assigned either t or f by any stable interpretation.

For the if-direction we get that if ∃i ∈ I : v(i) = u then stb3(I(C(f), v)) = ∅. Otherwise
the 3-valued injection coincides with the injection from the two-valued case and the result
follows from Theorem 14.

In order to characterize those 3-valued I/O-specifications which are realizable under the
other semantics we need the following concept of monotonicity.

Definition 57. A 3-valued I/O-specification f is monotonic if for all v1 and v2 such that
v1 ≤i v2 it holds that

∀w1 ∈ f(v1)∃w2 ∈ f(v2) : w1 ≤i w2.

The intuitive meaning of monotonicity is the following: if w1 is an output for input v1,
then for every input which is more committed than v1 there must be an output more
committed than w1.
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Example 28. Consider again the 3-valued I/O-specification f from Example 27. We
check whether f is monotonic. Note that is suffices to check the condition for the direct
successor wrt. ≤i.

• For ut ∈ f(uu) there is tt ∈ f(tu), ut ∈ f(ut), ft ∈ f(fu), ut ∈ f(uf).

• For tt ∈ f(tu) there is tt ∈ f(tt), tt ∈ f(tf).

• For ut ∈ f(ut) there is tt ∈ f(tt), ft ∈ f(ft).

• For tf ∈ f(ut) there is tf ∈ f(tt), tf ∈ f(ft).

• For ft ∈ f(fu) there is tf ∈ f(ft), ft ∈ f(f f).

• For ut ∈ f(uf) there is tt ∈ f(tf), ft ∈ f(f f).

Therefore we conclude that f is monotonic. ♦

Coming to necessary conditions for 3-valued I/O-specifications we start with rather
obvious observations:

Proposition 17. For every 3-valued I/O-specification f which is realizable under grd3,
|f(v)| = 1 for all v ∈ V(I).

Proof. This is immediate by the fact that |grd3(F )| = 1 for every AF F .

Proposition 18. For every 3-valued I/O-specification f which is realizable under prf3,
|f(v)| ≥ 1 for all v ∈ V(I).

Proof. This is immediate by the fact that |prf3(F )| ≥ 1 for every AF F .

Monotonicity is a necessary condition for grounded and preferred semantics

Proposition 19. Every 3-valued I/O-specification which is realizable under grd3 or prf3
is monotonic.

Proof. Let f be a 3-valued I/O-specification and suppose it is realized by the I/O-module
F under grd3. Moreover let v1 ≤i v2 be interpretations over I.

grd3: ∀w2 ∈ com3(I(F, v2))|O ∃w1 ∈ com3(I(F, v1))|O : w1 ≤i w2 was shown in [17,
Proposition 7]. From this and the fact that |f(v1)| = |f(v2)| = 1 (cf. Proposition 17)
monotonicity for grd3 follows.

prf3: We know, again from [17, Proposition 7], that ∀w1 ∈ com3(I(F, v1))|O ∃w2 ∈
com3(I(F, v2))|O : w1 ≤i w2. Now observe that each preferred interpretation is also
complete and for each complete interpretation there exists preferred interpretation which
is greater wrt. ≤i. Hence the result for prf3 follows.
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In Propositions 17 and 19 we have given necessary conditions for 3-valued I/O-specifi-
cations to be realizable under grd3 and prf3. In the following we show that these conditions
are also sufficient in the sense that we can find a realizing I/O-module. The constructions
of these I/O-modules will depend on the given 3-valued I/O-specification and on the
semantics, but they will share the same input and output part. The semantics-specific
parts, denoted by Xσ

f and Rσf in the following definition, will be given later.

Definition 58. Given a 3-valued I/O-specification f we define I ′ = {i′ | i ∈ I}, O′ =
{o′ | o ∈ O}, RI = {(i, i′) | i ∈ I} and RO = {(o′, o′), (o′, o) | o ∈ O}. The 3-valued
canonical I/O-module for semantics σ3 and the 3-valued I/O-specification f is defined as

Dσ
f = (I ∪ I ′ ∪Xσ

f ∪O′ ∪O,RI ∪Rσf ∪RO).

with Rσf ⊆ ((I ∪ I ′)×Xσ
f ) ∪ (Xσ

f ×Xσ
f ) ∪ (Xσ

f × (O′ ∪O)).

The semantics-independent part of Dσ
f guarantees that the labelling of I coincides with

the injected labelling and the labelling of I ′ is just the negation.

Lemma 11. Given an arbitrary 3-valued I/O-specification f and a semantics σ3 ∈
{grd3, idl3, com3, prf3, sem3, stg3} it holds for every v ∈ V(I) that

σ3(I(Dσ
f , v))|I = {v}, and

σ3(I(Dσ
f , v))|I′ = {¬v}.

Proof. By the fact that arguments in I∪I ′ are not allowed to be attacked by the semantics-
specific arguments Xσ

f , it follows that, in I(Dσ
f , v), an argument a ∈ I is unattacked

if v(a) = t, attacked by the unattacked argument z if v(a) = f , and self-attacking and
otherwise unattacked if v(a) = u. Hence the result for I follows. The result for I ′ is then
immediate by the fact that each a′ ∈ I ′ is only attacked by a ∈ I and therefore has the
negated interpretation of a.

Now we turn to the semantics-specific constructions. For grounded semantics we need
the concept of determining input interpretations. An interpretation v over the input
arguments is determining for output argument o if v is a minimal (w.r.t. ≤i) input
interpretation where o gets a concrete value (t or f) according to f.

With abuse of notation, in the following we may identify a set including a single interpre-
tation with the interpretation itself.

Definition 59. Given a 3-valued I/O-specification f with |f(v)| = 1 for all v ∈ V(I) and
an argument o ∈ O, an interpretation v over I is determining for o (in f), if f(v)(o) 6= u
and ∀v′ <i v : f(v′)(o) = u. We denote the set of interpretations which are determining
for o (in f) as df(o).
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Note that for 3-valued I/O-specifications which are monotonic, two different interpreta-
tions which are determining for a certain output argument cannot be comparable. The
following example illustrates the concept of determining interpretations.

Example 29. Let f be the following 3-valued I/O-specification with I = {a, b} and
O = {c, d}:

f(uu) = {uu} f(tu) = {tu} f(ut) = {ut}
f(uf) = {uf} f(fu) = {uu} f(tt) = {tt}
f(tf) = {tf} f(ft) = {ut} f(f f) = {tf}

We have the following sets of determining interpretations: df(c) = {tu, f f} and df(d) =
{ut,uf}. Consider, for instance, the input interpretation f f . We have f(f f) = tf . In
order to check if f f is determining for c we have to look at all input interpretation being
less committed than f f . Now we observe f(uf ) = uf , f(fu) = f(uu) = uu. In all of these
desired output interpretation c has value u, so f f is determining for c. On the other
hand f f is not determining for d, since f(uf)(d) = f . ♦

The semantics-specific construction for grounded semantics uses the concept of determin-
ing interpretation and is defined as follows.

Definition 60. Given a 3-valued I/O-specification f with |f(v)| = 1 for all v ∈ V(I), the
grd-specific part of Dgrd

f is given by

Xgrd
f ={xvo | o ∈ O, v ∈ df(o)}, and

Rgrd
f ={(i, xvo) | xvo ∈ X

grd
f , v(i) = f} ∪ {(i′, xvo) | xvo ∈ X

grd
f , v(i) = t} ∪

{(xvo, o′) | xvo ∈ X
grd
f , f(v)(o) = t} ∪ {(xvo, o) | xvo ∈ X

grd
f , f(v)(o) = f}.

For every o ∈ O and each input interpretation v which is determining for o, there is the
argument xvo. This argument can be assigned t if v is the labelling of I (recall Lemma 11)
and intuitively enforces the labelling of o to be as given by f(v).

Example 30. Again consider the 3-valued I/O-specification f from Example 29. We have
seen the determining interpretation there. The I/O-moduleDgrd

f is depicted in Figure 3.26.
It can be seen that, for every output argument o, each determining interpretation v ∈ df(o)
has a corresponding argument xvo in Dgrd

f . Depending on the value of f(v)(o), xvo either
attacks argument o or o′. ♦

The next results, requiring two preliminary lemmas, characterize realizability of grounded
semantics.

Lemma 12. Let f be a 3-valued I/O-specification which is monotonic and s.t. |f(v)| = 1
for each v ∈ V(I). Moreover let o ∈ O and v1, v2 ∈ V(I) be such that f(v1)(o) = t and
f(v2)(o) = f . Then v1 and v2 are not compatible.
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a a′ b′ b

xtu
c xut

d xuf
d xf f

c

c c′ d′ d

Figure 3.26: Canonical I/O-module Dgrd
f for the 3-valued I/O-specification f given in

Example 29. As discussed in Example 31, it indeed realizes f under grd3.

Proof. Towards a contradiction assume that v1 and v2 are compatible, and let V ∈ V(I)
such that for each i ∈ I, V (i) = t iff v1(i) = t∨v2(i) = t, V (i) = f iff v1(i) = f ∨v2(i) = f ,
V (i) = u iff v1(i) = v2(i) = u. Note that V is well-defined since vt

1 ∩ vf
2 = vf

1 ∩ vt
2 = ∅. It

holds that v1 ≤i V , thus f(V )(o) = t since f is monotonic. However, it also holds that
v2 ≤i V , thus f(V )(o) = f , a contradiction.

Lemma 13. Given a 3-valued I/O-specification f which is monotonic and s.t. |f(v)| = 1
for each v ∈ V(I), let o ∈ O and v1, v2 ∈ V(I) be such that v1 is determining for o. Then
grd3(I(Dgrd

f , v2))(xv1
o ) is

1. t if v1 ≤i v2;

2. f if v1 and v2 are not compatible; and

3. u if v1 and v2 are compatible but v1 6≤i v2.

Proof. Let g = grd3(I(Dgrd
f , v2)) and note that, by Lemma 11, we know that g|I = v2

and g|I′ = ¬v2.

(1) If v1 ≤i v2 then, by construction of Dgrd
f and Lemma 11, all attackers of xv1

o are f in
g, hence g(xv1

o ) = t.

(2) If v1 and v2 are not compatible then there is some i ∈ I such that either v1(i) = t and
v2(i) = f or v1(i) = f and v2(i) = t. In the first case xv1

o is attacked by i′ and g(i′) = t,
in the second case xv1

o is attacked by i and g(i) = t, both entailing g(xv1
o ) = f .

(3) If v1 and v2 are compatible then, by construction of Dgrd
f and Lemma 11, all attackers

of xv1
o are either f or u. Moreover, since v1 6≤i v2 there is some i ∈ I with v2(i) = u

and v1(i) 6= u. But then g(i) = g(i′) = u and xv1
o is attacked by either i or i′, hence

g(xv1
o ) = u.

Proposition 20. Every 3-valued I/O-specification f which is monotonic and s.t. |f(v)| =
1 for each v ∈ V(I), is realized by Dgrd

f under grd3.
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Proof. Consider some input interpretation v. We have to show grd3(I(Dgrd
f , v))|O = f(v).

To this end let o ∈ O.

Assume f(v)(o) = u. Then, since f is monotonic, f(v′)(o) = u for all v′ ≤i v. Therefore,
there is no v′ ≤i v with v′ ∈ df(o). By Lemma 13 we therefore get that for all v′′ ∈ df(o)
it holds that grd3(I(Dgrd

f , v))(xv′′o ) 6= t. Since, by construction of Dgrd
f , such xv′′o with

v′′ ∈ df(o) are the only attackers of o and o′, grd3(I(Dgrd
f , v))(o) = u.

Next assume f(v)(o) = t. Then there is some v′ ≤i v with v′ ∈ df(o) and f(v′)(o) =
t. By Lemma 13 we get grd3(I(Dgrd

f , v))(xv′o ) = t. Moreover, xv′o attacks o′, hence
grd3(I(Dgrd

f , v))(o′) = f . Towards a contradiction assume there is some xv′′o attacking o
with grd3(I(Dgrd

f , v))(xv′′o ) ∈ {t,u}. Then, by Lemma 13, v′′ and v are compatible and
as v′ ≤i v also v′′ and v′ are compatible. However, xv′′o attacking o and xv′o attacking o′
means, by construction of Dgrd

f , f(v′′)(o) = f and f(v′)(o) = t, respectively. But then, by
Lemma 12, v′′ and v′ are not compatible, a contradiction. Therefore all attackers of o
are labelled f by grd3(I(Dgrd

f , v)), hence grd3(I(Dgrd
f , v))(o) = t.

Finally assume f(v)(o) = f . Then there is some v′ ≤i v with v′ ∈ df(o) and f(v′)(o) =
f . By Lemma 13 we get grd3(I(Dgrd

f , v))(xv′o ) = t. Moreover, xv′o attacks o, hence
grd3(I(Dgrd

f , v))(o) = f .

Example 31. Again consider the 3-valued I/O-specification f from Example 29. and the
corresponding I/O-module Dgrd

f depicted in Figure 3.26. Consider, for instance, the 3-
valued injection of fu toDgrd

f , which adds the additional arguments z attacking a as well as
a self-attack of b to Dgrd

f . We get grd(I(Dgrd
f , fu)) = {z, a′}, hence grd3(I(Dgrd

f , fu))|O =
uu, being in line with f. One can check that this holds for all possible 3-valued injections,
hence Dgrd

f realizes f under the grounded semantics. ♦

Theorem 20. A 3-valued I/O-specification f is realizable under grd3 iff f is monotonic
and for each v ∈ V(I), |f(v)| = 1.

Proof. The if-direction is a direct consequence of Proposition 20. The only-if-direction
follows by Propositions 17 and 19.

Now we present the part of the 3-valued canonical I/O-module which is specific to the
preferred semantics.

Definition 61. Given a 3-valued I/O-specification f, the prf-specific part of Dprf
f is given

by

Xprf
f ={xvw | v ∈ V(I), w ∈ f(v)}, and

Rprf
f ={(i, xvw) | xvw ∈ X

prf
f , v(i) = f} ∪ {(i′, xvw) | xvw ∈ X

prf
f , v(i) = t} ∪

{(xvw, o′) | xvw ∈ X
prf
f , w(o) = t} ∪ {(xvw, o) | xvw ∈ X

prf
f , w(o) = f} ∪

{(xvw, xv
′
w′) | ¬(v <i v′ ∧ w ≤i w′) ∧ ¬(v′ <i v ∧ w′ ≤i w)}.
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a a′

xf
ft xu

ut xt
uf xt

tt

c c′ d′ d

Figure 3.27: 3-valued canonical I/O-module Dprf
f for the 3-valued I/O-specification f

given in Example 32.

Every combination of an input interpretation v and a corresponding output interpretation
w is represented by an argument xvw in Dprf

f . The way the input arguments are linked
to xvw makes sure that, with input interpretation v injected, xvw is not attacked by any
argument among I ∪ I ′ which can be t in a preferred interpretation (cf. Lemma 11).
Therefore each such argument xvw can act as a representative for a preferred interpretation,
enforcing output interpretation w. The attacks among arguments Xprf

f are symmetric
such that xvw attacks all xv′w′ except those where either v <i v′ and w ≤i w′ or v′ <i v
and w′ ≤i w.

Example 32. Consider the 3-valued I/O-specification for I = {a} and O = {c, d} given
by

f(u) = {ut} f(t) = {tt,uf} f(f) = {ft}.

It is easy to see that f is monotonic, since ut ∈ f(u) has a successor wrt. ≤i in both f(t)
(namely ut) and f(f) (namely ft).

The AF in Figure 3.27 depicts the 3-valued canonical I/O-module Dprf
f . Observe the

symmetric attacks between arguments xvw, xv
′
w′ ∈ X

prf
f whenever v = v′ (xt

uf and xt
tt),

v and v′ are not comparable (e.g. xf
ft and xt

uf ), or v <i v
′ but w 6≤i w′ (xu

ut and
xt

uf ). However, there is no attack if both v <i v
′ and w ≤i w′ holds, as for instance

between xu
ut and xt

tt. To see the motivation behind this consider the injection of
t to Dprf

f . We get prf(I(Dprf
f , t)) = {{z, a, xu

ut, x
t
tt, c, d}, {z, a, xt

uf}}, giving rise to
prf3(I(Dprf

f , t))|O = {tt,uf}, therefore realizing f under prf3. A (symmetric) attack
between xu

ut and xt
tt would give ut as output interpretation, which is not as specified by

f(t). ♦

In the following we formally show that Dprf
f realizes f under preferred semantics, given that

f is monotonic and there is at least one output interpretation for each input interpretation.
We begin with a technical lemma, giving sufficient conditions on the status of the
arguments in Xprf

f to get the desired labelling of the output arguments.
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Lemma 14. Given a 3-valued I/O-specification f and an input interpretation v ∈ V(I),
it holds for each preferred interpretation p ∈ prf3(I(Dprf

f , v)) that p|O = w for some
w ∈ f(v) if

• p(xvw) = t and

• for all xv′w′ ∈ X
prf
f ,

– w <i w
′ implies p(xv′w′) 6= t and

– w and w′ being not comparable implies p(xv′w′) = f .

Proof. Consider some w ∈ f(v) and an arbitrary o ∈ O. We show that p(o) = w(o).

First assume w(o) = u. By the hypothesis p(xv′w′) 6= t for all w′ 6≤i w. Moreover, for
all w′ ≤i w we have that w′(o) = u since w(o) = u, thus by construction of Dprf

f , xv′w′
attacks neither o nor o′. Summing up, neither o nor o′ is attacked by an argument which
is t in p. Hence p(o) = u.

Next let w(o) = t. Since p(xvw) = t we must have that p(o′) = f . Besides that, o is
attacked by all xv′w′ with w′(o) = f . But this means that w and w′ are not comparable,
hence p(xv′w′) = f by assumption. Now we know that all attackers of o are f in p, therefore
p(o) = t.

Finally let w(o) = f . Since p(xvw) = t and xvw attacks o we get that p(o) = f .

We proceed by showing that every monotonic function f assigning at least one out-
put interpretation to each input interpretation is realized by Dprf

f under the preferred
semantics.

Proposition 21. Every 3-valued I/O-specification f which is monotonic and s.t. |f(v)| ≥ 1
for each v ∈ V(I) is realized by Dprf

f under prf3.

Proof. Consider an arbitrary input interpretation v ∈ V(I). In the following we show
that prf3(I(Dprf

f , v))|O = f(v).

By construction of Dprf
f , those xv′w′ ∈ X

prf
f with v′ ≤i v are the only arguments in Xprf

f

which can be t in a preferred interpretation of I(Dprf
f , v), since their attackers in I ∪ I ′

are all f , while the other arguments in Xprf
f are attacked by an argument t of I ∪ I ′ (recall

also Lemma 11). The arguments xvw with w ∈ f(v) (there is at least one such argument
by the hypothesis) form a clique in I(Dprf

f , v). Moreover each of these xvw defends itself
from all other xv′w′ , hence there is a preferred interpretation of I(Dprf

f , v) for each w ∈ f(v)
identified by xvw. Let pw be the preferred interpretation with pw(xvw) = t where w ∈ f(v).
All xv′w′ with w′ 6≤i w ∧ w 6≤i w′ are attacked by xwv , hence pw(xv′w′) = f . Assume w <i w

′.
If v 6<i v′, then xv

′
w′ is again attacked by xwv and pw(xv′w′) = f . If v <i v′, pw(xv′w′) 6= t
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since it is attacked by some argument among I ∪ I ′ which is u in pw. Therefore, by
Lemma 14, pw|O = w.

It remains to show that there is no other preferred interpretation besides these pw with
w ∈ f(v). Towards a contradiction, assume that there is a preferred interpretation p′

where no xvw with w ∈ f(v) is t. By our initial considerations, those xv′w′ with v′ <i v are
the only arguments of Xprf

f which can be t in p′. It cannot be the case that none of them
is t, since p′ would not be incomparable to pw with w ∈ f(v), of which there exists at
least one. Therefore there is at least one xv′w′ which is t in p′, with v′ <i v, and without
loss of generality we can assume that there is no xv′′w′′ which is t and v′ <i v′′. Now, since
f is monotonic there has to be a w ∈ f(v) such that w′ ≤i w. We prove that no argument
in Xprf

f attacking xvw is t in p′.

First, the only arguments in Xprf
f that can be t are those xv′′w′′ with v′′ <i v. Note that,

according to Definition 61, xv′w′ does not attack xvw, since v′ <i v and w′ ≤i w. If an
attacker xv′′w′′ is attacked in turn by xv′w′ then it is f , otherwise either v′′ <i v′∧w′′ ≤i w′ or
v′ <i v

′′ ∧ w′ ≤i w′′. The first case is impossible, since we would have v′′ <i v ∧ w′′ ≤i w,
entailing that xv′′w′′ does not attack xvw. In the other case, by the assumption on xv′w′ it
holds that xv′′w′′ is not t.

Now, xvw defends itself against all arguments in Xprf
f and none of them is t, moreover

by construction of I(Dprf
f , v), all attackers from I and I ′ are f . But then, consider the

interpretation p′′ obtained from p′ by assigning to xvw the label t, and by assigning to
all the attackers of xvw the label f . p′′ is admissible and p′ ≤i p′′, contradicting the
maximality of p′.

Theorem 21. A 3-valued I/O-specification f is realizable under prf3 iff f is monotonic.

Proof. The if-direction was shown in Proposition 21 while the only-if-direction directly
follows from Propositions 18 and 19.

Comparing the capabilities of stable and preferred semantics in realizing 3-valued I/O-
specifications we find that they are incomparable. While we can realize 3-valued I/O-
specifications which demand the empty set of output interpretations for certain input
interpretation under stb3 but not under prf3, we cannot realize anything involving output
labels u under stb3.

For the remaining semantics we have to leave the exact characterizations of realizable
3-valued I/O-specifications open. However, we can show that realizability of a 3-valued
I/O-specification under grd3 is a sufficient condition for realizability under idl3, as well
as that realizability under prf3 is sufficient for sem3. First we show that Proposition 20
also applies to ideal semantics since for each interpretation v the grounded interpretation
of I(Dgrd

f , v) coincides with the ideal interpretation.

Proposition 22. Every 3-valued I/O-specification f which is monotonic and s.t. |f(v)| =
1 for each v ∈ V(I), is realized by Dgrd

f under idl3.
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Proof. Let f be an 3-valued I/O-specification which is monotonic and s.t. |f(v)| = 1 for
each v ∈ V(I). Consider some input interpretation v, and let F = I(Dgrd

f , v). We show
that idl(F ) = grd(F ).

To this end assume, towards a contradiction, that there is some E ∈ adm(F ) such that
E ⊃ grd(F ), i.e. E \ grd(F ) 6= ∅. Let E′ = E \ grd(F ). First of all, z ∈ grd(F ), hence
z /∈ E′. Next, consider some i ∈ I. If v(i) = t then i ∈ grd(F ), if v(i) = f then
i′ ∈ grd(F ) (cf. Lemma 11); either way, i, i′ ∈ grd(F )+, hence i, i′ /∈ E′. If v(i) = u then
i is self-attacking and not attacked otherwise in F , hence neither i nor i′ can be included
in an admissible set, i.e. i, i′ /∈ E′. Now consider xv′o ∈ X

grd
f . By Lemma 13 it follows

that if v′ ≤i v or v and v′ are not compatible, then xv′o ∈ grd(F )+, hence xv′o /∈ E′. If
v and v′ are compatible but v′ 6≤i v then xv′o /∈ grd(F )+, but there is some i ∈ I with
v′(i) 6= u and v(i) = u. Consequently, xv′o is attacked by either i or i′, which, as discussed
before, can both not be defended in F , hence also xv′o /∈ E′. Finally, consider o ∈ O and
assume o /∈ grd(F )+. For o ∈ E′, there must be some x ∈ Xgrd

f with x ∈ E′. But this
cannot be the case, as just shown.

We have shown that there is no E ∈ adm(F ) with E ⊃ grd(F ). Hence idl(F ) = grd(F ).
Since, by Proposition 20, I(grd3(Dgrd

f ), v)
∣∣∣
O

= f(v), it follows that also I(idl3(Dgrd
f ), v)

∣∣∣
O

=
f(v). Therefore the result follows.

We cannot apply the result from Proposition 21 directly to semi-stable semantics, since
it is not guaranteed that each preferred extension of the 3-valued injection of some input
interpretation to Dprf

f has ⊆-maximal range, hence we might “lose” some elements of f(v)
under sem3. To the rescue there is the well-known translation of arbitrary AFs from
preferred to semi-stable semantics due to [109], which makes sure that the semi-stable
extensions of the AF obtained from the translation coincide with the preferred extensions
of the original AF. We use the idea of this translation to define the semi-stable specific
part of the 3-valued canonical I/O-module.

Definition 62. Given a 3-valued I/O-specification f, the sem-specific part of Dsem
f is

given by

Xsem
f = {x, x′ | x ∈ Xprf

f }, and

Rsem
f = Rprf

f ∪ {(x, x
′), (x′, x), (x′, x′) | x ∈ Xprf

f }

The idea of the translation from preferred to semi-stable semantics is to make the range
of every argument incomparable to the range of every other argument, hence making
also the range of preferred extensions pairwise incomparable. This is achieved by adding,
for each argument a, a self-attacking argument a′ which is in symmetric attack with a.
Since any preferred extension of an injection to Dprf

f can be uniquely identified by some
x ∈ Xprf

f , it suffices to add the primed arguments for each element of Xprf
f .

Proposition 23. Every 3-valued I/O-specification f which is monotonic and s.t. |f(v)| ≥ 1
for each v ∈ V(I) is realized by Dsem

f under sem3.
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a

x2

x1 c

Figure 3.28: I/O-module realizing a 3-valued I/O-specification under semi-stable (resp.
ideal) semantics which is not realizable under preferred (resp. grounded) semantics.

Proof. Let f be a monotonic 3-valued I/O-specification. Consider an arbitrary in-
put interpretation v ∈ V(I). Inspecting the proof of Proposition 21 we observe that
prf3(Dprf

f ) = {pw | w ∈ f(v)}, where each pw contains xvw and no other xvw′ with w′ 6= w.
Further observe that prf(Dprf

f ) = prf(Dsem
f ). By the construction of Dsem

f now every pw
has incomparable range by uniquely attacking xvw ′. Therefore prf(Dsem

f ) = sem(Dsem
f ).

Having established prf(Dprf
f ) = sem(Dsem

f ) we follow from I(prf3(Dprf
f ), v)

∣∣∣
O

= f(v) (cf.

Proposition 21) that I(sem3(Dsem
f ), v)

∣∣∣
O

= f(v). Therefore the result follows.

While Propositions 22 and 23 give sufficient conditions for 3-valued I/O-realizability under
ideal and semi-stable semantics, respectively, they do not allow us to derive complete
characterizations, since there are 3-valued I/O-specifications, which are not monotonic
but realizable under ideal and semi-stable semantics, respectively. The following example
illustrates this fact.

Example 33. Consider the AF F in Figure 3.28 which represents an I/O-module with
I = {a} and O = {c}. The semi-stable and ideal extensions of the various 3-valued
injections are sem(I(F,u)) = idl(I(F,u)) = {{c}}, sem(I(F, t)) = idl(I(F, t)) =
{{a, c}}, and sem(I(F, f)) = {{z, x1}} 6= idl(I(F, f)) = {{z}}. This means that F
realizes the 3-valued I/O-specification given by u 7→ {t}, t 7→ {t}, and f 7→ {u} under
ideal semantics, and the one given by u 7→ {t}, t 7→ {t}, and f 7→ {f} under semi-stable
semantics which are both clearly not monotonic. ♦

An exact characterization of 3-valued I/O-specifications which are realizable under semi-
stable and ideal semantics, respectively, therefore requires weaker notions of monotonicity.
Complete semantics, on the other hand, imposes necessary conditions which are more
restrictive. The following is a direct consequence of [17, Proposition 7].

Proposition 24. Every 3-valued I/O-specification f which is realizable under com3 is
monotonic and for all v1 and v2 such that v1 ≤i v2 it holds that ∀w2 ∈ f(v2)∃w1 ∈ f(v1) :
w1 ≤i w2.

Example 34. Once more consider the 3-valued I/O-specification f from Example 27.
We have seen that f is monotonic and therefore realizable under prf3 in Example 28. It
is, however, not realizable under complete semantics. To see this let v1 = tu and v2 = tt.
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We have w2 = tf ∈ f(v2) but there is no w1 ∈ f(v2) such that w1 ≤i w2. Therefore the
condition given in Proposition 24 is violated and f is not realizable under com3. ♦

Exact characterizations of realizable 3-valued I/O-specifications for complete, semi-stable
and ideal semantics are subject of future work. With the following definition of the
three-valued I/O-signature we can state some relations between semantics.

Definition 63. Let σ be a semantics. The three-valued I/O-signature of σ3 consists of
all 3-valued I/O-specifications that are realizable under σ3:

Σσ3
AFI = {σI(F ) | F is an I/O-module},

where σI is the three-valued I/O-version of σ, defined as a function mapping I/O-modules
to 3-valued I/O-specifications such that, given an I/O-module F , σI(F ) = v ∈ V(I) 7→
σ3(I(F, v))|O.

Theorem 22. The following relations hold:

1. Σgrd3
AFI ⊂ Σcom3

AFI ⊂ Σprf3
AFI ⊂ Σsem3

AFI;

2. Σgrd3
AFI ⊂ Σidl3

AFI;

3. Σidl3
AFI \ Σprf3

AFI 6= ∅ and Σprf3
AFI \ Σidl3

AFI 6= ∅.

Proof. (1) Σgrd3
AFI ⊆ Σcom3

AFI holds by the observation that, a 3-valued I/O-specification f

which is monotonic and has |f(v)| = 1 is realized by Dgrd
f also under complete semantics,

since grd3(I(Dgrd
f , v)) = com3(I(Dgrd

f , v)). This can be read off the proof of Proposi-
tion 22, where it is shown that there is no E ∈ adm(I(Dgrd

f , v)) with E ⊃ grd(I(Dgrd
f , v)).

Properness is, for instance, by the I/O-module F = ({a, b, c}, {(a, b), (b, a), (b, b), (b, c)})
with I = {a} and O = {c}, which has com3(I(F,u))|O = {u}, com3(I(F, t))|O = {u, t},
and com3(I(F, f))|O = {u}.

Σcom3
AFI ⊆ Σprf3

AFI is by Theorem 21 and Proposition 24. Properness of the relation was
discussed in Example 34.

Finally, Σprf3
AFI ⊆ Σsem3

AFI is by Theorem 21 and Proposition 23, while properness was shown
in Example 33.

(2) Σgrd3
AFI ⊆ Σidl3

AFI follows from Theorem 20 and Proposition 22. Properness of the relation
was shown in Example 33.

(3) Σidl3
AFI \ Σprf3

AFI 6= ∅ is by the I/O-module in Figure 3.28, which realizes a 3-valued
I/O-specification under idl3 which is not monotonic and therefore not realizable under
prf3 (cf. Example 33). Σprf3

AFI\Σidl3
AFI 6= ∅ is, for instance, by the 3-valued I/O-specification

discussed in Example 32, which has more than one output interpretation assigned to the
input interpretation t.
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3.4.3 Partial I/O-specifications

Until now we have restricted our considerations to total I/O-specifications, where the
output is defined for each input. It is however natural to think of situations where
we do not care about the output for some inputs, i.e. where we are only interested in
realizability of a partial function.

Definition 64. A partial 2-valued (resp. 3-valued) I/O-specification consists of two sets
I,O ⊆ A and a partial function f : 2I 7→ 22O (resp. f : V(I) 7→ 2V(O)).

An I/O-module F realizes f under a semantics σ iff for all J ⊆ I (resp. v ∈ V(I)) such
that f is defined for J (resp. v), σ(.(F, J))|O = f(J) (resp. σ3(I(F, v))|O = f(v)).

The results provided in Theorems 14, 15, 16, and 17 for the 2-valued case can be directly
exploited to handle partial I/O-specifications in the 2-valued case: “don’t care”-outputs
can be assigned arbitrarily, provided that at least one extension is assigned for prf,
sem and stg, a single extension for grd and idl, and the specification is closed for com.
This is because conditions for realizability contain no dependencies between outputs for
different inputs. Furthermore, all the proofs also work with a partial I/O-specification
by considering only the specified inputs in the definition of the canonical I/O-module,
i.e. neglecting the inputs with undefined output, yielding a considerable simplification.

Corollary 4. A partial 2-valued I/O-specification is realizable iff for each J ⊆ I such
that f is defined for J it holds that

• stb: >;

• prf, sem, stg: f(J) 6= ∅;

• com: f(J) 6= ∅ and
⋂
f(J) ∈ f(J);

• grd, idl: |f(J)| = 1.

On the other hand, the following example shows some difficulties in the three-valued
case.

Example 35. Consider the partial 3-valued I/O-specification f for I = {a, b} and
O = {c} with f(uu) = {u}, f(tu) = {t} and undefined, i.e. “don’t care”, for all
other inputs. Clearly, f is realized by Dgrd

f or, more easily, by the simple I/O-module
({a, b, x, c}, {(a, x), (x, c)}). Now note that f is not monotonic according to Definition 57,
since there is no w ∈ f(tt) with t ≤i w. It is monotonic for those inputs for which it is
defined though.

The same can be observed if we consider f′ which coincides with f on inputs uu and tu
but also defines f′(ut) = {f}. Now one can check that there is no I/O-module realizing
f′ under the grounded semantics. The reason for this is that f cannot be extended to a
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total 3-valued I/O-specification f′′ which is still monotonic. In order to be monotonic f′′

extending f′ would have to fulfill both t ≤i w and f ≤i w for the unique output w ∈ f′′(tt),
which is obviously not possible. ♦

This already leads us to the condition for realizability of partial functions, which we state
after formally defining what it means to extend a 3-valued I/O-specification.

Definition 65. Given two (partial) 3-valued I/O-specifications f and f′, we say that f′
extends f iff for all v ∈ V(I) such that f(v) is defined, f′(v) = f(v).

Theorem 23. A (partial) 3-valued I/O-specification f is realizable under semantics σ3
iff there is a total function f′ extending f which is realizable under σ3.

Proof. If f′ is realized by some I/O-module F then F also realizes f since f′(v) = f(v)
for all v ∈ V(I) such that f(v) is defined. If, on the other hand, f is realized by some
I/O-module F ′ then F ′ obviously also realizes some total 3-valued I/O-specification
f′ which coincides with f on those input interpretations which are defined by f, i.e. f′
extends f.

It may be noted that the extension-based case can be viewed as a particular case of 3-
valued partial specification where also the output is partially specified, i.e. for those inputs
without undecided arguments we specify a set of extensions (i.e. without distinguishing
between f and u arguments).

Another relation can be drawn between three-valued I/O-realizability of stable and
preferred semantics. In order to be realizable under stable semantics, a 3-valued I/O-
specification f has to have f(v) = ∅ for each v ∈ V(I) where ∃i ∈ I : v(i) = u. Interpreting
the desired output ∅ as “don’t care”, we can realize any 3-valued I/O-specification
realizable under stable semantics also under preferred semantics.

Proposition 25. Given a 3-valued I/O-specification f which is realizable under stb3, let
f′ be the partial 3-valued I/O-specification with f′(v) = f(v) if f(v) 6= ∅ and f′(v) undefined
if f(v) = ∅. It holds that f′ is realizable under prf3.

Proof. First observe that f(v) 6= ∅, and therefore f′(v) defined, only if @i ∈ I : v(i) = u.
Let f′′ be the 3-valued I/O-specification which has f′′(v) = f′(v) whenever f′(v) is defined
and f′′(v) = vu, i.e. the interpretation mapping all arguments to u, otherwise. Consider
v1, v2 ∈ V(I) with v1 ≤i v2. From the first observation it follows that f′′(v1) = {vu},
hence every w2 ∈ f′′(v2) it holds that w1 ≤i w2 for all w1 ∈ f′′(v1) (i.e. for vu). Since, by
definition, f′′(v) 6= ∅ for each v ∈ V(I), monotonicity of f′′ follows. Hence f′′ is realizable
under prf3 and, by Theorem 23, also f′ is realizable under prf3.
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3.5 Realizability in ADFs

In this section we present results on realizability in ADFs. We do so by reviewing the
works of Strass [187, 188] and Pührer [175] and subsequently combining their results to
establish the relation between semantics in terms of expressiveness. Due to the fact that
the majority of ADF semantics is three-valued,11 we also take a three-valued viewpoint
and consider sets of interpretations, i.e. subsets of the collection of all three-valued
interpretations V, as the objects of interest.

We begin by reviewing some properties of interpretation-sets defined in [175]. The
first defines what it means for an interpretation to be adm-induced by a given set of
interpretations.

Definition 66. Let V ⊆ V be a set of interpretations and v ∈ V an interpretation. v
is adm-induced by V if for every a ∈ (vt ∪ vf ) and every v2 ∈ [v]2 there is some v′ ∈ V
such that v′ ≤i v2 and v′(a) = v(a). We denote the set of all interpretations which are
adm-induced by V by cl(V ).

The intuition behind an interpretation v being adm-induced by an interpretation-set V
is that in order to make all interpretations in V admissible in an ADF, also v has to be
admissible in that ADF. It always holds that every interpretation v ∈ V is adm-induced
by V , i.e. V ⊆ cl(V ).

Example 36. Let the interpretation-set V = {tu,uf} be given over arguments {a, b}.
First consider the interpretation v = uu. It is easy to see that any condition holds for
every argument in vt∪vf (quantification over the empty set), hence uu is adm-induced by
V . Next consider v = tf . We have to check for every argument in s ∈ (vt ∪ vf ) = {a, b}
and every two-valued interpretation v2 ∈ [v]2 = {v} that there exists a v′ ∈ V with
v′ ≤i v2 and v′(s) = v(s). Indeed, for a we have v′ = tu with v′ ≤i v and v′(a) = v(a) = t
and for b we have v′ = uf with v′ ≤i v and v′(b) = v(b) = f . Hence also tf is adm-induced
by V . As it turns out, no further interpretations are adm-induced by V . We conclude
that cl(V ) = {uu, tu,uf , tf} ♦

The following concept of a com-characterization, also introduced in [175], is used, as
the name suggests, to characterize realizability under complete semantics. It will be
generalized and used in Section 3.6.

Definition 67. Let V ⊆ V be a set of interpretations. A com-characterization of V is a
function f : V2 7→ V2 such that: for each v ∈ V we have v ∈ V iff for each a ∈ A:

• v(a) 6= u implies f(v2)(a) = v(a) for all v2 ∈ [v]2 and

• v(a) = u implies f(v′2)(a) = t and f(v′′2)(a) = f for some v′2, v′′2 ∈ [v]2.
11Various two-valued versions have been studied by Polberg [167, 168].
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Intuitively, a com-characterization f assigns the Boolean value f(v)(a) to an argument
a that the acceptance condition of a would evaluate to under interpretation v in an
ADF that has V as its complete interpretations. The following example illustrates
com-characterizations.

Example 37. Consider the set of interpretations V = {uu,uf , tt} over arguments {a, b}
and the following function f : V2 7→ V2.

v tt tf ft f f
f(v) tt f f tf tf

We argue that f is indeed a com-characterization of V . A two-valued interpretation like
tt being contained in V immediately determines the value of f , i.e. f(tt) = tt. If, on
the other hand, a two-valued interpretation v2 is not contained in V , then f(v2) must be
different from v2 for at least one argument, which is the case for all v2 ∈ {tf , ft, f f}. Now
consider the interpretation v = uf ∈ V . By v(a) = u we must have f(tf)(a) 6= f(f f)(a),
which is indeed the case as f(tf)(a) = f and f(f f)(a) = t. Moreover v(b) = f gives
rise to f(tf)(b) = f(f f)(b) = f . As an example for an interpretation which is neither
contained in V nor two-valued, consider v′ = tu /∈ V . At least one of the implications of
Definition 67 must be violated for v′. In our case, the first one fails since f(tf)(a) = f ,
while the second one is actually fulfilled by f(tt)(b) = t and f(tf)(b) = f . One of the
implications is also violated for ut and fu, respectively. Finally, neither all f(v2)(a) nor
all f(v2)(b) coincide for every v2 ∈ V2, hence f is in line with the fact that uu ∈ V . ♦

As it turns out, the existence of a com-characterization is necessary and sufficient for
realizability of a given set of interpretations. We recall the canonical ADF from [175],
which uses a com-characterization for realizing a set of interpretations under the complete
semantics. We will make use of this construction in the unifying approach presented in
Section 3.6.

Definition 68. Given a function f : V2 7→ V2, we define the ADF Df = {〈a, ϕfa〉 | a ∈ A}
where the acceptance condition for each a ∈ A is given as

ϕfa =
∨

w∈V2, f(w)(a)=t
φw with φw =

∧
w(a′)=t

a′ ∧
∧

w(a′)=f
¬a′

The idea of the construction is that whenever a is true in the two-valued interpretation
assigned by f to the two-valued interpretation w, i.e. f(w)(a) = t, then ϕfa shall evaluate
to true under w. This is achieved by putting the sub-formula φw in the big disjunction
of ϕfa . If the function f is a com-characterization of a given set of interpretations V ⊆ V
according to Definition 67, then it holds that com3(Df ) = V . Moreover, each ADF gives
rise to a com-characterization.

The following result states the correspondence between com-characterizations and realiz-
ability more formally.
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Proposition 26 ([175]). Let V ⊆ V be a set of interpretations.

1. For each ADF D with com3(D) = V , there is a com-characterization fD of V .

2. For each com-characterization f : V2 7→ V2 of V it holds that com3(Df ) = V .

The use of com-characterizations in the canonical construction given in Definition 68 is
illustrated in the following example.

Example 38. Again consider the function f given in Example 37. The fact that V is
realizable under the complete semantics is witnessed by f being a com-characterization
of V . The realizing ADF Df is now given by the acceptance conditions

ϕfa = (a ∧ b) ∨ (¬a ∧ b) ∨ (¬a ∧ ¬b) ≡ ¬a ∨ b, and

ϕfb = a ∧ b

Now one can check that, in accordance with Proposition 26, it holds that com3(Df ) = V
since f is a com-characterization of V . ♦

We are now ready to characterize the signatures of ADF semantics.

Theorem 24 ([188, 175]). The following holds:

Σmod3
ADF = {V ⊆ V2}

Σstb3
ADF = {V ⊆ V2 | V t is incomparable}

Σadm3
ADF = {V ⊆ V | cl(V ) = V }

Σcom3
ADF = {V ⊆ V | there is a com-characterization of V }

Σprf3
ADF = {V ⊆ V | V 6= ∅, V is incompatible}

Σgrd3
ADF = {V ⊆ V | |V | = 1}

Note that the condition that V 6= ∅ is only stated explicitly for prf3, but also holds
implicitly for adm3, com3, and grd3. It does not hold for mod3 and stb3, as these semantics
can realize the empty set of interpretations.

Strass [188] and Pührer [175] also provide, sometimes implicitly, ways of constructing
concrete ADFs realizing a given set of interpretations contained in the signature. Besides
the concrete realization under complete semantics given in Definition 68, we use ρADF

σ3 to
refer to an arbitrary realization function for ADFs.

Definition 69. Given a semantics σ3, the ADF realizing function ρADF
σ3 : V 7→ AFA

maps interpretation-sets to ADFs such that

• ρADF
σ3 (V ) = D with σ3(D) = V if V ∈ Σσ3

ADF, and
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• ρADF
σ3 (V ) = D with σ3(D) = {vu} otherwise.

The characterizations of signatures allow us to state some of their relations to each other.

Theorem 25. The following relations hold:

1. Σstb3
ADF ⊂ Σmod3

ADF ⊂ (Σprf3
ADF ∪ {∅});

2. Σadm3
ADF ∩ Σσ3

ADF = ∅ for σ3 ∈ {mod3, stb3};

3. Σcom3
ADF ∩ Σσ3

ADF = {V ⊆ V2 | |V | = 1} for σ3 ∈ {mod3, stb3};

4. Σadm3
ADF ∩ Σprf3

ADF = {{vu}};

5. Σcom3
ADF ∩ Σprf3

ADF = Σgrd3
ADF.

Proof. (1) Σstb3
ADF ⊆ Σmod3

ADF is immediate. Properness is by the interpretation-set {t, f}
which is contained in Σmod3

ADF (the realizing ADF is {〈a, a〉}, i.e. the ADF with one
self-supporting argument) but not in Σstb3

ADF, as {t, f}t = {{a}, ∅} is not incomparable.
Moreover, Σmod3

ADF ⊂ (Σprf3
ADF ∪ {∅}) is by the observation that a set of two-valued interpre-

tations V ⊆ V2 is always incompatible (cf. Lemma 1) and the fact that any set containing
an interpretation which is not two-valued cannot be contained in Σmod3

ADF .

(2) The result follows from the fact that vu ∈ V for every V ∈ Σadm3
ADF , which is clearly

not two-valued.

(3) Every V ⊆ V2 with |V | = 1 is contained in Σσ3
ADF, since V t is incomparable, and also

contained in Σcom3
ADF , since there exists some com-characterization of V by [175, Lemma 2].

Assume some V ⊆ V2 with |V | > 1 and V t being incomparable (hence contained in
Σσ3

ADF). Let v1, v2 ∈ V with v1 6= v2. Further assume V ∈ Σcom3
ADF , i.e. there is some

ADF D with com3(D) = V . Since the complete interpretations of V form a complete
meet-semilattice (cf. [55, Theorem 1]) there must be some v ∈ V with v ≤i (v1 u v2), a
contradiction to V ⊆ V2. Hence V /∈ Σcom3

ADF and the result follows.

(4) The interpretation vu is induced by every set of interpretations, hence vu ∈ V for
every V ∈ Σadm3

ADF . Since vu ≤i v for every other v ∈ V , v /∈ V in order to have V ∈ Σprf3
ADF.

Hence the result follows.

(5) Every V ⊆ V with |V | = 1 is incompatible and there exists some com-characterization
of V , hence the ⊇-direction holds. To show the ⊆-direction, assume some V ⊆ V with
|V | > 1 which is incompatible (hence contained in Σprf3

ADF). Let v1, v2 ∈ V with v1 6= v2.
Further assume, towards a contradiction, that V ∈ Σcom3

ADF , i.e. there is some ADF D with
com3(D) = V . Since the complete interpretations of V form a complete meet-semilattice
(cf. [55, Theorem 1]) there must be some v ∈ V with v ≤i (v1 u v2), a contradiction to V
being incompatible. Hence V /∈ Σcom3

ADF and the result follows.
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We will gain a few more insights, in particular about the relation between Σadm3
ADF and

Σcom3
ADF , in Section 3.6.

Also for ADFs we are interested in the closure of signatures under subset and intersection.
Some of the following results will be of use in Section 4.3.

Proposition 27. Given an arbitrary ADF D it holds that

• for any V ⊆ prf3(D) with V 6= ∅ there exists an ADF D′ such that prf3(D′) = V ;

• for any V ⊆ σ3(D) there exists an ADF D′ such that σ3(D′) = V if σ3 ∈
{mod3, stb3}.

Proof. Consider some V ⊆ V and let V ′ ⊆ V . If V ⊆ V2 then also V ′ ⊆ V2. Since
V t ⊆ V ′t it follows that if V t is incomparable then V ′t is incomparable. Finally, if V is
incompatible, then all pairs of elements v1, v2 ∈ V are incompatible, hence all pairs of
elements v1, v2 ∈ V ′ are incompatible, i.e. V ′ is incompatible. The result for prf3, mod3,
and stb3 now follows.

Admissible and complete semantics are not closed under subset. This can be seen by the
AF D = {〈a, a〉}, which has com3(D) = adm3(D) = {u, t, f}, but {t, f} ⊆ com3(D) is
realizable neither under admissible nor under complete semantics in ADFs. Moreover,
the question is only of limited interest for grounded semantics, as the only non-empty
subset of an interpretation-set obtained from grounded semantics is the interpretation-set
itself.

Closedness under intersection is now a direct consequence for prf3, mod3, and stb3 and
was shown for adm3 in [175].

Proposition 28. Given arbitrary ADFs D1 and D2 it holds that

• there exists an ADF D such that σ3(D) = σ3(D1)∩ σ3(D2) if σ3(D1)∩ σ3(D2) 6= ∅
for σ3 ∈ {adm3, prf3};

• there exists an ADF D such that σ3(D) = σ3(D1) ∩ σ3(D2) for σ3 ∈ {mod3, stb3}.

Proof. The results for prf3, mod3, and stb3 follow from Proposition 27. The result for
adm3 can be found in [175].

Pührer [175] gives a counterexample showing that the signature of complete semantics
in ADFs is not closed under intersection and argues that the intersection of grounded
interpretation-sets is only realizable if they coincide.
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Table 3.2: Closure of ADF semantics. ⊆: given ADF D, whether any V ⊆ σ3(F ) is
realizable. ∩: given ADFs D and D′, whether V = σ3(F ) ∩ σ3(F ′) is realizable. y†

expresses the restriction that V 6= ∅.

σ3 adm3 prf3 com3 mod3 stb3 grd3

⊆ n y† n y y y†

∩ y† y† n y y y†

3.6 Unifying Approach

In Sections 3.2, 3.3, and 3.4 we have studied several variants of realizability under two-
valued semantics of AFs, while in Section 3.5 we have reviewed results on realizability
under three-valued semantics of ADFs. Both is in line with the more common usage in
the literature. Approaches to characterize three-valued semantics of AFs turned out to be
either overly intricate or not very insightful when considering a more relaxed setting [112].
In this section, we present an alternative approach to characterize realizability under three-
valued semantics of ADFs, which we can apply to AFs using the fact that AFs constitute
a certain subclass of ADFs. In the course of this, we also capture two further classes lying
between AFs and ADFs: SETAFs and bipolar ADFs. Compared to characterizations in
the previous sections, the approach presented here is more algorithmic, with a concrete
implementation in answer set programming presented in Section 3.6.2.

We consider realizability under three-valued semantics in AFs, SETAFs, BADFs, and
ADFs for admissible, complete, preferred and two-valued model (reps. stable for AFs
and SETAFs) semantics. In the interest of uniformity we will, throughout this section,
refer to the stable semantics of AFs (resp. SETAFs) as two-valued model semantics and
denote the stable labellings of an AF (resp. SETAF) F by mod3(F ).12

3.6.1 A General Framework for Realizability

The underlying idea of the framework presented in this subsection is that all abstract
argumentation formalisms considered (that is, AFs, SETAFs, bipolar ADFs and ADFs)
can be viewed as subclasses of ADFs. This is clear for ADFs themselves and for BADFs
by definition; for SETAFs and AFs this can be seen by Propositions 3 and 5, respectively.
However, knowing that these formalisms can be recast as ADFs is not enough. To employ
this knowledge for realizability, we must be able to precisely characterize the subclasses
in terms of restrictions to the corresponding ADFs’ acceptance functions. Fortunately,
this is also possible and paves the way for the framework we present in this section. Most
importantly, we will make use of the fact that different formalisms and different semantics
can be characterized modularly, that is, independently of each other. The characterization

12Note that this is just an issue of notation, since model and stable semantics coincide for ADFs
representing AFs and SETAFs (cf. Propositions 3 and 5).
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of the signature of a particular semantics in a particular formalism is then obtained by
combining the semantics characterization with the formalism characterization.

Towards a uniform account of realizability in ADFs under different semantics, we gener-
alize the concept of com-characterizations (cf. Definition 67) by defining characterizing
properties of functions f : V2 7→ V2 also for the other semantics. We start with a new
characterization of realizability under admissible semantics in ADFs by means of an
adm-characterization.

Definition 70. Let V ⊆ V be a set of interpretations. An adm-characterization of V is
a function f : V2 7→ V2 such that: for each v ∈ V we have v ∈ V iff for every a ∈ A:

• v(a) 6= u implies f(v2)(a) = v(a) for all v2 ∈ [v]2.

Similar to a com-characterization, an adm-characterization f assigns to a two-valued
interpretation v and an argument a the value f(v)(a) that the acceptance condition of a
should evaluate to under v in an ADF that has V as its admissible semantics. Note that
the only difference to Definition 67 is dropping the second condition related to arguments
with truth value u. However notice that a com-characterization is not necessarily an
adm-characterization. While the two conditions in Definition 67 capture the relation
ΓDf (v) = v, the remaining one in Definition 70 boils down to v ≤i ΓDf (v) that defines
the admissible semantics (recall Definition 69 for Df ).

We show that the existence of an adm-characterization is necessary and sufficient for the
existence of a realizing ADF.

Proposition 29. Let V ⊆ V be a set of interpretations.

1. For each ADF D such that adm3(D) = V , there is an adm-characterization fD of
V .

2. For each adm-characterization f : V2 7→ V2 of V we have adm3(Df ) = V .

Proof. (1) We define the function fD : V2 7→ V2 as fD(v2)(a) = v2(ϕa) for every v2 ∈ V2
and a ∈ A where ϕa is the acceptance condition of a in D. We show that fD is an
adm-characterization of V = adm3(D). Let v be an interpretation and consider the
case v ∈ adm3(D) and v(a) 6= u for some a ∈ A and some v2 ∈ [v]2. From v ≤i ΓD(v)
we get v2(ϕa) = v(a). By definition of fD it follows that fD(v2)(a) = v(a). Now as-
sume v 6∈ adm3(D) and consequently v 6≤i ΓD(v). There must be some a ∈ A such that
v(a) 6= u and v(a) 6= ΓD(v)(a). Hence, there is some v2 ∈ [v]2 with v2(ϕa) 6= v(a) and
fD(v2)(a) 6= v(a) by definition of fD. Thus, fD is an adm-characterization of V .

(2) First observe that for every two-valued interpretation v2 and every a ∈ A we have
f(v2)(a) = v2(ϕfa).
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(⊆) Let v ∈ adm3(Df ) be an interpretation and a ∈ A an argument such that v(a) 6= u.
Let v2 be a two-valued interpretation with v2 ∈ [v]2. Since v ≤i ΓDf (v) we have
v(a) = v2(ϕfa). Therefore, by our observation it must also hold that f(v2)(a) = v(a).
Thus, by Definition 70, v ∈ V .

(⊇) Consider an interpretation v such that v 6∈ adm3(Df ). We show that v 6∈ V . From
v 6∈ adm3(Df ) we get v 6≤i ΓDf (v). There must be some a ∈ A such that v(a) 6= u
and v(a) 6= ΓDf (v)(a). Hence, there is some v2 ∈ [v]2 with v2(ϕfa) 6= v(a) and
consequently f(v2)(a) 6= v(a). Thus, by Definition 70, we have v 6∈ V .

Example 39. Consider the sets V1 = {uuu, tf f , ftu} and V2 = {tf f , ftu} of interpreta-
tions over A = {a, b, c}. The following mapping f is an adm-characterization of V1:

v ttt ttf tft tf f ftt ftf f ft f f f
f(v) ftt tft ttt tf f ftf ftt ttf ftf

To see this, we have to check, for instance, that all v2 ∈ [ftu]2 = {ftt, ftf} have
f(v2)(a) = v(a) = f and f(v2)(b) = v(b) = t, which is indeed the case. We can verify
that the condition given in Definition 70 is fulfilled by all v ∈ V1 and violated for all
v ∈ (V \ V1). Thus, the ADF Df has V1 as its admissible interpretations. Indeed, the
realizing ADF is given by the following acceptance conditions:

ϕfa = (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b) ∨ (¬a ∧ ¬b ∧ c)

ϕfb = (a ∧ c) ∨ (¬a ∧ b) ∨ (¬a ∧ ¬b ∧ ¬c)
ϕfc = (a ∧ b) ∨ (¬a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c)

Further note that f is also a com-characterization of V1, hence also com3(Df ) = V1.

For V2, on the other hand, no adm-characterization exists because uuu 6∈ V2, but the
implication of Definition 70 trivially holds for a, b, and c. ♦

We have seen that the construction Df for realizing interpretation-sets under complete
semantics can also be used for realizing a set V of interpretations under admissible seman-
tics. The only difference is that we here require f to be an adm-characterization instead
of a com-characterization of V . Note that admissible semantics can be characterized by
properties that are easier to check than existence of an adm-characterization (see the
characterization given in Theorem 24 and further shortcuts presented by Pührer [175]).
However, using the same type of characterizations for different semantics allows us to
present a unified approach for checking realizability and constructing a realizing ADF in
case one exists.

For realizing under two-valued models, we can likewise present an adjusted version of
com-characterizations.
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Definition 71. Let V ⊆ V be a set of interpretations. A mod-characterization of V is a
function f : V2 7→ V2 such that:

1. f is defined on V (that is, V ⊆ V2) and

2. for each v ∈ V2, we have v ∈ V iff f(v) = v.

As we can show, there is a one-to-one correspondence between mod-characterizations and
ADF realizations.

Proposition 30. Let V ⊆ V be a set of interpretations.

1. For each ADF D such that mod3(D) = V , there is a mod-characterization fD of V .

2. For each mod-characterization f : V2 7→ V2 of V we find mod3(Df ) = V .

Proof. (1) Let D be an ADF with mod3(D) = V . It immediately follows that V ⊆ V2.
We define the function fD : V2 7→ V2 as fD(v2)(a) = v2(ϕa) for every v2 ∈ V2 and a ∈ A
just as in the proof of Proposition 29. It follows directly that for any v ∈ V2, we find
fD(v) = v iff v ∈ V . Thus fD is a mod-characterization of V .

(2) Let V ⊆ V and f : V2 7→ V2 be a mod-characterization of V . By property 1 of f (cf.
Definition 71) we follow that V ⊆ V2. Further for any v ∈ V2 we have:

v ∈ V ⇐⇒ v = f(v)
⇐⇒ ∀a ∈ A : (v(a) = f(v)(a))
⇐⇒ ∀a ∈ A : (v(a) = t↔ f(v)(a) = t)
⇐⇒ ∀a ∈ A : (v(a) = t ↔ (∃w ∈ V2 : f(w)(a) = t ∧ v = w))
⇐⇒ ∀a ∈ A : (v(a) = t ↔ (∃w ∈ V2 : f(w)(a) = t ∧ v(φw) = t))

⇐⇒ ∀a ∈ A :

v(a) = t ↔ v

 ∨
w∈V2,f(w)(a)=t

φw

 = t


⇐⇒ ∀a ∈ A : v(a) = v

 ∨
w∈V2,f(w)(a)=t

φw


⇐⇒ ∀a ∈ A : v(a) = v(ϕfa)
⇐⇒ v ∈ mod3(Df )

A related result was given by Strass [188, Proposition 10]. There it was shown that
for every V ⊆ V2, there is a one-to-one-correspondence between the sets DV = {D =
{〈a, ϕa〉 | a ∈ A} | mod3(D) = V } of realizations and YV = {{Ya}a∈A | ∀a ∈ A : Ya ⊆
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V2,
⋂
a∈A Ya = V } of alternative characterizations. The characterization we presented

here, however, fits into the general framework of this work and will be directly usable for
our realizability algorithm.

The next result summarizes how ADF realizability can be captured by different types of
characterizations for the semantics we considered so far.

Theorem 26. Let V ⊆ V be a set of interpretations and σ ∈ {adm, com,mod}. There is
an ADF D such that σ3(D) = V if and only if there is a σ-characterization of V .

The preferred semantics of an ADF D is closely related to admissible semantics as, by
definition, the preferred interpretations of D are its ≤i-maximal admissible interpretations.

As a consequence we can also describe preferred realizability in terms of adm-characteriza-
tions. Recall the lattice-theoretic standard notation max≤i V to denote the ≤i-maximal
elements of a given set V .

Corollary 5. Let V ⊆ V be a set of interpretations. There is an ADF D with prf3(D) = V
if and only if there is an adm-characterization of some V ′ ⊆ V with V ⊆ V ′ and
max≤i V ′ = V .

Algorithm for Deciding Realizability

The main algorithm for deciding realizability, Algorithm 1, is a propagate-and-guess
algorithm in the spirit of the DPLL algorithm [82] for deciding propositional satisfiabil-
ity [132]. It is generic with respect to (1) the formalism F and (2) the semantics σ3 for
which a given set of interpretations should be realized. To this end, the propagation part
of the algorithm is kept exchangeable and will vary depending on formalism and semantics.
Roughly, in the propagation step the algorithm uses the desired set V of interpretations
to derive certain necessary properties of the realizing knowledge base (line 2). This is the
essential part of the algorithm: the derivation rules (propagators) used there are based on
characterizations of realizability with respect to formalism and semantics. The concrete
propagators will be explained in detail in the next two subsections. Once propagation of
properties has reached a fixed point (line 7), i.e. not further necessary properties can
be derived by the propagators, the algorithm checks whether the derived information is
sufficient to construct a knowledge base. If so, the knowledge base can be constructed and
returned (line 9). Otherwise (no more information can be obtained through propagation
and there is not enough information to construct a knowledge base yet), the algorithm
guesses another assignment for the characterization (line 11) and calls itself recursively.

The main data structure that Algorithm 1 operates on is a set of triples (v, a,x) consisting
of a two-valued interpretation v ∈ V2, an argument a ∈ A and a truth value x ∈ {t, f}.
This data structure is intended to represent the σ-characterizations introduced in Defini-
tions 67, 70, and 71 for σ ∈ {com, adm,mod}, respectively. There, a σ-characterization
is a function f : V2 7→ V2 from two-valued interpretations to two-valued interpretations.
However, as the algorithm builds the σ-characterization step by step and there might
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Algorithm 1 realize(F , σ3, V,F)
Input: • a formalism F

• a semantics σ3 for F
• a set V of interpretations v : A 7→ {t, f ,u}
• a relation F ⊆ V2 ×A× {t, f}, initially empty

Output: a kb ∈ F with σ3(kb) = V or “no” if none exists

1: repeat
2: set F∆ :=

⋃
p∈PFσ

p(V,F) \ F

3: set F := F ∪ F∆
4: if ∃v ∈ V2, ∃a ∈ A : {(v, a, t), (v, a, f)} ⊆ F then
5: return “no”
6: end if
7: until F∆ = ∅
8: if ∀v ∈ V2,∀a ∈ A,∃x ∈ {t, f} : (v, a,x) ∈ F then
9: return kbFσ (F)

10: end if
11: choose v ∈ V2, a ∈ A with (v, a, t) /∈ F, (v, a, f) /∈ F, and x ∈ {t, f}
12: if realize(F , σ3, V,F ∪ {(v, a,x)}) 6= “no” then
13: return realize(F , σ3, V,F ∪ {(v, a,x)})
14: else
15: return realize(F , σ3, V,F ∪ {(v, a,¬x)})
16: end if

not even be a σ-characterization in the end (because V is not realizable), we use a set F
of triples (v, a,x) to be able to represent both partial and incoherent states of affairs.
The σ-characterization candidate induced by F is

• partial if we have that for some v and a, neither (v, a, t) ∈ F nor (v, a, f) ∈ F; and

• incoherent if for some v and a, both (v, a, t) ∈ F and (v, a, f) ∈ F.

If F is neither partial nor incoherent, it gives rise to a unique σ-characterization that can
be used to construct the knowledge base realizing the desired set of interpretations. The
correspondence to the potential σ-characterization is as follows:

Definition 72. Given a relation F ⊆ V2 × A× {t, f} that is not incoherent, we define
the corresponding (partial) function fF such that, for each v ∈ V2 and a ∈ A,

fF(v)(a) = x ⇐⇒ (v, a,x) ∈ F.

We may sometimes, with some abuse of notation, refer to a relation F as (partial)
σ-characterization, implicitly meaning the corresponding (partial) function fF.
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In the case where the constructed relation F becomes functional at some point, i.e. F is
neither partial nor incoherent, the algorithm returns a realizing knowledge base kbFσ (F).
When it comes to ADFs, we can use the canonical construction given in Definition 68 to
obtain a realizing function.

Definition 73. Given a semantics σ ∈ {com, adm,mod} and a σ-characterization F, we
define the canonical realization

kbADF
σ (F) = DfF .

For the remaining formalisms we will introduce the respective realizing function in later
subsections.

In our presentation of the algorithm we focused on its main features, therefore the guessing
step (line 11) is completely “blind”, i.e. the new assignment is randomly chosen from all
unassigned combinations of interpretations and arguments. It is, however, possible to use
techniques known from constraint satisfaction problems, such as shaving [193] (removing
guessing possibilities that directly lead to inconsistency) to improve performance.

Moreover note that Algorithm 1 can be extended to enumerate all possible realizations
of a given interpretation-set. This is done by keeping all choice points in the guessing
step and thus proceeding the search after returning a realizing knowledge base. This
exhaustively explores the whole search space.

The algorithm is parametric in two dimensions, namely with respect to the formalism F
and with respect to the semantics σ3. These two aspects come into the algorithm via
so-called propagators. A propagator is a formalism-specific or semantics-specific set of
derivation rules. Given a set V of desired interpretations and a partial σ-characterization
F, a propagator p derives new tuples (v, a,x) that must necessarily be part of any total σ-
characterization F of V . In what follows, we present semantics propagators for admissible,
complete and model (in (SET)AF terms stable) semantics, and then describe formalism
propagators for BADFs, AFs, and SETAFs.

Semantics Propagators

The semantics propagators are directly derived from the properties of σ-characterizations
presented in Definitions 67, 70, and 71 for complete, admissible, and model semantics,
respectively. While the definitions provide exact conditions to check whether a given
function is a σ-characterization, the propagators allow us to derive definite values of partial
characterizations that are necessary to fulfill the conditions for being a σ-characterization.

Admissible Semantics. For admissible semantics, the condition for a function f to
be an adm-characterization of a given set of interpretations V (cf. Definition 70) can be
split into a condition for desired interpretations v ∈ V and two conditions for undesired
interpretations v /∈ V . The set of propagators is given by PADF

adm = {p∈adm, p
/∈
adm, p

 
adm}, as

defined in Figure 3.29. They add tuples to the relation F as follows, in order to ensure
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p∈adm(V,F) = {(v2, a, v(a)) | v ∈ V, v2 ∈ [v]2, v(a) 6= u}

p/∈
adm(V,F) = {(v2, a,¬v(a)) | v ∈ V \ V, v2 ∈ [v]2, v(a) 6= u,

∀b ∈ A \ vu,∀v′2 ∈ [v]2 : (a, v2) 6= (b, v′2)⇒ (v′2, b, v(b)) ∈ F}

p adm(V,F) = {(v, a, t), (v, a, f) | v ∈ V2, a ∈ A, vu 6∈ V }

Figure 3.29: Semantics propagators for the admissible semantics.

that fF is an adm-characterization of V if V is realizable under adm3 or to ensure that F
is incoherent otherwise.

• Propagator p∈adm derives new tuples by considering interpretations v ∈ V . Here,
for all two-valued interpretations v2 that extend v, the value fF(v2) has to be in
accordance with v on v’s Boolean part, that is, the algorithm adds (v2, a, v(a)) to
F whenever v(a) 6= u.

• On the other hand, p/∈adm derives new tuples for v /∈ V in order to ensure that
there is a two-valued interpretation v2 extending v where fF(v2) differs from v
on a Boolean value of v. It adds (v2, a,¬v(a)) to F whenever v(a) 6= u, all other
v′2 ∈ [v]2 have fF(v′2)(a) = v(a), and all other arguments b with v(b) 6= u have
fF(v′2)(b) = v(b) for all v′2 ∈ [v]2.

Note that, while p∈adm immediately allows us to derive information about F for each
desired interpretation v ∈ V , propagator p/∈adm is much weaker in the sense that it only
derives a triple of F if there is no other way to meet the conditions for an undesired
interpretation v /∈ V .

• Special treatment is required for the interpretation vu that maps all arguments to u,
since it is admissible for every ADF. This is not captured by p∈adm and p/∈adm as these
deal only with interpretations that have Boolean mappings. Thus, propagator p adm
serves to check whether vu ∈ V . If this is not the case, the propagator immediately
makes the relation F incoherent and the algorithm correctly answers “no”.

Example 40. Consider the set of interpretations V3 = {uuu, fuu,uuf , ftf}. We use
Algorithm 1 to test realizability of V3 under admissible semantics. To this end, we consider
a run of realize(ADF, adm3, V3, ∅). In the first iteration, propagator p∈adm ensures that F∆
in line 2 contains, among others, the tuples (f f f , a, f ), (ftf , a, f ), (ftf , c, f ), and (f f f , c, f ).
Based on the latter three tuples and fuf /∈ V3, propagator p/∈adm derives (f f f , a, t) ∈ F in
the second iteration which together with (f f f , a, f) ∈ F causes the algorithm to return
“no” in line 5. Consequently, V3 is not adm3-realizable. ♦
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p∈,tf
com(V,F) = {(v2, a, v(a)) | v ∈ V, v2 ∈ [v]2, v(a) 6= u}

p∈,u
com(V,F) = {(v2, a,¬x) | v ∈ V, v2 ∈ [v]2, v(a) = u,x ∈ {t, f},

∀v′2 ∈ [v]2 : v2 6= v′2 ⇒ (v′2, a,x) ∈ F}

p6∈,tf
com(V,F) = {(v2, a,¬v(a)) | v ∈ V \ V, v2 ∈ [v]2, v(a) 6= u,

∀b ∈ A \ vu,∀v′2 ∈ [v]2 : (a, v2) 6= (b, v′2)⇒ (v′2, b, v(b)) ∈ F,
∀b ∈ vu,∃v′′2 , v′′′2 ∈ [v]2 : (v′′2 , b, t), (v′′′2 , b, f) ∈ F}

p6∈,u
com(V,F) = {(v2, a,¬x) | v ∈ V \ V, v2 ∈ [v]2, v(a) = u,

∀b ∈ A \ vu,∀v′2 ∈ [v]2 : (v′2, b, v(b)) ∈ F,
∀b ∈ vu \ {a} : ∃v′′2 , v′′′2 ∈ [v]2 : (v′′2 , b, t), (v′′′2 , b, f) ∈ F,

∀v′′′′2 ∈ [v]2 \ {v2} : (v′′′′2 , b,x) ∈ F}

Figure 3.30: Semantics propagators for the complete semantics.

Complete Semantics. For complete semantics the propagators are derived from the
notion of a com-characterization (cf. Definition 67) and are given by the set PADF

com =
{p∈,tf

com , p
∈,u
com, p

6∈,tf
com , p

6∈,u
com}, defined in Figure 3.30. Given a set of interpretations V the

propagators add tuples to the relation F as follows.

• Propagator p∈,tf
com is equivalent to p∈adm and derives tuples based on interpretations

v ∈ V just like in the admissible case.

• Propagator p∈,ucom is also based on interpretations v ∈ V and deals with arguments
a ∈ A having v(a) = u. For these arguments there have to be at least two inter-
pretations v2, v

′
2 ∈ [v]2 having fF(v2)(a) = t and fF(v′2)(a) = f . Hence p∈,ucom derives

triple (v2, a,¬x) if for all other v′2 ∈ [v]2 we find a triple (v′2, a,x) ∈ F with the
same x ∈ {t, f}.

• For interpretations v /∈ V it must hold that there is some a ∈ A such that (i)
v(a) 6= u and fF(v2)(a) 6= v(a) for some v2 ∈ [v]2 or (ii) v(a) = u but for all v2 ∈ [v]2,
fF(v2) assigns the same Boolean truth value x ∈ {t, f} to a. Now if neither (i) nor
(ii) can be fulfilled by any argument b ∈ (A \ {a}) due to the current contents of F,
propagators p 6∈,tf

com and p6∈,ucom derive tuple (v2, a,¬v(a)) for v(a) 6= u if needed for a
to fulfill (i) (i.e. for all v′2 ∈ ([v]2 \ {v2}) we have fF(v′2)(a) = v(a)) and (v2, a,¬x)
for v(a) = u if needed for a to fulfill (ii) (i.e. for all v′2 ∈ ([v]2 \ {v2}) we have
fF(v′2)(a) = x), respectively.

Example 41. Consider the set of interpretations V4 = {uuu, tuu, ftu, tf f} over argu-
ments {a, b, c} (note that V4 extends V1 from Example 39 by the interpretation tuu).
In order to check whether V4 is realizable under complete semantics we simulate a

106



3.6. Unifying Approach

Table 3.3: Simulation of the execution of realize(ADF, com3, V4, ∅) for V4 =
{uuu, tuu, ftu, tf f}. Rows represent the levels of recursion. The columns p∈,tf

com , p∈,ucom,
p/∈,tf

com , and p/∈,ucom contain the tuples added by the respective propagators. Tuples in the
column “guess” are guessed if no tuple can be derived by a propagator. Two-valued
interpretations in the column “done” fulfill the conditions given by a com-characterization
and need not to be considered anymore.

guess p∈,tf
com p∈,ucom p/∈,tf

com p/∈,ucom done
1 (ttt, a, t), (ttf , a, t),

(tft, a, t), (tf f , a, t),
(tf f , b, f), (tf f , c, f),
(ftt, a, f), (ftt, b, t),
(ftf , a, f), (ftf , b, t)

tf f

2 (ftt, c, f ),
(ftf , c, t)

ftt, ftf , utt,
utf , ftu, fut,
fuf , uut, uuf ,
uuu

3 (ttt, b, f ) ttt, ttu, utu
4 (tft, b, f ) tut
5 (ttf , b, t) (tft, c, f ) tft, tfu, uft
6 (ttf , c, t) ttf , tuf , tuu
7 (ttt, c, t)
8 (f ft, a, f )
9 (f f f , a, f )
10 (f ft, b, t),

(f f f , b, t)
f ft, f f f , fuu,
f fu, uff , ufu

11 (f ft, c, f )
12 (f f f , c, f )

run of realize(ADF, com3, V4, ∅), which seeks for a relation F such that fF is a com-
characterization of V4. Table 3.3 shows, for each level of the recursion, the tuples added
to F by the respective propagators. If no tuple can be inferred, we make an arbitrary
guess and denote it in the second column of the table. Finally a few words are in order
concerning the last column of Table 3.3: it lists those interpretations which meet the
conditions given by the definition of a com-characterization at the end of the respective
level of the recursion. That is, an interpretation v ∈ V appears in the “done”-column, if
the tuples added to F in the current level of computation made the two conditions of
Definition 67 fulfilled for all arguments (if v ∈ V4), or violated for some argument (if
v /∈ V4). Practically, it means that for interpretations which appear in the “done”-column,
no further tuples have to be derived by the propagators.

As an example, consider row 5, and recall that tuu ∈ V4. Further observe that at this point
of computation, we already have fF(ttt)(b) = fF(tft)(b) = fF(tf f)(b) = f . Hence, fF must
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p∈mod(V,F) = {(v, a, v(a)) | v ∈ V, a ∈ A}

p/∈
mod(V,F) = {(v, a,¬v(a)) | v ∈ V2 \ V, a ∈ A,∀c ∈ A \ {a} : (v, c, v(c)) ∈ F}

p mod(V,F) = {(v, a, t), (v, a, f) | v ∈ V2, a ∈ A, V 6⊆ V2}

Figure 3.31: Semantics propagators for the model semantics.

assign t to b for the only remaining element of [tuu]2, i.e. p∈,ucom adds the tuple (ttf , b, t)
to F. Moreover, considering tfu /∈ V4 and observing that fF(tft)(a) = fF(tf f)(a) = t
and fF(tft)(b) = fF(tf f)(b) = f , we must have that fF(tft)(c) = fF(tf f )(c) = x for some
x ∈ {t, f}. Hence p/∈,ucom derives, knowing that fF(tf f)(c) = f , the tuple (tft, c, f).

In the end, for every v ∈ V2 and a ∈ A exactly one element (v, a,x) with x ∈ {t, f} is
contained in F. We have arrived at the following com-characterization fF of V4:

v ttt ttf tft tf f ftt ftf f ft f f f
fF(v) tft ttt tf f tf f ftf ftt ftf ftf

Having established the com-characterization, the algorithm returns a realizing ADF
by using the realizing function kbADF

σ (F). We get the ADF DfF which is given by the
following acceptance conditions:

ϕa = (a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) ∨ (a ∧ ¬b ∧ ¬c) =
= a

ϕb = (a ∧ b ∧ ¬c) ∨ (¬a ∧ b ∧ c) ∨ (¬a ∧ b ∧ ¬c) ∨ (¬a ∧ ¬b ∧ c) ∨ (¬a ∧ ¬b ∧ ¬c) =
= (a ∧ b ∧ ¬c) ∨ ¬a

ϕc = (a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (¬a ∧ b ∧ ¬c) =
= (a ∧ b) ∨ (¬a ∧ b ∧ ¬c)

♦

Model Semantics. Finally, for two-valued model semantics, propagator p∈mod derives
new tuples by looking at interpretations v ∈ V . For those, we must find f(v) = v in
each mod-characterization f by definition. Thus the propagator adds (v, a, v(a)) for
each a ∈ A to the partial characterization F. Propagator p/∈mod looks at interpretations
v ∈ V2 \ V , for which it must hold that f(v) 6= v. Thus there must be an argument a ∈ A
with v(a) 6= f(v)(a), which is exactly what this propagator derives whenever it is clear
that there is only one argument candidate left. This, in turn, is the case whenever all
b ∈ A with the opposite truth value ¬v(a) and all c ∈ A with c 6= a cannot coherently
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Algorithm 2 realizePrf (F , V )
Input: • a formalism F

• a set V of interpretations v : A 7→ {t, f ,u}
Output: Return some kb ∈ F with prf3(kb) = V if one exists or “no” otherwise.

1: if max≤i V 6= V then
2: return “no”
3: end if
4: set V <i := {v ∈ V | ∃v′ ∈ V : v <i v′}
5: set X := ∅
6: repeat
7: choose V ′ ⊆ V <i with V ′ /∈ X
8: set X := X ∪ {V ′}
9: set V adm := V ∪ V ′

10: if realize(F , adm3, V
adm, ∅) 6= “no” then

11: return realize(F , adm3, V
adm, ∅)

12: end if
13: until ∀V ′ ⊆ V <i : V ′ ∈ X
14: return “no”

become the necessary witness any more. The propagator p mod checks whether V ⊆ V2,
that is, the desired set of interpretations consists entirely of two-valued interpretations.
In that case this propagator makes the relation F incoherent, following a similar strategy
as p adm.

Preferred Semantics. Realizing a given set of interpretations V under preferred
semantics requires special treatment. We do not have a σ-characterization function for
σ = prf at hand to directly check realizability of V . Therefore our strategy is to find
some V ′ ⊆ {v ∈ V | ∃v′ ∈ V : v <i v′} such that V ∪ V ′ is realizable under admissible
semantics (cf. Corollary 5). Algorithm 2 implements this idea by guessing such a V ′
(line 7) and then making use of Algorithm 1 to try to realize V ∪ V ′ under admissible
semantics (line 11). If realize returns a knowledge base kb realizing V ∪ V ′ under adm3
we can directly use kb as solution of realizePrf since it holds that prf3(kb) = V , given
that V is incompatible (line 2).

Formalism Propagators

Bipolar ADFs, SETAFs and AFs are all subclasses of ADFs by restricting the acceptance
conditions of arguments. In bipolar ADFs, every link from argument a to argument b
must be supporting or attacking, as manifested in the acceptance condition of b; for
SETAFs the acceptance conditions of the corresponding ADF can always be written as a
conjunction of disjunctions of negated atoms (cf. Definition 33); finally ADFs obtained
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from translating AFs have conjunctions of negated atoms as acceptance conditions (cf.
Definition 32).

As we have seen in in Definition 73, when constructing an ADF realizing a given set
V of interpretations under a semantics σ, the function kbADF

σ (F) makes use of the σ-
characterization given by F in the following way: v is a model of the acceptance condition
ϕa if and only if we find (v, a, t) ∈ F (cf. Definition 68).

Combining these observations, the restrictions imposed by the ADF subclasses on the
acceptance conditions also carry over to the σ-characterizations. Therefore we define
propagators that use structural knowledge on the form of acceptance conditions of the
respective formalisms to reduce the search space or to induce incoherence of F whenever
V is not realizable.

In the following we define a propagator pF for every formalism F ∈ {AF, SETAF,BADF}.
The set of propagators for formalism F and semantics σ ∈ {adm, com,mod} is then given
by PFσ = PADF

σ ∪ {pF}.

Bipolar ADFs. For bipolar ADFs, we use the fact that each of their links must have
at least one polarity, that is, must be supporting or attacking. Therefore, if a link is not
supporting, it must be attacking, and vice versa.

The propagator for BADFs, given a partial σ-characterization F and a set of interpreta-
tions V that we want to realize, is defined as follows:

pBADF(V,F) ={(v|bt, a, f) | (v, a, f) ∈ F, (w, a, t) ∈ F, w(b) = f , (w|bt, a, f) ∈ F} ∪
{(v|bt, a, t) | (v, a, t) ∈ F, (w, a, f) ∈ F, w(b) = f , (w|bt, a, t) ∈ F}

The first line propagates information about attacking links: the tuples (w, a, t) ∈ F and
(w|bt, a, f) ∈ F serve as witnesses that b is not supporting for a, since w and w|bt differ
only in their assignment of b (by definition). Hence, by bipolarity, the link (b, a) must
be attacking, which is propagated by adding (v|bt, a, f) to F for every (v, a, f) ∈ F. The
second line propagates the fact that a link (b, a) must be supporting, having observed,
by (w, a, f) ∈ F, w(b) = f , and (w|bt, a, t) ∈ F, that the link cannot be attacking.

In order to construct the realizing BADF, given a relation F which is neither incoherent
nor partial, we can again make use of the canonical realization DfF , but additionally have
to add the link polarities. We can extract the link polarities out of F, denoting the set of
all non-attacking links by L+

F and the set of all non-supporting links by L−F , as follows.

Definition 74. Given a semantics σ ∈ {com, adm,mod} and a σ-characterization F, we
define the canonical realization

kbBADF
σ (F) = (DfF , L

+
F , L

−
F )
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with

L+
F = {(b, a) | (v, a, f) ∈ F, v(b) = f , (v|bt, a, t) ∈ F}

L−F = {(b, a) | (v, a, t) ∈ F, v(b) = f , (v|bt, a, f) ∈ F}.

AFs. Towards the propagator for AFs, recall the ordering f <t t on the Boolean truth
values, which, lifted to interpretations, gives rise to the complete lattice (V2,≤t) with glb
ut and lub tt. The lattice has the least element vf : A 7→ {f} and the greatest element
vt : A 7→ {t}.

Acceptance conditions of AF-based ADFs have the form of conjunctions of negative literals
(cf. Definition 32). In the complete lattice (V2,≤t), the model sets of AF acceptance
conditions correspond to the lattice-theoretic concept of an ideal, a non-empty subset
of V2 that is downward-closed with respect to ≤t and upward-closed with respect to tt.
This is due to the following observations about AFs:

• If an argument a is acceptable under some interpretation v ∈ V2, then no argument
b ∈ vt is attacking a. Hence, for every v′ ∈ V2 with v′ ≤t v, there is no argument
b ∈ v′t attacking a, therefore a is acceptable under v′.

• If an argument a is acceptable under interpretations v1, v2 ∈ V2, then neither an
argument in vt

1 nor an argument in vt
2 is attacking a. The interpretation v′ = v1ttv2

has exactly v′t = vt
1 ∪ vt

2, i.e. no attacker of a is t in v′, hence a is also acceptable
under v′.

The propagator directly implements these closure properties, given a partial σ-characteri-
zation F and a set of interpretations V :

pAF(V,F) ={(vf , a, t) | a ∈ A} ∪ (3.1)
{(w, a, t) | (v, a, t) ∈ F, w ∈ V2, w <t v} ∪ (3.2)
{(w, a, f) | (v, a, f) ∈ F, w ∈ V2, v <t w} ∪ (3.3)
{(v1 tt v2, a, t) | (v1, a, t) ∈ F, (v2, a, t) ∈ F} (3.4)

Application of pAF ensures that when a σ-characterization F that is neither incoherent
nor partial is found in line 8 of Algorithm 1, the set of interpretations {v | (v, a, t) ∈ F}
for each argument a ∈ A is an ideal wrt. (V2,≤t). 3.2 and 3.3 ensure downward-closure
wrt. ≤t, 3.1 can be derived due to downward-closure and non-emptiness, and 3.4 takes
care of upward-closure wrt. sqcupt.

In particular, {v | (v, a, t) ∈ F} for each argument a ∈ A has a least upper bound va such
that v ≤t va iff (v, a, t) ∈ F. For the canonical realization, va is crucial for the acceptance
condition, i.e. the attacks in AF terms, of a.
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Definition 75. Given a semantics σ ∈ {com, adm,mod} and a σ-characterization F we
define the canonical realization

kbAF
σ (F) = (A, {(b, a) | a, b ∈ A, va(b) = f})

with va such that v ≤t va iff (v, a, t) ∈ F for each v ∈ V2.

SETAFs. The propagator for SETAFs, pSETAF, is a weaker version of that of AFs,
since we cannot presume upward-closure with respect to tt of the model sets of the
acceptance conditions of SETAF-based ADFs. In this case every acceptance condition
is in conjunctive normal form containing only negative literals (cf. Definition 33). By
a transformation preserving logical equivalence one can always obtain an acceptance
condition in disjunctive normal form, again with only negative literals; in other words,
a disjunction of AF acceptance formulas. Thus, the model set of a SETAF acceptance
condition is not necessarily an ideal, but a union of ideals. That means that it is
downward-closed with respect to ≤t: if an argument a is acceptable under interpretation
v, then there is no B ⊆ vt such that B attacks a. This also holds for any v′ ≤t v, hence
a is acceptable under v′.

The propagator implements this closure, coinciding with pAF except for the last part
concerned with upward-closure.

pSETAF(V,F) ={(vf , a, t) | a ∈ A}∪
{(w, a, t) | (v, a, t) ∈ F, w ∈ V2, w <t v}∪
{(w, a, f) | (v, a, f) ∈ F, w ∈ V2, v <t w}

Application of pSETAF ensures that when a σ-characterization F is found in line 8 of
Algorithm 1, the set of interpretations {v | (v, a, t) ∈ F} for each argument a ∈ A is
downward-closed with respect to ≤t. That means that the maximal elements of this
set can be used to construct an appropriate acceptance condition for a in DNF with all
negative literals. Transformation to CNF then gives rise to the actual attacking sets.

Definition 76. Given a semantics σ ∈ {com, adm,mod} and a σ-characterization F we
define the canonical realization

kbSETAF
σ (F) = (A, {({b1, . . . , bn}, a) | a ∈ A, {¬b1, . . . ,¬bn} ∈ χF})

with χF = cnf
(∨

v∈max≤t{w|(w,a,t)∈F}
∧
v(b)=f ¬b

)
.

Correctness

In the following we argue that Algorithm 1 is correct, i.e. that, given a set of in-
terpretations V , a formalism F ∈ {AF, SETAF,BADF,ADF} and a semantics σ3 ∈
{com3, adm3,mod3}, it returns a knowledge base kb ∈ F realizing V in F under σ3 if
this is possible and “no” otherwise. We begin by showing that the algorithm always
terminates and then argue that it is both sound and complete.
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Termination. With each recursive call, the set F can never decrease in size, as the
only changes to F are adding the results of propagation in line 3 and adding the guesses
in line 11. Also within the until-loop, the set F can never decrease in size; furthermore
there is only an overall finite number of tuples that can be added to F. Thus at some
point we must have F∆ = ∅ and leave the until-loop. Since F always increases in size, at
some point it must either become functional (and return a realizing knowledge base in
line 9) or incoherent (and return “no” in line 5). Therefore the algorithm terminates.

Soundness. If the algorithm returns kbFσ (F) as a realizing knowledge base, then ac-
cording to the condition in line 8 the relation F induces a total function fF : V2 7→ V2. In
particular, because the until-loop must have been run through at least once, there was
at least one propagation step (line 2). Since the propagators are defined such that they
enforce everything that must hold in a σ-characterization, we conclude that the induced
function fF indeed is a σ-characterization for V .

Lemma 15. Let σ ∈ {com, adm,mod}, F ∈ {ADF,BADF,SETAF,AF}, V ⊆ V, F ⊆
V2×A×{t, f} such that F is neither incoherent nor partial, and fF is a σ-characterization
of V and pF (V,F) \ F = ∅. It holds that σ3(kbFσ (F)) = V .

Proof. Let F = ADF. Since F is a σ-characterization and kbADF
σ (F) = DfF (cf. Defi-

nition 73) it follows from Propositions 26, 29, and 30 σ3(kbFσ (F)) = σ3(DfF) = V for
σ3 = com3, σ3 = adm3, and σ3 = mod3, respectively.

For the remaining formalisms F ∈ {BADF,SETAF,AF} it remains to show that the
respective functions kbFσ are well-defined and that σ3(kbFσ (F)) = σ3(DfF).

Let F = BADF. Since kbBADF
σ (F) is just DfF together with additional information (cf.

Definition 74), it is clear that σ3(kbFσ (F)) = σ3(DfF). To show that kbFσ (F) is well-defined
we have to show that DfF is indeed bipolar and L−F and L+

F are the non-supporting and
non-attacking links of DfF , respectively. Assume, towards a contradiction, that DfF is
not bipolar. That means there are arguments a, b ∈ A such that b is neither supporting
a nor attacking a. Let ϕfFa be the acceptance condition of a in DfF . We get that there is
some v ∈ V such that v(ϕfFa ) = t and v|bt(ϕfFa ) = f for b not supporting a and there is
some w ∈ V such that w(ϕfFa ) = f and w|bt(ϕfFa ) = t for b not attacking a. By definition
of DfF this means that (v, a, t), (v|bt, a, f) ∈ F and also (w, a, f), (w|bt, a, t) ∈ F. From the
former we get that (w|bt, a, f) ∈ pBADF(V,F), a contradiction to pBADF(V,F) \ F = ∅ and
F not being incoherent. To show that L−F contains all attacking links of DfF assume
(b, a) is attacking. This means that there is no v ∈ V2 such that (v, a, t) ∈ F, v(b) = f ,
and (v|bt, a, t) ∈ F, hence (b, a) /∈ L+

F . Assuming (b, a) is supporting we similarly get that
(b, a) /∈ L−F .

Let F = AF. To show that kbAF
σ is well-defined we need to show that for each a ∈ A there

is a unique interpretation va with v ≤t va iff (v, a, t) ∈ F for each v ∈ V2. In other words,
the set of interpretations Ft

a = {v | (v, a, t) ∈ F} is an ideal wrt. (V2,≤t). First, Ft
a is

non-empty since, by pAF(V,F) \F = ∅, we must have (vf , a, t) ∈ F. Now assume Ft
a is not
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downward-closed wrt. ≤t. That means there are interpretations v, v′ ∈ V2 with v′ <t v
such that (v, a, t) ∈ F and (v, a, t) /∈ F. But this is a contradiction to pAF(V,F) \ F = ∅
since we get (v, a, t) ∈ pAF(V,F). Finally assume Ft

a is not upward-closed wrt. tt, i.e.
there are v1, v2 ∈ V2 with (v1, a, t), (v2, a, t) ∈ F but (v1 tt v2, a, t) /∈ F. Again we
arrive at a contradiction to pAF(V,F) \ F = ∅ since we get (v1 tt v2, a, t) ∈ pAF(V,F).
Hence Ft

a is an ideal and therefore we have a unique va with v ≤t va iff (v, a, t) ∈ F for
each v ∈ V2. Considering kbAF

σ (F) we observe that the ADF associated to it, DkbAF
σ (F)

(cf. Definition 32), the acceptance condition of argument a is ϕa =
∧
va(b)=f ¬b. The

satisfying interpretations of this formula are just these v ∈ V2 with v ≤t va, coinciding
with those of the acceptance condition of DfF (cf. Definition 68). Therefore, recalling
from Proposition 3 that σ3(kbAF

σ (F)) = σ3(DkbAF
σ (F)), we get σ3(kbAF

σ (F)) = σ3(DfF).

Let F = SETAF. The canonical realization kbSETAF
σ is a SETAF by definition. It remains

to show that σ3(kbSETAF
σ (F)) = σ3(DfF). To this end consider an arbitrary argument

a ∈ A and let Ft
a = {v | (v, a, t) ∈ F}. First observe that Ft

a is downward-closed wrt. ≤t:
for any (v, a, t) ∈ F we get (w, a, t) ∈ pSETAF for each w <t v; therefore, by the assumption
that pSETAF(V,F) \ F = ∅, also (w, a, t) ∈ F for each w <t v. Therefore we get, letting
ϕfFa be a’s acceptance condition in DfF and ϕa be a’s acceptance condition in DkbSETAF

σ (F),
that ϕfFa ≡

∨
v∈max≤t Ft

a

∧
v(b)=f ¬b ≡ cnf

(∨
v∈max≤t Ft

a

∧
v(b)=f ¬b

)
= ϕa. Recalling from

Proposition 5 that σ3(kbAF
σ (F)) = σ3(DkbAF

σ (F)) it follows that σ3(kbAF
σ ) = σ3(DfF).

Hence we can conclude by Lemma 15 that σ3(kbFσ (F)) = V .

Completeness. If the algorithm answers “no”, then the execution reached line 5. Thus,
for the constructed relation F, there must have been an interpretation v ∈ V2 and an
argument a ∈ A such that {(v, a, t), (v, a, f)} ⊆ F, that is, F is incoherent. Note that the
guessing step cannot directly create incoherence, since exactly one truth value is guessed
for v and a. Therefore, since F is initially empty, the only way it could get incoherent is in
the propagation step in line 2. However, the propagators are defined such that they infer
only tuples that are necessary for the given F. Consequently, the given interpretation-set
V is such that either there is no realization within the ADF fragment corresponding to
formalism F (that is, the formalism propagator pF derived the incoherence) or there is
no σ-characterization of V with respect to general ADFs (that is, a semantics propagator
in PADF

σ derived the incoherence). In any case, V is not σ3-realizable for F .

3.6.2 Implementation

As Algorithm 1 is based on propagation, guessing, and checking it is perfectly suited
for an implementation using answer set programming [159, 151]. By that we can make
use of conflict learning strategies and heuristics of modern ASP solvers [127]. Thus,
we developed ASP encodings in the gringo language [128] for our approach. Similar
as the algorithm, our declarative encodings are modular, consisting of a main part
responsible for constructing the σ-characterization candidate F and separate encodings
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for the individual propagators. If one wants, e.g., to compute an AF realization under
complete semantics for a set V of interpretations, an input program encoding V is joined
with the main encoding, the propagator encoding for complete semantics as well as the
propagator encoding for AFs. Every answer set of such a program encodes a respective
characterization function. Our ASP encoding for preferred semantics is based on the
admissible encoding and guesses further interpretations following the essential idea of
Algorithm 2.

For constructing a knowledge base under the desired semantics in the desired formalism,
we also provide two further ASP encodings: one that transforms the output to an ADF in
the syntax of the DIAMOND tool [116, 117] (following the construction in Definition 73),
and one that transforms the output to an AF in ASPARTIX syntax [113, 122] (following the
construction in Definition 75). Both argumentation tools are based on ASP themselves.

The encodings for all the semantics and formalisms we covered in this work are available
as the software system UNREAL. The system as well as the single encodings can be
downloaded from http://www.dbai.tuwien.ac.at/research/project/adf/
unreal/.

3.6.3 Expressiveness Results

In this section we present some results that we have obtained using our implementation.
We will first show that, for a fixed semantics, there is a strict subset relation for the
signatures of the semantics in AFs and SETAFs, SETAFs and bipolar ADFs, and
bipolar ADFs and ADFs, respectively. Then we will see that, for different semantics, all
signatures are incomparable, also complementing the relations of signatures in ADFs
from Theorem 25.

We start by considering the signatures of AFs, SETAFs, BADFs and ADFs for the unary
vocabulary.

Example 42. Let, for semantics σ3 and formalism F and a set of arguments A, Σσ3
F{a}

be the signature of σ3 in F restricted to interpretations over A. Now consider A = {a}.
In this case, every SETAF (({a}, ∅) and ({a}, {({a}, a)})) is also an AF, and every ADF
is also bipolar since the link (a, a) is13 either supporting (ϕa = a) or attacking (ϕa = ¬a).

13Disregarding tautological (sub)formulas, which can also make the link both supporting and attacking.
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Σadm3
AF{a} = Σadm3

SETAF{a} = {{u}, {u, t}}

Σcom3
AF{a} = Σcom3

SETAF{a} = {{u}, {t}}

Σprf3
AF{a} = Σprf3

SETAF{a} = {{u}, {t}}

Σmod3
AF{a} = Σmod3

SETAF{a} = {∅, {t}}

Σadm3
ADF{a} = Σadm3

BADF{a} = Σadm3
AF{a} ∪ {{u, f}, {u, t, f}}

Σcom3
ADF{a} = Σcom3

BADF{a} = Σcom3
AF{a} ∪ {{f}, {u, t, f}}

Σprf3
ADF{a} = Σprf3

BADF{a} = Σprf3
AF{a} ∪ {{f}, {t, f}}

Σmod3
ADF{a} = Σmod3

BADF{a} = Σmod3
AF{a} ∪ {{f}, {t, f}}

The following result shows that the expressiveness of the formalisms under consideration
is in line with the amount of restrictions they impose on acceptance conditions.

Theorem 27. For any σ3 ∈ {adm3, com3, prf3,mod3}:

1. Σσ3
AF ⊂ Σσ3

SETAF;

2. Σσ3
SETAF ⊂ Σσ3

BADF;

3. Σσ3
BADF ⊂ Σσ3

ADF .

Proof. (1) Σσ3
AF ⊆ Σσ3

SETAF is clear since every AF can be faithfully translated to a
SETAF (by modeling individual attacks as attacks by singletons). For Σσ3

SETAF 6⊆ Σσ3
AF

the witnessing interpretation-sets over vocabulary A = {a, b, c} are

• {uuu, ttf , tft, ftt} ∈ Σσ3
SETAF \ Σσ3

AF for σ3 ∈ {adm3, com3}, and

• {ttf , tft, ftt} ∈ Στ3
SETAF \ Στ3

AF for τ3 ∈ {prf3,mod3}.

By each pair of arguments of A being t in at least one model, a realizing AF cannot
feature any attack, immediately giving rise to the model ttt under all semantics under
consideration. The respective realizing SETAF, on the other hand, is given by the attack
relation X = {({a, b}, c), ({a, c}, b), ({b, c}, a)}.

(2) It is clear that Σσ3
SETAF ⊆ Σσ3

BADF holds, since SETAFs are bipolar as all parents
are always attacking (see also Proposition 5). For Σσ3

BADF 6⊆ Σσ3
SETAF the respective

counterexamples can be read off the signatures restricted to the unary vocabulary
from Example 42: for σ3 ∈ {adm3, com3} we find {u, t, f} ∈ Σσ3

BADF \ Σσ3
SETAF and for

τ3 ∈ {prf3,mod3} we find {t, f} ∈ Στ3
BADF \ Στ3

SETAF. The realizing bipolar ADF has
acceptance condition ϕa = a.
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3.6. Unifying Approach

(3) For σ3 = mod3 the result was shown by Strass [188, Theorem 14]; for the remaining
semantics the interpretation-sets over vocabulary A = {a, b} witnessing Σσ3

ADF 6⊆ Σσ3
BADF

are

{uu, tu, tt, tf , fu} ∈ Σadm3
ADF \ Σadm3

BADF
{uu, tu, tt, tf , fu} ∈ Σcom3

ADF \ Σcom3
BADF

{tt, tf , fu} ∈ Σprf3
ADF \ Σprf3

BADF

A witnessing ADF for all three semantics is given by ϕa = a and ϕb = (a∧¬b)∨ (¬a∧ b)
(note that both links (a, b) and (b, b) are neither attacking nor supporting).

Theorem 27 is concerned with the relative expressiveness of the formalisms under consid-
eration, given a certain semantics. Considering different semantics we find that for all
formalisms the signatures become incomparable:

Proposition 31. It holds that Σσ3
F1
6⊆ Στ3

F2
and Στ3

F2
6⊆ Σσ3

F1
for all formalisms F1,F2 ∈

{AF,SETAF,BADF,ADF} and all semantics σ3, τ3 ∈ {adm3, com3, prf3,mod3} with
σ3 6= τ3.

Proof. First, the result for σ3 = adm3 and τ3 = com3 follows from {u, t} ∈ Σadm3
AF (realized

by the AF ({a}, ∅)), but {u, t} /∈ Σcom3
ADF and the ⊂-relations from Theorem 27. Similarly,

for σ3 = com3 and τ3 = adm3 we get the result by {t} ∈ Σcom3
AF , but {t} /∈ Σadm3

ADF .

Taking into account that the set of preferred interpretations (resp. two-valued models)
is always incompatible for ADFs (and therefore also for the other formalisms) while
the set of admissible (resp. complete) interpretations is never incompatible (given its
size is at least 2), the result follows for σ3 ∈ {adm3, com3} and τ3 ∈ {prf3,mod3} (e.g.
{uu, tf , ft} ∈ Σσ3

AF \ Στ3
ADF) as well as for σ3 ∈ {prf3,mod3} and τ3 ∈ {adm3, com3} (e.g.

{tf , ft} ∈ Σσ3
AF \ Στ3

ADF).

Finally, since a kb ∈ F for any F ∈ {AF,SETAF,BADF,ADF} may not have any
two-valued models and a preferred interpretation is not necessarily two-valued (e.g.
prf3(({a}, {(a, a)})) = {u}), the result for prf3 and mod3 follows.

Disregarding the possibility of realizing the empty set of interpretations under the
two-valued model semantics, we obtain the following relation for ADFs.

Proposition 32. (Σmod3
ADF \ {∅}) ⊆ Σprf3

ADF.

Proof. Consider some V ∈ Σmod3
ADF with V 6= ∅. Clearly V ⊆ V2 and by Proposition 30 there

is amod-characterization f : V2 7→ V2 of V , that is, f(v) = v iff v ∈ V . Define f ′ : V2 7→ V2
such that f ′(v) = f(v) = v for all v ∈ V and f ′(v)(a) = ¬v(a) for all v ∈ V2 \ V and a ∈ A.
It holds that f ′ is an adm-characterization of V ′ = {v ∈ V | ∀v2 ∈ [v]2 : v2 ∈ V } ∪ {vu}:
If, for some v ∈ V, ∀v2 ∈ [v]2 : v2 ∈ V then also ∀v2 ∈ [v]2∀a ∈ A : f ′(v2)(a) = v(a), i.e.
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3. Expressiveness

the condition from Definition 70 is fulfilled. On the other hand, if ∃v2 ∈ [v]2 : v2 /∈ V ,
then, for this v2 ∈ [v]2, it holds that f ′(v2)(a) = ¬v2(a) for all a ∈ A. Since v 6= vu,
there is some a ∈ A such that f ′(v2)(a) 6= v(a), i.e. the condition is violated. Since
max≤i V ′ = V we get that the ADF D with acceptance formula ϕf ′a for each a ∈ A has
prf3(D) = V . Therefore V ∈ Σprf3

ADF.

In contrast, this relation does not hold for AFs. This follows directly from the result for
the extension-based case in Theorem 12.5. For SETAFs and BADFs we have to leave
the question open.
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CHAPTER 4
Revision

In this chapter we study one of the central topics in the dynamics of argumentation,
namely revision. That is concerned with changing a given knowledge base, in the form of
an argumentation formalism, in the light of new information. We follow the prominent
approach of AGM revision [4, 141] and aim for adherence of the postulates proposed there,
reformulated for our setting. In the setting we study, the new information is provided in
the same formalism as the original knowledge base, following other approaches to revision
in fragments [84, 85]. In contrast to previous work on the revision of AFs by Coste-
Marquis et al. [76, 77], we require the revision to result in a single knowledge base (that
is, a single AF or a single ADF, respectively). For that, results on expressiveness of the
respective formalisms presented in Chapter 3 will turn out to be essential.

The remainder of this chapter is organized as follows. We begin by introducing the main
aspects of AGM revision in Section 4.1. Then, in Section 4.2, we study revision of AFs,
beginning with a discussion of why this turns out to be more involved than revision of
propositional formulas, and then presenting a representation result for revision operators
under the general class of proper I-maximal semantics. Section 4.3 deals with the revision
of ADFs and introduces a hybrid approach, combining admissible and preferred semantics.
Then, in Section 4.4, we will study the complexity of Dalal’s operator [80] for revision of
AFs, showing completeness results up to ΘP

3 . Finally, we discuss some related issues in
Section 4.5.

The results in Sections 4.2 and 4.4 are published in [89], of which an extended version is
currently under review (a technical report [91] is available). Section 4.3 is based on [148].

4.1 Preliminaries
The most prominent approach to belief change was introduced by Alchourrón et al. [4] and
is commonly known as AGM revision. It deals with revising knowledge bases in the light of
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4. Revision

new, possibly contradicting, information. The approach was reformulated for knowledge
bases in the form of propositional formulas by Katsuno and Mendelzon [141]. Katsuno
and Mendelzon define an equivalent version of the AGM rationality postulates [4, 125]
for operators ◦ : PA × PA 7→ PA mapping pairs of formulas to revised formulas.1 The
application of ψ ◦ µ to two formulas ψ and µ has the intended meaning that the original
knowledge base, in the form of the propositional formula ψ, is revised by µ, the revising
formula, returning the revised knowledge base again as a propositional formula. The
postulates (KM1)–(KM6) specify properties which a revision operator should satisfy in
order to be considered rational.

(KM1) ψ ◦ µ |= µ.

(KM2) If ψ ∧ µ is satisfiable, then ψ ◦ µ = ψ ∧ µ.

(KM3) If µ is satisfiable, then ψ ◦ µ is also satisfiable.

(KM4) If ψ1 ≡ ψ2 and µ1 ≡ µ2, then ψ1 ◦ µ1 ≡ ψ2 ◦ µ2.

(KM5) (ψ ◦ µ) ∧ φ |= ψ ◦ (µ ∧ φ).

(KM6) If (ψ ◦ µ) ∧ φ is satisfiable, then ψ ◦ (µ ∧ φ) |= (ψ ◦ µ) ∧ φ.

(KM1) says that the revising formula must be retained in the revised knowledge base. If
original and revising formula are consistent, then, by (KM2), the result of the revision is
obtained in the obvious way. (KM3) ensures that the result of the revision is satisfiable,
unless the revising formula was inconsistent. (KM4) represents Dalal’s principle of
irrelevance of syntax [80]. Finally, (KM5) and (KM6) ensure that revision is performed
with minimal change.

The main result of [141] is that there is a one-to-one correspondence between

• operators which are rational according to the AGM postulates, and

• operators obtained from mappings of formulas to certain rankings over interpreta-
tions.

Intuitively, a ranking over interpretations for a formula describes a preference relation
among the interpretations. The corresponding operator shall then return a formula which
has, as its own models, these models of the revision formula, which are most preferred
according to the ranking. Given a ranking in the form of a preorder �, the construction
of the corresponding operator is then based on the following selection function, given an
arbitrary set of interpretations I:

min(I,�) = {I1 ∈ I | @I2 ∈ I : I2 ≺ I1}.
1Recall that PA denotes the collection of all propositional formulas over A.
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The correspondence from rational operators is of course not to operators obtained from
any kind of ranking over interpretations, but to what is called faithful rankings.

Definition 77. Given a propositional formula ψ, a faithful ranking for ψ is a total
preorder �ψ on 2A such that, for any I1, I2 ∈ 2A, it holds that

(i) if I1, I2 ∈ Mod(ψ) then I1 ≈ψ I2, and

(ii) if I1 ∈ Mod(ψ) and I2 /∈ Mod(ψ) then I1 ≺ψ I2.

A faithful assignment maps every formula ψ to a faithful ranking �ψ for ψ such that

(iii) �ψ1=�ψ2 for any formulas ψ1, ψ2 with ψ1 ≡ ψ2.

It turns out that faithful assignments not only give rise to operators which are rational
according to postulates (KM1)–(KM6), but also exactly characterize such operators, i.e.
each operator has a corresponding faithful assignment. This is captured in the following
theorem, which can be regarded as the main insight of AGM revision of propositional
knowledge bases.

Theorem 28 ([141]). A revision operator ◦ : PA × PA 7→ PA satisfies postulates (KM1)–
(KM6) if and only if there exists a faithful assignment mapping each formula ψ to a
faithful ranking �ψ for ψ such that

Mod(ψ ◦ φ) = min(Mod(φ),�ψ)

holds for every formula φ.

An important aspect of Theorem 28 is the fact that, in propositional logic, any set of
interpretations has a syntactic counterpart, i.e. is realizable in our terms. Therefore
any desired outcome of the revision in terms of models, given by min(Mod(φ),�ψ), can
indeed be achieved by ψ ◦ φ. In the upcoming sections, we will have to deal with limited
expressiveness of the formalisms, which will also affect the kinds of representation results
we will be able to obtain.

Abstracting away from propositional formulas to revision of knowledge bases in arbitrary
formalisms, we will use the notion of an operator being induced by a ranking in the
following way.

Definition 78. Let F be a formalism and σ a semantics of that formalism. Given a
preorder � on the possible interpretations of F the operator induced by � is given by

kb ◦ kb′ = ρFσ (min(σ(kb′),�)),

for arbitrary kb, kb′ ∈ F .
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At this point recall the realizing function ρFσ for a formalism F and a semantics σ of
that formalism given in Definition 37, which returns, given some I ∈ Σσ

F , a realizing
knowledge base kb ∈ F with σ(kb) = I.

One of the most prominent concrete revision operators was introduced by Dalal [80].
Dalal’s operator satisfies all rationality postulates and is therefore characterizable by
faithful assignments. The ranking giving rise to the operator is based on the Hamming
distance [134] between interpretations.

Definition 79. Given two-valued interpretations I1 and I2, their Hamming distance 4H

is defined as
I14HI2 = |(I1 \ I2) ∪ (I2 \ I1)|.

Dalal’s operator then gives preference to interpretations with minimal distance to some
model of the revising formula. The following is a generalization of the operator to
arbitrary formalism under two-valued semantics.

Definition 80. Let F be a formalism and σ a semantics of F based on two-valued
interpretations. Given an arbitrary knowledge base kb, the ranking �σkb is defined as

I1 �σkb I2 if and only if min
I∈σ(kb)

(I4HI1) ≤ min
I∈σ(kb)

(I4HI2).

Dalal’s operator ◦Dσ (induced by �Dkb) returns kb ◦Dσ kb′ = ρFσ (min(σ(kb′),�σkb)) for each
kb′ ∈ F .

4.2 Revision of AFs
In this section we consider revision of an AF by another AF. This approach is not
only in line with other work on revision in fragments such as Horn theories [84] or
logic programs [85], but follows the idea that knowledge (e.g. of agents) is exclusively
represented within AFs.

The revision we deal with in this section is performed by operators of the type ∗σ :
AFA ×AFA 7→ AFA, where σ is a semantics. Such operators map an AF F (the original
AF) and another AF G (the revising AF) to the revised AF F ∗σ G. The intuitive idea is
that the new information provided by G (given by the σ-extensions of G) is incorporated
by bringing only minimal change to F . Therefore, the underlying concept of a model is
now given by the argumentation semantics σ.

The rationality postulates (A1σ)–(A6σ) for revision of AFs, which can again be seen as
requirements for an operator ∗ to be considered rational, are obtained from a reformulation
of the postulates for knowledge base revision [141]. They are parametrized by the
underlying semantics σ and formulated as follows.

(A1σ) σ(F ∗G) ⊆ σ(G).
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4.2. Revision of AFs

(A2σ) If σ(F ) ∩ σ(G) 6= ∅, then σ(F ∗G) = σ(F ) ∩ σ(G).

(A3σ) If σ(G) 6= ∅, then σ(F ∗G) 6= ∅.

(A4σ) If σ(F1) = σ(F2) and σ(G) = σ(H), then σ(F1 ∗G) = σ(F2 ∗H).

(A5σ) σ(F ∗G) ∩ σ(H) ⊆ σ(F ∗ ρAF
σ (σ(G) ∩ σ(H))).

(A6σ) If σ(F ∗σ G) ∩ σ(H) 6= ∅, then σ(F ∗ ρAF
σ (σ(G) ∩ σ(H))) ⊆ σ(F ∗G) ∩ σ(H).

For postulates (A5σ) and (A6σ) recall from Definition 38 that the realizing function
ρAF
σ (S), given an extension-set S, returns an AF having extensions S under σ if S is
σ-realizable, and the empty AF otherwise.

The postulates make clear that the result of the revision depends solely on the semantic
evaluation (i.e. the extensions) of the revising AF and not on its syntactic form, following
the principle of irrelevance of syntax.

Our aim is to characterize rational operators by certain orderings of the possible extensions
and get representation results similar to the case of propositional logic. We can overload
the notions of faithful rankings and faithful assignments for the AF setting:

Definition 81. Given a semantics σ and an AF F , a faithful ranking for F is a total
preorder �F on 2A such that, for any E1, E2 ∈ 2A, it holds that

(i) if E1, E2 ∈ σ(F ) then E1 ≈F E2, and

(ii) if E1 ∈ σ(F ) and E2 /∈ σ(F ) then E1 ≺F E2.

A faithful assignment maps every AF F to an faithful ranking �F for F such that

(iii) �F1=�F2 for any AFs F1, F2 with σ(F1) = σ(F2).

It is important to note that also for assigning faithful rankings to AFs, the syntax of
AFs must not be taken into account.

We are striving for functions ∗ defined in terms of faithful rankings by

F ∗G = ρAF
σ (min(σ(G)),�F ))

for AFs F and G, such than we can obtain a correspondence similar to Theorem 28 to
functions satisfying the postulates. Recall at this point the realizing function ρAF

σ from
Definition 38 which returns, given an extension-set S, an AF realizing S under σ whenever
S ∈ Σσ

AF. By our thorough investigations in Section 3.2 it is, however, clear that the
definition of ∗ above is suggestive. This is because min(σ(F )),�F ) is not necessarily
realizable under σ and therefore ρAF

σ might not behave as expected.
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It already becomes apparent that the restricted expressiveness of argumentation semantics
compared to propositional logic, where every set of models has a corresponding formula,
causes some problems in representing rational revision operators. We will now identify
some specific problems and outline our respective solutions.

Non-existence of rational operators. Inspecting the rationality postulates one can
see that (A2σ) puts a severe requirement on the expressiveness of the semantics under
which revision is to be done. In order for a revision operator ∗ to fulfill (A2σ), the
signature of the semantics σ has to be closed under intersection. That means that, for
arbitrary AFs F and G, it must hold that σ(F ) ∩ σ(G) ∈ Σσ

AF in order to be able to
achieve σ(F ∗G) = σ(F ) ∩ σ(G).

We have already studied this property in Section 3.2. While the majority of semantics
studied in this work enjoy a signature which is closed under intersection (cf. Theorem 6),
we showed in Example 16 that it is not the case for complete semantics. We are able to
state the following impossibility result.

Theorem 29. There exists no operator ∗ : AFA ×AFA 7→ AFA that satisfies (A2com).

Proof. We have seen in Example 16 that there are AFs F and G such that com(F ) ∩
com(G) 6= ∅ and com(F ) ∩ com(G) /∈ Σcom

AF . Now for ∗ to satisfy (A2com), it must hold
that F ∗G ∈ AFA with com(F ∗G) = com(F ) ∩ com(G), which is not possible. Hence
the result follows.

We will discuss this form of impossibility and show it in a more general manner in
Section 4.5.

Limited expressiveness. If the signature of the semantics under which we want to
revise is closed under intersection, we know that it is, in principal, possible to obtain
rational operators. The definition of the operator ∗ as F ∗ G = ρAF

σ (min(σ(G)),�F )),
however, already suggests that, without further restriction of the possible orderings �F ,
it might be necessary to realize any subset of σ(G). The following example elaborates on
this issue.

Example 43. Consider revision by operator ∗nai of the AF F depicted on the left
of Figure 4.1 under the naive semantics. Assume the ranking �F for F given in Fig-
ure 4.2, where sets of arguments in the same level are ranked equally, i.e., for instance,
{a, b, c} ≈F {a′, b, c} ≈F {a, b′, c} ≈F {a, b, c′}, and an arrow denotes a strict rela-
tion, e.g. {a′, b′, c′} ≺F {a′, b′, c}. Note that �F is a faithful ranking for F , since
nai(F ) = {{a, b, c}, {a′, b, c}, {a, b′, c}, {a, b, c′}} are equally ranked and all other sets of
arguments are ranked strictly lower. Let the AF G depicted in the center of Figure 4.1 be
the revising AF and observe that nai(G) = {{a′, b′, c′}, {a′, b′, c}, {a′, b, c′}, {a, b′, c′}}. We
get F ∗nai G = ρAF

nai(min (nai(G),�F )) = ρAF
nai({{a′, b′, c}, {a′, b, c′}, {a, b′, c′}}). The prob-

lem that we are facing is that the set {{a′, b′, c}, {a′, b, c′}, {a, b′, c′}} is not realizable under
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a b c

a′ b′ c′

a b c

a′ b′ c′

a b c

a′ b′ c′

Figure 4.1: AFs F , G, and H, from left to right, having nai(F ) = {{a, b, c}, {a′, b, c},
{a, b′, c}, {a, b, c′}}, nai(G) = {{a′, b′, c′}, {a′, b′, c}, {a′, b, c′}, {a, b′, c′}}, and nai(H) =
{{a, b′, c′}, {a′, b, c′}, {a′, b′, c′}}.

rest

{a′, b′, c′}

{a, b′, c′}, {a′, b, c′}, {a′, b′, c}

{a, b, c}, {a′, b, c}, {a, b′, c}, {a, b, c′}

Figure 4.2: Faithful ranking for AF F in Figure 4.1, used in Example 43.

nai, as discussed in Example 15. We get ρAF
nai({{a′, b′, c}, {a′, b, c′}, {a, b′, c′}}) = (∅, ∅)

and hence nai(F ∗nai G) = {∅}, violating the postulate (A1nai).

Of course, the definition of ρAF
nai to deliver the empty AF for non-realizable extension-sets

is a somehow arbitrary choice. One could also try to define the realizing function in
way that the AF realizes a set of extensions which is similar to the desired set. So let
ρ′AF

nai : 22A 7→ AFA be an alternative realizing function which behaves as ρAF
nai if the given

set is realizable and, given some S /∈ Σnai
AF, it is defined such that nai(ρ′AF

nai (S)) = S′,
with S′ being a ⊆-maximal set S′ ⊂ S. As S′ is not unique, we assume ρ′AF

nai to make an
arbitrary choice among the candidates.

Now consider again the revision of F by G, this time with the alternative realizing
function ρ′AF

nai . We may get F ∗nai G = ρ′AF
nai ({{a′, b′, c}, {a′, b, c′}, {a, b′, c′}}) with

nai(F ∗nai G) = {{a′, b, c′}, {a′, b′, c}}.2

Let H be the AF depicted on the right of Figure 4.1 and observe that nai(H) =

2Other possible choices given the definition of ρ′AF
nai are nai(F ∗nai G) = {{a, b′, c′}, {a′, b′, c}} and

nai(F ∗nai G) = {{a′, b′, c}, {a′, b, c′}}. In any case, we end up violating (A6nai) for specific AFs H.
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{{a, b′, c′}, {a′, b, c′}, {a′, b′, c′}}. We obtain the following:

nai(F ∗nai G) ∩ nai(H) = {{a′, b, c′}}
nai(F ∗nai ρ

′AF
nai (nai(G) ∩ nai(H))) = {{a, b′, c′}, {a′, b, c′}}

This means that (A6nai) is violated.

Similarly, we run into problems when we try to define the realizing function such that it
realizes some superset of the desired non-realizable set. Intuitively, in both cases it leads
to more change than prescribed by the ranking and is therefore conflicting with (A5σ)
and (A6σ), the postulates ensuring minimal change. ♦

In order to obtain a representation result between rationality postulates and rankings, one
has to put further restrictions on the rankings. For revision within the Horn fragment [84],
where a similar problem arises, Delgrande and Peppas introduce the notion of compliant
rankings which restrict faithful rankings appropriately. We will introduce a refined version
of compliance for revision of ADFs in Section 4.3.

In this section we focus on a particular class of semantics, which we call proper I-maximal.
The name is inspired by the notion of an I-maximal semantics [11], which is a semantics
always yielding an incomparable set of extensions.

Definition 82. A semantics σ is called proper I-maximal if for each S ∈ Σσ
AF it holds

that

1. S is incomparable,

2. S′ ∈ Σσ
AF for any S′ ⊆ S with S′ 6= ∅, and

3. for any incomparable S1, S2 ∈ 2A it holds that {S1, S2} ∈ Σσ
AF.

In words, an I-maximal [11] semantics σ (i.e. a semantics where members of Σσ
AF are

always incomparable) is proper if, on the one hand, it holds that for any AF F we can
realize under σ any non-empty subset of σ(F ), and, on the other hand, any pair of
incomparable sets of arguments, is realizable under σ. While this might seem like a
rather strong requirement in the first place, it turns out that most of the major semantics
are indeed proper I-maximal. This is shown by the next result, which follows from the
characterizations of signatures in Section 3.2.

Proposition 33. Preferred, stable, semi-stable and stage semantics are proper I-maximal.

Proof. Let σ ∈ {prf, stb, sem, stg}. We can establish the fact that properties (1) to (3)
from Definition 82 hold for each S ∈ Σσ

AF by results from Section 3.2: (1) follows from
Theorem 1, (2) was shown in Theorem 5, and (3) is by Proposition 11.
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On the ranking side we can now define a less demanding version of faithful assignments,
which is adjusted to the nature of (proper) I-maximal semantics.

Definition 83. A preorder � on 2A is I-total if E1 � E2 or E2 � E1 for any pair E1, E2
of incomparable sets of arguments.

Given a semantics σ and an AF F , an I-faithful ranking for F is an I-total preorder �F
on 2A such that, for any E1, E2 ∈ 2A, it holds that

(i) if E1, E2 ∈ σ(F ) then E1 ≈F E2, and

(ii) if E1 ∈ σ(F ) and E2 /∈ σ(F ) then E1 ≺F E2.

An I-faithful assignment maps every AF F to an I-faithful ranking �F for F such that

(iii) �F1=�F2 for any ADFs F1, F2 with σ3(F1) = σ3(F2).

I-faithful assignments differ from faithful assignments in that they require the rankings
to be only I-total, thus allowing, but not requiring, them to be partial with respect to
⊆-comparable pairs of extensions. Our use of I-faithful assignments is motivated by how
proper I-maximal semantics work. Given an operator ∗ for revision under semantics
σ and F ∈ AFA, the natural way to rank two extensions E1 and E2 is by inspection
of F ∗ ρAF

σ ({E1, E2}): if E1 ∈ σ(F ∗ ρAF
σ ({E1, E2})), then E1 is considered “at least as

plausible” as E2 and it should hold that E1 �F E2. However, by proper I-maximality of
σ, ρAF

σ ({E1, E2}) is only guaranteed to exist if E1 and E2 are incomparable. Thus, if E1
and E2 are ⊆-comparable, ∗ might not have any means to decide between E1 and E2,
hence it is natural to allow them to be incomparable with respect to �F .

Rational operators induced by pseudo-preorders. The next example shows that
in the presence of limited expressiveness we can get rational operators from rankings
which are usually considered unintuitive.

Example 44. Let σ be a proper I-maximal semantics and suppose that for an AF
F we have a ranking �F on 2A which behaves as in Figure 4.3 for the extensions
{a}, {b, c}, {a, c} and {b}, and as a faithful ranking otherwise. Again, an arrow means
that the relation is strict: for example, {a} �F {b, c} and {b, c} �F {a}, abbreviated as
{a} ≺F {b, c}. The relation �F , then, contains a non-transitive cycle and is therefore
not a preorder. However, an inspection of the ranking reveals that for any non-empty
σ-realizable set S, min(S,�F ) is still well-defined and non-empty: recall that we are
assuming σ to be proper I-maximal. Therefore elements of S are pairwise incomparable.
Hence there is no S ⊆ Σσ

AF such that S ⊇ {{a}, {a, c}} or S ⊇ {{b}, {b, c}}. On the other
hand, for instance, if S = {{a}, {b, c}}, then min(S,�F ) = {{a}}. Thus we can define an
operator ∗σ in the familiar way, by taking F ∗σ G = ρAF

σ (min(σ(G),�F )), and it is then
straightforward to verify that this operator ∗σ is well-defined and satisfies postulates
(A1σ)–(A6σ). ♦
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σ(F )

{a}

{b, c}

{a, c}

{b}

2A \ (σ(F ) ∪ {{a}, {b}, {a, c}, {b, c}})

Figure 4.3: Cycles in rankings on extensions.

However, we want to avoid non-transitive cycles: since a natural reading of the rankings
on 2A is that they are plausibility relations, one would expect them to be transitive. The
correspondence between postulates and preorders could still be established if there was
another ranking �′F , which is indeed a preorder, that induces the operator discussed in
Example 44. The following example shows that this is also not the case.

Example 45. Assume there is a ranking �′F which is transitive and yields the same
revision operator as the pseudo-preorder in Figure 4.3. To do so, it has to satisfy
min({{a}, {b, c}},�′F ) = {{a}}, because we know that σ(F ∗σρAF

σ ({{a}, {b, c}})) = {{a}}.
Thus it holds that {a} ≺′F {b, c}. Similarly, we get that {b, c} ≺′F {a, c} ≺′F {b} ≺′F {a},
and the cycle is reiterated. ♦

As it is undesirable to have revision operators that characterize non-transitive rankings,
we prevent this situation by making use of the additional postulate (Acycσ). This
postulate is adapted from [84] and is motivated by the fact that, without it, postulates
(A1σ)–(A6σ) can characterize revision operators generated with unsuitable rankings (see
Examples 44 and 45).3

(Acycσ) If for 0 ≤ i < n, σ(F ∗ Gi+1) ∩ σ(Gi) 6= ∅ and σ(F ∗ G0) ∩ σ(Gn) 6= ∅ then
σ(F ∗Gn) ∩ σ(G0) 6= ∅.

Intuitively, (Acycσ) prevents cycles as the one in Figure 4.3. The following example goes
into more detail.

3Note that the (Acyc)-postulate is redundant for revision in formalisms with full expressiveness such
as propositional logic (see Proposition 3 of [84]).
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a

b

c a

b

c a

b

c a

b

c

Figure 4.4: AFs G0, . . . , G3, from left to right, having σ(G0) = {{a}, {b, c}}, σ(G1) =
{{b, c}, {a, c}}, σ(G2) = {{a, c}, {b}}, and σ(G3) = {{a}, {b}} for σ ∈ {prf, stb, sem, stg}.

Example 46. Let σ be a proper I-maximal semantics and consider the AFs G0, . . . , G3
with

σ(G0) = {{a}, {b, c}},
σ(G1) = {{b, c}, {a, c}},
σ(G2) = {{a, c}, {b}}, and
σ(G3) = {{a}, {b}}.

For σ ∈ {prf, stb, sem, stg} such AFs are depicted in Figure 4.4. Moreover let F be an
AF with σ(F ) ∩ {{a}, {b}, {a, c}, {b, c}} = ∅. Assume a rational operator ∗ such that the
following holds:

σ(F ∗G1) ∩ σ(G0) = {{a}},
σ(F ∗G2) ∩ σ(G1) = {{b, c}},
σ(F ∗G3) ∩ σ(G2) = {{a, c}}, and
σ(F ∗G0) ∩ σ(G3) = {{b}}.

First note that this means that a corresponding ranking must have {a} �F {b, c} �F
{a, c} �F {b} �F {a}. Applying (Acycσ) it follows that

σ(F ∗G3) ∩ σ(G0) 6= ∅.

That means, by ∗ satisfying (A1σ), that {a} ∈ σ(F ∗G3). Hence, in the corresponding
ranking we also have {a} �F {b}, i.e. {a} ≈F {b}. The same can be derived for the other
pairs of extensions and we arrive at {a} ≈F {b, c} ≈F {a, c} ≈F {b}. That way (Acycσ)
prevents ∗ from giving rise to a non-transitive cycle in the corresponding ranking. ♦

Before coming to the main representation result of this section, we state a preliminary
lemma, which we will use later. It says that I-total preorders always yield most preferred
elements among the extensions under a proper I-maximal semantics.

Lemma 16. Let σ be a proper I-maximal semantics and � an I-total preorder on 2A.
For each S ∈ Σσ

AF it holds that min(S,�) 6= ∅.

Proof. First note that the extension-set S is finite. Moreover, since σ is proper I-maximal,
Si and Sj are incomparable for each 1 ≤ i, j ≤ n, hence Si � Sj or Sj � Si (or both).
Hence it is well-known that S must have at least one minimal element wrt. �.
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With these preliminaries, we can now state our main representation results. The first
direction shows that each I-faithful assignment gives rise to a rational revision operator.

Theorem 30. Let σ be a proper I-maximal semantics. If there exists an I-faithful
assignment mapping any F ∈ AFA to an I-faithful ranking �F for F , then the revision
operator ∗σ : AFA ×AFA 7→ AFA defined as

F ∗σ G = ρAF
σ (min(σ(G),�F ))

satisfies postulates (A1σ)–(A6σ) and (Acycσ).

Proof. Let F ∈ AFA be an AF and �F be the I-faithful ranking for F obtained from the
I-faithful assignment. Since σ is proper I-maximal, any non-empty subset of σ(G) (and,
in particular, min(σ(G),�F ), which is non-empty by Lemma 16) is realizable under σ.
Thus, by definition of ρAF

σ (cf. Definition 38), it holds that σ(ρAF
σ (min (σ(G),�F ))) =

min(σ(G),�F ). Hence, for any AF G, it holds that σ(F ∗σ G) = min(σ(G),�F ), which
we use without further comment in the remainder of the proof.

It is now straightforward that (A1σ) is satisfied.

As �F is I-faithful, elements of σ(F ) are the minimal elements of �F , hence, if σ(F ) ∩
σ(G) 6= ∅, then min(σ(F ),�F ) = σ(F ) ∩ σ(G), i.e. (A2σ) is satisfied.

Postulate (A3σ) follows from Lemma 16.

As �F has been obtained from a faithful assignment, it holds, due to condition (iii) of
Definition 83, that for each AF F2 with σ(F ) = σ(F2), also�F=�F2 . Therefore if σ(G1) =
σ(G2) for arbitrary AFs G1, G2 ∈ AFA, then min(σ(G1),�F ) = min (σ(G2),�F2). Hence
postulate (A4σ) is satisfied.

Postulates (A5σ) and (A6σ) are trivially satisfied if σ(F ∗σ G) ∩ σ(H) = ∅. Assume
σ(F ∗σ G) ∩ σ(H) 6= ∅. That means, by σ(F ∗σ G) ⊆ σ(G) (cf. (A1σ)), that also
σ(G) ∩ σ(H) 6= ∅. Hence σ(ρAF

σ (σ(G) ∩ σ(H))) = σ(G) ∩ σ(H). Now assume further,
towards a contradiction, that there is some E ∈ min(σ(G),�F ) ∩ σ(H) with E /∈
min(σ(ρAF

σ (σ(G) ∩ σ(H))),�F ) = min(σ(G) ∩ σ(H),�F ). Since E ∈ σ(G) ∩ σ(H)
there must then be some E′ ∈ σ(G) ∩ σ(H) with E′ ≺F E, a contradiction to E ∈
min(σ(G),�F ). Therefore σ(F ∗σ G) ∩ σ(H) ⊆ σ(F ∗σ ρAF

σ (σ(G) ∩ σ(H))), i.e. (A5σ)
is satisfied. To show that σ(F ∗σ ρAF

σ (σ(G) ∩ σ(H))) ⊆ σ(F ∗σ G) ∩ σ(H) also holds,
assume E ∈ min(σ(G) ∩ σ(H),�F ) and E /∈ min(σ(G),�F ) ∩ σ(H). Since E ∈ σ(H),
it follows that E /∈ min(σ(G),�F ). Let E′ ∈ min(σ(G),�F ) ∩ σ(H) (assumed to be
non-empty). Then E′ ∈ σ(G)∩σ(H) holds. Moreover, since σ is an I-maximal semantics,
E and E′ are incomparable. Now as E ∈ min(σ(G) ∩ σ(H),�F ) and the fact that �F
is I-total, it must hold that E �F E′. Hence from E′ ∈ min(σ(G),�F ) it follows that
E ∈ min(σ(G),�F ), a contradiction. Hence also (A6σ) is satisfied.

It remains to be shown that (Acycσ) also holds. Let G0, G1, . . . , Gn be a sequence of AFs
such that for all 0 ≤ i < n, it holds that σ(F ∗σGi+1)∩σ(Gi) 6= ∅ and σ(F ∗σG0)∩σ(Gn) 6=
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∅. From σ(F ∗σ G1) ∩ σ(G0) 6= ∅ we derive that min (σ(G1),�F ) ∩ σ(G0) 6= ∅. Hence
there is an extension E′0 ∈ σ(G0) such that E′0 �F E1 for all E1 ∈ σ(G1). Likewise
we get, for any 0 ≤ i < n, from σ(F ∗σ Gi+1) ∩ σ(Gi) 6= ∅ that there is an extension
E′i ∈ σ(Gi) such that E′i �F Ei+1 for all Ei+1 ∈ σ(Gi+1). In particular, there is an
extension E′n−1 ∈ σ(Gn−1) such that E′n−1 �F En for all En ∈ σ(Gn). From transitivity
of �F we get E′0 �F En for all En ∈ σ(Gn). Finally, from σ(F ∗σ G0) ∩ σ(Gn) 6= ∅ it
follows that there is some E′n ∈ σ(Gn) with E′n ∈ σ(G0) and E′n �F E0 for all E0 ∈ σ(G0)
(in particular for E′0). Now from E′n �F E′0 �F En (for all En ∈ σ(Gn)) it follows that
E′n ∈ min(σ(Gn),�F ). Hence σ(F ∗σ Gn) ∩ σ(G0) 6= ∅.

The other direction shows that also every rational revision operator has a corresponding
I-faithful assignment.

Theorem 31. Let σ be a proper I-maximal semantics. If ∗σ : AFA × AFA 7→ AFA

is an operator satisfying postulates (A1σ)–(A6σ) and (Acycσ), then there exists an I-
faithful assignment mapping every F ∈ AFA to an I-faithful ranking �F for F such that
min(σ(G),�F ) = σ(F ∗σ G), for any G ∈ AFA.

Proof. Assume there is an operator ∗σ : AFA ×AFA 7→ AFA satisfying postulates (A1σ)–
(A6σ) and (Acycσ), and take an arbitrary F ∈ AFA. We construct �F in two steps and
then show that �F is indeed an I-faithful ranking for F such that min(σ(G),�F ) =
σ(F ∗σ G). We will, as part of the proof, give some intermediate lemmas in the interest
of readability.

In the first step we define the relation �′F on 2A such that E �′F E for any E ∈ 2A and
for any two incomparable E,E′ ∈ 2A,

E �′F E′ if and only if E ∈ σ(F ∗σ ρAF
σ ({E,E′})).

Note that �′F is obviously reflexive. In the next step we build the transitive closure of
�′F to obtain the relation �F . In other words, we define

E �F E′ if and only if there exist E1, . . . , En ∈ 2A such that:
E1 = E,En = E′ and E1 �′F · · · �′F En.

In the remainder of the proof we show that �F is an I-faithful ranking for F such that
min (σ(G),�F ) = σ(F ∗ G). First, notice that if E1 �′F E2 then E1 �F E2. Hence
�F is reflexive and, by construction, it is transitive, which makes it a preorder on 2A.
Additionally, for any two incomparable sets of arguments E1, E2 ∈ 2A, proper I-maximality
of σ guarantees that {E1, E2} ∈ Σσ

AF and therefore σ(ρAF
σ ({E1, E2})) = {E1, E2}. By

(A1σ) and (A3σ), σ(F ∗σ ρAF
σ ({E1, E2})) is then a non-empty subset of {E1, E2}, thus

E1 �′F E2 or E2 �′F E1. It follows that also E1 �F E2 or E2 �F E1, hence �F is I-total.

Next we argue that �F is an I-faithful ranking for F . Due to the fact that {E1, E2} is
realizable whenever E1 and E2 are incomparable by proper I-maximality of σ, we will
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make use of {E1, E2} = σ(ρAF
σ ({E1, E2})) without further comment in the remainder of

the proof.

Lemma 17. If E1, E2 ∈ σ(F ), then E1 ≈F E2.

Proof. From (A2σ) and proper I-maximality of σ, we get σ(F ∗σ ρAF
σ ({E1, E2})) =

σ(F ) ∩ {E1, E2} = {E1, E2}. Thus E1 �′F E2 and E2 �′F E1, which implies E1 �F E2
and E2 �F E1, i.e. E1 ≈F E2.

Lemma 17 shows that �F satisfies property (i) of I-faithful rankings. For property (ii)
we make use of the following lemmas. It is in this context that (Acycσ) proves crucial.

Lemma 18. If E1, . . . , En ∈ 2A are pairwise distinct extensions with E1 �′F E2 �′F
· · · �′F En �′F E1, then E1 �′F En.

Proof. If n = 2 the conclusion follows immediately. In the following we assume that
n > 2. From the hypothesis we have, by the definition of �′F , that

Ei ∈ σ(F ∗σ ρAF
σ ({Ei, Ei+1})), for 1 ≤ i < n, and

En ∈ σ(F ∗σ ρAF
σ ({En, E1})).

This means that

E1 ∈ σ(F ∗σ ρAF
σ ({E1, E2})) ∩ {En, E1},

Ei ∈ σ(F ∗σ ρAF
σ ({Ei, Ei+1})) ∩ {Ei−1, Ei}, for 1 < i < n, and,

En ∈ σ(F ∗σ ρAF
σ ({En, E1})) ∩ {En−1, En}.

Since ∗σ satisfies (Acycσ), it follows that

σ(F ∗σ ρAF
σ ({En, E1})) ∩ {E1, E2} 6= ∅.

From ∗σ satisfying (A5σ) and (A6σ) it follows that

σ(F ∗σ ρAF
σ ({En, E1})) ∩ {E1, E2} = σ(F ∗σ ρAF

σ ({En, E1} ∩ {E1, E2})).

Since {En, E1} ∩ {E1, E2} = {E1} we get by (A4σ) that

σ(F ∗σ ρAF
σ ({En, E1} ∩ {E1, E2})) = σ(F ∗σ ρAF

σ ({E1})).

Finally, using (A1σ) and (A3σ) we conclude that σ(F ∗σ ρAF
σ ({E1})) = {E1}, and thus

E1 ∈ σ(F ∗σ ρAF
σ ({En, E1})),

which implies, by definition of �′F , that E1 �′F En.

Lemma 19. For any E,E′ ∈ 2A, it holds that if E ≺′F E′ then E ≺F E′.
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Proof. Assume E ≺′F E′. From the definition of �F it is clear that E �F E′. It remains
to be shown that E′ 6�F E. Suppose, towards a contradiction, that E′ �F E. Then there
exist E1, . . . , En ∈ 2A such that E1 = E′, En = E and E1 �′F · · · �′F En. Since we also
have E �′F E′ (i.e. En �′F E1) by assumption, we can apply Lemma 18 to get E1 �′F En,
that is E′ �′F E, a contradiction to E ≺F E′.

Lemma 20. Given E1, E2 ∈ 2A, if E1 ∈ σ(F ), E2 /∈ σ(F ), and E1 and E2 are incompa-
rable, then E1 ≺F E2.

Proof. By proper I-maximality of σ and (A2σ) we get

σ(F ∗σ ρAF
σ ({E1, E2})) = σ(F ) ∩ {E1, E2} = {E1}.

This implies, by definition of �′F , that E1 ≺′F E2. By Lemma 19 we get E1 ≺F E2.

Lemma 20 gives us property (ii) of I-faithful rankings. For property (iii) of faithful
assignments assume an AF F ′ ∈ AFA with σ(F ) = σ(F ′). (A4σ) ensures that �′F=�′F ′
and therefore it also holds that �F=�F ′ .

It remains to show that the σ-extensions of F ∗σ G, for any G ∈ AFA, are the minimal
elements of σ(G) with respect to �F .

Lemma 21. For any E1, E2 ∈ 2A and any G ∈ AFA, it holds that if E1 ∈ σ(G),
E2 ∈ σ(F ∗σ G) and E1 �′F E2, then E1 ∈ σ(F ∗σ G).

Proof. First observe that, by E2 ∈ σ(F ∗σ G) and (A1σ), also E2 ∈ G. Hence, by proper
I-maximality of σ, E1 and E2 are incomparable, hence σ(ρAF

σ ({E1, E2})) = {E1, E2}, an
observation we will use throughout the proof.

From the assumption that E2 ∈ σ(F ∗σ G), we have σ(F ∗σ G)∩ {E1, E2} 6= ∅. By (A5σ)
and (A6σ) we get

σ(F ∗σ G) ∩ {E1, E2} = σ(F ∗σ ρAF
σ (σ(G) ∩ {E1, E2})).

Now recall that {E1, E2} ⊆ σ(G). Thus σ(G) ∩ {E1, E2} = {E1, E2}. From this and
(A4σ) it follows that

σ(F ∗σ ρAF
σ (σ(G) ∩ {E1, E2})) = σ(F ∗σ ρAF

σ ({E1, E2})).

Putting these equalities together with the fact that E1 ∈ σ(F ∗σ ρAF
σ ({E1, E2})) (since

E1 �′F E2 by assumption), we get that E1 ∈ σ(F ∗σ G).

Lemma 22. For any G ∈ AFA, it holds that min(σ(G),�′F ) = σ(F ∗σ G).
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Proof. ⊆: Let E1 ∈ min(σ(G),�′F ). This implies that σ(G) 6= ∅ and, by (A3σ), σ(F ∗σ
G) 6= ∅. Thus we can take an arbitrary E2 ∈ σ(F ∗σ G) for which, by (A1σ), also
E2 ∈ σ(G). Now by E1, E2 ∈ σ(G) we follow by proper I-maximality of σ that E1 and
E2 are incomparable. As E1 ∈ min(σ(G),�′F ) and �′F was already shown to be I-total,
it follows that E1 �′F E2. Thus, by Lemma 21, we get E1 ∈ σ(F ∗σ G).

⊇: Let E1 ∈ σ(F ∗σG) and assume E1 /∈ min(σ(G),�′F ), i.e. there is some E2 ∈ σ(G) such
that E2 ≺′F E1. From proper I-maximality of σ it follows that E1 and E2 are incomparable,
hence σ(ρAF

σ ({E1, E2})) = {E1, E2}. We have that σ(F ∗σ G) ∩ {E1, E2} 6= ∅ and thus,
by (A5σ) and (A6σ):

σ(F ∗σ G) ∩ {E1, E2} = σ(F ∗σ ρAF
σ (σ(G) ∩ {E1, E2})).

Recalling that σ(G) ∩ {E1, E2} = {E1, E2} it follows from (A4σ) that:

σ(F ∗σ ρAF
σ (σ(G) ∩ {E1, E2})) = σ(F ∗σ ρAF

σ ({E1, E2})).

Putting these equations together with the fact that E1 ∈ σ(F ∗σ G) ∩ {E1, E2}, we
get that E1 ∈ σ(F ∗σ ρAF

σ ({E1, E2})) and thus E1 �′F E2, which is a contradiction to
E2 ≺′F E1.

Lemma 23. For any G ∈ AFA, min(σ(G),�F ) = min(σ(G),�′F ).

Proof. ⊆: Let E1 ∈ min(σ(G),�F ) and assume, towards a contradiction, that E1 /∈
min(σ(G),�′F ), i.e. there exists some E2 ∈ σ(G) with E2 ≺′F E1. By Lemma 19, this
implies that E2 ≺F E1, a contradiction to E1 ∈ min(σ(G),�F ).

⊇: Let E1 ∈ min(σ(G),�′F ) and take any E2 ∈ σ(G). If E2 = E1, it follows that
E1 �′F E2. If E2 6= E1, then by proper I-maximality of σ, E1 and E2 are incomparable
and thus E1 �′F E2 or E2 �′F E1. We cannot have that E2 ≺′F E1, since this would
contradict the hypothesis that E1 ∈ min(σ(G),�′F ), therefore E1 �′F E2 must hold. In
both cases it follows that E1 �F E2, hence E1 ∈ min(σ(G),�F ).

Lemmas 22 and 23 imply that for any G ∈ AFA, it holds that σ(F ∗σG) = min(σ(F ),�F ).
This concludes the proof of the theorem.

We have established, for revision under proper I-maximal semantics, a correspondence
between operators fulfilling postulates (A1σ)–(A6σ) and (Acycσ) on the one hand side,
and operators obtained from I-faithful assignments on the other. Regarding concrete
operators, notice that every I-faithful assignment is also a faithful assignment. Hence,
any faithful assignment for AFs can be used, via Theorem 30, to represent a rational
revision operator ∗σ : AFA×AFA → AFA. Thus, any model-based revision operator from
the standard literature on belief change, in particular Dalal’s operator [80], can be used
as a revision operator of AFs by AFs. The following example illustrates the revision of
an AF by Dalal’s operator.
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Figure 4.5: AF F (left) being revised by the AF G (right) in Example 47.

Example 47. Consider the AFs F and G in Figure 4.5 an let σ ∈ {stb, prf, sem, stg}.
Observe that σ(F ) = {{a, c}, {b, c}} and therefore the preorder �σF obtained from
Hamming distance is as follows:

{a, c} ≈σF {b, c} ≺σF {a} ≈σF {b} ≈σF {c} ≈σF {a, b, c} ≺σF {a, b} ≈σF ∅

Note that �σF is a faithful ranking for F . Revising F by G using Dalal’s operator then
gives us F ∗Dσ G = ρAF

σ (min(σ(G),�σF )). Observing that σ(G) = {{a, b}, {c}} it we get
F ∗Dσ G = ρAF

σ ({{c}}). ♦

4.3 Revision of ADFs

In this section we apply the AGM approach to the revision of ADFs by studying operators
∗ : ADFA ×ADFA 7→ ADFA. As usual for ADFs, we will use three-valued semantics σ3
for the evaluation of ADFs (cf. Definition 31). The rationality postulates (A1σ3)–(A6σ3)
for revision under σ3 carry over from Section 4.2, but using ADF realizing functions
when needed.4

(A1σ3) σ3(F ∗G) ⊆ σ3(G).

(A2σ3) If σ3(F ) ∩ σ3(G) 6= ∅, then σ3(F ∗G) = σ3(F ) ∩ σ3(G).

(A3σ3) If σ3(G) 6= ∅, then σ3(F ∗G) 6= ∅.

(A4σ3) If σ3(F1) = σ3(F2) and σ3(G) = σ3(H), then σ3(F1 ∗G) = σ3(F2 ∗H).

(A5σ3) σ3(F ∗G) ∩ σ3(H) ⊆ σ3(F ∗ ρADF
σ3 (σ3(G) ∩ σ3(H))).

(A6σ3) If σ3(F ∗G)∩σ3(H) 6= ∅, then σ3(F ∗ ρADF
σ3 (σ3(G) ∩ σ3(H))) ⊆ σ3(F ∗G)∩σ3(H).

In order for the operator to satisfy (A2σ3), i.e. to return the consensus of original and
revising ADF whenever this is not empty, the signature of σ3 in ADFs must be closed
under intersection. This already rules out rational operators under the complete semantics
(cf. Table 3.2).

4Note that until now we usually denoted ADFs by the letter D. In this section, however, we will use
letters F , G, and H to denote ADFs as the alphabetic successors of D are already used differently.
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Theorem 32. There exists no operator ∗ : ADFA × ADFA 7→ ADFA that satisfies
(A2com3).

We will focus on preferred and admissible semantics. In Section 4.3.1 we will obtain a
representation result for preferred semantics by adjusting the conditions on rankings to
the expressiveness of the semantics and again employing a variant of the (Acyc)-postulate.
Moreover, we will define a three-valued version of Dalal’s operator. Admissible semantics,
on the other hand, yield only a single operator satisfying the postulates, as we will see in
Section 4.3.2. Since, as we will argue, both approaches have some weaknesses, we propose
a hybrid approach which bases rankings on preferred interpretations but allows admissible
interpretations of the revising ADF to be the result of the revision in Section 4.3.3.

4.3.1 Revision under Preferred Semantics

In this subsection we will focus on the preferred semantics. To fulfill the postulates, a
revision operator will have to result in an ADF having certain preferred interpretations.
However, as can be already seen by Theorem 24, preferred semantics underlies certain
limits in terms of expressiveness. That is, certain desired outcomes may not be realizable.
It will not be necessary to know the exact characterization of Σprf3

ADF, but we will make
frequent use of the following sufficient conditions for containment in the signature, i.e.
realizability.

Proposition 34. A set of interpretations V ⊆ V is realizable under prf3 if one of the
following holds:

1. V ⊆ prf3(F ) and V 6= ∅ for some F ∈ ADFA;

2. V = {v1, v2} and v1 and v2 are incompatible; or

3. V = {v}.

Proof. (1) was shown in Proposition 27 and (2) and (3) are immediate by the characteri-
zation of Σprf3

ADF given in Theorem 24.

As usual we aim for representing operators satisfying the postulates by means of rankings
on the universe of interpretations. Now observe that pairs of interpretations under
preferred semantics are always incompatible. Also we have no means to find out,
given two compatible interpretations, which of these interpretations the operator gives
precedence to. Hence we will make use of the following rankings, which are customized
to the expressiveness of preferred semantics.

Definition 84. A preorder � on V is i-max-total if v1 � v2 or v2 � v1 for any v1, v2 ∈ V
with v1 6≤i v2 and v2 6≤i v1.

Given a semantics σ3 and an ADF F , an i-max-faithful ranking for F is an i-max-total
preorder �F on V such that, for any v1, v2 ∈ V with v1 6≤i v2 and v2 6≤i v1, it holds that
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prf3(F )

uft

ttf

fut

tuf

...

Figure 4.6: Cycles in rankings on interpretation.

(i) if v1, v2 ∈ σ3(F ) then v1 ≈F v2, and

(ii) if v1 ∈ σ3(F ) and v2 /∈ σ3(F ) then v1 ≺F v2.

An i-max-faithful assignment maps every ADF F to an i-max-faithful ranking �F for F
such that

(iii) �F1=�F2 for any ADFs F1, F2 with σ3(F1) = σ3(F2).

In words, an i-max-faithful ranking has to behave like a faithful ranking, but only has to
put incompatible interpretations into relation. It can leave compatible interpretations
unrelated, as there is no need for an operator to decide between those interpretations.

The following example shows that the standard set of postulates is again not enough to
get a correspondence to preorders on interpretations.

Example 48. Let A = {a, b, c} and consider an arbitrary ADF F and the binary relation
� having prf3(F ) as least elements, containing the cycle uft ≺ ttf ≺ fut ≺ tuf ≺ uft
and being an arbitrary linear order otherwise (cf. Figure 4.6). Note that � is not transitive
and therefore only a pseudo-preorder. However, the revision operator ∗ induced by �
can be shown to satisfy all postulates (A1prf3)–(A6prf3).

Moreover, every binary relation �′ inducing the same operator ∗ must contain this cycle.
Consider the pair of interpretations uft and ttf . They are incompatible, hence {uft, ttf}
is realizable under prf3 (cf. Proposition 34). To behave like the operator before, the
revision of F by ρADF

prf3 ({uft, ttf}) must have uft as single preferred interpretation, hence
uft ≺′ ttf . This holds for every neighboring pair of the cycle, hence �′ must contain the
same non-transitive cycle. ♦

Therefore we will again use the postulate (Acycσ3) to get a correspondence to i-max-
faithful ranking.
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(Acycσ3) If for 1 ≤ i < n, σ3(F ∗Gi+1) ∩ σ3(Gi) 6= ∅ and σ3(F ∗G1) ∩ σ3(Gn) 6= ∅ then
σ3(F ∗Gn) ∩ σ3(G1) 6= ∅.

Similar as in the AF setting, we get that the rankings we are working with always have
minimal elements.

Lemma 24. Let � be an i-max-total preorder on V. For each V ∈ Σprf
ADF it holds that

min(V,�) 6= ∅.

We are now ready to give the first direction of the representation result, showing that
every i-max-faithful assignment gives rise to an operator fulfilling the standard postulates
and (Acycprf3).

Theorem 33. If there exists an i-max-faithful assignment mapping any ADF F to an
i-max-faithful ranking �F for F , then the revision operator ∗ : ADFA ×ADFA 7→ ADFA

defined as
F ∗G = ρADF

prf3 (min(prf3(G),�F ))

satisfies postulates (A1prf3)–(A6prf3) and (Acycprf3).

Proof. Let F and G be ADFs and �F be the i-max-faithful ranking for F obtained from
the i-max-faithful assignment. We show that ∗ satisfies (A1prf3)–(A6prf3) and (Acycprf3).

By the definition of ρADF
prf3 , min(prf3(G),�F ) being non-empty by Lemma 24, and the fact

that any non-empty V ⊆ prf3(G) is realizable under prf3 (cf. Proposition 34.1) it holds that
prf3(ρADF

prf3 (min(prf3(G),�F ))) = min(prf3(G),�F ), i.e. prf3(F ∗G) = min(prf3(G),�F ).
This equality not only shows that ∗ satisfies (A1prf3), but will also be useful throughout
the proof.

For (A2prf3), assume prf3(F ) ∩ prf3(G) 6= ∅. Since �F is i-max-faithful we get that
min(prf3(G),�F ) = prf3(F ) ∩ prf3(G) and hence prf3(F ∗G) = prf3(F ) ∩ prf3(G).

Lemma 24 implies (A3prf3).

For (A4prf3) let H and F2 be further ADFs and assume that prf3(F ) = prf3(F2) and
prf3(G) = prf3(H). Since �F and �F2 are obtained from an i-max-faithful assign-
ment it follows, by property (iii) of Definition 84, that �F=�F2 . Therefore also
min (prf3(G),�F ) = min (prf3(H),�F2), i.e. ∗ satisfies (A4prf3).

For (A5prf3) and (A6prf3) we consider the non-trivial case where prf3(F ∗G)∩prf3(H) 6= ∅.
Recalling that prf3(G) ∩ prf3(H) is realizable under prf3 for arbitrary ADFs G and H
(cf. Proposition 28), we have to show that min (prf3(G),�F ) ∩ prf3(H) = min(prf3(G) ∩
prf3(H),�F ). To the contrary assume there is some v ∈ min(prf3(G),�F ) ∩ prf3(H) such
that v /∈ min(prf3(G) ∩ prf3(H),�F ). As then v ∈ prf3(G) and v ∈ prf3(H) there must
be some v′ ∈ prf3(G) ∩ prf3(H) with v′ ≺F v, contradicting v ∈ min (prf3(G),�F ). On
the other hand assume, again to the contrary, that there is some v ∈ min(prf3(G) ∩
prf3(H),�F ) such that v /∈ min(prf3(G),�F ) ∩ prf3(H). From v ∈ prf3(H) we get v /∈
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min(prf3(G),�F ). As by assumption prf3(F ∗G)∩prf3(H) 6= ∅, let v′ ∈ min(prf3(G),�F )
and v′ ∈ prf3(H). Then also v′ ∈ prf3(G) ∩ prf3(H). Since v, v′ ∈ prf3(H), v and v′ are
incompatible, �F is i-max-total and v ∈ min(prf3(G) ∩ prf3(H),�F ) by assumption, we
get v �F v′. Thus v ∈ min(prf3(G),�F ) because v′ ∈ min(prf3(G),�F ), a contradiction.

For (Acycprf3) consider a sequence of ADFs G0, . . . , Gn such that prf3(F ∗ Gi+1) ∩
prf3(Gi) 6= ∅ for 0 ≤ i < n and prf3(F ∗G0)∩ prf3(Gn) 6= ∅. Let 0 ≤ i < n. By definition
of ∗ we have prf3(ρADF

prf3 (min(prf3(Gi+1),�F ))) ∩ prf3(Gi) 6= ∅. Then, as any subset of
prf3(Gi+1) is again realizable (cf. Proposition 34), min(prf3(Gi+1),�F ) ∩ prf3(Gi) 6= ∅
follows. Hence there is some v′i ∈ prf3(Gi) such that v′i �F vi+1 for all vi+1 ∈ prf3(Gi+1).
From transitivity of �F we infer that there is a v′1 ∈ prf3(G1) such that v′1 �F vn
for all vn ∈ prf3(Gn). From prf3(F ∗ G1) ∩ prf3(Gn) 6= ∅ it follows that there is some
v′′1 ∈ min(G1,�F ) (hence also v′′1 ∈ prf3(G1) and v′′1 �F v′1) with v′′1 ∈ prf3(Gn). We have
v′′1 �F v′1 �F vn (for each vn ∈ prf3(Gn)), hence v′′1 ∈ min(prf3(Gn),�F ). This together
with v′′1 ∈ prf3(G0) means that prf3(F ∗Gn) ∩ prf3(G1) 6= ∅, which was to show.

The second direction shows that the existence of an i-max-faithful assignment is also a
necessary condition to get an operator satisfying the postulates.

Theorem 34. Let ∗ : ADFA×ADFA 7→ ADFA be a revision operator satisfying postulates
(A1prf3)–(A6prf3) and (Acycprf3). Then there is an i-max-faithful assignment mapping each
ADF F to an i-max-faithful ranking �F for F such that prf3(F ∗G) = min(prf3(G),�F )
for every ADF G.

Proof. Assume an arbitrary ADF F . We define �F and show that �F as well as the
corresponding assignment is i-max-faithful. Moreover, we will show that prf3(F ∗G) =
min(prf3(G),�F ) holds.

First let �′F be the relation on V such that for each v ∈ V, v ≈′F v, and for any
incompatible interpretations v1, v2 ∈ V,

v1 �′F v2 if and only if v1 ∈ prf3(F ∗ ρADF
prf3 ({v1, v2})).

The relation �F is defined as the transitive closure of �′F :

v �F v′ if and only if ∃w1, . . . , wn : v �′F w1 �′F · · · �′F wn �′F v′.

First, �F is clearly reflexive and transitive, making it a preorder on V. Moreover, for
incompatible interpretations v1, v2 ∈ V we know from Proposition 34 that {v1, v2} is
realizable under prf3, hence prf3(ρADF

prf3 ({v1, v2})) = {v1, v2}. By (A1prf3) and (A3prf3)
we therefore get that either v1 �′F v2 or v2 �′F v1, and, consequently, also v1 �F v2 or
v2 �F v1, hence �F is i-max-total.

We proceed by showing that �F is i-max-faithful, i.e. we show properties (i) to (iii) from
Definition 84. To show (i), let v1, v2 ∈ prf3(F ) and note that prf3(ρADF

prf3 ({v1, v2})) =
{v1, v2}. Hence, by (A2prf3), we get prf3(F ∗ ρADF

prf3 ({v1, v2})) = {v1, v2}. Therefore, by
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definition of �′F , v1 �′F v2 and v2 �′F v1, i.e. v1 ≈′F v2. Hence also v1 ≈F v2. For (ii),
we begin with the intermediate statement

for v1 . . . vn ∈ V : v1 �′F · · · �′F vn �′F v1 implies v1 �′F vn (4.1)

For n ≤ 2 the statement is immediate. Assume n > 2. By definition of �′F we first
get that vi and vi+1 for 1 ≤ i < n as well as vn and v1 are incompatible, hence
prf3(ρADF

prf3 ({vi, vi+1})) = {vi, vi+1} and prf3(ρADF
prf3 ({vn, v1}) = {vn, v1} by Proposition 34.

Moreover, we get vi ∈ prf3(F ∗ ρADF
prf3 ({vi, vi+1})) for 1 ≤ i < n and vn ∈ prf3(F ∗

ρADF
prf3 ({vn, v1})). It follows that v1 ∈ prf3(F ∗ ρADF

prf3 ({v1, v2})) ∩ {vn, v1}, vi ∈ prf3(F ∗
ρADF

prf3 ({vi, vi+1}))∩{vi−1, vi} for 1 < i < n, and vn ∈ prf3(F ∗ρADF
prf3 ({vn, v1}))∩{vn−1, vn}.

Considering (Acycprf3) we get prf3(F ∗ρADF
prf3 ({vn, v1}))∩{v1, v2} 6= ∅, meaning further by

(A5prf3) and (A6prf3) that prf3(F ∗ ρADF
prf3 ({vn, v1})) ∩ {v1, v2} = prf3(F ∗ ρADF

prf3 ({vn, v1} ∩
{v1, v2})) = prf3(F ∗ ρADF

prf3 ({v1})). By prf3(ρADF
prf3 ({v1})) = {v1} (cf. Proposition 34),

(A1prf3) and (A3prf3), it follows that v1 ∈ prf3(F ∗ρADF
prf3 ({vn, v1})), meaning that v1 �′F vn,

concluding the proof for (4.1). We proceed by showing the statement

for v1, v2 ∈ V : v1 ≺′F v2 implies v1 ≺F v2 (4.2)

v1 �F v2 is clear by definition. Assume, towards a contradiction, that v2 �F v1. Then
∃w1, . . . , wn such that v1 �′F w1 �′F · · · �′F wn �′F v2. As by assumption v1 �′F v2 it
follows by (4.1) that v2 �′F v1, a contradiction to v1 ≺′F v2, showing (4.2).

Now let v1 and v2 be incompatible interpretations such that v1 ∈ prf3(F ) and v2 /∈ prf3(F ).
By (A2prf3) we get prf3(F ∗ρADF

prf3 ({v1, v2})) = prf3(F )∩{v1, v2} = {v1}, implying v1 �′F v2.
Therefore, by (4.2), also v1 �F v2, showing (ii). Finally, consider another ADF F ′ with
prf3(F ) = prf3(F ′). By (A4prf3) is holds that �′F=�′F ′ and therefore also �F=�F ′ .
Consequently �F as well as the assignment it is obtained from is i-max-faithful.

Before showing that ∗ is indeed simulated by �F , we prove

for v1, v2 ∈ V such that v1 �′F v2 and G ∈ ADFA :
v1 ∈ prf3(G) and v2 ∈ prf3(F ∗G) implies v1 ∈ prf3(F ∗G)

(4.3)

Let G ∈ ADFA such that v1 ∈ prf3(G) and v2 ∈ prf3(F ∗ G). First note that, by
∗ fulfilling (A1prf3), also v2 ∈ prf3(G), meaning that v1 and v2 are incompatible and
therefore prf3(ρADF

prf3 ({v1, v2})) = {v1, v2}. From (A5prf3) and (A6prf3) we then get that
prf3(F ∗ G) ∩ {v1, v2} = prf3(F ∗ ρADF

prf3 (prf3(G) ∩ {v1, v2})) = prf3(F ∗ ρADF
prf3 ({v1, v2})).

By the assumption that v1 �′F v2 it holds that v1 ∈ prf3(F ∗ ρADF
prf3 ({v1, v2})), hence (4.3)

follows.

The last intermediate step is to show that

for G ∈ ADFA : min(prf3(G),�F ) = min(prf3(G),�′F ) (4.4)
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Consider some G ∈ ADFA. (⊆) Let v1 ∈ min(prf3(G),�F ) and suppose there exists
an v2 ∈ prf3(G) with v2 ≺′F v1. This means, by (4.2), that also v2 �F v1, a contra-
diction. Hence v2 6≺′F v1 for all v2 ∈ prf3(G), i.e. v1 ∈ min(prf3(G),�′F ). (⊇) Let
v1 ∈ min(prf3(G),�′F ) and v2 ∈ prf3(G). We show that v1 �′F v2, since then v1 �F v2
and, consequently, v1 ∈ min(prf3(G),�F ) follows by definition of �F . If v1 = v2 we
have v1 �′F v2 by definition of �′F . If v1 6= v2 observe that, by v1, v2 ∈ prf3(G), v1
and v2 are incompatible, hence at least one of v1 �′F v2 and v2 �′F v1 must hold. By
v1 ∈ min(prf3(G),�′F ) it cannot hold that v2 ≺′F v1, hence v1 �′F v2.

We are now ready to show that, for any ADF G, prf3(F ∗ G) = min(prf3(G),�F ).
Considering (4.4) we just have to show that

for G ∈ ADFA : prf3(F ∗G) = min(prf3(G),�′F ) (4.5)

(⊆) Let v ∈ prf3(F ∗G) and keep in mind that, by (A1prf3), also v ∈ prf3(G). We show
for each w ∈ prf3(G) that v �′F w. Consider an arbitrary w ∈ prf3(G). Note that by
v, w ∈ prf3(G) we have that prf3(ρADF

prf3 ({v, w})) = {v, w}. From (A5prf3) and (A6prf3) we
get prf3(F ∗ G) ∩ {v, w} = prf3(F ∗ ρADF

prf3 (prf3(G) ∩ {v, w})) = prf3(F ∗ ρADF
prf3 ({v, w})).

As by assumption v ∈ prf3(F ∗ G) we get v �′F w by definition of �′F . (⊇) Towards
a contradiction, assume some v ∈ min(prf3(G),�′F ) such that v /∈ prf3(F ∗ G) (again
note that also v ∈ prf3(G) by (A1prf3)). By (A3prf3) and the fact that prf3(G) 6= ∅ there
is some w ∈ prf3(F ∗ G). From (4.3) we infer that v 6�′F w. But by assumption also
w 6�′F v. Since v and w must be incompatible by v, w ∈ prf3(G), this means prf3(F ∗
ρADF

prf3 ({v, w})) ∩ {v, w} = ∅ and by ∗ fulfilling (A1prf3) even prf3(F ∗ ρADF
prf3 ({v, w})) = ∅,

a contradiction to ∗ satisfying (A3prf3).

With Theorems 33 and 34 we have obtained a one-to-one correspondence between revision
operators induced by i-max-faithful rankings and revision operators satisfying postulates
(A1prf3)–(A6prf3) and (Acycprf3).

To exemplify the obtained result, we introduce a three-valued version of Dalal’s operator.
We first have to define a suitable distance measure for three-valued interpretations, a
measure also used, for instance, by Arieli [8].

Definition 85. The symmetric distance function 4 between truth values is defined as
follows:

t4f = f4t = 1,

t4u = f4u = u4t = u4f = 1
2 ,

t4t = f4f = u4u = 0.

For interpretations v1, v2 ∈ V, their distance function 4 : V × V 7→ N is then defined as

v14v2 =
∑
a∈A

v1(a)4v2(a).
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Based on this distance measure we can define the ranking giving rise to the three-valued
version of Dalal’s revision operator.

Definition 86. Given an ADF F and semantics σ3, the ranking �σ3
F based on three-

valued distance is defined as

v1 �σ3
F v2 if and only if min

v∈σ3(F )
(v4v1) ≤ min

v∈σ3(F )
(v4v2)

for each v1, v2 ∈ V.

The operator ∗Dσ3 induced by �σ3
F returns F ∗Dσ3 G = ρADF

prf3 (min(σ3(G),�σ3
F )) for each

G ∈ ADFA.

It is easy to see that �σ3
F is i-max-faithful, as the minimal distance to σ3(F ) is 0 for

interpretations v ∈ σ3(F ) and greater than 0 for all interpretations v /∈ σ3(F ). Hence,
by Theorem 33, the ranking for preferred semantics ∗Dprf3 satisfies all postulates (A1prf3)–
(A6prf3) and (Acycprf3).

We show the behaviour of this operator in the following example.

Example 49. Consider the ADF F = {〈a, a〉, 〈b, a〉, 〈c,¬a ∧ b〉}, and observe that
prf3(F ) = {ttf , f f f}. First note that the minimal elements of �prf3

F coincide with prf3(F ),
i.e.

ttf ≈prf3
F f f f ≺prf3

F others.

Now consider the revision by the ADF G having prf3(G) = {tft, ttu, f fu} (e.g. the ADF
of the form G = {〈a, a ∧ (b ∨ c)〉, 〈b, a ∧ b〉, 〈c, (a ∧ (¬b ∨ ¬c)) ∨ (¬b ∧ ¬c)〉}) and observe
that

ttu ≈prf3
F f fu ≺prf3

F tft

This is because ttu and f fu have minimal distance to prf3(F ) of 1
2 , while tft has minimal

distance of 2. Therefore we get F ∗Dprf3 G = ρADF
prf3 ({ttu, f fu}).

On the other hand consider the ADF G′ = {〈a,>〉, 〈b,¬a〉, 〈c,¬b〉}, having prf3(G′) =
{tft}. The revision of F by G′ obviously results in an ADF also having tft – minimal
distance 2 to prf3(F ) – as only preferred interpretation. Inspecting the set of admissible
interpretations of G′, which can be seen as reasonable (but not maximal) positions in the
revising ADF, adm3(G′) = {tft, tfu, tuu,uuu}, we observe that it contains elements
which are closer to prf3(F ) than tft. In particular, the interpretation tuu has distance 1
to prf3(F ) and is even admissible in F . ♦

The latter part of the previous example already suggests that revision under preferred
semantics can lead to results which can be considered counterintuitive. Admissible
interpretations which are not maximal are not taken into account by the operator. After
showing in the next section that revising under admissible interpretations is also not
satisfactory, we will present an approach combining these two variants in Section 4.3.3.
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4.3.2 Revision under Admissible Semantics

Example 49 suggests to take the admissible interpretations into account when revising with
respect to the preferred interpretations. A quite radical step would be to just revise with
respect to admissible interpretations instead. But by the fact that adm3(F1)∩adm3(F2) 6=
∅ for all ADFs F1, F2 ∈ ADFA we get only one operator satisfying postulate (A2adm3).
The following result then immediately follows.

Theorem 35. An operator ∗ : ADFA × ADFA 7→ ADFA fulfills (A1adm3)–(A6adm3) if
and only if ∗ is defined as

F ∗G = ρADF
adm3(adm3(F ) ∩ adm3(G))

for any ADFs F and G.

It is important to note that admissible semantics is closed under intersection (cf. Propo-
sition 28), therefore ρADF

adm3
(adm3(F )∩ adm3(G)) always realizes adm3(F )∩ adm3(G). We

illustrate this operator in the following example.

Example 50. Again consider the ADFs F and G′ from Example 49 and note that
adm3(F ) = {ttf , f f f , ttu, tuf , f fu, tuu, fuu,uuu} and adm3(G′) = {tft, tfu, tuu,uuu}.
Moreover, let ∗adm3 be the operator from Theorem 35. As expected, we get F ∗adm3 G

′ =
ρADF

adm3
({tuu,uuu}), i.e. the resulting ADF has tuu as single preferred interpretation,

which was seen as one of the more desired scenarios in Example 49.

But now consider the ADF G′′ having adm3(G′′) = {utf ,uuu} (for instance G′′ =
{〈a,¬a〉, 〈b,¬b ∨ ¬c〉, 〈c,¬b ∧ ¬c〉}) and observe that F ∗adm3 G

′′ = ρADF
adm3

({uuu}). From
the perspective of the preferred interpretations of F (being {ttf , f f f}) this might not be
desired, as utf is admissible in G′′ and has a distance of only 1

2 to prf3(F ), while the
result of the revision has distance 3

2 . ♦

4.3.3 Hybrid Approach

Due to the problems illustrated in Examples 49 and 50 we are interested in taking both
admissible and preferred semantics into account when revising ADFs. In this section
we do so by studying revision operators ? : ADFA ×ADFA 7→ ADFA that select out of
the admissible interpretations of the revising ADF (in a sense accepting all reasonable
positions as valid outcomes of the revision), but base the amount of change on the
preferred interpretations of the original ADF. To this end we reformulate the postulates
to this setting:

(H1) prf3(F ? G) ⊆ adm3(G).

(H2) If prf3(F ) ∩ adm3(G) 6= ∅, then prf3(F ? G) = prf3(F ) ∩ adm3(G).

(H3) If adm3(G) 6= ∅, then prf3(F ? G) 6= ∅.
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(H4) If prf3(F1) = prf3(F2) and adm3(G) = adm3(H), then prf3(F1 ? G) = prf3(F2 ? H).

(H5) prf3(F ? G) ∩ adm3(H) ⊆ prf3(F ? ρADF
adm3

(adm3(G) ∩ adm3(H))).

(H6) If prf3(F ?G)∩adm3(H) 6= ∅, then prf3(F ? ρADF
adm3

(adm3(G) ∩ adm3(H))) ⊆ prf3(F ?
G) ∩ adm3(H).

(HAcyc) If for 1 ≤ i < n, prf3(F ?Gi+1)∩adm3(Gi) 6= ∅ and prf3(F ?G1)∩adm3(Gn) 6= ∅
then prf3(F ? Gn) ∩ adm3(G1) 6= ∅.

As admissible semantics may give pairwise compatible interpretations, we will not restrict
ourselves to i-max-faithful rankings for the representation result. However, we face
another challenge, as illustrated in the following example.

Example 51. Consider the preorder � given by f f ≺ others ≺ tu ≈ ut ≺ tt ≺ uu and
the ADFs

F = {〈a,⊥〉, 〈b,⊥〉},
G = {〈a,>〉, 〈b,>〉}, and
H = {〈a,¬a ∨ b〉, 〈b, a ∨ ¬b〉}.

We have prf3(F ) = {f f}, adm3(G) = {uu,ut, tu, tt}, and adm3(H) = {uu, tt}. It can
be seen that � is a faithful ranking for F . However, the revision operator ? induced by
� gives us F ? G = ρADF

prf3 (min(adm3(G),�)) = ρADF
prf3 ({ut, tu}) and we further get

• prf3(F ? G) ∩ adm3(H) = {uu}, but

• prf3(F ? ρADF
adm3

(adm3(G) ∩ adm3(H))) = {tt}.

Therefore ? violates (H5) and (H6). The problem arises because of the fact that ut
and tu are compatible. That is, the set of interpretations {ut, tu} is not incompatible
and hence cannot be realized under preferred semantics (cf. Theorem 24). Therefore,
prf3(ρADF

prf3 ({ut, tu})) = {uu}. Again, the choice of realizing the set {vu} instead of an
unrealizable interpretation-set is an arbitrary one. However, similar as in Example 43,
also alternative definitions of ρADF

prf3 lead to the same problem. ♦

To overcome this issue we introduce the concept of compliance, a notion similarly used
in work on revision of logic programs [85], Horn theories [84], and AFs by propositional
formulas [89]. The following definition of compliance differs from the previous versions in
that it is parametrized by two semantics.

Definition 87. Given two semantics σ and τ , a preorder � is σ-τ -compliant if, for every
ADF G ∈ ADFA, it holds that min (τ(G),�) ∈ Σσ

ADF .
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The intuitive idea of a σ-τ -compliant ranking � is that using � to select the most
plausible results of the evaluation of a knowledge base under τ gives a result that is
realizable under σ.

We will make use of the following properties of the adm-closure (cf. Definition 66) in
the upcoming results. Note that, in the remainder of this section, we will often denote
cl({v1, v2}) for arbitrary pairs of interpretations v1, v2 ∈ V by cl(v1, v2).

Lemma 25. For each V, V1, V2 ⊆ V and v, v′ ∈ V it holds:

1. cl(V ) = cl(cl(V )) ( idempotence)

2. V1 ⊆ V2 ⇒ cl(V1) ⊆ cl(V2) (monotonicity)

3. ∀v′′ ∈ cl(v, v′) : cl(v, v′′) ⊆ cl(v, v′).

Proof. Note that V ⊆ cl(V ) for any V ⊆ V is clear by definition.

(1) cl(V ) ⊆ cl(cl(V )) follows from the initial observation. To show that also cl(V ) ⊇
cl(cl(V )), assume there is some v ∈ cl(cl(V )) with v /∈ cl(V ). The latter means that
there is some a ∈ (vt ∪ vf ) and some v2 ∈ [v]2 such that there is no v′ ∈ V with v′ ≤i
v2 ∧ v′(a) = v(a). Now for these particular a and v2 it holds, by v ∈ cl(cl(V )), that there
is some w ∈ cl(V ) such that w ≤i v2 ∧ w(a) = v(a). In order for w ∈ cl(V ) it must hold
that there is some w′ ∈ V with w′ ≤i v2 and w′(a) = w(a). We have w′(a) = w(a) = v(a),
a contradiction to the fact that there is no v′ ∈ V with v′ ≤i v2 ∧ v′(a) = v(a).

(2) Let v ∈ cl(V1) and consider arbitrary a ∈ vt ∪ vf and v2 ∈ [v]2. It must hold that
there is some v′ ∈ V1 such that v′ ≤i v2 and v(a) = v′(a). As V1 ⊆ V2 by assumption,
also v′ ∈ V2, hence v ∈ cl(V2).

(3) Consider some v′′ ∈ cl(v, v′), i.e. for each a ∈ v′′t ∪ v′′f and each v2 ∈ [v′′]2 it holds
that v ≤i v2∧v(a) = v′′(a) or v′ ≤i v2∧v′(a) = v′′(a). Assume there is some w ∈ cl(v, v′′)
and w /∈ cl(v, v′). The latter means that there is some a ∈ wt ∪ wf and some w2 ∈ [w]2
such that neither v ≤i w2 ∧ v(a) = w(a) nor v′ ≤i w2 ∧ v′(a) = w(a) holds. Hence, by
w ∈ cl(v, v′′), we get for this particular a and w2 that v′′ ≤i w2 and v′′(a) = w(a). From
a ∈ wt ∪ wf and v′′(a) = w(a) it follows that a ∈ v′′t ∪ v′′f and from v′′ ≤i w2 we get
w2 ∈ [v′′]2. Therefore, from v′′ ∈ cl(v, v′) and ¬(v′ ≤i w2 ∧ v′(a) = w(a)), we get v ≤i w2
and v(a) = v′′(a) and, consequently, v(a) = w(a), a contradiction.

We now show the representation result for our hybrid operators which work on the
admissible interpretations of the revising ADF but basing the distance measure on
the preferred interpretations of the original ADF. The first direction follows similar to
Theorem 33 with the help of prf3-adm3-compliance.

Theorem 36. If there exists a faithful assignment mapping each ADF F to a a prf3-adm3-
compliant, faithful ranking �F for F , then the revision operator ? : ADFA × ADFA 7→
ADFA defined as

F ? G = ρADF
prf3 (min(adm3(G),�F ))
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satisfies postulates (H1)–(H6) and (HAcyc).

Proof. Let F be an ADF and �F be the i-max-faithful ranking for F that is prf3-adm3-
compliant. First note that, since �F is prf3-adm3-compliant, it holds, for any ADF G, that
min (adm3(G),�F ) ∈ Σprf3

ADF. Hence prf3(ρADF
prf3 (min(adm3(G),�F ))) = min(adm3(G),�F

) and, consequently, prf3(F ? G) = min(adm3(G),�F ) for every ADF G.

(H1) follows immediately. (H2) holds since �F is faithful for F . By finiteness of
adm3(G) and transitivity of �F , min(adm3(G),�F ) 6= ∅ holds, i.e. (H3) is satisfied.
If prf3(F ) = prf3(F2) and adm3(G) = adm3(H), for further ADFs F2, G, and H,
then �F=�F2 as they are obtained from a faithful assignment, and, consequently,
min(adm(G),�F ) = min(adm(H),�F2), showing the (H4) holds. (H5) and (H6) can be
shown analogously to Theorem 33, keeping in mind that also adm3(G) ∩ adm3(H) is
realizable under adm3 for arbitrary ADFs G and H. Finally, also (HAcyc) can be shown
just as in Theorem 33.

The other direction of the proof differs from the previous ones, as we have to construct a
total preorder, but testing the operator on pairs of interpretations does not always give
insight about the desired ranking. More formally, given two interpretations v1 and v2, it
is not guaranteed that {v1, v2} ∈ Σadm3

ADF . Therefore we build the adm-closure to construct
an ADF containing v1 and v2, i.e. ρADF

adm3
(cl({v1, v2})). However, for a rational operator

and an ADF F , we can get now that {v1, v2} ∩ prf3(F ? ρADF
adm3

(cl({v1, v2})) = ∅. Hence
we have no indication whether to prefer v1 or v2. In the course of the proof we will show
how we overcome this issue.

Theorem 37. Let ? : ADFA×ADFA 7→ ADFA be a revision operator satisfying postulates
(H1)–(H6) and (HAcyc). Then there is a faithful assignment mapping every ADF F to
a faithful ranking �F for F that is prf3-adm3-compliant and such that prf3(F ? G) =
min(adm3(G),�) for every ADF G.

Proof. Let ? : ADFA×ADFA 7→ ADFA be an operator satisfying (H1)–(H6) and (HAcyc)
and F be an arbitrary ADF. We will gradually define the ranking � and show that it
is faithful for F and prf3-adm3-compliant and it indeed simulates ? by prf3(F ? G) =
min(adm3(G),�).

Throughout out the proof, we will make use of the following observation: given an
arbitrary set of interpretations V ⊆ V, cl(V ) = cl(cl(V )) (cf. Lemma 25.1), hence
cl(V ) ∈ Σadm3

ADF and, consequently, adm3(ρADF
adm3

(cl(V ))) = cl(V ).

First, we define �′ as v �′ v for each v ∈ V and

v1 �′ v2 if and only if v1 ∈ prf3(F ? ρADF
adm3(cl(v1, v2)))

for each v1, v2 ∈ V with v1 6= v2. Note that �′ is reflexive, but neither transitive
nor total. The latter is because there might be interpretations v1, v2 ∈ V for which
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prf3(F ? ρADF
adm3

(cl(v1, v2))) ∩ {v1, v2} = ∅ due to cl(v1, v2) ⊃ {v1, v2}. After showing three
properties of �′ we will extend it first to the transitive ranking �t and then to the desired
ranking �.

Lemma 26. For any v1, v2 ∈ V such that v1 �′ v2 and any G ∈ ADFA, it holds that if
v1 ∈ adm3(G) and v2 ∈ prf3(F ? G) then v1 ∈ prf3(F ? G).

Proof. Let G ∈ ADFA, v1 ∈ adm3(G), v2 ∈ prf3(F ? G) with v1 �′ v2. First, we get
v2 ∈ adm3(G) from (H1). Moreover, from (H5) and (H6) we get prf3(F ?G)∩ cl(v1, v2) =
prf3(F ? ρADF

adm3
(adm3(G) ∩ cl(v1, v2)). As both v1, v2 ∈ adm3(G) and cl(adm3(G)) =

adm3(G) we get that cl(v1, v2) ⊆ adm3(G) from Lemma 25.2, hence prf3(F ? G) ∩
cl(v1, v2) = prf3(F ? ρADF

adm3
(cl(v1, v2)) by (H4). Now as v1 �′ v2 by assumption it must

hold that v1 ∈ prf3(F ? ρADF
adm3

(cl(v1, v2))), hence v1 ∈ prf3(F ? G).

Lemma 27. For each G ∈ ADFA it holds that min(adm3(G),�′) = prf3(F ? G).

Proof. ⊆: Towards a contradiction, assume there is some v1 ∈ min(adm3(G),�′) such
that v1 /∈ prf3(F ? G). From (H3) we know prf3(F ? G) 6= ∅, so assume an arbitrary
v2 ∈ prf3(F ? G). From Lemma 26 it follows that v1 6�′ v2 and, consequently, from
v1 ∈ min (adm3(G),�′) also v2 6�′ v1. By the definition of �′ this means that v1, v2 /∈
prf3(F ? ρADF

adm3
(cl(v1, v2))) and, considering (H3), there must then be some v3 ∈ prf3(F ?

ρADF
adm3

(cl(v1, v2))). From (H1) it follows that v3 ∈ adm3(ρADF
adm3

(cl(v1, v2))), i.e. v3 ∈
cl(v1, v2). Then from (H5) and (H6) we get

prf3(F ? ρADF
adm3(cl(v1, v2))) ∩ cl(v1, v3) = prf3(F ? ρADF

adm3(cl(v1, v2) ∩ cl(v1, v3))).

From Lemma 25.3 it follows that cl(v1, v3) ⊆ cl(v1, v2), hence

prf3(F ? ρADF
adm3(cl(v1, v2))) ∩ cl(v1, v3) = prf3(F ? ρADF

adm3(cl(v1, v3)))

by (H4). Recalling that v1 /∈ prf3(F ?ρADF
adm3

(cl(v1, v2))) and v3 ∈ prf3(F ?ρADF
adm3

(cl(v1, v2)))
it follows that v1 /∈ prf3(F ? ρADF

adm3
(cl(v1, v3))) and v3 ∈ prf3(F ? ρADF

adm3
(cl(v1, v3))),

hence v3 ≺′ v1. Finally, note that, by v1, v2 ∈ adm3(G) and cl(adm3(G)) = adm3(G),
cl(v1, v2) ⊆ adm3(G), hence v3 ∈ adm3(G), a contradiction to v1 ∈ min(adm3(G),�′).

⊇: Let v1 ∈ prf3(F ? G) and consider an arbitrary v2 ∈ adm3(G). Observing v1 ∈
adm3(G) by (H1) we get prf3(F ? G) ∩ cl(v1, v2) = prf3(F ? ρADF

adm3
(adm3(G) ∩ cl(v1, v2)))

by (H5) and (H6). Moreover, cl(v1, v2) ⊆ adm3(G) by Lemma 25.2, hence prf3(F ?
G) ∩ cl(v1, v2) = prf3(F ? ρADF

adm3
(cl(v1, v2))) by (H4) and, consequently, v1 ∈ prf3(F ?

ρADF
adm3

(cl(v1, v2))), meaning v1 �′ v2. Therefore, recalling that v2 was chosen arbitrarily,
v1 ∈ min(adm3(G),�′).

We show the following similarly as (4.1).

Lemma 28. Given interpretations v1, . . . , vn ∈ V, it holds that if v1 �′ · · · �′ vn �′ v1
then v1 �′ vn.
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Proof. For n ≤ 2 the statement is immediate. Assume n > 2. By definition of �′ we first
get that vi ∈ prf3(F ?ρADF

prf3 ({vi, vi+1})) for 1 ≤ i < n−1 and vn ∈ prf3(F ?ρADF
prf3 ({vn, v1})).

It follows that

v1 ∈ prf3(F ? ρADF
adm3(cl(v1, v2))) ∩ cl(vn, v1),

vi ∈ prf3(F ? ρADF
adm3(cl(vi, vi+1))) ∩ cl(vi−1, vi) for 1 < i < n, and

vn ∈ prf3(F ? ρADF
adm3(cl(vn, v1))) ∩ cl(vn−1, vn).

Considering (HAcyc) we get prf3(F ? ρADF
adm (cl(vn, v1))) ∩ cl(v1, v2) 6= ∅, meaning further

by (H5) and (H6) that

prf3(F ? ρADF
adm3(cl(vn, v1))) ∩ cl(v1, v2) = prf3(F ? ρADF

adm3(cl(vn, v1) ∩ cl(v1, v2))).

Moreover, from prf3(F ? ρADF
adm3

(cl(v1, v2))) ∩ cl(vn, v1) 6= ∅ we derive by (H5) and (H6)
that

prf3(F ? ρADF
adm3(cl(v1, v2))) ∩ cl(vn, v1) = prf3(F ? ρADF

adm3(cl(v1, v2) ∩ cl(vn, v1))).

Hence, from v1 ∈ prf3(F ? ρADF
adm3

(cl(v1, v2))) ∩ cl(vn, v1) it follows that v1 ∈ prf3(F ?

ρADF
adm3

(cl(v1, v2)∩cl(vn, v1))) and, consequently, v1 ∈ prf3(F ?ρADF
adm3

(cl(vn, v1))). Therefore
v1 �′ vn.

Now we define �t to be the transitive closure of �′. As a consequence of Lemma 28 we
infer, as in Lemma 19, that

for v1, v2 ∈ V : v1 ≺′ v2 implies v1 ≺t v2 (4.6)

We define, for any interpretation-set V , max(V,�t) as the set {v1 ∈ V | @v2 ∈ V : v1 ≺t
v2}. We get, by Lemma 28 and the fact that V is finite, that

for V ⊆ V : V 6= ∅ implies max(V,�t) 6= ∅ (4.7)

We are now ready to define �. To this end consider the sequence of sets of interpretations
V0, V1, . . . defined as

V0 = max(V,�t),

V1 = max
(
V \ V0,�t

)
,

Vi = max(V \
⋃

0≤j<i
Vj ,�t) for i > 1.

Since V is finite we conclude from (4.7) that the sequence will reach the empty set of
interpretations at some point and each of the following elements will also be empty.
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The sequence V1, . . . , Vm of non-empty sets of interpretation then forms a partition of V.
Based on this we define � as

v1 � v2 if and only if ∃Vi, Vj s.t. v1 ∈ Vi, v2 ∈ Vj , i ≥ j

for each v1, v2 ∈ V . As each interpretation is contained in exactly one set of the sequence,
it is easy to see that � is total, reflexive, and transitive. It remains to show that its
minimal elements coincide with �′.

Lemma 29. For each G ∈ ADFA it holds that min(adm3(G),�) = min(adm3(G),�′).

Proof. Let Vk be the last set in the sequence V0, . . . , Vm such that Vk ∩ adm3(G) 6= ∅.
By definition of �, min(adm3(G),�) = Vk ∩ adm3(G). Hence we have to show that
Vk ∩ adm3(G) = min(adm3(G),�′).

⊆: Assume there is some v ∈ Vk ∩ adm3(G) such that v /∈ min(adm3(G),�′). From
the latter it follows that ∃v0 ∈ adm3(G) : v0 ≺′ v. From (4.6) we get v0 ≺t v, hence
v0 /∈ max(Vk,�t). As Vk is the last set with Vk ∩ adm3(G) 6= ∅ it must hold that
v0 ∈ Vj with j < k, i.e. v0 ∈ max(V \

⋃
0≤i<j Vi,�t). Therefore, recalling v0 ≺t v,

v /∈ V \
⋃

0≤i<j Vi, contradicting v ∈ Vk and j < k.

⊇: Assume there is some v0 ∈ min(adm3(G),�′) such that v0 /∈ Vk ∩ adm3(G). That
means v0 ∈ adm3(G) and v0 /∈ Vk and further that v0 ∈ Vj for some j < k. Now let
v1 ∈ Vk ∩ adm3(G). As j < k it holds that v1 ∈ V \

⋃
0≤i<j Vi. Since v0 is maximal

wrt. �t in this set, v0 6≺t v1 and further, by the contrapositive of (4.6), v0 6≺′ v1. It
holds that v0 ∈ prf3(F ? ρADF

adm3
(cl(v0, v1))) and therefore v0 �′ v1 though. We show

this by assuming, towards a contradiction, that v0 /∈ prf3(F ? ρADF
adm3

(cl(v0, v1))). Hence
v0 6�′ v1. As v0 ∈ min(adm3(G),�′) by assumption and v1 ∈ adm3(G), then also
v1 6�′ v0. By (H3) there has to be some v2 ∈ prf3(F ? ρADF

adm3
(cl(v0, v1))). As also

v2 ∈ cl(v0, v2) we get by (H5) and (H6) that v2 ∈ prf3(F ? ρADF
adm3

(cl(v0, v1) ∩ cl(v0, v2))).
From Lemma 25.2 we infer that cl(v0, v2) ⊆ cl(v0, v1), hence v2 ∈ prf3(F ?ρADF

adm3
(v0, v2)) by

(H4), meaning that v2 �′ v0. Moreover, v0 /∈ prf3(F ? ρADF
adm3

(v0, v2)), hence even v2 ≺′ v0.
As v2 ∈ adm3(G) from v0, v1 ∈ adm3(G) and cl(v0, v1) ⊆ cl(adm3(G)) = adm3(G),
we get a contradiction to v0 ∈ min(adm3(G),�′). Hence v0 �′F v1. Now consider
an arbitrary v3 ∈ V \

⋃
0≤i<j Vi such that v1 �t v3. From v0 �′ v1 �t v3 we get

v0 �t v3. But since v0 ∈ max(V \
⋃

0≤i<j Vi,�t) it must also hold that v3 �t v0, meaning,
together with v0 �′ v1, that v3 �t v1. As v3 was chosen arbitrarily we have that
v1 ∈ max(V \

⋃
0≤i<j Vi,�t), i.e. v1 ∈ Vj , a contradiction to v1 ∈ Vk and j < k.

The fact that � indeed simulates ? is now obtained from Lemmas 27 and 29: we
get that prf3(F ? G) = min(adm3(G),�) for each ADF G. This also makes � prf3-
adm3-compliant. To show that � is faithful for F observe that, by (H2), it holds that
prf3(F ? ρADF

adm3
(V)) = prf3(F ) (note that for the set of all interpretations, cl(V) = V),

hence prf3(F ) = min(V,�), meaning that (i) v1 ≈ v2 for v1, v2 ∈ prf3(F ) and (ii) v1 ≺ v2
for v1 ∈ prf3(F ) and v2 /∈ prf3(F ). Finally, for ADFs F1 and F2 with prf(F1) = prf(F2)
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tf , ft,uu

tu,ut,uf , fu

tt, f f

Figure 4.7: Faithful ranking �prf3
F for AF F used in Example 52.

we get, by definition of �′, �t, � and (H4), that �F1=�F2 , hence the assignment is
faithful. This concludes the proof.

We have established a correspondence between operators induced by prf3-adm3-compliant
rankings and operators satisfying the postulates (H1)–(H6) and (HAcyc). Of course,
the condition of prf3-adm3-compliance depends on the concrete capabilities in terms
of realizability of σ3 and τ3. Fortunately, we can capture prf3-adm3-compliance with
conditions on the ranking.

Proposition 35. A preorder � is prf3-adm3-compliant if and only if

∀v1, v2 ∈ V : v1 6= v2 ∧ v1, v2 compatible ∧ v1 ≈ v2 implies ∃v3 ∈ cl(v1, v2) : v3 ≺ v1, v2.

Proof. For the if-direction assume that for all v1, v2 ∈ V the implication holds. Consider an
arbitrary ADF G and assume that min(adm3(G),�) /∈ Σprf3

ADF. Hence min(adm3(G),�) is
not incompatible, i.e. there exist v1, v2 ∈ min(adm3(G),�) (v1 6= v2) which are compatible.
Moreover, since both are minimal wrt. �, it holds that v1 ≈ v2. Hence we get that
∃v3 ∈ cl(v1, v2) : v3 ≺ v1, v2. By monotonicity of cl (cf. Lemma 25.2) it follows that also
v3 ∈ adm3(G), a contradiction to v1 ∈ min(adm3(G),�).

For the only-if-direction assume that � is prf3-adm3-compliant. Let v1, v2 ∈ V such
that v1 6= v2, v1 and v2 are compatible and v1 ≈ v2. Further consider the ADF G such
that adm(G) = cl({v1, v2}) (note that such an ADF exists since cl is idempotent by
Lemma 25.1). Since min(adm(G),�) ∈ Σprf3

ADF but for any V ⊆ {v1, v2}, V /∈ Σprf3
ADF (recall

that v1 and v2 are compatible), there must be some v3 ∈ adm(G) = cl({v1, v2}) with
v3 ≺ v1, v2, which was to show.

With the insights from Theorems 36 and 37 we obtain concrete operators from faithful
and prf3-adm3-compliant rankings. For instance, a valid operator is induced from the
ranking �F where prf3(F ) are the minimal elements and all other interpretations form a
≺F -chain. The three-valued version of Dalal’s operator (cf. Definition 86) is not directly
applicable here, as �prf3

F does not yield a prf3-adm3-compliant ranking for every ADF, as
we will see in the following example.
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Example 52. Consider the ADF F = {〈a, a ∧ b〉, 〈b, a ∧ b〉} and observe that prf3(F ) =
{tt, f f}. It yields the ranking �prf3

F depicted in Figure 4.7. Now consider the compatible
interpretations tu and uf and observe that all v ∈ cl({tu,uf}) = {uu, tu,uf , tf} have
v 6≺prf3

F tu and v 6≺prf3
F uf . Therefore, according to Proposition 35, �prf3

F is not prf3-adm3-
compliant. In practice, this means that F ∗Dprf3 G, where adm3(G) = {uu, tu,uf , tf} (e.g.
G = {〈a,>〉, 〈b,⊥〉}), would yield ρADF

prf3 ({tu,uf}); but as {tu,uf} is not realizable under
prf3 we do net get the preferred interpretations prescribed by the postulates. ♦

A refinement of the distance measure in order to result in prf3-adm3-compliant rankings
is subject to future work.

4.4 Complexity

In this section we study the complexity of Dalal’s operator for revision of AFs. We will
consider the following decision problem for semantics σ ∈ {stb, prf, sem, stg}:

Given: the original AF F , the revising AF G, and a set of arguments E,
Decide: whether E is a σ-extension of the revision of F by G, i.e. E ∈ σ(F ∗Dσ G)?

The problem we are interested in is closely related to model checking in propositional
logic revision, i.e. given a set of atoms E and formulas φ and ψ, deciding whether
E ∈ Mod(φ ◦D ψ). The complexity of that problem was studied by Liberatore and
Schaerf [144] and shown to be ΘP

2 -complete. We will study the considered problem for the
proper I-maximal semantics stable, preferred, semi-stable and stage. We will show that
the complexity for revision under stable semantics has the same complexity as in the case
of propositional logic, while for revision under preferred (resp. semi-stable) semantics it
lies one level up in the polynomial hierarchy, i.e. it is ΘP

3 -complete. For stage semantics
we will show membership in this class.

We begin with the complexity of Dalal’s operator for revision by AFs under stable
semantics. We will make use of the following construction, which is adapted from
reductions used in complexity proofs by Dimopoulos and Torres [92] and Dunne and
Bench-Capon [97]. Moreover, for a set of arguments X = {x1, . . . , xn} we denote by X
the set of arguments {x1, . . . , xn}.

Definition 88. Given a propositional formula ϕ(X) =
∧
c∈C c in CNF, we define Fϕ =

(Aϕ, Rϕ) as:

Aϕ =X ∪X ∪ C ∪ {ϕ,ϕ},
Rϕ ={(x, x), (x, x) | x ∈ X} ∪ {(c, c′) | c, c′ ∈ C, c 6= c′}∪

{(x, c) | x occurs in c} ∪ {(x, c) | ¬x occurs in c}∪
{(c, ϕ) | c ∈ C} ∪ {(ϕ,ϕ)}.
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ϕ

ϕ

c1 c2 c3

x1 x1 x2 x2 x3 x3

Figure 4.8: AF Fϕ for ϕ(X) = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3).

Figure 4.8 depicts Fϕ for an exemplary CNF formula ϕ(X).

Lemma 30. Given a propositional formula ϕ(X) =
∧
c∈C c in CNF, it holds that:

1. ϕ is satisfiable if and only if there exists an E ∈ stb(Fϕ) such that ϕ /∈ E;

2. for each E,E′ ∈ stb(Fϕ) such that ϕ /∈ E and ϕ ∈ E′, it holds that |E|+ 1 = |E′|;

3. for each E ∈ stb(Fϕ) such that ϕ /∈ E and each E′ ∈ stb(Fϕ − (C ∪ {ϕ})) it holds
that |E| = |E′|.

Proof. We begin with the observation that every stable extension of Fϕ as well as every
stable extension of Fϕ − (C ∪ {ϕ}) contains S ∪ (X \ S) for some S ⊆ X, since each
argument x ∈ X is in symmetric conflict with x and neither of them receives any further
attacks.

1. (⇒): Assume ϕ is satisfiable, then there is some S ⊆ X such that for each c ∈ C,
it holds that S |= c. Hence, by construction of Fϕ, S ∪ (X \ S) attacks all c ∈ C.
Thus S ∪ (X \ S)∪{ϕ} ∈ stb(Fϕ). (⇐): Let E ∈ stb(Fϕ) with ϕ /∈ E. Moreover let
S ⊆ X for which S ∪ (X \ S) ⊆ E (recall from before that such an S must exist).
Since ϕ is the only attacker of ϕ it follows that ϕ ∈ E and further c /∈ E for all
c ∈ C. Therefore S ∪ (X \ S) must attack each c ∈ C, meaning by construction of
Fϕ that S |= c for each c ∈ C, hence S |= ϕ; that is, ϕ is satisfiable.

2. From the (⇐)-direction of (1) we get that each E ∈ stb(Fϕ) with ϕ /∈ E has
|E| = |X| + 1. For an arbitrary E′ ∈ stb(Fϕ) with ϕ ∈ E′ it must hold that
ϕ /∈ E′, hence for at least one c ∈ C we must have c ∈ E′. Since, as we know,
S ∪ (X \ S) ⊆ E′ for some S ⊆ X, and by C forming a clique, c ∈ E for at most
one c ∈ C, it follows that |E′| = |X|+ 2, that is |E|+ 1 = |E′|.

3. Each E′ ∈ stb(Fϕ − (C ∪ {ϕ})) is of the form E′ = S ∪ (X \ S) ∪ {ϕ} for some
S ⊆ X. Therefore |E′| = |X|+ 1. Hence, from the observation in (2), the result
follows.
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Given these observations we can show the exact complexity of Dalal’s operator for revision
under stable semantics.

Theorem 38. Given AFs F,G ∈ AFA and E ⊆ A, deciding whether E ∈ stb(F ∗Dstb G)
is ΘP

2 -complete.

Proof. For membership in ΘP
2 we sketch an algorithm that decides E ∈ stb(F ∗Dstb G) in

polynomial time with O(logm) calls to an NP oracle, where m = |AF |+ |AG|. First we
check whether E ∈ stb(G) (in P); if no, then we return with a negative answer. Then
the minimal distance z = min{4H(S, T ) | S ∈ stb(F ), T ∈ stb(G)} is determined. It
holds that z ≤ m, since S ⊆ AF (resp. T ⊆ AG) for each S ∈ stb(F ) (resp. T ∈ stb(G)).
Now z can be computed by binary search among {0, . . . ,m} with O(logm) calls to the
following NP procedure: guess S ⊆ AF , T ⊆ AG and check, in polynomial time, whether
S ∈ stb(F ), T ∈ stb(G) and 4H(S, T ) < z. Having obtained z, we finally call another
NP oracle to check whether there is an S ∈ stb(F ) such that 4H(S,E) = z; if such an S
does exist, E ∈ stb(F ∗Dstb G), otherwise E /∈ stb(F ∗Dstb G).

To show ΘP
2 hardness we give a polynomial-time reduction from the following ΘP

2 -complete
problem (recall that a 1-existential QBF being false is equivalent to a propositional formula
being unsatisfiable):

Given: propositional formulas ϕ1(X1), . . . , ϕm(Xm) such that
ϕi unsatisfiable implies ϕi+1 unsatisfiable, for 1 ≤ i < m,

Decide: whether k = max{1 ≤ i ≤ m | ϕi is satisfiable} is odd.

Without loss of generality we can assume that:

(i) Xi ∩Xj = ∅ for all 1 ≤ i, j ≤ m, i 6= j;

(ii) a fixed n = |Xi| = |Xj | for all 1 ≤ i, j ≤ m;

(iii) each ϕi is in CNF with Ci denoting the set of clauses of ϕi; and

(iv) m is odd.

Now, given an instance of this problem, define F =
⋃

1≤i≤m Fϕi ∪ Fi where Fϕi is given
by Definition 88 and:

Fi =
(
{ϕi, ϕi+1} ∪ Ci, {(ϕi+1, ϕi)} ∪ {(ϕi+1, c) | c ∈ Ci}

)
for 1 ≤ i < m

Fm =
(
{ϕm, x, x′} ∪ Cm, {(x, x′), (x′, x), (x′, ϕm)} ∪ {(x′, c) | c ∈ Cm}

)
.

Intuitively, F contains the frameworks Fϕi constructed according to Definition 88 together
with “connecting frameworks” Fi which make ϕi+1 attack ϕi and all “clause-arguments”
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Figure 4.9: Illustration of the AF obtained from the reduction in the proof of Theorem 38.

Ci. Fm can be seen as the “starting framework”, that has additional arguments x and
x′ (in symmetric attack) and x′ adopting the role of attacking the “clause-arguments”.
A schematic illustration of F can be seen in Figure 4.9. Moreover, we define G =
({x, x′}, {(x, x′), (x′, x)}) and E = {x}. In the following we show that E ∈ stb(F ∗Dstb G)
if and only if k is odd.

Due to the splitting property [19] (we will see this in more detail in Section 5.1, Theo-
rem 43), the stable extensions of F are composed by the union of stable extensions of
its components, where the computation of stb(Fϕi) has to take into account stb(Fϕi+1).
That is, stb(F ) = {{α} ∪

⋃
1≤i≤mEi | α ∈ {x, x′}, Ei ∈ stb(F ′ϕi)} where

• F ′ϕm = Fϕm if α = x and F ′ϕm = Fϕm − (Cm ∪ {ϕm}) if α = x′, and

• F ′ϕi = Fϕi if ϕi+1 /∈ Ei+1 and F ′ϕi = Fϕi − (Ci ∪{ϕi}) if ϕi+1 ∈ Ei+1 for 1 ≤ i < m.

In words, F ′ϕi is just the AF Fϕi , but without the arguments being attacked by accepted
arguments F ′ϕi+1 (given by Ei+1). That is, if ϕi+1 /∈ Ei+1 then F ′ϕi = Fϕi and otherwise
F ′ϕi is Fϕi without Ci ∪ {ϕi}.

Now recall that k is the highest index such that ϕk is satisfiable. Consider an i with
k < i ≤ m. If F ′ϕi = Fϕi then we know, by Lemma 30.1 and ϕi being unsatisfiable,
that ϕi ∈ Ei, hence F ′ϕi−1 = Fϕi−1 − (Ci−1 ∪ {ϕi−1}). On the other hand if F ′ϕi =
Fϕi − (Ci ∪ {ϕi}) then obviously ϕi /∈ Ei, hence F ′ϕi−1 = Fϕi−1 . Now consider an i
with 1 ≤ i ≤ k. Again from Lemma 30.1 and ϕi being satisfiable, we get that there is
some E ∈ stb(Fϕi) with ϕi /∈ E. Therefore, by Lemma 30.2 and 30.3, for α ∈ {x, x′}
the extension S∗α = {α} ∪

⋃
1≤i≤mEi with ϕi /∈ Ei for 1 ≤ i ≤ k is the one with

the minimal distance to {α} among all elements of stb(F ) (recall the assumption that
|Xi| = |Xj | for all 1 ≤ i, j ≤ m). Now if k is odd, we get, by the assumption (iii) that
m is odd, that m − k is even. Hence 4H(S∗x, {x}) = 4H(S∗x′ , {x′}) and furthermore
stb(F ∗Dstb G) = {{x}, {x′}}, that is E ∈ stb(F ∗Dstb G). If, on the other hand, k is even,
then m− k is odd and, by Lemma 30.2 and 30.3, dH(S∗x, {x}) = dH(S∗x′ , {x′}) + 1, hence
E /∈ stb(F ∗Dstb G) = {{x′}}.
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ϕ

d1 d2 d3

y1 y1 y2 y2 z1 z1 z2 z2

ϕ

Figure 4.10: AF FΦ for the QBF Φ = ∃y1, y2∀z1, z2 : (y1 ∧ ¬y2 ∧ z1) ∨ (y1 ∧ y2 ∧ ¬z2) ∨
(¬y2 ∧ ¬z1).

The problem of verification (checking whether a given set of arguments is an extension) is
coNP-complete for preferred semantics, while it is decidable in polynomial time (and even
in logarithmic space) for stable semantics (cf. Table 2.1). As it turns out, this increase in
complexity also carries over to revision under preferred semantics. To show this, we will
make use of the following construction.

Definition 89. Given a 2-existential QBF Φ = ∃Y ∀Zϕ(Y, Z) where ϕ is a DNF
∨
d∈D d

with each d a conjunction of literals from X = Y ∪ Z, we define FΦ = (AΦ, RΦ) as:

AΦ =X ∪X ∪D ∪ {ϕ,ϕ},
RΦ ={(x, x), (x, x) | x ∈ X}∪

{(x, d) | x occurs in d} ∪ {(x, d) | ¬x occurs in d}∪
{(d, ϕ) | d ∈ D} ∪ {(ϕ,ϕ), (ϕ,ϕ)} ∪ {(ϕ, z) | z ∈ Z}.

The construction is illustrated on an exemplary 2-existential QBF Φ in Figure 4.10. Note
that the attacks from arguments in X ∪X to arguments in D differ from Definition 88.
Now the idea is that an argument d ∈ D needs all arguments occurring as literals in d to
be defended. The following lemma states this more formally.

Lemma 31. Let Φ = ∃Y ∀Zϕ(Y,Z) where ϕ is a DNF
∨
d∈D d. For each d ∈ D, S ⊆ Y

and T ⊆ Z it holds that:

• S ∪ T |= d if and only if d is defended by S ∪ (Y \ S) ∪ T ∪ (Z \ T );

• S ∪ T 6|= d if and only if d is attacked by S ∪ (Y \ S) ∪ T ∪ (Z \ T ).

Proof. If S ∪ T |= d, then the set of arguments attacking d is, according to Definition 89,
contained in S ∪ (Y \ S) ∪ T ∪ (Z \ T ). Therefore, it is not attacked and even defended
by S ∪ (Y \ S) ∪ T ∪ (Z \ T ).
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If S ∪ T 6|= d, then there is some argument attacking d which is not contained in
S ∪ (Y \ S) ∪ T ∪ (Z \ T ). Therefore, it is attacked and, consequently, not defended by
S ∪ (Y \ S) ∪ T ∪ (Z \ T ).

The following lemma shows similar properties as Lemma 30.

Lemma 32. Consider the 2-existential QBF Φ = ∃Y ∀Zϕ(Y,Z) where ϕ is a DNF∨
d∈D d. It holds that:

1. Φ is true if and only if there exists E ∈ prf(FΦ) such that ϕ /∈ E;

2. for each E ∈ prf(FΦ) it holds that (a) |E| = |Y |+ |Z|+1 if ϕ ∈ E and (b) |E| = |Y |
if ϕ /∈ E;

3. for each E ∈ prf(FΦ − {ϕ}) is holds that |E| = |Y |.

Proof. 1. (⇒): Assume Φ is true. That is, there is some S ⊆ Y such that for all
T ⊆ Z it holds that ϕ(S, T ) is true. We show that E = S ∪ (Y \ S) ∈ prf(FΦ).
First, E is easily checked to be admissible. Towards a contradiction, assume there
is some E′ ∈ adm(FΦ) with E′ ⊃ E. Further assume there is some d ∈ D included
in E′ \E. Due to the non-triviality of d there is at least one z ∈ Z ∪Z attacking d
and, consequently, it must hold that z ∈ E′. Then, due to ϕ attacking all Z ∪ Z, it
must hold that ϕ ∈ E′, a contradiction to conflict-freeness of E′ since also d ∈ D.
Knowing that d /∈ E′ for all d ∈ D, assume that ϕ ∈ E′. To this end ϕ has to be
defended by E′ from each d ∈ D. This means that there must be some T ⊆ Z such
that T ∪ (Z \ T ) ⊆ E′ and each d ∈ D is attacked by S ∪ (Y \ S) ∪ T ∪ (Z \ T ).
But then, by Lemma 31, S ∪ T 6|= d for each d ∈ D, a contradiction to ϕ(S, T )
being true.
(⇐): We show the contrapositive, that is, if Φ is false then all E ∈ prf(FΦ) have
ϕ ∈ E. Observe that for any S ⊆ Y , S ∪ (Y \ S) is admissible in FΦ, hence
S ∪ (Y \ S) is contained in some preferred extension. Moreover, each preferred
extension must contain S ∪ (Y \ S) for some S ⊆ Y . Consider an arbitrary S ⊆ Y .
As, by assumption, Φ is false, there must be some T ⊆ Z such that ϕ(S, T ) is false.
Hence for every d ∈ D it must hold that S∪T 6|= d and consequently, by Lemma 31,
d is attacked by XS = S ∪ (Y \ S) ∪ T ∪ (Z \ T ). Hence XS ∪ {ϕ} is admissible
and, by attacking all other arguments, also preferred in FΦ. Now assume there is
an E′ ∈ prf(FΦ) with S ⊆ E′ and ϕ /∈ E′. By the latter no argument among Z ∪Z
can be in E′ as it cannot be defended from ϕ. Hence, to be incomparable to all the
preferred extensions which do include ϕ, E′ must include some d ∈ D. But also
this in not possible as by assumption there must be some T ⊆ Z making S ∪T 6|= d,
meaning, by Lemma 31, that d is attacked by S ∪ (Y \ S) ∪ T ∪ (Z \ T ). If it is
attacked by S ∪ (Y \ S) then E′ is not conflict-free; if it is attacked by T ∪ (Z \ T )
then E′ is not admissible. We conclude that all E ∈ prf(FΦ) have ϕ ∈ E.
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2. Consider some E ∈ prf(FΦ). (a) If ϕ ∈ E then d /∈ E for all d ∈ D, hence a
maximal conflict-free selection of arguments among Y ∪Y ∪Z ∪Z must be included
in E, therefore S ∪ (Y \ S) ∪ T ∪ (Z \ T ) ⊆ E for some S ⊆ Y and T ⊆ Z. Hence
|E| = |Y |+ |Z|+ 1. (b) If ϕ /∈ E then no argument among Z ∪ Z can be defended
by E. Moreover, as ϕ does not contain monoms which are trivial for Y , it follows by
Lemma 31 that no d ∈ D can be defended by E. On the other hand, E must include
a maximal conflict-free selection of arguments among Y ∪ Y , hence |E| = |Y |.

3. Let F ′Φ = FΦ−{ϕ} and observe that the self-attacking argument ϕ is unattacked in
F ′Φ. Hence none of the arguments Z ∪ Z can be defended. Moreover, as ϕ does not
contain monoms which are trivial for Y , each argument d ∈ D is attacked by Z ∪Z
and can therefore also not be defended. It follows that the preferred extensions of
F ′Φ are given by S ∪ (Y \ S) for each S ⊆ Y , each containing |Y | arguments.

We are now ready to show ΘP
3 -completeness of the considered problem under preferred

semantics.

Theorem 39. Given AFs F,G ∈ AFA and E ⊆ A, deciding whether E ∈ prf(F ∗Dprf G)
is ΘP

3 -complete.

Proof. To show membership in ΘP
3 we sketch an algorithm that decides E ∈ prf(F ∗Dprf G)

in polynomial time with O(logm) calls to a ΣP
2 oracle, where m = |AF |+ |AG|. First,

we check whether E ∈ prf(G) (in coNP); if E /∈ prf(G) we return with a negative answer.
Otherwise, we continue with determining the minimal distance z = min{4H(S, T ) |
S ∈ prf(F ), T ∈ prf(G)}. Since S ⊆ AF (resp. T ⊆ AG) for each S ∈ prf(F ) (resp.
T ∈ prf(G)), it holds that d ≤ m. Therefore it can be computed by binary search among
{0, . . . ,m} with O(logm) oracle calls to the following ΣP

2 procedure: Guess S ⊆ AF ,
T ⊆ AG and check (in coNP) whether S ∈ prf(F ), T ∈ prf(G) and 4H(S, T ) < z.
Having obtained z, we finally call the ΣP

2 -oracle once again to check whether there is an
S ∈ prf(F ) with 4H(S,E) = z. If such an S does exist then E ∈ prf(F ∗DprfG), otherwise
E /∈ prf(F ∗Dprf G).

To show ΘP
3 -hardness we give a polynomial-time reduction from the following ΘP

3 -complete
problem:

Given: 2-existential QBFs Φ1, . . . ,Φm such that
Φi being false implies Φi+1 being false, for 1 ≤ i < m,

Decide: whether k = max{1 ≤ i ≤ m | Φi is true} is odd.

We use the following notation to identify the elements of QBFs: Φi = ∃Yi∀Ziϕi with ϕi
being a propositional formula in DNF over atoms Xi = Yi+Zi. Without loss of generality
we can assume that

(i) Xi ∩Xj = ∅ for all 1 ≤ i, j ≤ m, i 6= j;
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Figure 4.11: Illustration of the AF obtained from the reduction in the proof of Theorem 39.

(ii) |Yi| = |Yj | and |Zi| = |Zj | for all 1 ≤ i, j ≤ m; and

(iii) m is odd.

Due to (ii) we will use |Y | to denote |Yi| and |Z| to denote |Zi| for any 1 ≤ i ≤ m. Now for
each Φi = ∃Yi∀Ziϕi, let FΦi be as given in Definition 89. We define F =

⋃
1≤i≤m FΦi ∪ Fi

where:

Fi =
(
{ϕi, ϕi+1}, {(ϕi+1, ϕi)}

)
for 1 ≤ i < m

Fm =
(
{ϕm, x, x′}, {(x, x′), (x′, x), (x′, ϕm)}

)
.

Figure 4.11 depicts a schematic example of F . The subframeworks Fi can be regarded
as “connecting frameworks”, adding just an attack from ϕi+1 to ϕi. Fm is the “starting
framework”. Moreover, we define G = ({x, x′}, {(x, x′), (x′, x)}) and E = {x}. We show
that E ∈ prf(F ∗Dprf G) if and only if k is odd.

Due to the splitting property of preferred semantics [19] (again, Theorem 43 will give
the details), the preferred extensions of F are composed as prf(F ) = {{α} ∪

⋃
1≤i≤mEi |

α ∈ {x, x′}, Ei ∈ prf(F ′Φi)}, where:

• F ′Φm = FΦm if α = x and F ′Φm = (FΦm − {ϕm}) if α = x′, and

• F ′Φi = FΦi if ϕi+1 /∈ Ei+1 and F ′Φi = FΦ−1 − {ϕi}) if ϕi+1 ∈ Ei+1 for 1 ≤ i < m.

Recall that k is the highest index such that Φk is true. Due to Lemma 32 it holds that:

• 1 ≤ i ≤ k: we have either |Ei| = |Y | or |Ei| = |Y |+ |Z|+ 1;

• k < i ≤ m: if α = x we have |Ei| = |Y |+|Z|+1 for i ∈ {m,m−2, . . . } and |Ei| = |Y |
for i ∈ {m − 1,m − 3, . . . }; otherwise we have |Ei| = |Y | for i ∈ {m,m − 2, . . . }
and |Ei| = |Y |+ |Z|+ 1 for i ∈ {m− 1,m− 3, . . . }.

Moreover, we get from Lemma 32 that each FΦi with 1 ≤ i ≤ k has an extension
E∗i ∈ prf(FΦi) with ϕi /∈ E∗i , hence |E∗i | = |Y |. Let S∗α ∈ prf(F ) be now such that
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Ei = E∗i for all 1 ≤ i ≤ k. By the observations above and assumption (ii), S∗α has
minimal distance to {α} among all preferred extensions containing α, for α ∈ {x, x′}.

If k is odd, we get, by the assumption (iii) that m is odd, that m − k is even, hence
4H(S∗α, {α}) = m|Y |+ m−k

2 (|Z|+ 1) + 1 for both α ∈ {x, x′}. Therefore prf(F ∗Dprf G) =
{{x}, {x′}}, i.e. E ∈ prf(F ∗Dprf G).

If k is even, then m− k is odd. We get 4H(S∗x′ , {x′}) = m|Y |+ bm−k2 c(|Z|+ 1) + 1 <
m|Y |+ dm−k2 e(|Z|+ 1) + 1 = 4H(S∗x, {x}), hence E /∈ prf(F ∗Dprf G) = {{x′}}.

For the semi-stable semantics, we can use the fact that there is an exact and efficient
translation from preferred to semi-stable semantics [109] to show that complexity from
preferred semantics carries over.

Theorem 40. Given AFs F,G ∈ AF and E ⊆ A, deciding whether E ∈ sem(F ∗Dsem G)
is ΘP

3 -complete.

Proof. Membership in ΘP
3 is shown by the same algorithm as the one in Theorem 39,

with checks wrt. semi-stable semantics instead of preferred semantics. As the verification
problem is in coNP for both semi-stable and preferred semantics, the modified algorithm
decides E ∈ sem(F ∗DsemG) in polynomial time with O(logm) calls to a ΣP

2 oracle, showing
that the problem is in ΘP

3 .

Hardness is by reduction from the problem of, given AFs F,G ∈ AFA and E ⊆ A,
deciding whether E ∈ prf(F ∗Dsem G), which was shown to be ΘP

3 -complete in Theorem 39.
To this end we apply a translation from [109, Translation 1] to F and G to get, in
polynomial time, F ′ = (AF ∪ {a′ | a ∈ AF }, RF ∪ {(a, a′), (a′, a′) | a ∈ AF }) and
G′ = (AG∪{a′ | a ∈ AG}, RG∪{(a, a′), (a′, a′) | a ∈ AG}). According to [109, Theorem 1]
it holds that sem(F ′) = prf(F ) and sem(G′) = prf(G). It follows that E ∈ sem(F ′∗DsemG

′)
if and only if E ∈ prf(F ∗Dprf G), and the result follows.

Finally, the problem of checking containment in the extensions of the result of Dalal
revision under stage semantics is also in ΘP

3 , hardness of the problem has to be left
subject to future work.

Theorem 41. Given AFs F,G ∈ AF and E ⊆ A, deciding whether E ∈ stg(F ∗Dstg G) is
in ΘP

3 .

Proof. Membership in ΘP
3 by the same algorithm as the one in Theorem 39, with

checks wrt. stage semantics instead of preferred semantics, considering the fact that the
verification problem for stage semantics is in coNP.

Table 4.1 summarizes the complexity results presented in this section together with the
result of [144] for revision of propositional formulas.
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Table 4.1: Complexity of deciding, given F,G ∈ AFA, E ∈ A, whether E ∈ σ(F ∗Dσ G).

σ Mod stb prf sem stg
ΘP

2 -c ΘP
2 -c ΘP

3 -c ΘP
3 -c in ΘP

3

4.5 Discussion
In [89] also another variant of revision of AFs was studied. There, the AF is revised by a
propositional formula, with the models of the formula expressing the information which
should be incorporated. Hence the operators are of the form ? : AFA × PA 7→ AFA. This
approach was preceded by the approach of Coste-Marquis et al. [76], with the crucial
difference that there the outcome of the revision was a set of AFs. Requiring the result
to be a single AF again leads to problems with limited expressiveness. We illustrate this
on an example.

Example 53. Let σ be a semantics and F an AF such that σ(F ) = {{a, b, c}}. Dalal’s
approach generates the following preorder �σF :

{a, b, c} ≺σF {a, b} ≈σF {a, c} ≈σF {b, c} ≺σF {a} ≈σF {b} ≈σF {c} ≺σF ∅.

Now consider the formula ϕ = ¬(a ∧ b ∧ c) by which we want to revise F . We obtain
that min([ϕ],�) = {{a, b}, {a, c}, {b, c}}. Observe, now, that {{a, b}, {a, c}, {b, c}} is
not conflict-sensitive, and therefore not realizable under any of the semantics under
consideration (cf. Theorem 1). Hence, we run into the same problems as in Example 43,
as we have no means to express the desired result. ♦

The problem was solved in [89] by restricting the rankings to be σ-compliant, a similar
notion as given in Definition 87, but requiring the minimal elements of every possible
extension-set to be σ-realizable. The focus on I-maximal semantics circumvents this
problem, as the next example illustrates.

Example 54. Consider again the AF F from Example 53, with σ(F ) = {{a, b, c}}, for
instance F = ({a, b, c}, ∅). The corresponding ranking obtained with Hamming distance
was problematic when revising by a propositional formula, because the desired outcome
of a revision operator could turn out to be {{a, b}, {b, c}, {a, c}}, which usually is not
σ-realizable. We cannot, however, run into this problem when revising by an AF G,
since the outcome of revision will, by definition, be a proper subset of σ(G), namely
min(σ(G),�σF ). Due to the proper I-maximality of σ, any proper subset of σ(G) is also
σ-realizable. It follows that Dalal’s operator and, for the same reason, any other standard
revision operator, can be applied in this setting. ♦

In this chapter we have given impossibility results for certain semantics (Theorems 29
and 32) saying there is no rational revision operator due to the limited expressiveness of
the semantics. The following theorem states this in a very general manner.
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4.5. Discussion

Theorem 42. Let F be a formalism and σ a semantics of that formalism such that
there are some kb1, kb2 ∈ F with σ(kb1) ∩ σ(kb2) /∈ Σσ

F . Then there exists no operator
∗ : F × F 7→ F satisfying (A2σ).

Finally we want to emphasize that the hybrid approach presented in Section 4.3.3 is also
of interest for other knowledge representation formalisms. Whenever there are different
semantics for a formalism, it can be desirable to do revision by combining them in the way
preferred and admissible semantics were combined for revision of ADFs. In particular,
in case one semantics always delivers a subset of the results of the other semantics, a
hybrid approach can be more meaningful than considering only one of the semantics in
isolation. As an example we identify classical models and answer sets of logic programs,
where each answer set is always a classical model. We envisage a generalization of the
hybrid approach to arbitrary formalisms for future work.
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CHAPTER 5
Splitting

This chapter deals with splitting in argumentation formalisms. That is the question
whether, or under which conditions, a semantics of a formalism allows for incremental
computation of its results. With incremental computation we basically mean the following:
(i) splitting the knowledge base into two parts; (ii) computing the results of the first part;
(iii) propagating these results to the second part; (iv) computing the results of the second
part; (v) putting the sub-results together to obtain the results for the overall knowledge
base.

Splitting in knowledge representation formalisms was proposed and first studied by
Lifschitz and Turner [145] in the context of logic programs. It has further been investigated
for answer set programming [115, 139], default logic [194] and, most recently, abstract
argumentation [19, 28, 29, 18].

As pointed out in the introduction, splitting is interesting both from a theoretical and
practical point of view. On the one hand it gives insights on whether local evaluation of
a semantics is possible, on the other hand splitting techniques can be useful for solving
since it can boost the performance of the evaluation by dividing one large task into
several smaller tasks.

The rest of the chapter is organized as follows. We will begin, in Section 5.1, by presenting
the basic concepts of splitting for the case of AFs, mostly reviewing work of Baumann [19]
and Baumann et al. [29]. Then we will show results for splitting of ADFs in Section 5.2.
There we will first, in Section 5.2.1, deal with directional splitting, that is splitting along
the lines of strongly connected components, and present splitting techniques for all ADF
semantics we consider in this work. In Section 5.2.2 we will then study general splitting.
The main results of this chapter have appeared in [147].
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a

b

c

d

e

Figure 5.1: AF F and a possible splitting thereof.

5.1 Splitting of AFs
In this section we review the main results on splitting of AFs from [19] and [29]. We will
be accurate in presentation, but use slightly different notation at times.

A splitting of an AF as defined in [19] is a partition into two AFs with disjoint sets of
arguments, where the remaining attacks are restricted to a single direction. In other
words, a splitting must not divide any strongly connected component of the AF.

Definition 90. Let F1 and F2 be AFs such that AF1∩AF2 = ∅. Moreover let R3 ⊆ AF1×
AF2 . The tuple (F1, F2, R3) is called a splitting of the AF F = (AF1∪AF2 , RF1∪RF2∪R3).

Example 55. Consider the AF F depicted in Figure 5.1, also including the dashed edges.
First observe that prf(F ) = {{a}, {b, d}}. Let F1 = ({a, b, c}, {(a, b), (b, a), (b, c), (c, c)})
and F2 = ({d, e}, {(d, e)}). It holds that (F1, F2, {(a, d), (b, e), (c, e)}) is a splitting of F .
(Note that there are also several other splittings of F .) The splitting is illustrated by the
dashed attacks. Further observe that prf(F1) = {{a}, {b}} and prf(F2) = {{d}}. As we
cannot just put these sets together, prf(F ) 6= prf(F1)× prf(F1) = {{a, d}, {b, d}}, one has
to find accurate ways of propagating the extension of the first sub-AF along the links of
the splitting. ♦

The following definition of a reduct takes care of this propagation.

Definition 91. Let F be an AF, A′ a set disjoint from AF , I, U ⊆ A′, and R ⊆ A′×AF .
The (I, U,R)-reduct of F is defined as F I,U,R = (AI,U,R, RI,U,R) with

AI,U,R ={a ∈ AF | @b ∈ I : (b, a) ∈ R}, and
RI,U,R ={(a, b) ∈ RF | a, b ∈ AI,U,R} ∪

{(a, a) | a ∈ AI,U,R,∃b ∈ U : (b, a) ∈ R}.

The intuitive reading of Definition 91 is that I and U represent the partial evaluation of
the partial AF preceding F , and R contains the attacks connecting the preceding AF with
F . While I can be regarded as the arguments in the extension, U contains arguments
which are neither in the extension nor attacked by the extension. Arguments in F which
are, via R, attacked by I now get removed in the (I, U,R)-reduct and arguments which
are, via R, attacked by U , become self-attacking in F I,U,R.
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5.1. Splitting of AFs

The splitting theorem is now formulated as follows.

Theorem 43 ([19]). Let σ ∈ {stb, adm, prf, com, grd}. Further let F be an AF and
(F1, F2, R3) be a splitting of F . The following holds:

1. If E1 ∈ σ(F1) and E2 ∈ σ(F
E1,(AF1\(E1)+

F1
),R3

2 ) then (E1 ∪ E2) ∈ σ(F ).

2. If E ∈ σ(F ) then (E ∩A1) ∈ σ(F1) and (E ∩A2) ∈ σ(F
E1,(AF1\(E1)+

F1
),R3

2 ).

With this theorem at hand, we can now incrementally compute the extensions of an AF,
given that it is not composed of only a single strongly connected component.

Example 56. Again consider the AF F depicted in Figure 5.1. We illustrate the
evaluation F under the preferred semantics applying Theorem 43 with the splitting
(F1, F2, {(a, d), (b, e), (c, e)}) as identified in Example 55. We begin with F1 and get
prf(F1) = {{a}, {b}}. We first consider {a} and get, observing that AF1 \{a}+F1

= {c}, the
reduct F {a},{c},{(a,d),(b,e),(c,e)}

2 = ({e}, {(e, e)}). This AF has ∅ as only preferred extension.
Consequently we get {a} ∈ prf(F ). For {b} we get, observing that AF1 \ {b}+F1

= ∅,
the reduct F {b},∅,{(a,d),(b,e),(c,e)}

2 = ({d}, ∅). This AF has {d} as only preferred extension,
hence {b, d} ∈ prf(F ). We conclude that prf(F ) = {{a}, {b, d}}. ♦

The splitting theorem is not only relevant for incremental computation in a static setting
as illustrated in Example 56. It also allows to use precomputed extensions of an AF
when it undergoes change. That is, however, restricted to changes which are called weak
expansions [23], i.e. changes which are not among existing arguments and do not include
attacks on existing arguments.

Parametrized splitting, as introduced by Baumann et al. [29], omits the restriction on the
direction of attacks and allows arbitrary splittings of AFs. It is, however, only studied
for stable semantics. A so-called quasi-splitting is identified just by a set of arguments,
representing the partial AF to be evaluated first. In addition to propagating the results of
the first sub-AF along the links of the splitting, also the first sub-AF has to be modified
in order to anticipate the effects from ingoing links. The following definition covers all
necessary notions needed for parametrized splitting.

Definition 92. Let F be an AF. A set S ⊆ AF is a quasi-splitting of F . We define
FS1 = F |S and FS2 = F |(AF \S). Further let R→S = {(a, b) ∈ RF | a ∈ S, b ∈ (AF \ S)} and
R←S = {(a, b) ∈ RF | a ∈ (AF \ S), b ∈ S}. The modified AF

[
FS1

]
= (A1, R1) is defined

as

A1 = S ∪ {a | ∃b ∈ (AF \ S) : (b, a) ∈ R←S },
R1 = (R ∩ (S × S)) ∪ {(a, a), (a, a) | ∃b ∈ (AF \ S) : (b, a) ∈ R←S }.
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a1

a2

a3

b1
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b5

(a) Initial AF F .

a1

a2

a3

a1

a2

a3

b1

b2

b3

b5

a′2

(b) [FS
1 ] and [FS

2 ]E for S = {a1, a2, a3} and E = {a1, a2, a3}.

Figure 5.2: Parametrized splitting illustrated.

Given some E ∈
[
FS1

]
, let UE = {a ∈ (S \ E) | a /∈ (S ∩ E)+

F }. The modified AF[
FS2

]
E

= (A2, R2) is defined as

A2 = {a ∈ (AF \ S) | @b ∈ E : (b, a) ∈ R→S } ∪ {a′ | a ∈ UE},
R2 = (R ∩ (A2 ×A2)) ∪ {(a′, a′), (b, a′) | a ∈ UE , (b, a) ∈ R←S }

∪ {(c, c) | ∃a ∈ E : (c, a) ∈ R←S }.

For each argument a in FS1 that is attacked from FS2 , a copy a is added to [FS1 ]. Given
a stable extension E of [FS1 ] and wanting to obtain a stable extension of F we have to
make sure that (i) if a ∈ E and a is not attacked by any other element in (S ∩E) then a
is attacked by an argument in FS2 , and (ii) if b ∈ E but it is attacked by some argument
c in FS2 then c is not included in extension of F . The construction of [FS2 ] takes care of
this by (i) adding self-attacking arguments a′ which are attacked by the attackers of a in
FS2 , (ii) adding a self-attack to arguments such as c. We illustrate this on an example
taken from [29].

Example 57. We illustrate the idea of parametrized splitting in Figure 5.2. Consider
the AF F depicted in Figure 5.2a, also including the dashed part. We are interested in
the quasi-splitting S = {a1, a2, a3}. The dashed attacks are contained in the sets R→S =
{(a3, b4)} and R←S = {(b1, a1), (b2, a2), (b3, a3)}. Now the left-hand side of Figure 5.2a
depicts the modified AF [FS1 ], including new arguments a1, a2, a3 as each argument
a1, a2, a3 receives at least one attack from FS2 . Consider E = {a1, a2, a3} ∈ stb([FS1 ]).
The modified AF [FS2 ]E is depicted on the right-hand side of Figure 5.2b. Since a2 /∈ E
and a2 /∈ (S ∩E)+

F = {a3}+F = {a3, b4}, [FS2 ]E includes the new, self-attacking argument
a′2, which is attacked by b3 and b2, the attackers of a2. Moreover, a2 ∈ E and b3 →F a2,
hence b3 is self-attacking in [FS2 ]E . Finally, b4 is attacked by a3 ∈ E, hence b4 is not
included in [FS2 ]E . Evaluating [FS2 ]E , we get E′ = {b2, b5} as only stable extension.
Putting things together we get (E ∩ S) ∪ E′ = {a3, b2, b5} ∈ stb(F ). Repeating this
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5.2. Splitting of ADFs

process for the other stable extensions of [FS1 ] we are able to enumerate all stable
extensions of F . ♦

Theorem 44 ([29]). Let F be an AF and let S be a quasi-splitting of F . The following
holds:

1. If E1 ∈ stb([FS1 ]) and E2 ∈ stb([FS2 ]E1), then (E1 ∩ S) ∪ E2 ∈ stb(F ).

2. If E ∈ stb(F ) then there is some E1 ∈ stb([FS1 ]) with (E1 ∩ S) = (E ∩ S) and
(E ∩ (AF \ S)) ∈ stb([FS2 ]E1).

Parametrized splitting was only studied for stable semantics and is open for the other
semantics. The result for “proper” splitting, as in Theorem 43, applies to stable,
admissible, preferred, complete and grounded semantics. It does not hold for naive,
semi-stable, stage, and ideal semantics. Counterexamples for each of these semantics can
be found in [22].

5.2 Splitting of ADFs
In this section we study splitting of ADFs. We will first consider directional splitting, i.e.
partitions of ADFs such that links between the parts are only in one direction, similar
to “proper” splitting of AFs. Then we will deal with general splitting, giving up the
condition on the links directions, a notion similar to parametrized splitting of AFs.

5.2.1 Directional Splitting

The definition of the various semantics of ADFs already suggests that not every decom-
position of an ADF can be treated equivalently. In this section we focus on directional
splitting, that is, given an ADF D, a partition of the graph underlying D into two disjoint
subgraphs G1 and G2 such that there are no links from G2 to G1 in D. In other words it
is splitting “along the lines” of the strongly connected components of an ADF.

Definition 93. Let G1 = (A1, L1) and G2 = (A2, L2) be directed graphs such that
A1 ∩ A2 = ∅. Moreover let L3 ⊆ A1 × A2. We call the tuple (G1, G2, L3) a directional
splitting of an ADF D = (A1 ∪A2, L1 ∪ L2 ∪ L3, C), and say that D is directionally split
along L3.

Figure 5.3 illustrates the two possible directional splittings of an exemplary ADF. Note
that any other splitting of this frameworks contains links in both directions between the
subgraphs and is therefore not directional.

In terms of notation, recall that, similar as for AFs, for an ADF D and a set of arguments
S ⊆ AD, D|S is the restriction of D to S, i.e. {〈a, ϕa〉 | a ∈ S}, under the condition that
no argument a ∈ S receives a link from AD \ S. Moreover, v|S denotes the restriction
of interpretation v to the arguments S, and v1 ∪ v2 the interpretation obtained from
conjoining v1 and v2, given that they are over disjoint sets of arguments (cf. Definition 4).
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a

¬c b

c ∨ ¬b

c

¬a ∧ b

d

b ∧ c e

¬d ∨ f

f

¬d ∨ e

Figure 5.3: Possible directional splittings of the depicted ADF.

Definition 94. Let G1 = (A1, L1) and G2 = (A2, L2) be directed graphs such that
(G1, G2, L3) is a directional splitting of the ADF D. Further let v be an interpretation of
D|A1

. The v-reduct of D is defined as

Dv = {〈a, ϕa[b/> : b ∈ vt][b/⊥ : b ∈ vf ][c/xc : c ∈ vu]〉 | a ∈ A2} ∪ {〈xc,¬xc〉 | c ∈ vu},

where xc is a newly introduced argument for each c ∈ vu.

When v is an interpretation of the first part of the ADF, the v-reduct of D propagates
v to the second part of the ADF by replacing occurrences of arguments in acceptance
conditions (i) by the constants > (resp. ⊥) if they are mapped to t (resp. f) by v, and
(ii) by new arguments if they are mapped to u.

Compared to the reduct used for splitting of AFs (cf. Definition 91) we cannot just add
a self-attack to arguments as this has no immediate meaning in ADFs. We have to
make use of an additional arguments instead. Moreover, the v-reduct does not remove
arguments, but replaces occurrences of arguments in acceptance conditions.

By slight abuse of notation we will, for arguments a, b, and an interpretation v with
v(b) ∈ {t, f}, write ϕa[b/v(b)] instead of ϕa[b/>] (resp. ϕa[b/⊥]).

The idea of directional splitting is to propagate truth values assigned to arguments by an
interpretation of the first part along the links to the second part. The following example
illustrates this.

Example 58. Consider the ADF D depicted on the left-hand side of Figure 5.4. Here
the dotted borderline suggests the splitting (G1, G2, L3) of D with L3 = {(b, d), (c, d)}.
The right part of the figure depicts the ADFs resulting from the splitting, that is,
D1 = D|{a,b,c} and Dv1 , where v1 = {a 7→ t, b 7→ u, c 7→ f} is a possible (complete)
interpretation of D1. In the acceptance condition ϕd the atom c (v1(c) = f) is replaced
by the propositional constant ⊥ and b (v1(b) = u) by the newly introduced argument xb,
which itself has acceptance condition ϕxb = ¬xb.

Note that the illustrated splitting is not the only directional splitting of D. The other
possible choices are to split D along {(a, c)}, {(b, c), (b, d)}, or {(a, c), (b, c), (b, d)}. ♦
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a
> b

b

c

¬a ∧ b

d

¬b ∨ c
⇒ a

> b

b

c

¬a ∧ b

d

¬xb ∨ ⊥
xb

¬xb

Figure 5.4: Directional splitting of the ADF D on the left into the ADFs D|A1 and Dv1 ,
where A1 = {a, b, c} and v1 = {a 7→ t, b 7→ u, c 7→ f} is a complete interpretation of D1.

With the definition of a v-reduct at hand, we are ready to formulate our first results on
directional splitting under the two-valued models (mod3) of ADFs.

Theorem 45. Let G1 = (A1, L1) and G2 = (A2, L2) be directed graphs such that
(G1, G2, L3) is a directional splitting of the ADF D. Further let D1 = D|A1. The
following holds:

1. If v1 ∈ mod3(D1) and v2 ∈ mod3(Dv1), then (v1 ∪ v2) ∈ mod3(D).

2. If v ∈ mod3(D), then v|A1 ∈ mod3(D1) and v|A2 ∈ mod3(Dv|A1 ).

Proof. First note that for a two-valued interpretation v the v-reduct does not contain
additional arguments but is built by solely replacing atoms by truth values in the
acceptance conditions, i.e. Dv = {〈a, ϕa[b/v(b) : b ∈ A1]〉 | a ∈ A2}.

(1) Let v1 ∈ mod3(D1) and v2 ∈ mod3(Dv1). Consider some a ∈ A1. By assumption,
v1(a) = v1(ϕa). Since parD(a) ⊆ A1, it follows that v1(ϕa) = (v1 ∪ v2)(ϕa). Hence
(v1 ∪ v2)(a) = (v1 ∪ v2)(ϕa). Now consider some a ∈ A2. From v2 ∈ mod3(Dv1) and the
fact that v1 is two-valued we know that v2(a) = v2(ϕa[x/v1(x) : x ∈ A1]). We can invert
the substitution and get v2(a) = (v1 ∪ v2)(ϕa). Hence (v1 ∪ v2)(a) = (v1 ∪ v2)(ϕa) and
the result for mod3 follows.

(2) Let v ∈ mod3(D) and v1 = v|A1 , v2 = v|A2 . Again, v1 ∈ mod3(D1) is by parD(a) ⊆ A1
for each a ∈ A1. For a ∈ A2, it is clear that v|A2(a) = v(a). Moreover, we substitute the
A1-part of v into ϕa to get v(ϕa) = v|A2(ϕa[b/v(b) : b ∈ A1]) = v|A2(ϕD

v|A1
a ).1 Hence

v|A2(a) = v|A2(ϕD
v|A1

a ), i.e. v|A2 ∈ mod3(Dv|A1 ).

As mentioned in the beginning of the proof, a simplified version of the v-reduct does the
job for splitting under the model semantics. Since only two-valued interpretations are
involved, there is no replacement of u-values and no additional arguments are introduced.

1Recall that we sometimes denote the acceptance condition of argument a in ADF D by ϕDa to avoid
ambiguities.
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For the other semantics, the following lemma will be useful to prove splitting results.

Lemma 33. Let G1 = (A1, L1) and G2 = (A2, L2) be directed graphs such that (G1, G2, L3)
is a directional splitting of the ADF D, and further A = A1 ∪A2 and D1 = D|A1. The
following holds:

1. If v1 is an interpretation of D1 and v2 is an admissible interpretation of Dv1 , then

(ΓD1(v1) ∪ ΓDv1 (v2))|A = ΓD ((v1 ∪ v2)|A) .

2. If v is an interpretation of D, then

ΓD(v) = ΓD1(v|A1) ∪
(
Γ
D
v|A1

(v′)
)∣∣∣
A2

where v′ = v|A2 ∪ {xc 7→ u | c ∈ (v|A1)u}.

Proof. (1) First, as a side note, observe that the restriction of interpretations to A is due
to the fact that v2, being an interpretation of Dv1 , can include mappings for arguments
not contained in D (namely those xc where v1(c) = u).

We need to show that for each a ∈ A1, ΓD1(v1)(a) = ΓD((v1 ∪ v2)|A)(a) and for each
a ∈ A2, ΓDv1 (v2)(a) = ΓD((v1 ∪ v2)|A)(a). The former is trivial by the fact that for each
a ∈ A1, ϕDa = ϕD1

a and parD(a) ⊆ A1. The latter is by the following chain of equalities,
letting a ∈ A2 and v∗1 = v1|(vt

1∪v
f
1):

(ΓD1(v1) ∪ ΓDv1 (v2)) (a) = ΓDv1 (v2)(a) (5.1)

=
l

w∈[v2]2

w(ϕDv1
a ) (5.2)

=
l

w∈[v2]2

w(ϕa[b/v1(b) : b ∈ (vt
1 ∪ vf

1)][c/xc : c ∈ vu
1 ]) (5.3)

=
l

w∈[v2∪v∗1 ]2

w(ϕa[c/xc : c ∈ vu
1 ]) (5.4)

=
l

w∈[v2∪v1]2

w(ϕa) (5.5)

=
l

w∈[ (v1∪v2)|A]2

w(ϕa) (5.6)

= ΓD((v1 ∪ v2)|A)(a) (5.7)

(5.1) holds since D1 and Dv1 have disjoint sets of arguments and a ∈ A2. We reach (5.4)
by application of definitions and syntactic transformations. (5.4) = (5.5) holds by the
fact that since ϕxc = ¬xc and v2 ∈ adm3(Dv1) necessarily v2(xc) = u and by definition
of Dv1 , v1(c) = u. Finally (5.5) = (5.6) is by parD(a) ⊆ A for any a ∈ A2.
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(2) Again, for a ∈ A1, ΓD(v)(a) = ΓD1(v|A1)(a) is immediate by ϕDa = ϕD1
a and

parD(a) ⊆ A1. For a ∈ A2, let v′ = v|A2 ∪ {xc 7→ u | c ∈ (v|A1)u}. We get

ΓD(v)(a) =
l

w∈[v]2

w(ϕa) (5.8)

=
l

w∈[v′]2

w(ϕa[b/v(b) : b ∈ (A1 \ vu)][c/xc : c ∈ (A1 ∩ vu)]) (5.9)

=
l

w∈[v′]2

w(ϕD
v|A1

a ) (5.10)

= Γ
D
v|A1

(v′)(a) (5.11)

From (5.8) to (5.9), t and f values in v|A1 are substituted directly into ϕa and atoms
with u values are replaced by other atoms which are u in v′ by definition, thus (5.8) =
(5.9). The rest is by definition.

In the general case of three-valued interpretations the v-reduct (cf. Definition 94) involves
the introduction of additional arguments, hence the following equalities only hold under
projection on the respective arguments.

Theorem 46. Let σ ∈ {adm3, prf3, com3, grd3}, and G1 = (A1, L1) and G2 = (A2, L2)
be directed graphs such that (G1, G2, L3) is a directional splitting of the ADF D. Further
let D1 = D|A1. The following holds:

1. If v1 ∈ σ(D1) and v2 ∈ σ(Dv1), then (v1 ∪ v2)|A ∈ σ(D).

2. If v ∈ σ(D), then v|A1 ∈ σ(D1) and ∃v2 ∈ σ(Dv|A1 ) such that v2|A2 = v|A2.

Proof. (1) Let v1 ∈ σ(D1) and v2 ∈ σ(Dv1). Further define v = (v1 ∪ v2)|A. By σ(Dv1) ⊆
adm3(Dv1) (cf. Proposition 4), we can follow by Lemma 33.1 that (ΓD1(v1) ∪ ΓDv1 (v2))|A =
ΓD (v) . We get that v = ΓD(v), hence the result for adm3 and com3 follows. For grd3
it remains to show that v is the least fixpoint of ΓD wrt. ≤i. To this end assume there
is a lower fixpoint v′ = ΓD(v′), v′ <i v. If v′|A1 <i v1 then v′|A1 is a fixpoint of ΓD1 by
Lemma 33.2, a contradiction to v1 ∈ grd3(D1). If v′|A1 = v1 and v′|A2 <i v2|A2 then
v′′ = v′|A2 ∪ {xc 7→ u | c ∈ (v′|A1)u} is, again by by Lemma 33.2, a fixpoint of ΓDv1 ,
a contradiction to v2 ∈ grd3(Dv1). Likewise, for prf3, it remains to show that v is a
greatest fixpoint of ΓD. Assuming that there is some v′ = ΓD(v′) with v′ >i v gives us,
by Lemma 33.2, that v′|A1 = ΓD1(v′|A1) and v′|A2 =

(
Γ
D
v′|A1

(v′′)
)∣∣∣
A2
. Now by v′ >i v

either v′|A1 >i v1 or v′|A2 >i v2. We get a contradiction either to v1 ∈ prf3(D1) or to
v2 ∈ prf3(Dv1), in the latter case recalling that v2(xc) = u for each c ∈ (v|A1)u ⊆ (v′|A1)u.

(2) Let v ∈ σ(D). From Lemma 33.2 it follows that v|A1 = ΓD1(v|A1) and v′ =(
Γ
D
v|A1

(v′)
)∣∣∣
A2

with v′ = v|A2 ∪ {xc 7→ u | c ∈ (v|A1)u}. Hence the result follows for
adm3 and com3. For grd3 assume, towards a contradiction, that there is some w <i v|A1
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with w = ΓD1(w). But then, by Lemma 33.1, (w ∪ v′)|A = ΓD((w ∪ v′)|A), contradicting
v ∈ grd3(D) (as (w ∪ v′)|A <i v). Assume, on the other hand, that there is some w <i v

′

with w = Γ
D
v|A1

(w). Also then we get (v|A1 ∪w)|A = ΓD((v|A1 ∪w)|A) from Lemma 33.1,
contradicting v ∈ grd3(D). For prf3, assume, towards a contradiction, that there is some
w >i v|A1 with w = ΓD1(w). But then, by Lemma 33.1, (w ∪ v′)|A = ΓD((w ∪ v′)|A),
contradicting v ∈ prf3(D) (as (w ∪ v′)|A >i v). Assume, on the other hand, that there
is some w >i v

′ with w = Γ
D
v|A1

(w). Also then we get (v|A1 ∪ w)|A = ΓD((v|A1 ∪ w)|A)
from Lemma 33.1, contradicting v ∈ prf3(D).

The following example illustrates the result in Theorem 46 under the complete semantics.

Example 59. The ADF D on the left-hand side of Figure 5.4 has

com3(D) = {{a 7→ t, b 7→ t, c 7→ f , d 7→ f},
{a 7→ t, b 7→ f , c 7→ f , d 7→ t},
{a 7→ t, b 7→ u, c 7→ f , d 7→ u}}.

Now consider the splitting (({a, b, c}, {(a, c), (b, c), (b, b)}), ({d}, ∅), {(b, d), (c, d)}) of D.
The complete interpretations of D1 = D|{a,b,c} are com3(D1) = {v1, v2, v3} with

v1 = {a 7→ t, b 7→ u, c 7→ f}
v2 = {a 7→ t, b 7→ t, c 7→ f}
v3 = {a 7→ t, b 7→ f , c 7→ f}

The v1-reduct Dv1 is depicted on the right-hand side of Figure 5.4. The only complete
interpretation of Dv1 is v4 = {d 7→ u, xb 7→ u} and indeed (v1 ∪ v4)|AD ∈ com3(D).
Moreover, we get the v2-reduct Dv3 = {〈d,¬> ∨ ⊥〉}, and hence com3(Dv2) = {v5} with
v5 = {d 7→ f} (note that ¬>∨⊥ ≡ ⊥). Finally, we get the v3-reduct Dv3 = {〈d,¬⊥ ∨ ⊥〉},
and hence com3(Dv3) = {v6} with v6 = {d 7→ t}. Putting things together, we get
com3(D) = {(v1 ∪ v4)|AD , (v1 ∪ v5)|AD , (v1 ∪ v6)|AD}, which is in accordance with above.

♦

It remains to show the result for stable semantics. There we have to make use of the
results for two-valued models and grounded semantics. Recall that, for evaluation of an
ADF D under stable semantics, another reduct, D−v, is involved: an interpretation v is
a stable model of D if it is a two-valued model and vt = wt for w ∈ grd3(D−v).

Theorem 47. Let G1 = (A1, L1) and G2 = (A2, L2) be directed graphs such that
(G1, G2, L3) is a directional splitting of the ADF D. Further let D1 = D|A1. The
following holds:

1. If v1 ∈ stb3(D1) and v2 ∈ stb3(Dv1), then (v1 ∪ v2) ∈ stb3(D).

2. If v ∈ stb3(D), then v|A1 ∈ stb3(D1) and v|A2 ∈ stb3(Dv|A1 ).
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5.2. Splitting of ADFs

Proof. (1) Let v1 ∈ stb3(D1) and v2 ∈ stb3(Dv1) and define v = v1 ∪ v2. From Theo-
rem 45.1 we get that v ∈ mod3(D). Moreover, we know vt

1 = wt
1 for w1 ∈ grd3(D1

−v1)
and vt

2 = wt
2 for w2 ∈ grd3((Dv1)−v2). Let G′1 = (vt

1, L∩(vt
1×vt

1)), G′2 = (vt
2, L∩(vt

2×vt
2))

and observe that (G′1, G′2, {(a, b) ∈ L3 | v1(a) = t}) is a directional splitting of D−v
and (Dv1)−v2 is the w1-reduct of D−v: the syntactic requirements are easily checked,
keeping in mind that the v1-reduct of D does not introduce new arguments since it is
two-valued. It remains to show that the acceptance conditions coincide. For a ∈ vt

1 we
have ϕD1−v1

a = ϕa[b/⊥ : b ∈ vf
1] = ϕa[b/⊥ : b ∈ vf ] = ϕD

−v
a . For a ∈ vt

2 we have

ϕ(Dv1 )−v2
a = ϕa[b/v1(b) : b ∈ (vt

1 ∪ vf
1)][b/⊥ : b ∈ vf

2] (5.12)
= ϕa[b/⊥ : b ∈ (vf

1 ∪ vf
2)][b/v1(b) : b ∈ vt

1] (5.13)
= ϕa[b/⊥ : b ∈ vf ][b/v1(b) : b ∈ (wt

1 ∪ wf
1)] (5.14)

= ϕ(D−v)w1
a , (5.15)

where (5.12)=(5.13) holds since the order of replacements can be chosen arbitrarily, and
(5.13)=(5.14) is by the facts that vt

1 = wt
1 and all b ∈ vf

1 are already replaced by ⊥ in the
first replacement, hence they can be added without any effect in the second.

Hence, recalling that w1 ∈ grd3(D1
−v1) and w2 ∈ grd3((Dv1)−v2), it follows by Theo-

rem 46.1 that (w1∪w2) ∈ grd3(D−v). Since vt = (w1∪w2)t we conclude that v ∈ stb3(D).

(2) Consider some v ∈ stb3(D) and let v1 = v|A1 and v2 = v|A2 . From Theorem 45.2
we know that v1 ∈ mod3(D1) and v2 ∈ mod3(Dv1). It remains to show that vt

1 = wt
1

for w1 ∈ grd3(D1
−v1) and vt

2 = wt
2 for w2 ∈ grd3((Dv1)−v2). We know that vt = wt

for w ∈ grd3(D−v). Now let G′1 = (vt
1, L ∩ (vt

1 × vt
1)), G′2 = (vt

2, L ∩ (vt
2 × vt

2)), and
L′3 = {(a, b) ∈ L3 | v(a) = t}. Observe that (G′1, G′2, L′3) is a directional splitting of
D−v and (Dv1)−v2 is the w1-reduct of D−v: Let a ∈ A1. First, a ∈ vt

1 iff a ∈ AD1−v1 .
Moreover, we get ϕD−va = ϕa[b/⊥ : b ∈ vf ] = ϕa[b/⊥ : b ∈ vf

1] = ϕD1−v1
a by parD(a) ⊆ A1.

Hence, by Theorem 46.2 we get that w|A1 = w1 ∈ grd3(D1
−v1). By vt = wt also vt

1 = wt
1,

hence v1 ∈ stb3(D1). Let a ∈ A2. Again, a ∈ vt
2 iff a ∈ A(Dv1 )−v2 , since v1 is two-valued

and therefore no new arguments are introduced by the v1-reduct of D. For the acceptance
condition, we get

ϕ(D−v)w1
a = ϕa[b/⊥ : b ∈ vf ][b/v1(b) : b ∈ (wt

1 ∪ wf
1)] (5.16)

= ϕa[b/⊥ : b ∈ vf ][b/v1(b) : b ∈ wt
1] (5.17)

= ϕa[b/⊥ : b ∈ (vf
1 ∪ vf

2)][b/v1(b) : b ∈ vt
1] (5.18)

= ϕa[b/v1(b) : b ∈ (vt
1 ∪ vf

1)][b/⊥ : b ∈ vf
2] (5.19)

= ϕ(Dv1 )−v2
a (5.20)

meaning that the w1-reduct of D−v is just (Dv1)−v2 . Hence it follows from Theorem 46.2
that there is some w2 ∈ grd3((D−v)w1), and also w2 ∈ grd3((Dv1)−v2), with w2|vt

2
= w|vt

2
.

Since wt = vt it follows that wt
2 = vt

2. Therefore v2 ∈ stb3(Dv1).
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5. Splitting

We have established a uniform method of directional splitting for all ADF semantics
considered in this work. The concept of a v-reduct (v being an interpretation of the
sub-ADF evaluated first) propagates the values of v along the links of the splitting into
the acceptance conditions of the second sub-ADF such that (i) arguments mapped to t
(resp. f) by v are replaced by > (resp. ⊥) and (ii) arguments mapped to u lead to the
introduction of a new (self-attacking) argument and are replaced by this new argument
in the acceptance conditions. Note that arguments mapped to u could also be kept, with
a new acceptance condition, sparing the introduction of a new argument (this is similarly
done in [120]). However, our design choice is to have a strict separation between the two
sub-ADFs and therefore abstain from taking arguments along the splitting. Finally recall
that for the ADF semantics which always deliver two-valued interpretations (i.e. mod3
and stb3) there are no additional arguments involved in the splitting.

Incremental computation of interpretations. In the following we show directional
splitting at work for the evaluation of the ADF in Figure 5.3. Let us call this ADF D.
We will exemplify the evaluation under preferred semantics using the directional splitting
method. First, observe that the preferred interpretations D are given as follows:

prf3(D) = {{a 7→ f , b 7→ t, c 7→ t, d 7→ t, e 7→ t, f 7→ t},
{a 7→ f , b 7→ t, c 7→ t, d 7→ t, e 7→ f , f 7→ f},
{a 7→ t, b 7→ u, c 7→ f , d 7→ f , e 7→ t, f 7→ t}}.

The incremental computation of prf3(D) using the techniques of directional splitting
presented in this section is illustrated in Figures 5.5 and 5.6. We begin with detecting
the strongly connected components of D and decide to split after the first SCC, i.e.
apply the following splitting: ((A1, L1), (A2, L2), {(d, e), (d, f)}) with A1 = {a, b, c}, L1 =
{(a, c), (c, a), (b, b), (b, c), (c, b)}, A2 = {d, e, f}, and L2 = {(d, e), (d, f), (e, f), (f, e)} (cf.
Figure 5.5a). In the next step we compute the preferred interpretations of D1 = D|A1

(cf. Figure 5.5b). We get prf3(D1) = {v1, v2} with

v1 = {a 7→ f , b 7→ t, c 7→ t}, and
v2 = {a 7→ t, b 7→ u, c 7→ f}.

To continue the evaluation, we pick a preferred interpretation of D1, say v1, and
propagate its valuations by constructing the v1-reduct of D. The resulting ADF
Dv1 is depicted in Figure 5.5c together with the illustration of its directional split-
ting ((A3, L3), (A4, L4), {(d, e), (d, f)}) with A3 = {d}, L3 = ∅, A4 = {e, f}, and
L4 = {(e, f), (f, e)}. The first ADF resulting from this splitting, D2 = Dv1 |A3 (cf.
Figure 5.5d), is easily evaluated to have

v3 = {d 7→ t}

as its only preferred interpretation. We propagate v3 along the splitting to obtain the v3-
reduct of Dv1 , depicted in Figure 5.6a. The evaluation of (Dv1)v3 results in prf3 = {v4, v5}
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a

¬c b

c ∨ ¬b

c

¬a ∧ b

d

b ∧ c e

¬d ∨ f

f

¬d ∨ e

(a) ADF D, to be split along {(b, d), (c, d)}.

a

¬c b

c ∨ ¬b

c

¬a ∧ b

(b) D1 = D|A1 with A1 = {a, b, c}, having prf3(D1) = {v1, v2}, where v1 = {a 7→ f , b 7→ t, c 7→ t}
and v2 = {a 7→ t, b 7→ u, c 7→ f}.

d

> ∧> e

¬d ∨ f

f

¬d ∨ e

(c) Dv1 for v1 = {a 7→ f , b 7→ t, c 7→ t}, to be split along {(d, e), (d, f)}.

d

> ∧>

(d) D2 = Dv1 |A3 with A3 = {d}, having prf3(D2) = {v3}, where v3 = {d 7→ t}.

Figure 5.5: Splitting in action (1/2).
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e

¬> ∨ f

f

¬> ∨ e

(a) (Dv1)v3 for v3 = {d 7→ t}, having prf3((Dv1)v3) = {v4, v5}, where v4 = {e 7→ t, f 7→ t} and
v5 = {e 7→ f , f 7→ f}.

d

⊥ ∧ xb
e

¬d ∨ f

f

¬d ∨ e

xb

¬xb

(b) Dv2 for v2 = {a 7→ t, b 7→ u, c 7→ f}, to be split along {(d, e), (d, f)}.

d

⊥ ∧ xb

xb

¬xb

(c) D3 = Dv2 |A5 with A5 = {xb, d}, having prf3(D3) = {v6}, where v6 = {xb 7→ u, d 7→ f}.

e

¬⊥ ∨ f

f

¬⊥ ∨ e

(d) (Dv2)v6 for v6 = {xb 7→ u, d 7→ f}, having prf3((Dv2)v6) = {v4}, where v4 = {e 7→ t, f 7→ t}.

Figure 5.6: Splitting in action (2/2).
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with

v4 = {e 7→ t, f 7→ t}, and
v5 = {e 7→ f , f 7→ f}.

We have obtained two preferred interpretations of D, namely

(v1 ∪ v3 ∪ v4)|AD = {a 7→ f , b 7→ t, c 7→ t, d 7→ t, e 7→ t, f 7→ t}, and
(v1 ∪ v3 ∪ v5)|AD = {a 7→ f , b 7→ t, c 7→ t, d 7→ t, e 7→ f , f 7→ f}.

As the reduction, until now, did not involve introducing new arguments, the projection
to AD is not strictly necessary for these interpretations.

For the splitting of Dv1 , there was only one preferred interpretation of D2 = Dv1 |A3 ,
hence we are done here and can go back to the splitting of D. There, we have another
preferred interpretation v2 of D1 = D|A1 , for which we build the v2-reduct of D. The
resulting ADF Dv2 is depicted in Figure 5.6b. Note that, since v2(b) = u, the reduct
involves a new argument xb, having acceptance condition ϕxb = ¬xb. We again apply a
directional splitting on Dv2 , namely ((A5, L5), (A6, L6), {(d, e), (d, f)}) with A5 = {xb, d},
L5 = {(xb, xb), (xb, d)}, A6 = A4, and L6 = L4. We obtain D3 = Dv2 |A5 (cf. Figure 5.6c)
as the ADF to be evaluated first, having prf3(D3) = {v6} with

v6 = {xb 7→ u, d 7→ f}.

Finally, given that, we construct the v6-reduct of Dv2 (depicted in Figure 5.6d) and
obtain prf3((Dv2)v6) = {v4}. Hence, we compose the last preferred interpretation of D
as follows:

(v2 ∪ v6 ∪ v4)|AD = {a 7→ t, b 7→ u, c 7→ f , d 7→ f , e 7→ t, f 7→ t}.

Note that, here, the projection on AD is necessary, since xb is not an argument of D.

To conclude, we have incrementally evaluated the ADF D from Figure 5.3 and obtained
the preferred interpretations as compositions of the preferred interpretations of the partial
ADF obtained along the way:

prf3(D) = {(v1 ∪ v3 ∪ v4)|AD ,
(v1 ∪ v3 ∪ v5)|AD ,
(v2 ∪ v6 ∪ v4)|AD}.

Two remarks are in order about the incremental computation we have just presented.

• The ADF does not necessarily have to be split immediately after the initial SCC(s).
The split points are up to the design of the algorithm that implements the concept
of directional splitting. For instance, we could have just considered the splitting
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of D along the links {(d, e), (d, f)}, and evaluated the ADF among arguments
{a, b, c, d} at once. In fact, we did not apply every possible splitting along the way,
since the ADF Dv2 (cf. Figure 5.6b) could have been split along {(xb, d)}. As it
turns out, it is a wise decision not to apply this splitting, as it would result, after
evaluation of the ADF {〈xb,¬xb〉} with {xb 7→ u} as single preferred interpretation,
in the same ADF as Dv2 modulo renaming again.

• Simplification of the acceptance conditions of the reduct can reveal redundant links.
This is because the propagation of valuations, i.e. the replacement of variables by
truth constants, can alter the influence of other variables. For instance, considering
the v6-reduct of Dv2 (cf. Figure 5.6d), we observe that ϕ(Dv2 )v6

e = ¬⊥ ∨ f ≡ > and
ϕ

(Dv2 )v6

f = ¬⊥∨ e ≡ >, hence (Dv2)v6 is equivalent to {〈e,>〉, 〈f,>〉}. This means
that the links (e, f) and (f, e), which are attacking in D, are redundant in (Dv2)v6 .

Precomputation of core arguments. Splitting can also be used, under certain
circumstances, to react more efficiently to changes to an ADF. This is particularly
important in dynamic settings where the reactive capabilities of an ADF system are of
interest.

In order to do so, we have to identify a core of arguments which (i) have no ingoing links
from arguments outside of the core and (ii) will not be affected by further changes to the
ADF. Given such a core and positive results for directional splitting, we have to compute
the interpretations for the ADF restricted to the core only once and use these results for
the evaluation of the remaining ADF every time a change happens.

As an example consider the ADF D depicted in Figure 5.7. We regard the arguments
a, b, c, d as the core arguments, illustrated by the dashed circle, and assume further
changes to occur only outside of this core. First of all we showcase the evaluation of the
ADF, as it is, under preferred semantics with the application of directional splitting. We
begin with the ADFs restricted to the core arguments and get prf3(D|{a,b,c,d}) = {v1, v2}
with

v1 = {a 7→ t, b 7→ t, c 7→ t, d 7→ f}, and
v2 = {a 7→ f , b 7→ f , c 7→ u, d 7→ t}.

Beginning with v1, we construct the reduct and get, with simplification of acceptance
conditions, Dv1 = {〈e,¬f〉, 〈f,¬e〉{〈i,>〉, 〈j,¬i〉{〈m,>〉}. It can be seen that the v1-
reduct is composed of three components. We have prf3(Dv1) = {v3, v4} with

v3 = {e 7→ t, f 7→ f , i 7→ t, j 7→ f ,m 7→ t}, and
v4 = {e 7→ f , f 7→ t, i 7→ t, j 7→ f ,m 7→ t}.

Likewise, for v2 we get Dv2 = {〈e,⊥〉, 〈f,⊥〉} ∪ {〈i,⊥〉, 〈j,⊥〉} ∪ {〈xc, xc〉, 〈m,xc〉}, and
furthermore prf3(Dv2) = {v5} with

v5 = {e 7→ f , f 7→ f , i 7→ f , j 7→ f , xc 7→ u,m 7→ u}.
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a

b ∧ ¬d

d

¬a ∨ ¬c

b

a

c

b ∨ ¬c

. . .

e

a ∧ ¬f

f

¬d ∧ ¬e

i

b

j

b ∧ ¬i

...

m

b ∨ c

. . .

Figure 5.7: ADF illustrating the possibility of precomputing the semantics of a core part
of the ADF.

We conclude that prf3(D) = (v1 ∪ v3, v1 ∪ v4, (v2 ∪ v5)|AD).

More important than the evaluation of the ADF as depicted in Figure 5.7 is the fact that
due to the assumption that arguments {a, b, c, d} will not be affected by future changes,
we can store {v1, v2} as the preferred interpretations of this core and use it to build the
reduct whenever a change happens. Moreover, the incremental computation leads to
further decomposition of the non-core ADF, given that potential additional arguments
do not connect the components.

Note that the restrictions on the core are rather limiting. While it can be safe to
assume that certain arguments and their relations will not undergo any change in the
future (consider, for instance, a discussion, where a certain topic is agreed upon among
participants), it seems too restrictive allow only outgoing links from the core. General
splitting, as presented in the following section, tries to overcome this limitation.

5.2.2 General Splitting

In the previous section we have dealt with splittings of ADFs along the lines of strongly
connected components. However, the graph induced by an ADF may not be sparse
enough to be suitable for directional splitting. Therefore we introduce the notion of
general splitting, which imposes no restrictions on the decomposition of the ADF. It
follows the same idea as parametrized splitting for AFs presented in Section 5.1. The
increased modeling power of ADFs will allow us, however, to propose a method which is
conceptually simpler than parametrized splitting. That is, we will define a transformation
(L-elimination), which makes an ADF amenable for directional splitting. Then we can
make use of the results of Section 5.2.1.
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In the following we give some preliminary results on general splitting of ADFs. This is
identified just by a subset of the arguments of an ADF, which shall represent the first
part of the ADF we want to split.

Definition 95. Given an ADF D we call a set S ⊆ AD a general splitting of D.

First we consider two-valued models. Here we can clear the way for directional splitting
by transforming a given ADF while preserving equality with respect to two-valued models.

Definition 96. Given an ADF D, let L ⊆ LD be a subset of links in D. We define
L− = {b | (b, a) ∈ L}. Moreover, the L-elimination of D is defined as

DL ={〈a, ϕa[b/xb : b ∈ L−]〉 | a ∈ AD} ∪

{〈xb, xb〉 | b ∈ L−} ∪

{〈ω(DL),¬

 ∧
b∈L−

(b↔ xb)

 ∧ ¬ω(DL)〉},

where ω(DL) and xb for each b ∈ L− are newly introduced arguments.

As the name suggests, an L-elimination of D removes the links L from D. In addition,
it adds some additional arguments to preserve the two-valued models of D. While this
transformation is of some interest of its own, it can be used as a preparatory measure to
make an ADF amenable for directional splitting.

Example 60. The concept of an L-elimination is illustrated in Figure 5.8. We start
from the ADF depicted in Figure 5.8a, say D, which has mod3(D) = {b 7→ f , c 7→
f , d 7→ t, e 7→ t}. Note that D is composed of a single strongly connected component,
hence there is no directional splitting of D. We envisage the removal of the links
(d, b) and (e, c). Therefore let L = {(d, b), (e, c)}. The L-elimination is depicted in
Figure 5.8b. As L− = {d, e}, DL contains the additional, self-supporting arguments
xd and xe as well as the argument ω(DL) (abbreviated as ω in Figure 5.8b). Now
observe that mod3(DL) = {b 7→ f , c 7→ f , xd 7→ t, xe 7→ t, d 7→ t, e 7→ t, w 7→ f}, i.e.
mod3(D) = mod3(DL)

∣∣∣
AD

. Proposition 36 will show that this correspondence holds in
general. ♦

Compared to parametrized splitting of AFs (cf. Definition 92), the L-elimination shares
similar aspects with the modified AF [FS1 ]. For each arguments which is attacked from
the second part, an additional argument is added. This is now, however, self-supporting
and can stand in relation to the corresponding argument in another form than attack. A
remarkable difference is that we can encode all the conditions, which had to be explicitly
propagated for parametrized splitting of AFs, now into the acceptance condition of the
new argument ω. In this way will be able, after evaluation of the first part, to simply
apply directional splitting and read off the desired result.

First, we show that new arguments xb are proper copies of b in a semantical sense.
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b

b ∧ ¬d

c

¬b ∧ ¬e

d

¬c ∧ e

e

¬c ∨ ¬d

(a) ADF D composed of a single SCC.

b

b ∧ ¬xd

c

¬b ∧ ¬xe

xd

xd

xe

xe

d

¬c ∧ e

e

¬c ∨ ¬d

ω

¬((d↔ xd)∧
(e↔ xe)) ∧
¬ω

(b) DL with L = {(d, b), (e, c)}.

b

b ∧ ¬xd

c

¬b ∧ ¬xe

xd

xd

xe

xe

d

¬⊥ ∧ e

e

¬⊥ ∨ ¬d

ω

¬((d↔ >)∧
(e↔ >)) ∧
¬ω

(c) Directional splitting of DL along {(c, d), (c, e), (xd, ω), (xe, ω)}. On the left is DL
∣∣
{b,c,xd,xe}

and on the right is (DL)v1 for v1 = {b 7→ f , c 7→ f , xd 7→ t, xe 7→ t}.

Figure 5.8: General splitting S = {b, c} of the ADF D.

Lemma 34. Let D be an ADF and L ⊆ LD. For any model v ∈ mod3(DL) and for any
b ∈ L−, it holds that v(b) = v(xb).

Proof. Let v ∈ mod3(DL) and b ∈ L− and assume towards a contradiction that v(b) 6=
v(xb). Hence ¬(

∧
b∈L−(b ↔ xb)) surely evaluates to true. Therefore we cannot find a

valid mapping for ω(DL), since if v(ω(DL)) = t then v(ϕω(DL)) = f and if v(ω(DL)) = f
then v(ϕω(DL)) = t. We end up in a contradiction to v ∈ mod3(DL).

Now we can show that the L-elimination indeed preserves equality of two-valued models
under projection:

Proposition 36. Given an ADF D, for any L ⊆ LD, the following holds:

1. If v ∈ mod3(DL), then v|AD ∈ mod3(D).

2. If v ∈ mod3(D), then ∃v′ ∈ mod3(DL) : v = v′|AD .
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Proof. (1) Let v ∈ mod3(DL) and a ∈ AD. We need to show, knowing that v(a) =
v(ϕa[b/xb : b ∈ L−]), that v|AD(a) = v|AD(ϕa). By Lemma 34 it must hold for each
b ∈ L− that v(b) = v(xb), hence v(a) = v(ϕa) and since parD(a) ⊆ AD, we conclude that
v|AD(a) = v|AD(ϕa).

(2) Consider some v ∈ mod3(D) and let v′ = v ∪ {xb 7→ v(b) | b ∈ L−} ∪ {ω(DL) 7→ f}.
Obviously v′(xb) = v′(ϕxb). Now consider some a ∈ AD. It holds that v(a) = v′(a) =
v(ϕa). In order to ensure v′(ϕω(DL)) = v′(ω(DL)) = f , it must hold that v′(b) = v′(xb)
for all b ∈ L−. Hence v′(a) = v′(ϕa[b/xb : b ∈ L−]), showing that v′ ∈ mod3(DL).

This allows us to apply directional splitting under two-valued models along any desired
partition of arguments after a suitable transformation. First the transformation eliminat-
ing all links of one direction preserves equality of two-valued models (cf. Proposition 36),
and second the computation of two-valued models can be carried out in two stages by
directionally splitting the ADF (cf. Theorem 45).

Theorem 48. Given an ADF D, let S ⊆ AD be a general splitting of D. Further let
L = {(b, a) ∈ LD | a ∈ S, b ∈ (AD \ S)} and X = {xb | b ∈ L−}. The following holds:

1. If v1 ∈ mod3(DL
∣∣∣
(S∪X)

) and v2 ∈ mod3
(
(DL)v1

)
, then (v1 ∪ v2)|AD ∈ mod3(D).

2. If v ∈ mod3(D), then ∃v1, v2 s.t. (v1 ∪ v2)|AD = v and v1 ∈ mod3

(
DL
∣∣∣
(S∪X)

)
and

v2 ∈ mod3
(
(DL)v1

)
.

Proof. (1) Let v1 ∈ mod3

(
DL
∣∣∣
(S∪X)

)
and v2 ∈ mod3

(
(DL)v1

)
. It can be seen that

(((S∪X), L1), ((AD\S)∪{ω(DL)}, L2), {(a, b) ∈ LD | a ∈ S, b ∈ (AD\S)}) is a directional
splitting of DL. Therefore it follows from Theorem 45.1 that (v1 ∪ v2) ∈ mod3(DL).
Moreover, we get by Proposition 36.1 that (v1 ∪ v2)|AD ∈ mod3(D).

(2) Let v ∈ mod3(D). By Proposition 36.2 it follows that there is a v′ ∈ mod3(DL) such
that v′|AD = v Applying directional splitting along {(a, b) ∈ LD | a ∈ S, b ∈ (AD \ S)}

it follows by Theorem 45.2 that v′|(S∪X) ∈ mod3

(
DL
∣∣∣
(S∪X)

)
and v′|((AD\S)∪{ω(DL)}) ∈

mod3((DL)v1). By v′|AD = v also (v′|(S∪X) ∪ v′|((AD\S)∪{ω(DL)}))|AD = v, hence the
result follows.

The following example illustrates the idea of Theorem 48.

Example 61. Again consider the ADF D in Figure 5.8a and its general splitting
S = {b, c}. The L-elimination of D with L = {(b, a) ∈ LD | a ∈ S, b ∈ (AD \ S)} =
{(d, b), (e, c)} in Figure 5.8b was already discussed in Example 60. It paves the way
for directional splitting of DL along {(c, d), (c, e), (xd, ω), (xe, ω)}. The resulting ADF
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DL
∣∣∣
{b,c,xd,xe}

(left-hand side of Figure 5.8c) has a single two-valued model, namely

v1 = {b 7→ f , c 7→ f , xd 7→ t, xe 7→ t}. The v1-reduct of DL (right-hand side of
Figure 5.8c) then has mod3((DL)v1) = v2 = {d 7→ t, e 7→ t, ω 7→ f}. It easy to see now
that mod3(D) = {(v1 ∪ v2)|AD}. ♦

We now turn to general splitting under the admissible semantics. A transformation in
the fashion of Definition 96 is not possible since we cannot force an interpretation to
have equal truth values for two arguments in the three-valued setting, as we did with the
acceptance condition of ω(DL). Therefore we will have to apply local transformations on
each of the sub-frameworks obtained by the splitting.

Definition 97. Given an ADF D, let S ⊆ AD be a general splitting of D. Further let
B = {b ∈ (AD \ S) | ∃a ∈ S : (b, a) ∈ LD}. The primary slice of D wrt. S is defined as

DS ={〈a, ϕa[b/xb : b ∈ B]〉 | a ∈ S} ∪
{〈xb, xb〉 | b ∈ B}.

where xb for b ∈ B are newly introduced arguments. Moreover, if v is an interpretation
of DS , the extended v-reduct of D wrt. S is defined as

DS,v = Dv ∪ {〈ω(DS,v),
∧

b∈B,v(xb)=t
b ∧

∧
b∈B,v(xb)=f

(¬b)〉}.

where the newly introduced ω(DS,v) is called insurance argument of DS,v.

When S is a general splitting of some ADF D, all arguments not in S which have links
to S are simulated in the primary slice of D by new, self-supporting arguments. This
has the effect that these arguments can have an arbitrary truth value in an admissible
interpretation. In the extended reduct of D, another additional argument, ω(DS,v),
ensures that only “valid” interpretations survive the splitting. This construction can
be regarded as a kind of guess-and-check-procedure, where evaluation of the primary
slice guess the valuation of the arguments affected by the splitting, and evaluation of the
extended v-reduct checks validity of the guess.

The following theorem shows how Definition 97 can be utilized to incrementally compute
admissible extensions.

Theorem 49. Given an ADF D and a general splitting S ⊆ AD thereof, let B = {b ∈
(AD \ S) | ∃a ∈ S : (b, a) ∈ LD}. The following holds:

1. If v1 ∈ adm3(DS), v2 ∈ adm3(DS,v1), and v2(ω(DS,v1)) = t, then (v1 ∪ v2)|AD ∈
adm3(D).

2. If v ∈ adm3(D), then ∃v1, v2 s.t. (v1 ∪ v2)|AD = v and v1 ∈ adm3(DS) and
v2 ∈ adm3(DS,v1) and v2(ω(DS,v1)) = t.
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b

b ∧ ¬d

c

¬b ∧ ¬e

d

¬c ∧ e

e

¬c ∨ ¬d

⇒
b

b ∧ ¬xd

c

¬b ∧ ¬xe

xd

xd

xe

xe

d

¬⊥ ∧ e

e

¬⊥ ∨ ¬d

ω

e

Figure 5.9: General splitting S = {b, c} of the ADF D on the left under admissible
semantics. The right side depicts the primary slice DS of the splitting as well as the
extended v1-reduct wrt. S with v1 = {b 7→ u, c 7→ f , xd 7→ u, xe 7→ t}.

Proof. (1) Let v1 ∈ adm3(DS) and v2 ∈ adm3(DS,v1) such that v2(ω(DS,v1)) = t. First
observe that, by definition of ϕω(DS,v) and v2(ω(DS,v1)) = t, for any b ∈ B it holds that
if v1(xb) 6= u then v1(xb) = v2(b).

Let a ∈ S. We know that v1(a) ≤i
d
w∈[v1]2 w(ϕa[b/xb : b ∈ B]) from v1 ∈ adm3(DS).

Consider an arbitrary w ∈ [v1]2. Further let w′ ∈ [v1 ∪ v2]2 such that w(c) = w′(c)
for all c ∈ ADS . Since by the previous observation v1(xb) ≤i v2(b) for all b ∈ B, it
holds that w′(xb) = w′(b) for all b ∈ B. Therefore also w(xb) = w′(b), and hence
w(ϕa[b/xb : b ∈ B]) = w′(ϕa). As w ∈ [v1]2 was chosen arbitrarily it follows thatd
w∈[v1]2 w(ϕa[b/xb : b ∈ B]) =

d
w∈[v1∪v2]2 w(ϕa). By parD(a) ⊆ AD it also holds that

v1(a) = (v1 ∪ v2)|AD (a). We conclude that (v1 ∪ v2)|AD (a) ≤i
d
w∈[ (v1∪v2)|AD ]2 w(ϕa).

For a ∈ (AD \ S), (v1 ∪ v2)|AD (a) ≤i ΓD((v1 ∪ v2)|AD)(a) follows by the same reasoning
as in the proof of Theorem 46.

(2) Consider some v ∈ adm3(D). Let v1 = v|S ∪ {xb 7→ v(b) | b ∈ B} and v2 =
v|(AD\S) ∪ {xc 7→ u | c ∈ (v|S)u} ∪ {ω(DS,v1) 7→ t}. We argue that v1 ∈ adm3(DS) and
v2 ∈ adm3(DS,v1). Since ϕxb = xb it surely holds that v1(xb) ≤i ΓDS (v1)(xb). For any
a ∈ S, v1(a) ≤i ΓDS (v1)(a) follows from the fact that v1(xb) = v(b) by definition. Finally
Theorem 46 implies that v2(a) ≤i ΓDS,v1 (v2)(a) for all a ∈ (AD \ S), hence the result
follows.

The following example illustrates Theorem 49 in practice.

Example 62. Let D be the ADF on the left side of Figure 5.9 and consider its general
splitting S = {b, c}. We illustrate the computation of the admissible interpretations
v = {b 7→ u, c 7→ f , d 7→ u, e 7→ t} and v′ = {b 7→ u, c 7→ f , d 7→ t, e 7→ t} of D
via the splitting S. First of all we consider the primary slice DS and observe that
v1 = {b 7→ u, c 7→ f , xd 7→ u, xe 7→ t} is an admissible interpretation thereof. Now the
extended v1-reduct DS,v1 is depicted at the very right part of Figure 5.9. We observe
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that the admissible interpretations of DS,v1 having ω(DS,v1) 7→ t are v2 = {d 7→ u, e 7→
t, ω(DS,v1) 7→ t} and v′2 = {d 7→ t, e 7→ t, ω(DS,v1) 7→ t}. Now it indeed holds that
v = (v1 ∪ v2)|AD and v′ = (v1 ∪ v′2)|AD .

On the other hand consider the admissible interpretation w1 = {b 7→ t, c 7→ f , xd 7→
f , xe 7→ u} of DS . We get DS,w1 = {〈d,> ∧ e〉, 〈e,> ∨ ¬d〉, 〈ω(DS,w1),¬d〉} and observe
that there is no w2 ∈ adm3(DS,w1) with w2(ω(DS,w1)) = t. This is as expected since
there is no w ∈ adm3(D) such that w(b) = t and w(c) = f . ♦

Precomputation of core arguments. Given a set of arguments of which we know
they will not be affected by future changes, we can apply general splitting to boost
performance in a dynamic setting. For directional splitting this approach was rather
limited, as the core arguments were not allowed to have incoming links. For general
splitting we have no conditions on the neighborhood of the core. We can compute the
interpretations of the L-elimination of the ADF restricted to core arguments with L
being the incoming links of those arguments and store them for later use when we need
to recompute the interpretations of the full ADF due to a change.

We exemplify this in Figure 5.10. The ADF D′ depicted in Figure 5.10a is similar
to the ADF D in Figure 5.7, but now with links from e to a and from m to c and
hence also updated acceptance conditions for a and c. The core arguments are again
given by {a, b, c, d}. Now for the precomputation of the core, we cannot, in contrast to
directional splitting, just dismiss the arguments outside the core. Instead we construct
the L-elimination of D′ with L = {(e, a), (m, c)} being the ingoing links of the core
arguments. D′L is depicted in Figure 5.10b. Due to the additional arguments involved
in the elimination of links, we have increased the size of the core. Nevertheless, under
the assumption that the core arguments will not be changed (the acceptance condition
remains the same) we can compute the interpretations of D′L once and use them for
further evaluations of the ADF. Finally note that also the acceptance condition of ω(D′L)
(abbreviated as ω in Figure 5.10) is also fixed once the L-elimination is constructed.

We have presented results for general splitting for two-valued models and admissible
semantics. In general these results do not carry over to the other semantics under consid-
eration. Nevertheless a procedure for gradually computing the preferred interpretations
is derivable from Theorem 49. This can be achieved by using the splitting procedure to
determine the admissible interpretations and finally selecting the ≤i-maximal elements.

Beyond the theoretical interest in splitting techniques, which gives insights on different
semantics, the motivation of studying splitting is of practical nature, as we have shown
in the examples along the way. An empirical evaluation of the effect of applying splitting
is subject to future work.
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(a) ADF D′ where arguments a, b, c, d are identified as core arguments.
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(b) L-elimination of D′ with L = {(e, a), (m, c)}.

Figure 5.10: Precomputation of core arguments with general splitting.
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CHAPTER 6
Discussion

6.1 Summary

In this thesis, we have contributed to the advancement of the study of abstract argumenta-
tion in several ways. In particular, we dealt with aspects of expressiveness and dynamics
of argumentation semantics within the formalisms of Dung’s abstract argumentation
frameworks as well as Brewka and Woltran’s abstract dialectical frameworks.

In the field of expressiveness we have first complemented the work on (general) realizability,
as introduced in [146]. We have studied the signatures of two semantics, complete and
resolution-based grounded, which had been dealt with erroneously or not at all before. As
a remarkable side result, we have shown that the resolution-based grounded semantics, a
semantics fulfilling many desirable abstract properties, is not capable of realizing simple
extension-sets such as {{a}, {b}, {c}}. Moreover, we have provided a result that shows
that every semantics which follows very basic principles cannot be more expressive than
preferred or semi-stable semantics. In other words, preferred and semi-stable semantics
are most expressive among all “reasonable” semantics. Then, we have studied closure
properties of AF semantics, where complete semantics turned out to be the only semantics
not closed under intersection. While of interest on their own, these results turned out to
be essential for revision of AFs following the AGM approach. Finally, we have studied the
quantitative diversity of the considered semantics, i.e. the maximum number of realizable
extensions, and have shown that realizability is, assuming the input to be an explicit
representation of the desired extension-set, decidable in polynomial time.

In the next section of the chapter on expressiveness we studied the class of AFs without
rejected arguments: compact argumentation frameworks. As each semantics gives rise to
its own class of compact AFs, we first gave a complete picture of the relations between
these classes. Tackling the question to which extent rejected arguments contribute to
the expressiveness of argumentation semantics we first presented the result showing that
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only for conflict-free and naive semantics we can translate every AF to an AF without
rejected arguments. Then we studied the relations between compact signatures, i.e. the
collections of extension-sets realizable by compact AFs, giving insights on the limits of
global disagreement (a notion introduced in [50]) that can be modeled within compact
AFs. There we obtained a picture which is significantly different to general signatures.
For instance, while preferred and semi-stable semantics are strictly more expressive than
stage semantics in the general setting, their expressiveness is pairwise incomparable in
the compact setting.

Moreover, we studied realizability in the setting of input-output AFs as introduced by
Baroni et al. [17], which differs from general realizability in two aspects: on the one
hand, it is about enforcing a set of extensions for any input rather than a single set of
extensions; on the other hand, one can exploit non-output arguments that are not seen
outside a sub-AF for the realization. We have characterized all realizable two-valued
I/O-specifications for the majority of semantics as well as all realizable three-valued
I/O-specifications for preferred and grounded semantics.

After recalling results from Pührer [175] and Strass [188] on realizability in ADFs and
clarifying the closure properties similar as for AFs, we presented an algorithm for
realizability in which AFs, SETAFs, bipolar ADFs and general ADFs can be treated in
a uniform way. The algorithm makes use of so-called propagators, by which it can be
adapted to the different formalisms and semantics. We also presented an implementation
of our framework in answer set programming and obtained several novel expressiveness
results using our implementation.

In the field of dynamics we have first presented a generic solution to the problem of
revision of AFs, which applies to the broad class of I-maximal semantics. We have
considered the setting where revision is done with respect to another AF representing the
new information, and is again resulting in a single AF. We have given a representation
result showing a one-to-one correspondence between revision operators adhering to all
AGM postulates (reformulated for AFs) and revision operators based on certain rankings
on interpretations. Due to the limited expressiveness of AF semantics, a refined version of
rankings compared to classical AGM revision as well as an additional postulate, adapted
from previous work on Horn revision [84], had to be added in order to obtain the result.
This result is significant as it allows any revision operator from the propositional setting
to be applied in the AF context. We analyzed the computational complexity of Dalal’s
operator for AF revision, where hardness goes up to ΘP

3 for revision under preferred and
semi-stable semantics. For the revision of ADFs we have characterized operators under
preferred semantics and exemplified these results by a three-valued version of Dalal’s
operator. While admissible semantics yield only a single rational operator, we have
proposed an alternative family of revision operators combining admissible and preferred
semantics. Their representation by rankings is based on the prf-adm-compliance, a
generalization of similar notions used previously [85, 84, 89].

Finally, we provided splitting results for ADFs. We showed that incremental computation
is possible for all ADF semantics under consideration, under the condition that the
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splitting is done between strongly connected components. Since all operations involved
in the splitting can be done efficiently, this lays the basis for optimization techniques
for the evaluation of ADFs. Moreover, we have shown general splitting results for two-
valued models and admissible semantics of ADFs. This is particularly interesting for
pre-evaluation of parts of an ADF to be able to react efficiently to syntactic changes to
the ADF.

6.2 Related Work

Expressiveness. Studying realizability and signatures of AFs has been initiated in [146].
It was inspired by previous work on the intertranslatability of AF semantics [109, 107]: a
translation from semantics σ to semantics τ manipulates any given AF F into AF F ′

such that σ(F ) and τ(F ′) are related in a specific way. In case of an exact translation,
that is if the translation always results in σ(F ) = τ(F ′), it means that τ is at least as
expressive as σ, i.e. Σσ

AF ⊆ Στ
AF in signature terms. While the work on intertranslatability

studies the expressiveness of semantics in relative terms as well as the efficiency of such
translations, the work on realizability is concerned with exact characterization of the
signatures of semantics.

A variant of realizability for preferred and semi-stable semantics was studied by Dyrkol-
botn [112]. There, new arguments are not only allowed to be introduced, but the new
arguments can also take on arbitrary acceptance statuses, i.e. the evaluation of the
realizing AF is done with respect to projection on the original arguments. Under these
assumptions, preferred and semi-stable semantics are shown to be able to express any
extension-set. Compared to this approach, our results deal with additional arguments
as follows: general realizability as presented in Section 3.2 allows additional arguments
but disallows them to be part of any extensions; compact realizability as dealt with in
Section 3.3.2 completely rules out the use of arguments which do not occur in the given
set of extensions; finally, in the unifying approach (cf. Section 3.6) we uniformly use
three-valued interpretations as the underlying model theory meaning that arguments
cannot be “invisible” any more since the underlying vocabulary of arguments is always
implicit in each interpretation.

Besides rejected arguments, implicit conflicts were identified as the other “hidden
power” [31] of AFs. Two arguments are in implicit conflict with respect to a semantics
σ in an AF F if they are never accepted together in an extension of F under σ, but
also do not attack each other in F . Just as it is considered desirable to remove rejected
arguments for computational tasks, the explication of AFs, i.e. adding attacks between
arguments standing in implicit conflict, has been shown to be beneficial for solvers in first
experiments. The question whether such an explication is possible in general, without
changing the extensions, led to the explicit conflict conjecture [30], claiming that this is
always possible for stable semantics (without the use of additional arguments), which we
refuted in [31]. There, also the impact of rejected arguments on realizability was studied
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by characterizing analytic signatures:

Σσ
XAF = {σ(F ) | F is an AF without implicit conflicts}.

Another aspect of realizability was tackled by studying two-dimensional signatures [103].
The two-dimensional signature of semantics σ and τ is the following collection of pairs:

Σσ,τ
AF = {〈σ(F ), τ(F )〉 | F is an AF}.

Characterizations of these signatures give a deeper understanding of independence
between semantics within a single AF. That is, whether the subset-relations presented
in Proposition 2 are exhaustive or if there are other, more restrictive conditions on the
relations between the sets of extensions obtained by the two semantics. Containment
in the general signature as presented in Section 3.2 is always a necessary condition for
containment in the two-dimensional signature: for any 〈S,T〉 ∈ Σσ,τ

AF it holds that S ∈ Σσ
AF

and T ∈ Στ
AF.

Realizability was put into action by Niskanen et al. [160] with an implementation of a
slightly more general problem: the synthesis of AFs from examples. There, examples
are, inspired from learning, either sets of arguments that shall be extensions, or sets of
arguments that must not be extensions. The system then constructs an AF adhering to
as many of these examples as possible.

In the work on the expressiveness of two-valued semantics of ADFs, Strass [189, 188]
also considered the representational succinctness of ADFs, following previous work on
expressiveness in knowledge representation [131]. That is, informally, how efficiently,
in terms of size of the realizing ADF, interpretation-sets can be expressed. A question
related to that, which is subject to future work, is whether the full expressive power
of AFs can be achieved with polynomially many additional arguments, i.e. whether for
each S ∈ Σσ

AF there exists a realizing AF F (σ(F ) = S) such that |AF | is polynomial in
|ArgsS|.

Dynamics. As indicated in the introduction, there has been a substantial amount of
research in the dynamics of argumentation frameworks and the problems investigated and
approaches that have been developed to address these differ considerably. In the following
we describe those studies related to the revision of AFs, the problem we considered in
Section 4.2, in more detail. Most of these works study revision of AFs in more restricted
scenarios or from slightly different perspectives. Also, no general results regarding the
complexity of revision of AFs are presented.

The focus of the work on enforcing by Baumann [20] is on the issue of modifying an AF
such that a certain subset of arguments is contained in some extension (with respect to
a semantics of interest) and, if so, what the number of minimal modifications is. This
problem has also been approached by two implementations [78, 198]. On the other hand,
Kontarinis et al. [142] propose a strategy in terms of rewriting rules to compute the
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minimal number of modifications to the attack relation of an AF to enforce a desired
acceptance status of an argument. Booth et al. [51] give an AGM-like characterization of
revision of AFs when certain logical constraints (expressing beliefs regarding the labellings
of the AFs) are strengthened in order to incorporate newly held beliefs. But the focus is
on determining certain fall back beliefs when the newly held beliefs are inconsistent with
those held previously. How to compute the fall back beliefs is developed in detail for the
complete semantics.

The work that was most influential to our work was the one on revision of AFs by Coste-
Marquis et al. [76]. There, the authors are also aiming for AGM-style representation
results for revision of AFs under minimal change in the extensions. However, the main
difference between the work by Coste-Marquis et al. [76] and our approach are that (i)
we consider the revising knowledge base to be an AF whereas it is in the form of a
propositional formula in [76], and (ii) we require the revision to produce a single AF
instead of a set of AFs as the result. The price we pay is that in our solution the revised
AF may have new arguments, while Coste-Marquis et al. [76] only need to modify the
attack relation.

Baumann and Brewka [25] develop a monotonic logic (“Dung logic”, based on the notion
of strong equivalence [165]) to formalize reasoning about the dynamics of AFs under the
different semantics, and rephrase the AGM postulates in this context. This approach is
hence closer to the work of Delgrande et al. [85] on the AGM-revision of logic programs
under the answer set semantics, which makes use of a standard monotonic model theory
(based on the notion of SE-models [195]) for logic programs. Since, as they show, standard
distance based revision operators do not work in their context, they develop an alternative
syntactic-based revision operator returning a unique AF for the stable semantics. They
also provide ideas for revision operators based on selection functions from a set of possible
AFs for the other AF semantics they consider.

Moguillansky [156] developed a theory of remainder sets for abstract argumentation, thus
yielding a more syntax-based approach to belief change in argumentation. Revision is
defined via expansion and contraction and a representation result for the basic postulates
of success, consistency, inclusion, vacuity, and core-retainment is shown. However, the
postulates are reformulated with respect to acceptance of an argument rather than
with respect to sets of extensions as done in our work. A similar approach to ours,
focused on postulates and representation results, which also highlights the subtleties of
instantiating the output as a single AF, concerns merging AFs in the presence of integrity
constraints [86].

In [83] a very general theory for modeling dynamics of AFs is proposed. This theory
makes it possible to express how an agent who has beliefs in the form of an argumentation
system can interact on a target argumentation system that may represent the state of
knowledge at a given stage of a debate. Here AFs (and the dynamics of AFs) are encoded
within the general, tailor-made first order language YALLA.

Models of dynamics in structured argumentation can be found in [157] and [181]. The
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former offers a model building on [156] while the latter is a model for one of the most
prominent formalisms for structured argumentation, ASPIC+ [155].

Finally, another notable connection between belief revision and argumentation are
studies where argumentation techniques are used as a tool to perform change on non-
argumentation knowledge bases. As an example, we point to [143], where deductive
argumentation is used for selecting the parts of the new information that shall be accepted.

Gaggl and Strass [120] presented a decomposition schema for ADFs proceeding along an
ADF’s strongly connected components. It turns out to use similar propagation techniques
as our results on directional splitting (cf. Section 5.2.1). Only arguments mapped to the
truth value u are treated slightly different. By the decomposition schema they provide
alternative characterizations of the semantics, while the motivation of splitting is more
of computational nature.

6.3 Future Work

The presented work offers various directions of future work.

The results on expressiveness in Section 3 left some gaps here and there by leaving certain
semantics open. For instance, the exact characterization of the general signature as well
as the maximum number of realizable extensions have not been clarified for complete and
resolution-based grounded semantics yet and are among the open problems in abstract
argumentation as listed in [27]. Moreover, the expressiveness of the cf2 semantics [13]
has not been studied yet.

For input-output realizability as studied in Section 3.4, there are two main issues to
be tackled: first, we are interested in the construction of I/O-modules from compact
I/O-specifications where the function is not explicitly stated but, for instance, described
as a Boolean (or three-valued) circuit. Second, we want to find ways of minimizing the
size of I/O-modules, which is particularly interesting for the task of summarization [17],
i.e. replacing sub-AFs by simpler ones without changing the semantics of the remaining
AF. Moreover, I/O-realizability for ADFs is still to be studied.

We plan to extend the unifying approach to realizability to further formalisms as well as
to other semantics, such as naive-based semantics [120, 123]. Due to the modular design
of the algorithm presented in Section 3.6, one only has to develop suitable propagators to
be used by the algorithm. Moreover, the expressiveness of the family of extension-based
semantics for ADFs [167, 168] is an open issue.

A user-friendly variant of ADFs was introduced by Brewka and Woltran [54] in the
form of a framework for “graph-based argument processing with patterns of acceptance”
(GRAPPA). In such a GRAPPA framework, links are labelled and the acceptability of
arguments is specified by acceptance patterns based on these labels, which makes them
independent from the actual neighboring arguments. The improved usability is witnessed
by an implementation with a graphical user interface [135] as well as a mobile application
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for online discussion [176]. Future work should clarify whether the results on ADFs
presented in this work carry over to GRAPPA and how they are affected by restrictions
of the pattern language.

For the use of results on expressiveness to improve solvers, a further step has been done by
two-valued signatures [103], which are particularly interesting if AFs are evaluated under
more than one semantics at a time. Still, our aim is to find (easy-to-use) techniques to
prune search space when parts of the results have been already found. Characterizations
of signatures are essential in this respect. Moreover, while we have shown that checking
compactness of AFs is computationally expensive [31], non-exhaustive ways of determining
rejected arguments are still a promising subject of future research.

Also in the field of revision there are several directions for future work. First, we want to
extend our results for revision of AFs by AFs to semantics which are not proper I-maximal.
Moreover, the application to AFs and ADFs still has to be figured out for other revision
operators from the literature such as the operators by Borgida [52], Winslett [199],
Forbus [119], and Satoh [180], to name a few. Meaningful revision operators will also
have to take the syntactic form of the framework into account. Here, a possibility is a
two-step approach, where our abstract revision is the first step. Based on this result,
a second step would revise the syntactic structure of the framework. Finally, we plan
to apply our findings to other belief change operations. In particular, iterated belief
revision [81, 140, 49] seems to have natural applications in the argumentation domain
and we believe that the understanding of revision yielding a single AF (resp. ADF) is
fundamental for this purpose.

On a more general level, we want to analyze whether our insights can be extended to
a broader theory of belief change within fragments. In particular, the hybrid approach
presented in Section 4.3.3 follows a concept that is by no means limited to ADFs.

Finally, parametrized splitting for AFs as well as general splitting for ADFs is still an
open issue for most semantics.
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