
Algorithms in Graph Theory

tit.a.o.Prof. Dr. Herbert Fleischner

TU Wien, Algorithms and Complexity Group
fleischner@ac.tuwien.ac.at

March 11, 2016

This script is based on the lecture notes of “Algorithms in Graph
Theory” held by tit.a.o.Prof. Dr. Herbert Fleischner at the TU
Wien in the summer term 2012. It is written by

Projektass.(FWF) Dr. Martin Kronegger
TU Wien, Database and Artificial Intelligence Group
kronegger@dbai.tuwien.ac.at

mailto:fleischner@ac.tuwien.ac.at
mailto:kronegger@dbai.tuwien.ac.at

A graph G is a finite set of vertices V together with a multiset of edges E (each
connecting two not necessarily distinct vertices). We write G = V ∪ E, unlike
the usual way of writing G = (V,E). The size of a graph G = V ∪ E is the
number of edges denoted by |E|. The order of G is the number of vertices
denoted by |V |. Figure 1 shows some examples of graphs.

Figure 1: Example graphs.

A loop is an edge joining the same vertex, e. g.

A multiple edge joins two vertices more than once, e. g. has the
multiple edge f = xy, g = xy, s = xy. (f = xy is read as “f is of the form xy”
and not in terms of an algebraic equation.) Notice that e = [x, y] = [y, x] is an
older notation which can also be found in the literature. With λ(xy) we denote
the number of edges joining x and y. In the previous example, λ(xy) = 3.
A graph G = V ∪ E is called simple if e ∈ E implies λ(e) = 1 and e 6= xx for
any x ∈ V (does not contain a multiple edge and is loopless).
A simple graph Kn is called complete iff Kn has n vertices and for every two
distinct vertices there is an edge joining them. A (simple) graph G = V ∪ E is
called bipartite iff V can be divided into two disjoint sets s. t. there is no edge
between two vertices of the same set. Kn,m is called a complete bipartite graph
iff V can be divided into two disjoint sets A,B with |A| = n and |B| = m, s. t.
vw ∈ E for all v ∈ A and w ∈ B, and there is no edge between any two vertices
in the same set. See Figure 1 for K5 and K3,3.
For e = xy ∈ E we say that e is incident to x, y respectively, or that x, y
respectively, is incident to e. Vertices u and v are said to be adjacent if uv ∈ E.
Edges e, f are said to be adjacent if there is w ∈ V incident to e and f . Ev

denotes the set of edges incident to v.
With the degree of v ∈ V (abbreviated with d(v)) we denote the number of
edges incident with v, counting loops twice. A vertex v is called k-valent if and
only if d(v) = k. The minimum degree of a graph G is denoted with δ(G) and
the maximum degree of G with ∆(G).

Lemma 1. (Handshaking Lemma) Let G = V ∪ E be a graph. Then the fol-
lowing holds. ∑

v∈V
d(v) = 2 |E|

Corollary 2. In a graph, the number of vertices of odd degree is even.

A directed graph (digraph) D is a set of vertices V , together with a multiset A
of arcs – denoted as D = V ∪A.

2

Figure 2: An example of a digraph.

(a) A simple graph G. (b) An orientation of G of Figure 3a

Figure 3: Graphs, subgraphs and graph orientations.

Arcs are denoted as ordered pairs of vertices, e. g. a = (x, y), in which case we
say that a is incident from x and incident to y; and x is said to be the tail of
a and y is the head of a. Adjacency between two vertices, arcs respectively, are
defined as in the case of graphs. A+

v , A−v respectively, denotes the set of arcs
incident from v, incident to v respectively. Then we write Av = A+

v ∪ A−v to
denote the set of arcs incident to v or incident from v.
The in-degree id(v) = d−(v) of a vertex v ∈ V is the number of arcs that have
v as their head. Analogously, the out-degree od(v) = d+(v), for any v ∈ V , is
the number of arcs that have v as their tail.
For every digraph the following clearly holds.∑

v∈V
od(v) =

∑
v∈V

id(v) = |A|

Figure 2 shows a digraph with arcs a = (x, y), b = (y, x), etc.
Given a graph G = V ∪ E, G′ = V ′ ∪ E′ ⊆ G. G′ is a called a subgraph of
G if V ′ ⊆ V , E′ ⊆ E and G′ is a graph. For example, consider the graph
G given in Figure 3a. Then G′ = {u, x, y} ∪ {c, d} is a subgraph of G while
G′′ = {u, v, y} ∪ {a, b, d} is not a subgraph of G.
An orientation of an undirected graph G = V ∪ E is an assignment of exactly
one direction to each edge, i. e., D = V ∪ {(x, y) or (y, x) ∀xy ∈ E}. Figure 3b
shows an orientation of the graph given in Figure 3a.
Given a graph G = V ∪ E. A walk W (v0, vn) joining v0 and vn is defined as
an alternating sequence of vertices and edges of G,

W = W (v0, vn) = v0, e1, v1, e2, v2, . . . , en, vn

s. t. ei = vi−1vi, 1 ≤ i ≤ n. The length of W , denoted as l(W), is the number
of edges in W . If in a walk W (v0, vn) all edges are different, then this walk is
called a trail joining v0 and vn. A walk is called open or closed depending on
whether v0 6= vn or v0 = vn. A walk is called a covering walk if it contains all
edges of G. If a covering trail is closed, then it is called an eulerian trail .
A graph G = V ∪ E is called connected if ∀v, w ∈ V ∃W (v, w). Otherwise a
graph is called disconnected . The empty graph is connected.

3

(a) A map of Königsberg as it was in Euler’s days with highlighted bridges. (The
picture is an edited version of the one from http://en.wikipedia.org/wiki/Königsberg.)

(b) The graph resulting from the “Seven Bridges of Königsberg” problem.

Figure 4: Seven Bridges of Königsberg.

A graph G is eulerian if d(v) is even ∀v ∈ V (G). (Remark: This does not mean
that it is connected. Frequently, such disconnected graphs are often called “even
graphs”.) A digraph D is eulerian if id(v) = od(v) ∀v ∈ V (D).
Note: Already Euler in 1736 produced arguments starting with the problem
of the “Seven Bridges of Königsberg” (now Kaliningrad, Russia) and explained
why it is not possible to find a walk though the city that crosses each bridge
exactly once. Figures 4a and 4b illustrate this problem.
An open trail is a path if no vertex is traversed more than once (so all vertices
are different). In a path P (v0, vn), the vertices v1, . . . vn−1 are called the internal
vertices of P (v0, vn). A closed trail is a cycle (circuit) if all vertices are different
except for v0 = vn and if it contains at least one edge. A cycle of length k is
also called k-gon. A cycle of length 2 is called digon; we define likewise triangle,
quadragles, etc.

Proposition 3. In an open walk W (v0, vn) there is a subsequence W ′(v0, vn)
which is a path.

4

(a) Cycle. (b) Cycle. (c) Not a cycle.

Figure 5: Examples for a cycle, and a counterexample.

Proof. Let j0 be the largest index s. t. v0 = vj0 . From vj0 , ej0+1, vj0+1 we know
that vj0+1 6= vj0 = v0. Let j1 be the largest index s. t. vj1 = vj0+1. By this
we construct vj0 , ej0+1, vj1 . Continue this construction of a path as long as vn
has not been reached. If vjk = vn, then stop. Clearly the constructed walk
W ′(v0, vn) = vj0 , ej0+1, . . . , vjk is a path.

Let D = V ∪A be a digraph. Then

W (v0, vn) = v0, a1, v1, a2, v2, . . . , an

is a walk if ai = (vi−1, vi), i. e., the arcs are traversed in their direction. If
however, ai = (vi−1, vi)∨ai = (vi, vi−1) then W is called a chain. W is called a
simple chain, if no vertex is repeated. In the Ford-Fulkerson-Algorithm below
we will construct a special chain starting at the entry and ending at the exit of
the network. However, in digraphs the concepts of trails, paths and cycles are
defined as special cases of walk, just as in the case of graphs.
In a graph G = V ∪E, v ∈ V is called an isolated vertex if d(v) = 0, whereas v
is an endvertex if d(v) = 1. An edge e ∈ E is called an end-edge if e is incident
to an endvertex. An edge e ∈ E is called a bridge if it is not contained in any
cycle. Trivially, an end-edge is a bridge. In the graph in Figure 6, e and e′ are
bridges.
Note that eulerian graphs are bridgeless (why?). Analogous statement for di-
graphs holds as well.

Figure 6: Graph with bridges e and e′.

A subgraph of G is called component of G if it is a maximal connected sub-
graph of G. (Note: A maximal connected subgraph cannot be enlarged by
adding vertices/edges. A maximum connected subgraph is the largest possible
connected subgraph, i. e., a maximum connected subgraph would be the largest
possible component. However, a maximal connected subgraph needs not to be
a maximum connected subgraph. See Figure 7 for an example.)

Proposition 4. Let G = V ∪ E be a graph and R a relation. In the case
that ∀x, y ∈ V (xRy ⇔ ∃P (x, y)) holds, then R is an equivalence relation. The
equivalence classes of R are the vertex sets of the components of G.

5

Figure 7: A disconnected graph whose smaller component is a maximal but not
a maximum connected subgraph.

Proof. We show that R is an equivalence relation and that the equivalence
classes are the vertex sets of the components of G and form a partition. The
relation is reflexive, because every sequence starting at a vertex x and ending at
the same vertex at the same time is a path. The relation is symmetric, because G
is an undirected graph. For R being an equivalence relation it is left to show that
R is transitive (xRy, yRz ⇒ xRz). The fact ∃P (x, y)∧∃P (y, z) gives us a walk
W (x, z) from x to z. By Proposition 3, we can construct a path P (x, z) from
x to z. Therefore R is an equivalence relation. R partitions V = V1 ∪̇ . . . ∪̇ Vk,
k ≥ 1. For x ∈ Vi, let Gi be the component defined by x ∈ V (Gi). Clearly,
V (Gi) ⊆ Vi holds. Furthermore, ∀x, y ∈ Vi ∃P (x, y) ⊆ Gi is obviously true.
From this it follows that Vi ⊆ V (Gi). Therefore, Vi = V (Gi).

Let G = V ∪ E be a graph. The subgraph of G induced by V0 ⊆ V is defined
as 〈V0〉 = G0 = V (G0) ∪ E(G0) = V0 ∪ {e = xy ∈ E | x, y ∈ V0}. Analogously,
the subgraph of G induced by E0 ⊆ E (edge induced subgraph) is defined as
〈E0〉 = G0 = V (G0) ∪ E(G0) = {v ∈ V | v incident to some e ∈ E0} ∪ E0.

(a) A graph G.
(b) An induced
subgraph of G.

(c) A subgraph of G,
but not an induced
subgraph.

Figure 8: Example and counterexample for an induced subgraph.

Let D = V ∪A be a digraph. D is called

• weakly connected if GD := V (D) ∪ {e = xy | (x, y) ∨ (y, x) ∈ A} is
connected ⇔ ∀x, y ∈ V ∃ chain joining x and y

• strongly connected if ∀x, y ∈ V ∃P (x, y) ∧ P (y, x)

• unilaterally connected if ∀x, y ∈ V ∃P (x, y) ∨ P (y, x)

Note that weak and strong connectedness induce an equivalence relation anal-
ogous to the case of graphs. Unilaterally connected digraphs do not induce
an equivalence relation because the relation is not transitive, i. e., unilaterally
connected components are not necessarily disjoint.
Consider the examples given in Figure 9 showing an unilaterally connected (9a),
weakly connected (9b), strongly connected (9c) digraph and one which is not

6

connected (9d). Figure 9b is not unilaterally connected, because there is neither
a path P (u, v) nor a path P (v, u). Figure 9e shows a digraph with two strongly
connected components. The arc between these components does not belong to
any strongly connected component (in contrast to the undirected case where
every edge belongs to exactly one component).

(a) unilaterally connected (b) weakly connected

(c) strongly connected (d) not connected

(e) A graph with two strongly connected
components.

Figure 9: Different types of connectedness of digraphs.

A graph G or digraph D is called acyclic if it contains no cycle. An acyclic
graph G is called a forest . A forest with precisely one component is called a
tree. D is called a tree if GD is a tree.
However, an acyclic weakly connected digraph need not be a tree (see Fig-
ure 10b), but it contains a vertex v ∈ V (D) with id(v) = 0, which is called a
source of D, and a vertex w ∈ V (D) with od(w) = 0, which is called a sink of
D.
A graph G1 ⊆ G is called a spanning subgraph of G if V (G) = V (G1). A
spanning tree of G is a spanning subgraph of G which is a tree. Figure 10 shows
an example of a forest and an acyclic digraph which is not a tree.

Theorem 5. A graph G = V ∪ E is connected iff G contains a spanning tree.

Proof. We proceed by showing both directions separately.

• “⇐”: trivial.

• “⇒”: Assume G is connected. If no edge belongs to a cycle of G ⇒ G
acyclic ⇒ G is a tree. So, G is its only spanning tree. Suppose ∃e ∈ E
s. t. ∃ cycle C with e = uv ∈ C. Let G1 = G − e. Consider an arbitrary
path PG(x, y) in G with x, y ∈ V . If e 6∈ PG(x, y) ⇒ PG(x, y) is a path
PG1

(x, y) in G1. Suppose e ∈ PG(x, y) ⇒ PG(x, y) = x, . . . , u, e, v, . . . , y,
i. e., is of the form as illustrated in Figure 11.

7

(a) A forest. (b) Not a tree!

Figure 10: A forest and an acyclic digraph which is not a tree.

Figure 11: A path containing the edge e.

W.l.o.g. C = v, e, u, PC(u, v), v. A walk W in G1 is then defined as
W (x, y) = x, . . . , u, PC(u, v), v, . . . , y where instead of going through e we
use PC(u, v). Repeating this edge-elimination finally yields a graph Gk

which is connected and acyclic ⇒ Gk is a tree. As V (Gk) = V (G), Gk is
a spanning tree of G.

A loopless graph G = V ∪E is called nonseparable if G is connected and G− v
is connected ∀v ∈ V . A vertex v ∈ V is called cutvertex if G − v has more
components than G. A maximal nonseparable subgraph of G is called a block
of G. Figure 12 shows a nonseparable and a separable graph.

(a) nonseparable (b) not nonseparable = separable

Figure 12: A nonseparable and a separable graph.

Note: If a block B of G is a K2 then the edge of B is a bridge of G.

Theorem 6. Let G = V ∪ E be a loopless graph and B1, B2 be blocks of G.
From B1 6= B2 it follows that B1 ∩ B2 = ∅ or B1 ∩ B2 = v ∈ V (G) and v is a
cutvertex of G.

Proof. Suppose B1 and B2 are different blocks with more than one vertex in
common, i. e., |V (B1) ∩ V (B2)| ≥ 2. However, V (B1)− V (B2) 6= ∅ 6= V (B2)−
V (B1) must hold; otherwise, B2 ⊆ B1 or B1 ⊆ B2 implying B1 = B2 in either
case because of the maximality condition. Thus, there exists z ∈ V (B2)−V (B1)

8

adjacent to some u ∈ V (B1)∩ V (B2). Since B2 is nonseparable, there is a path

PB2
(z, v) ⊂ B2 − u s. t.v ∈ V (B1) but (V (PB2

(z, v))− {v}) ∩ V (B1) = ∅.

In other words,

PB2(u, v) = u, uz, zPB2(z, v) satisfies PB2(u, v) ∩B1 = {u, v}.

Now it is straightforward to see that B1 ∪ PB2
(u, v) % B1 is nonseparable,

contradicting the fact that B1 is a block.
Suppose v is not a cutvertex of G. Let xi ∈ V (Bi) be adjacent to v for i = 1, 2.
Then there exists P (x1, x2) ⊂ G− v. It follows for

Pi := P (x1, x2) ∪ {v, vxi}

that
B′1 = B1 ∪ P2 and B′2 = B2 ∪ P1

are nonseparable graphs with Bi $ B′i (see the preceding argument) contradict-
ing Bi, i = 1, 2, being a block of G.

The block-cutpoint graph bc(G) of a graph G is defined in the following way.

• If B is a block of G, then vB ∈ V (bc(G));

• if c is a cutvertex, then c ∈ V (bc(G)),
and there are no other vertices in bc(G).

• xy ∈ E(bc(G))⇔ x = vB and y is a cutvertex of G contained in block B,
or y = vB and x is a cutvertex of G contained in B.

Figure 13 shows an example of a block-cutpoint graph.

Figure 13: A graph G denoted with dotted vertices and edges and its block-
cutpoint graph bc(G) denoted with solid black vertices and edges.

Theorem 7. Let G be a graph. Then bc(G) is acyclic and #components of G =
#components of bc(G).

Proof. The proof of Theorem 7 is left as an exercise. (Hint: Suppose bc(G) has
a cycle; then G has a subgraph as shown in Figure 14a. The cycle of bc(G) is
shown in 14b. However, the subgraph of G cannot be of the form as shown in
Figure 14a, because it is nonseparable and would therefore not consist of more
than one block.)

9

(a) A subgraph of G with several blocks.
(b) The corresponding
cycle of bc(G).

Figure 14: Subgraphs of G and bc(G) if bc(G) would be cyclic.

A subdivision of a graphG results from subdividing edges of the form xy ∈ E(G),
i. e., remove xy, introduce a new vertex vxy which is not present in G and add
edges xvxy and vxyy. The subdivision graph S(G) results from G by subdividing
every edge of G by a new vertex. Clearly, a cutvertex remains a cutvertex when
subdividing edges, only additional cutvertices may be introduced. However,
when reversing this procedure a cutvertex should remain a cutvertex. Figure 15a
illustrates the procedure of subdividing edges of a graph.

(a) A graphG with showing the re-
sult of the procedure of subdivid-
ing edges. The newly introduced
vertices are dotted. (b) Every loop is a block.

Figure 15: Subdivision of edges (left), and every loop is a block of the graph on
the right.

To generalize the concept of nonseparable graphs to graphs with loops, the
definition of a cutvertex can be extended. If v ∈ V (G), vv ∈ E(G), d(v) ≥ 3
then v is also called a cutvertex. This means that each loop is considered as a
block. For example, in Figure 15b every loop is considered to be a block. With
these generalizations, bc(G) can be defined as before.
A graph G is called a block-chain if bc(G) is a path.

Theorem 8. G = V ∪ E connected, e ∈ E bridge ⇔ V = V1 ∪̇ V2 s. t. ∀v1 ∈
V1, v2 ∈ V2 every path P (v1, v2) from v1 to v2 contains the edge e.

Proof. We proceed by showing both directions separately.

• “⇐”: Suppose e = yx is not a bridge. Then G − e is connected (see the
proof of Theorem 5), and thus PG−e(v1, v2) exists for every v1 ∈ V1, v2 ∈
V2. This is a contradiction to our assumption that every path joining two
vertices from V1 and V2 contains e ⇒ e must be a bridge.

• “⇒”: Assume e = xy is a bridge. Then G− e is disconnected; otherwise,
∃P (x, y) ⊂ G−e, i. e., P (x, y), e is a cycle in G. Clearly G−e cannot have
more than two components. That is, G− e has precisely two components

10

G1 and G2. W.l.o.g. assume x ∈ V (G1)︸ ︷︷ ︸
V1

, y ∈ V (G2)︸ ︷︷ ︸
V2

. Choose v1 ∈ V1,

v2 ∈ V2. Then ∃PG(v1, v2). Let v′1 be the last vertex in PG(v1, v2) s. t.
v′1 ∈ V (G1) = V1 and let v′2 be the first vertex in PG(v1, v2) s. t. v′2 ∈
V (G2) = V2, i. e., PG(v1, v2) is of the form v1, . . . , v

′
1︸︷︷︸
∈V1

, f, v′2︸︷︷︸
∈V2

, . . . , v2.

(Note: @PG−e(v1, v2)). ⇒ f = e, since e is the only edge in G incident
with a vertex in V1 and V2.

Note: Deleting a bridge increases the number of components by exactly one.
However, deleting a cutvertex may increase the number of components by an
arbitrary number.

Theorem 9. G = V ∪ E connected and loopless, v ∈ V is a cutvertex ⇔
V − v = V1 ∪̇ V2 s. t. ∀v1 ∈ V1, v2 ∈ V2 every path PG(v1, v2) contains v.

Proof. Similar to the proof of Theorem 8; the proof details are thus left as an
exercise.

Let D = V ∪A be an acyclic weakly connected digraph. If D is not a tree, then
GD contains a cycle C and x, y ∈ V (C) ⊆ V s. t. odD(x) ≥ 2 and idD(y) ≥ 2
(see Figure 10b). Then D is an out-tree if id(z) = 0 for some z ∈ V and
id(v) = 1,∀v ∈ V − {z}. z is the root of the out-tree. Figure 16a illustrates an
out-tree. D is an in-tree if od(z) = 0 for some z ∈ V and od(v) = 1,∀v ∈ V −{z}.
z is the root of the in-tree. Figure 16b illustrates an in-tree.

(a) Out-tree with root z.

(b) In-tree with root z.

Figure 16: An example for an out-tree and an in-tree with root z.

The digraph shown in Figure 17 has no spanning out-tree and no spanning
in-tree (Exercise).

11

Figure 17: Digraph with no spanning out- or in-tree.

Theorem 10. Digraph D = V ∪ A strongly connected, z ∈ V arbitrarily ⇒ ∃
spanning in-tree with root z and a spanning out-tree with root z.

Proof. Start with an arbitrary vertex z. Then ∃PD(z, v), ∀v ∈ V . Then
P1(z, w) = T1 for some w ∈ V is an out-tree with root z. Suppose ∃x ∈ V −
V (T1) (otherwise we are finished). This means ∃P2(z, x). Let u ∈ V (P2(z, x))
be the vertex s. t. P2(u, x) ⊆ P2(z, x) has only u with T1 in common. ⇒
T2 = T1 ∪ P2(u, x) is an out-tree with root z. Repeating this procedure we
obtain a Tk−1 which is an out-tree with root z, a path P (u(k−1), y) where
y 6∈ V (Tk−1) and V (Tk−1) ∩ V (P (u(k−1), y)) = u(k−1), and V − V (Tk−1) =
V (P (u(k−1), y) − {u(k−1)}. Then Tk = Tk−1 ∪ P (u(k−1), y) is an out-tree with
root z and is spanning. A spanning in-tree with root z can be created analo-
gously.

Theorem 11. Let G be a nonseparable graph, |V (G)| ≥ 2, assume G is bridge-
less (G is loopless, by the hypothesis.). Then G − e is a block-chain for any
e ∈ E(G).

Proof. Let e = xy ∈ E(G) be an edge. Then G−e is connected, bc(G) = K1 and
bc(G− e) is a tree. Suppose G− e has an endblock B s. t. (V (B)− c)∩{x, y} =
∅, where c is a cutvertex. Then B is an endblock already in G, which is a
contradiction. Thus V (B − c) ∩ {x, y} 6= ∅ for every endblock of G − e. If
{x, y} ⊆ V (B)−c, then B∪e is an endblock of G (which is also a contradiction).
Therefore, every endblock B of G− e contains precisely one of x, y 6= cB , where
cB is a cutvertex. ⇒ precisely two endblocks in G − e. ⇒ G − e is a block-
chain.

Let G be a graph. Suppose ∃v ∈ V (G) with d(v) ≥ 3. Let Ev = {e1, e2, e3, . . .}
be the edges incident with v. Then the graph G1,2, which is obtained by splitting
e1, e2 away from v, is defined in the following way.

V (G1,2) = V (G) ∪ {v1,2} where v1,2 6∈ V (G).

E(G1,2) = E(G)− {e1, e2} ∪ {e′1, e′2}, where e1 = x1v, e2 = x2v and

e′1, e
′
2 are incident with v1,2 and x1, x2 respectively.

Theorem 12. Let G 6= K2 be nonseparable having a vertex v with d(v) ≥ 3.
Then G1,2 is a block-chain, and v, v1,2 are not cutvertices of G1,2 and belong to
different endblocks if G1,2 is separable.

12

Proof. The proof of Theorem 12 is similar to the proof of Theorem 11, and is
therefore left as an exercise.

Figure 18 shows on the left several graphs with a vertex v and on the right the
result of splitting two edges away from v.

(a) G(1) (b) G
(1)
1,2

(c) G(2) (d) G
(2)
1,2

(e) G(3) (f) G
(3)
1,2

(g) G(4) (h) G
(4)
1,2

Figure 18: Examples of graphs on the left, and the result of splitting the edges
e1, e2 away from vertex v on the right.

Splitting a vertex can also be generalized. Let G = V ∪ E, v ∈ V and Ev =
Ev,1 ∪̇ . . . ∪̇ Ev,k. The graph G′, resulting from splitting the vertex v w. r. t.
Ev,1, . . . , Ev,k, is then defined in the following way.

V (G′) = {V − v} ∪̇ {v1, . . . , vk} where {v1, . . . , vk} ∩ V = ∅

E(G′) = E(G)− Ev ∪
⋃

1≤i≤k

{xvi | xv ∈ Ev,i}

G′ is called a detachment of G at v, also denoted as G′ = Gv.

13

For example, consider the graph given in Figure 19a and Ev,1 = {e, f}, Ev,2 =
{g}, Ev,3 = {h, l}. The resulting graph after splitting v w. r. t. Ev,1, Ev,2, Ev,3

is shown in Figure 19b.

(a) A graph G.
(b) The result of splitting v of G
w. r. t. to Ev,1, Ev,2, Ev,3.

Figure 19: Splitting v of G.

The splitting operation can also be repeated. Consider V0 ⊆ V, V0 = {w(1), . . . , w(r)}.
Then ((· · · ((Gw(1))w(2)) · · ·)w(r)) is a detachment of G at V0.
A detachment at a vertex or at a set of vertices in a digraph is defined analo-
gously.

Theorem 13. G connected ⇔ G has a detachment which is a tree.

Proof. The proof of Theorem 13 is left as an exercise. (Hint: If G is connected
and every edge is a bridge ⇒ empty detachment. If an edge belongs to a cycle
⇒ detach one end, and so on.)

Theorem 14. The following three statements are equivalent.

1. G = V ∪ E is a tree

2. G is acyclic and |V | = |E|+ 1

3. G is connected and |V | = |E|+ 1

Proof. The proof of the Theorem 14 is left as an exercise. (Hint: Induction on
the number of edges, starting from 0.)

A network with integer capacities is defined in the following way. Let D = V ∪A
be a digraph with V = {a, b, v1, . . . , vn}, A = {a0 = (b, a), a1, . . . , am} (a0 is
called return arc). In A− a0 the following holds: there is no arc with a as head
(Aa − a0 = A+

a) and there is no arc with b as tail (Ab − a0 = A−
b

). A+
a are the

entry arcs of D and A−
b

are the exit arcs of D. Every a ∈ A− a0 is assigned a

capacity ca ∈ N ∪ {0} of a.
Let D = V ∪ A be a network, a ∈ A → ϕa ∈ R be a function from the arcs to
the real numbers and A = {a0, . . . , aq}. Then the vector Φ = (ϕa0

, . . . , ϕaq
) is

called a flow if ∑
a∈A−v

ϕa =
∑
a∈A+

v

ϕa,∀v ∈ V

14

Φ is called a feasible flow if 0 ≤ ϕa ≤ ca holds ∀a ∈ A − a0. Clearly, the zero
vector 0 is a feasible flow in any network. A feasible flow Φ in a network D with
integer capacities is called a maximum flow if ϕa0

is a maximum.
Given a network D with integer capacities and a feasible integer flow Φ, the
Ford-Fulkerson Algorithm shown in Algorithm 2 calculates a maximum flow.
The algorithm repeatedly applies the marking procedure shown in Algorithm 1
as long as Φ can be enlarged.

Algorithm 1 The Marking Procedure used in the Ford-Fulkerson Algorithm.

1: procedure Marking-Procedure(D,Φ)
2: M := a . Comment: Initialize the set of marked vertices.
3: repeat
4: if v is marked and w is not marked, where a′ = (v, w) ∈ A−a0 then
5: if ϕa′ < ca′ then
6: M :=M∪ {w}
7: end if
8: end if
9: if v is marked and w is not marked, where a′ = (w, v) ∈ A−a0 then

10: if ϕa′ > 0 then
11: M :=M∪ {w}
12: end if
13: end if
14: until b has been marked or no new vertex can be marked.
15: returnM
16: end procedure

Claim 1. Let M be the set of marked vertices by the marking procedure shown
in Algorithm 1. If b ∈ M, then Φ can be enlarged. If b 6∈ M, then Φ is a
maximum flow.

Proof. Let Dm = 〈{(u, v) ∈ A− a0 s. t. u, v marked}〉. We show both state-
ments separately.

• Suppose b ∈ M ⇒ b ∈ Dm. Let D(0) = 〈a〉. Clearly D(0) is weakly
connected. The next marked vertex u is adjacent to a. Therefore, let
D(1) = 〈{(a, u}〉; D(1) is weakly connected. Suppose by induction that
D(k) induced by the first k arcs involved by the marking procedure is
weakly connected. Then the next step in the marking procedure involves
a unique arc (x, y) (either x ∈ D(k), y 6∈ D(k) or y ∈ D(k), x 6∈ D(k)).
Then D(k+1) = D(k) ∪ {(x, y), t} where t 6∈ D(k), t ∈ {x, y}. Therefore,
also D(k+1) is weakly connected. This means, if b has been marked, then
Dm is weakly connected. So there is a simple chain P (a, b) in Dm with
the following properties:

– P (a, b) = a, (a, u), . . . , (y, b) and ϕ(a,u) < c(a,u)

– P (a, b) = . . . , s, (s, t), t, . . . and ϕ(s,t) < c(s,t)

– P (a, b) = . . . , u, (w, u), w, . . . and ϕ(w,u) > 0

Φ can now be increased to result in a feasible flow Φ′ in the following way.
∀(x, y) ∈ P (a, b) where x, (x, y), y ⊆ P (a, b) set ϕ′(x,y) = ϕ(x,y) +1 ≤ c(x,y);

15

Algorithm 2 The Ford-Fulkerson Algorithm.

1: procedure Ford-Fulkerson(D)
2: Φ = 0
3: repeat
4: M← Marking-Procedure(D,Φ)
5: if b ∈M then
6: find a simple chain P (a, b) s. t. v ∈M, ∀v ∈ P (a, b)
7: for all (x, y) ∈ P (a, b) do
8: if x, (x, y), y ⊆ P (a, b) then
9: ϕ(x,y) = ϕ(x,y) + 1

10: else . Comment: In this case y, (x, y), x ⊆ P (a, b).
11: ϕ(x,y) = ϕ(x,y) − 1
12: end if
13: end for
14: ϕa0

= ϕa0
+ 1

15: end if
16: until b 6∈ M
17: return Φ
18: end procedure

∀(y, x) ∈ P (a, b) where x, (y, x), y ⊆ P (a, b) set ϕ′(y,x) = ϕ(y,x) − 1 ≥ 0,

for ϕ′a0
= ϕa0

+ 1 and ∀a ∈ A − ({ao ∪ P (a, b)}) set ϕ′a = ϕa. When
analyzing all four possibilities of changing the flow in a vertex (illustrated
in Figure 20), it is clear that Φ′ is still a feasible flow. In Figure 20a
and 20c the sum of the incoming arcs is equal to the sum of the outgoing
arcs (both sums are increased, respectively decreased, by one). Likewise,
in Figure 20b and 20d, the sum of the incoming arcs and the sum of the
outgoing arcs has not been altered.

(a) Possibility 1. (b) Possibility 2.

(c) Possibility 3. (d) Possibility 4.

Figure 20: The four possibilities of changing the flow in a vertex.

• Suppose b 6∈ M. Let V0 = V −M. Observe that a 6∈ V0 as a is always
marked. Thus, V0 and M are two disjoint sets with a ∈ M and b ∈ V0.
The general structure of the network is illustrated in Figure 21 (marked

vertices are labeled with and unmarked vertices with).

Clearly, ϕai
= cai

, for 1 ≤ i ≤ k and ϕbj = 0, for 1 ≤ j ≤ l; otherwise, a

vertex in V0 could be marked. Thus, ϕa0 =
∑k

i=1 cai .

16

Figure 21: Graph illustrating the case where b 6∈ M in the proof of Claim 1.

Let D be a network, V0 ⊂ V (D) − a and b ∈ V0. Then A0 = {a = (x, y) ∈
A(D) | x 6∈ V0, y ∈ V0} is called a cut of D. The capacity of cut A0 is defined
as cA0

:=
∑

a∈A0
ca.

For every flow and every cut ϕa0 ≤ cA0 . Because ϕa0 =
∑k

i=1 cai for some spe-
cial cut (see above) we also have ϕa0 ≥ min

A0

cA0 . Thus we obtain the following

result.

Theorem 15 (Max-Flow Min-Cut, Ford-Fulkerson’s Theorem). The maximum
flow in network D = minimum cut capacity over all cuts in D.

Let G = V ∪ E be a graph and x, y ∈ V be two vertices. Then the local
edge connectivity λ(x, y) = minimum #edges that need to be deleted in order
to separate x and y = min |E0| s. t. E0 is an edge cut separating x and y.
Furthermore, the edge connectivity of a loopless graph G is defined by λ(G) =
min
x,y∈V

λ(x, y). In the case of a bridgeless graph H having a loop, we set λ(H) = 2

(see Figure 24). For example, in the graph given in Figure 22a, at least two
edges need to be deleted in order to make the graph disconnected while in the
graph shown in Figure 22b at least 3 edges need to be deleted.

(a) λ(G) = 2 (b) λ(G) = 3

Figure 22: Examples of deleting edges to make a graph disconnected.

The local connectivity w. r. t. nonadjacent x, y ∈ V is defined as κ(x, y) =
min

V0⊆V−{x,y}
{|V0| | x, y are in different components of G− V0}.

In Figure 23a, κ(x, y) = 1, because of {u} = V0.

17

The connectivity of a loopless graph G is defined in the following way.

κ(G) =

 min
x,y non-adj.

κ(x, y) if ∃x, y s. t. xy 6∈ E(G)

n− 1 if G contains a spanning Kn

If a connected graph G has a loop, then we set κ(G) = 1.
Consider the graph given in Figure 23b which contains a spanning K5: Since
it has loops, κ(G) = 1. However, the graph G′0 obtained from G0 by deleting
the loops, satisfies κ(G′0) = 4 (see Figure 23c). Note that multiple edges do not
affect the (local) connectivity, while they do affect the (local) edge connectivity.

(a) κ(G) = 1 (b) κ(G0) = 1 (c) κ(G′0) = 4

Figure 23: Example graphs with their connectivity κ.

If G is loopless, then clearly λ(G) ≤ δ(G) holds. In a graph with loops, one
can think of subdividing the edges. For example let G be the graph shown in
Figure 24a. Figure 24b shows the resulting graph after subdividing the edges.
Then, clearly λ(G0) = 2. In general, because of setting λ(H) = 2 for a bridge-
less graph H having a loop, subdividing one or more edges of H leaves λ(H)
invariant.

(a) A graph G.
(b) The resulting graph G0 after
subdividing G of Figure 24a.

Figure 24: An example of connectivity in a graph with loops.

Let G be a graph and E0 ⊆ E(G) be an edge cut separating x and y, (illustrated
in Figure 25); i. e., x and y lie in different components of G−E0. Then ρe(x, y)
and ρ(x, y) with x, y ∈ V (G) are defined in the following way.

ρe(x, y) = maximum number of edge-disjoint paths joining x and y.

ρ(x, y) = maximum number of internally disjoint paths joining x and y.

It is clear that ρe(x, y) ≤ |E0|. However, also the following theorem holds.

Theorem 16. Let G = V ∪ E be a connected graph and x, y ∈ V arbitrarily
chosen with x 6= y. Then,

ρe(x, y) = min
E0⊆E

{|E0| | E0 separates x and y}

18

Figure 25: An illustration of an edge cut separating x and y where the lines
indicate a set of edges.

Proof. Assume, w.l.o.g., that G is loopless (loops are never contained in a path).
Construct a network D in the following way. a = x, b = y, V (D) = V , (a, u) ∈
A(D) if xu ∈ Ex, (v, b) ∈ A(D) if vy ∈ Ey, a0 = (b, a) ∈ A(D) and for all st ∈ E
with {s, t}∩{x, y} = ∅ ⇒ (s, t) ∈ A(D) and (t, s) ∈ A(D); i. e., st is replaced by
two oppositely oriented arcs. Furthermore, for all a ∈ A(D) − {a0} let ca = 1.
The resulting network D with integer capacities is illustrated in Figure 26a.

(a) General structure of network D in the proof of Theorem 16.

(b) Marked vertices are labeled with and unmarked vertices with .

Figure 26: The general structure of D and D∗ with a maximum flow.

Then the maximum flow in D = minimum cut capacity cA0
of a cut A0. The

network D with a maximum flow and the marking procedure associated with
this flow is illustrated in Figure 26b. W.l.o.g. assume that D′ = (D−a0)−{a ∈
A(D) − a0 | ϕa = 0} is acyclic (otherwise, lowering the flow in the arcs of a
cycle by 1, still yields a maximum flow). By construction, if {g, h} ∩ {a, b} = ∅
and (g, h) ∈ A(D) and g is a marked vertex, whereas h is unmarked, then
ϕ(g,h) = 1, and (h, g) ∈ A(D) and ϕ(h,g) = 0. Conversely, if (t, s) ∈ A(D) with
t unmarked, but s marked, then ϕ(t,s) = 0, and (s, t) ∈ A(D) with ϕ(s,t) = 1.

Likewise, if for arcs (a, v), (w, b) ∈ A(D) v is unmarked and w is marked then
ϕ(a,v) = ϕ(w,b) = 1. Consequently, a cut A0 in D corresponds to an edge-cut
E0 in G separating x and y.
It is now left to show that the maximum flow = ϕa0

= |A0| = |E0| = ρe(x, y).
The first three equations follow from the Ford-Fulkerson Theorem and the spe-
cial type of network under consideration. To show the last equation we construct

19

a new digraph D′′ from D′ in the following way.

D′′ = D′ ∪ {a(i) = (b, a) | i = 1, . . . , ϕa0
}

In D′′, clearly idD′′(w) = odD′′(w),∀w ∈ V (D′′) holds. In particular, we have
idD′′(x) = odD′′(x) and idD′′(y) = odD′′(y) by construction of D′′. That is, D′′

is an eulerian digraph.

Remark: A property of eulerian digraphs which we use here and
will prove below without using networks is the following.
D is an eulerian digraph with A(D) 6= ∅ ⇔ A(D) = C1 ∪̇ . . .∪̇Ck

and 〈Ci〉 is a cycle for 1 ≤ i ≤ k.

Thus, A(D′′) = C1∪̇. . .∪̇Ck. AsD′ has no cycles, each cycle ofD′′ contains some

a(i). W.l.o.g. a(i) ∈ Ci, 1 ≤ i ≤ k = ϕa0
. Clearly, P

(i)
D′′(a, b) := 〈Ci〉 − {a(i)} is a

path in D′′ which corresponds to a path P
(i)
G (x, y) in G. All P

(i)
D′′(a, b) are arc-

disjoint, because all cycles 〈Ci〉 are arc-disjoint. Therefore, the paths P
(i)
G (x, y)

are edge-disjoint. This means, there are k = ϕa0
edge-disjoint paths PG(x, y).

Now, from ρe(x, y) ≥ ϕa0
= |E0| ≥ ρe(x, y) it follows that ρe(x, y) = |E0|.

Theorem 17 (Menger). Let G be a graph, x, y ∈ V (G) with xy 6∈ E(G), then
κ(x, y) = ρ(x, y).

Proof. Construct the network D as in the proof of Theorem 16. Construct a
network D∗ from D by forming a detachment at every z ∈ V (D) − {a, b} as
follows.

• z is replaced with z′, z′′ ∈ V (D∗)− V (D)

• a−z ∈ A−z ⊂ A(D)↔ a−z′ ∈ A
−
z′ ⊂ A(D∗),

a+
z ∈ A+

z ⊂ A(D)↔ a+
z′′ ∈ A

+
z′′ ⊂ A(D∗)

• (z′, z′′) ∈ A(D∗), called pillar

• c(z′,z′′) = 1 and all other arcs in D∗ have the same capacity 1 as the
corresponding arc in D.

Figure 27 shows G locally and the construction of the corresponding networks
D and D∗. Note that edge-disjoint paths in G do not necessarily correspond to
arc-disjoint paths in D∗ because there is exactly one arc leaving z′. However,
disjoint paths from x to y in G correspond to disjoint paths in D∗ joining a
and b and thus also correspond to disjoint paths in D joining a and b, and vice
versa.
Figure 28 illustrates that an edge in G which is not incident to x nor to y,
corresponds to a cycle of length 4 in D∗.
After calculating the maximum flow ϕa0 in D∗ and applying the marking pro-
cedure w. r. t. this flow, the network D∗ has the structure as shown in Figure 29
with ϕa1

= . . . = ϕak
= 1 and ϕb1 = . . . = ϕbl = 0. In all figures of the rest of

this proof, the marked vertices are denoted with , and the unmarked vertices

with .
Claim: ρG(x, y) = ϕa0

= κG(x, y).

20

(a) G (b) D constructed from G. (c) D∗ constructed from D.

Figure 27: An example for G and its constructed networks D and D∗.

(a) {u, v}∩{x, y} = ∅ (b) D constructed from G.

(c) D∗ constructed from D.

Figure 28: An edge in G (not incident to x nor to y) and the construction of
the networks D and D∗.

In analogy to the proof of Theorem 16, we now obtain ϕa0 internally disjoint
paths from a to b whose arcs have positive flow and thus yield equally many
internally disjoint paths in D and in G.
It is easy to see that deleting in D∗ one of the vertices of each of the ϕa0

arcs
from the marked to the unmarked vertices, all of the aforementioned paths are
destroyed. However, we want to show that in D − {a, b} there are ϕa0 vertices
whose deletion separates D − a0 such that a and b belong to different weakly
connected components of D − a0. a remains marked and b remains unmarked.
Note that walking in D∗ from a to b along one of the ϕa0

internally disjoint
paths, call this path P , there is precisely one arc (q, r) where q is marked and
r is unmarked, but none of the arcs of P has its tail unmarked but its head
marked. We now mark the vertices of D starting from the final marking of D∗ as
follows. If the tail and the head of a pillar (u′, u′′) are both marked (unmarked,
respectively), then we let u ∈ V (D) be marked (unmarked, respectively). If
for the pillar (u′, u′′), u′ is marked, but u′′ is unmarked then we let u ∈ V (D)
be marked. Note that by construction, u′ cannot be unmarked whenever u′′ is
marked: otherwise ϕ(u′,u′′) = 0 implying that all arcs incident to u′ or incident
from u′′ have flow 0, and thus u′′ could not be marked (see Figure 30 for an
illustration).
Let V0 ⊆ V (D) = V (G) be defined as follows. If for (s, t) ∈ A(D) the corre-
sponding arc in D∗ has flow 1, and if we have t 6= b, and s is marked but t is

21

Figure 29: An illustration of D∗ with the maximum flow.

Figure 30: (u′, u′′) is a pillar where u′ is unmarked and u′′ is marked.

unmarked, then let t ∈ V0. If, however, t = b and s is marked, then let s ∈ V0

(note that s 6= a in this case, and b is unmarked in any case). We observe that
among all arcs with u ∈ V0 as head, there must be exactly one with flow 1 (the
flow in D∗ carries over to a flow in D). It now follows from the maximality of
the flow in D∗ and the corresponding marking in D, that

(i) V0 corresponds to a set of |V0| vertices in D∗ destroying all ϕa0
internally

disjoint paths in D∗ (as mentioned above), and

(ii) V0 separates D−a0 such that a and b belong to different weakly connected
components of (D − a0)− V0 and thus separates x and y in G.

Thus we can say that for every arc of the cut of the maximum flow in D∗, we
deleted one end in D. Thus, |V0| = ϕa0

=# of internally disjoint paths from
x to y in G. Clearly, |V0| ≥ κ(x, y) and thus ρ(x, y) ≥ ϕa0

= |V0| ≥ κ(x, y).
Furthermore, since every path from x to y in G must contain at least one
vertex from any vertex cut separating x and y it follows that ρ(x, y) ≤ κ(x, y).
Therefore, ρ(x, y) = κ(x, y).

Let G be a graph. The line graph L(G) is defined as follows.

• V (L(G)) = E(G)

• e, f ∈ V (L(G)), ef ∈ E(L(G))⇔ e, f ∈ E(G) are adjacent in G.

An example of a graph and its line graph is given in Figure 31.
Let Ex = {e1, . . . , ed(x)} ∈ E(G) be the set of edges incident with x ∈ V (G),
resp. Ey = {f1, . . . , fd(y)} ∈ E(G) the set of edges incident with y ∈ V (G).
Then L∗ is defined as

L∗ := L(G) ∪ {x, y} ∪ {xei | 1 ≤ i ≤ d(x)} ∪ {yfj | 1 ≤ j ≤ d(y)}.

In L∗ the vertices x and y are nonadjacent. The proof of the following theorem
is left as an exercise.

22

Figure 31: A graph G (dotted) and its line graph L(G) (solid).

Theorem 18. κL∗(x, y) = λG(x, y)

Theorem 18 can be used to prove Theorem 16 with the help of Menger’s Theo-
rem. (Hint: Apply Menger’s Theorem to L∗ and modify the paths to correspond
to paths in G. Then disjoint paths in L∗ correspond to edge-disjoint paths in
G).
Let G be a graph. G is called n-connected if κ(G) ≥ n. From this definition it
follows that, for example, a 3-connected graph is also 2-connected.

Theorem 19 (Whitney). G simple, n-connected ⇒ ∀x, y ∈ V (G) ∃n internally
disjoint paths from x to y.

Proof. Assume that G = V ∪E is simple and n-connected. Therefore, κ(G) ≥ n.
Choose x, y ∈ V . We proceed by case distinction.

• x, y nonadjacent⇒ κ(x, y) ≥ n⇒ by Menger’s Theorem ρ(x, y) = κ(x, y) ≥
n⇒ ∃ at least n internally disjoint paths joining x and y.

• xy = e ∈ E. Let G′ = G− e. Obviously, κ(G′) ≥ κ(G)−1 ≥ n−1. Apply
Menger’s Theorem to G′ ⇒ ∃ at least n−1 internally disjoint paths joining
x and y. However, the path x, e, y is internally disjoint from the others ⇒
there are at least n internally disjoint paths joining x and y in G.

Corollary 20. Given an n-connected graph G = V ∪E with |V | ≥ 2n. Choose
V ′ = v1, . . . , vn, W ′ = w1, . . . , wn with V ′,W ′ ⊆ V (G) and V ′ ∩W ′ = ∅. Then
there are n totally disjoint paths joining vertices in V ′ to vertices in W ′.

Proof. W.l.o.g. assume that v′, w′ 6∈ V (G). Form a graph G∗ = G ∪ {v′, w′} ∪
{v′vi | 1 ≤ i ≤ n}∪{w′wj | 1 ≤ j ≤ n}. By this construction, d(v′) = d(w′) = n.
Then κ(G∗) ≥ n, because κ(G) ≥ n and d(v′) = d(w′) = n (see also the con-
struction of L∗ preceding Theorem 18). Suppose that κ(G∗) < n. Then there is
a vertex cut S = {x1, . . . , xr} with r < n, as depicted in Figure 32, that sepa-
rates G∗ i. e., G∗−S is disconnected with v′ and w′ belonging to different com-
ponents of G∗−S (otherwise, S separates G which is impossible since |S| < n).
However, d(v′) = d(w′) = n > |S| implies that the components of G∗ − S con-
taining x, y respectively, have at least two vertices each and thus S also separates
G which is a contradiction to our assumption ⇒ κ(G∗) ≥ n. By Menger’s The-
orem there are n internally disjoint paths P1(v′, w′), . . . , Pn(v′, w′) ⊆ G∗. Then
the paths Pi = Pi(v

′, w′) − {v′, w′} are n totally disjoint paths in G joining
vertices in V ′ to vertices in W ′.

Theorem 21 (Dirac). Let G = V ∪E be an n-connected graph with v1, . . . , vn ∈
V chosen, n ≥ 2. Then there exists a cycle containing v1, . . . , vn. (Note that
the order in which the vertices appear on the cycle cannot be prescribed.)

23

Figure 32: The vertex cut S in the proof of Corollary 20.

Proof. We proceed by contradiction. Assume there is no cycle containing all
of v1, . . . , vn. Let C be a cycle containing as many of the vertices v1, . . . , vn
as possible. W.l.o.g. v1, . . . , vk are in V (C), but vk+1, . . . , vn 6∈ V (C). By
supposition, k < n.

• l(C) = k. Figure 33 illustrates this case.

Figure 33: G∗ in the proof of Theorem 21 in case of l(C) = k.

Form G∗ = G∪{v∗}∪{v∗vi | 1 ≤ i ≤ k} (see Figure 33). Then κ(G∗) = k
(Delete in G∗ the vertices V (C); then v∗ is isolated; and G∗ − v∗ = G is
n-connected.) ⇒ ∃k internally disjoint paths from vk+1 to v∗ (e.g., the
green paths in Figure 33). Denote them as P1(vk+1, v

∗), . . . , Pk(vk+1, v
∗).

W.l.o.g. assume for 1 ≤ i ≤ k that the path Pi(vk+1, v
∗) contains vi. Let

then (C − {v1vk}) ∪ (P1(vk+1, v
∗) − v∗) ∪ (Pk(vk+1, v

∗) − v∗) =: C∗ ⊃
{v1, . . . , vk+1}. Clearly v∗ 6∈ V (C∗)⇒ C∗ (Orange in Figure 33) is also a
cycle in G. This is a contradiction to our assumption that C contains as
many vertices of {v1, . . . , vn} as possible but not all of them.

• l(C) > k. Figure 34 illustrates this case.

Figure 34: G∗ in the proof of Theorem 21 in case of l(C) > k.

Let x ∈ V (C) − {v1, . . . , vk}. Form analogously G∗ = G ∪ {v∗} ∪ {v∗vi |
1 ≤ i ≤ k} ∪ {v∗x}. ⇒ dG∗(v

∗) = k + 1 and k + 1 ≤ n. It follows anal-
ogously that κ(G∗) = k + 1. Again, there are internally disjoint paths

24

P1(vk+1, v
∗), . . . , Pk+1(vk+1, v

∗). For 1 ≤ i ≤ k + 1, P−i (vk+1, xi) ⊂
Pi(vk+1, v

∗) s. t. v∗ 6∈ P−i (vk+1, xi) and P−i (vk+1, xi) ∩ C = xi (De-
noted in green in Figure 34). W.l.o.g. assume the labels i are chosen
s. t. x1, . . . , xk+1 appear in this order on the cycle C. The cycle C can
be written as C = PC(x1, x2) ∪ PC(x2, x3) ∪ . . . ∪ PC(xk+1, x1). Due
to the pigeonhole principle PC(xj , xj+1) − {xj , xj+1} ∩ {v1, . . . , vk} =
∅ for at least one j as there are k + 1 paths but only k vi’s. Then
(C − PC(xj , xj+1))∪ P−j (vk+1, xj)∪ P−j+1(vk+1, xj+1) is a cycle in G that
contains the vertices v1, . . . , vk, vk+1. This is a contradiction to our as-
sumption that C contains as many vertices of {v1, . . . , vn} as possible.

Corollary 22. Let G = V ∪ E be a nonseparable graph with |E| ≥ 2. Then,
e, f ∈ E ⇒ ∃ cycle C ⊃ e, f .

Proof. |V (G)| ≥ 2 follows from the hypothesis, and the corollary is trivially true
for |V (G)| = 2. Assume now that |V | ≥ 3. κ(G) ≥ 2 because G is nonseparable.
Let e = xy, f = uv. Furthermore, let se resp. sf be subdivision vertices of the
edges e resp. f (illustrated in Figure 35).

Figure 35: Subdivision vertices w. r. t. edges e and f .

G′ = (G − {e, f}) ∪ {se, sf} ∪ {sex, sey, sfu, sfv}. Clearly, κ(G′)
(>)
= 2. From

Dirac’s Theorem it follows that ∃C ′ 3 se, sf in G′ ⇒ C ⊃ e, f in G.

Lemma 23 (Splitting-Lemma). G bridgeless, connected. ∃v ∈ V s. t. d(v) ≥ 4.
Choose e1, e2, e3 ∈ Ev s. t. e1, e2 belong to different blocks if v is a cutvertex.
⇒ G1,2 or G1,3 is connected and bridgeless.

Proof. We proceed by case distinction on whether v is a cutvertex or not.

A) Suppose v is a cutvertex. Let Bi be the block containing ei with i = 1, 2.
Let H = B1 ∪B2 (illustrated in Figure 36a). H1,2 is shown in Figure 36b.
We need to show that H1,2 is nonseparable, which is true if B1 or B2 is a
vertex with a loop. Assume, therefore, that |V (H1,2)| ≥ 4. Then, H1,2 is
nonseparable ⇔ κ(H1,2) ≥ 2⇔ x, y on a cycle for any x, y ∈ V (H1,2).

(a) H (b) H1,2

Figure 36: H = B1 ∪ B2 and H1,2 in the proof of Lemma 23 in the case where
v is a cutvertex.

25

1) x, y ∈ V (Bi)− {v} for i ∈ {1, 2} i. e., both, x and y, are in the same
block ⇒ ∃ cycle Ci(x, y) ⊂ Bi. If ei 6∈ E(Ci(x, y)) then Ci(x, y) ⊂
H1,2. Suppose ei ∈ E(Ci(x, y)) (this case is illustrated in Figure 37).
W.l.o.g. assume i = 1.

Figure 37: x, y ∈ V (Bi)− {v}

C1(x, y)→ P1(v, v1,2) 3 x, y (blue path in Figure 37). In B2 ∃C2 con-
taining the edge e2 → P2(v1,2, v) (red path in Figure 37). P1(v, v1,2)∪
P2(v1,2, v) is a cycle in H1,2 containing x and y.

2) x ∈ B1 − {v}, y ∈ B2 − {v} (illustrated in Figure 38).

Figure 38: x ∈ B1 − {v}, y ∈ B2 − {v}

By Menger’s Theorem (in Dirac form with e1, e2 subdivided) ∃C1(x) ⊂
B1, C1(x) 3 e1, C2(y) ⊂ B2, C2(y) 3 e2. ⇒ P1(v, v1,2), P2(v1,2, v)
is a cycle in H1,2 containing both x and y. C1(x) corresponds to
P1(v, v1,2) ⊂ H1,2 and C2(y) corresponds to P2(v1,2, v) ⊂ H1,2.

3) y = v, w.l.o.g. assume x ∈ V (B1) (illustrated in Figure 39).

Figure 39: y = v, x ∈ V (B1)

∃ cycle C1(x) ⊂ B1, e1 ∈ C1(x), which corresponds to a path P1(v, v1,2).
In B2 ∃C2(e2) 3 e2 → P2(v1,2, v). Therefore, P1(v, v1,2), P2(v1,2, v)
is a cycle in H1,2 containing x and y = v.

4) v1,2 and v lie on a cycle in H1,2 by analogous arguments.

In all cases H1,2 is nonseparable (all blocks other than B1 and B2 are
unaltered and therefore still blocks). From this it follows that G1,2 =
H1,2 ∪

⋃r
i=3Bi (where B1, . . . , Br are the blocks of G) is bridgeless since

H1,2 and Bi, 1 ≤ i ≤ r, are bridgeless. However, is G1,2 connected?
PG(x, y)→ PG1,2

(x, y) if E(PG(x, y))∩{e1, e2} = ∅ or = {e1, e2}. W.l.o.g.
suppose e1 ∈ PG(x, y) and e2 6∈ PG(x, y) ⇒ PG(x, y) 3 e′ ∈ Ev − {e1, e2}
(see Figure 40 for an illustration).

26

Figure 40: PG(x, y) ⊃ e′ ∈ Ev − {e1, e2}

B2 is a block ⇒ ∃PH1,2
(v1,2, v) s. t. e2, e

′′ ∈ PH1,2
(v1,2, v). Note that e1 is

not contained in this path, but possibly e′ = e′′.

e1 ∈ P1,2(x, v1,2) ⊂ G1,2 corresponds to PG(x, v) ⊂ PG(x, y);

e′ ∈ P1,2(v, y) ⊂ G1,2 corresponds to PG(v, y) ⊂ PG(x, y)

Therefore, we obtain a walk joining x and y in G1,2

W1,2(x, y) = P1,2(x, v1,2), PH1,2
(v1,2, v), P1,2(v, y)

yielding in turn a path PG1,2
(x, y). Since x, y are chosen arbitrarily, we

conclude that G1,2 is connected and bridgeless.

B) Suppose v is not a cutvertex. Let B be the block of G containing v. It
follows from Theorem 12 that B1,2 is a block-chain in which both v and
v1,2 are not cutvertices and lie in different endblocks of B1,2 if B1,2 is
a non-trivial block-chain. An analogous conclusion can be drawn w. r. t.
B1,3. Now, B1,2 and B1,3 are non-trivial block-chains but they could have
bridges.

Suppose B1,2, B1,3 have bridges (note that we need to show only that one
has no bridge). (see Figure 41).

(a) B1,2

(b) B1,3

Figure 41: B1,2 and B1,3

There is a cycle C1,2 in B∗1,2 containing e1, e2 (maybe containing also
c1,2), and a cycle C3,4 in B∗∗1,2 containing e3, e4. As there is the bridge

27

e ∈ E(B1,2) it follows that C1,2 ∩ C3,4 = ∅. C1,2 corresponds to a path
PB1,3

(v1,3, v) 3 f and C3,4 corresponds to a path P ′B1,3
(v1,3, v) 3 f . ⇒

C1,2 ∩ C3,4 3 f , which is a contradiction to C1,2 ∩ C3,4 = ∅.
⇒ B1,2 or B1,3 is connected and bridgeless. W.l.o.g. B1,2 is bridgeless;
all other blocks in G are blocks in G1,2. ⇒ G1,2 is bridgeless. However,
G1,2 is also connected because it results from G by replacing B with the
connected graph B1,2 in such a way that for every block B∗ 6= B in G we
have B∗ ∩B = B∗ ∩B1,2 in G1,2.

Suppose we have a 2-connected graph as shown in Figure 42.

Figure 42: 2-connected graph.

Corollary 24. Let G be non-separable (6= K2) and v as before (d(v) ≥ 4).
Suppose G1,2 and G1,3 have a cutvertex (e1, e2, e3 ∈ Ev). Then G1,2 and G1,3

have precisely one cutvertex w.

Proof. Both G1,2, G1,3 are non-trivial block-chains with one cutvertex (see Fig-
ure 43). Suppose one of them, say G1,2, has more than one cutvertex. The
paths P1,3(e1, e2) and P1,3(e3, e4) would need to contain the cutvertices of G1,3

(there is at least one cutvertex in G1,3). On the other hand, the correspond-
ing cycles in G1,2 are disjoint (since G1,2 has more than one cutvertex), which
yields a contradiction. If the cutvertices w and w′ in G1,2, G1,3 respectively, are
different, the same argument would apply. (see Figure 43).

Theorem 25 (Characterization Theorem for eulerian graphs). Let G be a con-
nected graph with E(G) 6= ∅. The following statements are equivalent.

1. G is eulerian.

2. G has an eulerian trail.

3. G has a cycle decomposition.

28

(a) G1,2 (b) G1,3

Figure 43: G1,2 and G1,3 (both are non-trivial block-chains).

Proof.

• 1. → 2. Induction on the sum
∑

v∈V (G)(d(v) − 2) = σ(G). If σ(G) = 0
then G is a cycle C. Traversing C yields an eulerian trail of G. Suppose
σ(G) > 0⇒ ∃v ∈ V (G) s. t. d(v) ≥ 4. Let e1, e2, e3 ∈ Ev s. t. e1, e2 are in
different blocks if v is a cutvertex. By the Splitting-Lemma, G1,2 or G1,3

is connected and bridgeless. Note that G1,2, G1,3 are bridgeless because
eulerian graphs are bridgeless.

W.l.o.g. G1,2 is connected. σ(G1,2) = σ(G) − 2. Note that v1,2 yields
a zero-term. By induction, the graph G1,2 has an eulerian trail T1,2 =
x, . . . , e1, v1,2, e2, . . . , x ⇒ T1,2 corresponds to an eulerian trail T in G
where T = x, . . . , e1, v, e2, . . . , x.

• 2.→ 3. T = x, . . . , x. Let T0 be a shortest possible section of T starting
and ending at some y ⇒ T0 is a cycle C(y). T = x, . . . , y, C(y), y, . . . , x.
Then T1 = x, . . . , y, . . . , x with E(C(y)) ∩ T1 = ∅ is an eulerian trail in
G1 = G − C(y) (delete all edges of C(y) and all vertices that become
isolated) if E(G1) 6= ∅. ⇒ if G1 = ∅ then {C(y)} is the only cycle
decomposition of G. Otherwise, by induction ∃ cycle decomposition S1 in
G1 and S1 ∪ {C(y)} is a cycle decomposition of G.

• 3.→ 1. dG(v) =
∑

Ci∈S dCi
(v) ≡ 0 mod 2 (dCi

(v) ∈ {0, 2}), where S is a
cycle decomposition of G.

Consider a connected eulerian graph G with δ(G) ≥ 4 ⇒ ∃ eulerian trail T ,
cycle decomposition S. T, S are called compatible if no section ei, v, ei+1 ∈ T
belongs to the same element of S. With the help of the Splitting Lemma one
easily shows that for a given cycle decomposition S there exists an eulerian trail
T which is compatible with S. To find a cycle decomposition S compatible with
a given eulerian trail T is an unsolved problem.

Theorem 26 (Characterization Theorem for eulerian digraphs). Let D be a
weakly connected digraph (A(D) 6= ∅). The following statements are equivalent.

1. ∀v ∈ V (D), id(v) = od(v) (i. e., D is eulerian).

2. D has an eulerian trail.

3. D has a cycle decomposition.

Proof. The proof is analogous to the proof for graphs and is therefore left as an
exercise.

29

Theorem 27. Let D be a weakly connected eulerian digraph and let T be an
eulerian trail of D starting and ending at z ∈ V (D). For every v ∈ V (D)−{z}
let av be the arc in T by which one leaves v for the last time (av ∈ A+

v). Then

B := 〈{av | v ∈ V (D)− {z}}〉

is a spanning in-tree of D with root z. Conversely, let B be a spanning in-tree
of D with root z. Then there exists an eulerian trail T starting and ending in
z s. t. for every v ∈ V (D)− {z} the arc by which one leaves v in T for the last
time, belongs to B.

Proof. odB(z) = 0, odB(v) = 1 for all v ∈ V (D) − {z}. Therefore, B spans D
(note that the last arc of T is in B and incident to z). If B is acyclic and weakly
connected, then B is a spanning in-tree with root z by definition.
Suppose B is not weakly connected. Then there exists a weakly connected
component B′ of B s. t. z 6∈ V (B′). Then odB(x) = 1 for all x ∈ V (B′). This
leads to a cycle C ⊂ B′ (see Figure 44); otherwise B′ has a sink y and therefore
odB(y) = 0, which is a contradiction. ai1 = (vi1 , vi2) and ai2 = (vi2 , vi3) are
such that ai1 is the last arc of T by which one leaves vi1 and then arrives at
vi2 ; and likewise, ai2 is the last arc of T by which one leaves vi2 . Repeating this
argument, we arrive at the ordering of indices

i1 < i2 < . . . < ik < i1

where the arcs in the eulerian trail are a1, a2, etc. Thus we obtain i1 < i1, which
is a contradiction. Thus, B is weakly connected, and one obtains the same
contradiction if B contains a cycle. Thus, B is acyclic (and weakly connected).
Therefore, B is a spanning in-tree with root z.

Figure 44: The vertices vij ∈ B′ with 1 ≤ j ≤ k are not the vertices of the
eulerian trail, but must be passed in this order.

Conversely, suppose a spanning in-tree rooted at z is given. Starting at z,
traverse arcs of D arbitrarily subject to the condition that no arc is traversed
more than once; and that at any v ∈ V (D)− {z}, the unique arc of B incident
from V is traversed only if there is no other untraversed arc incident from v. Let
the final trail be denoted by T . It follows from the construction of T that it is
a closed trail; for, at any vertex v 6= z, at the last arrival at V by T there is still
an arc by which one can leave v (since id(v) = od(v)). Suppose A(D) 6= A(T).
Then there is x ∈ V (D) − {z} s. t. Ax 6⊂ A(T), but Ay ⊆ A(T) for every
y ∈ V (PB(x′, z)) where PB(x′, z) is the unique path from x′ to z in B and
(x, x′) ∈ A(B). Ax′ ⊆ A(T) implies that (x, x′) ∈ A(T), implying that all other
arcs of D incident from x are in T (by construction of T), which in turn implies
that Ax ⊆ A(T), a contradiction to the supposition. That is, A(T) = A(D).
The theorem now follows.

30

Algorithms for Constructing Eulerian Trails

Several parts of this chapter are taken directly from a book by Fleischner1 where
only the notation is adapted to the one used in this script.

Algorithm 3. Splitting Algorithm

Step 0 Given a connected, eulerian graph G of size q > 0, choose initial vertex
v0 ∈ V (G), and let T0 = v0 be the initial trail. Set H = G and i = 0.

Step 1 Suppose Ti = v0, e1, v1, . . . , ei, vi was obtained by a (possibly empty)
sequence of splitting away pairs of edges such that Ti appears as a path
or cycle (in H) whose internal vertices are 2-valent.

If i = 0, choose e1 ∈ Ev0 arbitrarily and then go to Step 1.2. If i 6= 0,
set f1 = ei.

Step 1.1 If dH(vi) > 2, then choose f2, f3 ∈ Evi ∩ (E(H)−E(Ti)) and form
H1,j for j = 2, 3 according to the Splitting Lemma. [However,
one does not need the full strength of the Splitting Lemma since
H1,j , j = 2, 3, is bridgeless anyway and H1,2 being disconnected
implies that f1, f2 form an edge-cut unless f1 = f2 is a loop. So,
if the block B(f1) 3 f1 satisfies |E(B(f1)) ∩ Evi | ≥ 3, then f2, f3

can be chosen arbitrarily. So we do not need to look at cut vertices
and do not need to look for edges in a different block]. If H1,2 is
disconnected, set H = H1,3; otherwise set H = H1,2

Step 1.2 If dH(vi) = 2, then H remains unchanged.

Step 1.3 Set ei+1 = vivi+1 for the edge not in Ti but incident with vi in H.
Define Ti+1 = Ti, ei+1, vi+1. Set i = i+ 1.

Step 2 If i 6= q, go to Step 1; otherwise go to Step 3.

Step 3 The cycle Tq is an eulerian trail of G if viewed as an edge sequence.

Figure 45 shows that for G which is not eulerian, G1,2 and G1,3 can both be
connected and contain bridge(s).
Let us consider the running time of the Splitting Algorithm. We mentioned
already before that H1,2 and H1,3 are bridgeless in any case since these graphs
are eulerian. And testing for connectedness can be done in linear time. Thus
we only need to determine the number of splitting operations which need to be
performed in the worst case. If H1,2 is disconnected we continue working with
H1,3 where dH1,3

(v) = dG(v) − 2, and all other degrees are unchanged. Thus

1Herbert Fleischner, Eulerian Graphs and Related Topics, Annals of Discrete Mathematics,
Vol. 50, ISBN: 978-0-444-89110-5

31

Figure 45: G1,2 and G1,3 can both be connected and contain bridge(s).

the number of splitting operations needed to ultimately reduce v to a 2-valent
vertex, is at most

dG(v)− 2

and the corresponding number of tests for connectedness is

dG(v)− 2

2
.

Clearly, the splitting operations as such can be performed in constant time,
whereas the determination of a vertex of degree > 2 may be done in linear

time. Altogether, the ultimate replacement of v by dG(v)
2 2-valent vertices in

the corresponding connected eulerian graph requires at most(
dG(v)− 2

2

)
· P1(G)

time units, where P1(G) is a linear polynomial in |V (G)|. That is, the running
time to transform G into a cycle (which represents an eulerian trail of G), is at
most ∑

v∈V (G)

(
dG(v)− 2

2

)
P1(G) = P1(G)

∑
v∈V (G)

(
dG(v)− 2

2

)
=

1

2
P1(G)

∑
v∈V (G)

(dG(v)− 2)

=
1

2
P1(G) (2 |E(G)| − 2 |V (G)|)

= (q − p)P1(G)

where q = |E(G)| and p = |V (G)|. However, in the case of complete graphs G,
the factor q − p is

q − p =

(
p

2

)
− p =

p(p− 1)

2
− p =

p(p− 3)

2
.

That is, the total running time is bounded above by a cubic polynomial in
|V (G)|.

32

Algorithm 4. Fleury’s Algorithm

Step 0 G, v0, T0 as in Step 0 of Algorithm 3 (Splitting Algorithm).

Step 1 Suppose the trail Ti = v0, e1, . . . , ei, vi has be chosen. Set Gi = G −
E(Ti).

Step 1.1 Choose ei+1 ∈ Evi ∩ E(Gi) such that ei+1 is not a bridge of Gi

unless ei+1 is an end-edge of Gi (see Figures below).

Step 1.2 Set Ti+1 = Ti, ei+1, vi+1 where ei+1 ∈ Evi ∩ Evi+1 .

Step 1.3 Set i = i+ 1.

Continue with Step 2 and Step 3 as in the Splitting Algorithm.

We observe that the working of Fleury’s Algorithm is justified by the working
of the Splitting Algorithm. If we identify v0 ∈ V (Gi) with v0 ∈ V (Ti) and
vi ∈ V (Gi) with vi ∈ V (Ti), then we are back in the construction of Ti in the
Splitting Algorithm. This affinity between the Splitting Algorithm and Fleury’s
Algorithm shows that the running time of Fleury’s Algorithm is bounded above
by a cubic polynomial in |V (G)|.

33

Algorithm 5. Hierholzer’s Algorithm

Step 0 The same as in Algorithms 3 and 4.

Step 1 Suppose Ti = v0, e1, . . . , ei, vi has been constructed. If Evi−E(Ti) 6= ∅,
choose ei+1 ∈ Evi − E(Ti) arbitrarily, set Ti+1 = Ti, ei+1, vi+1 where
ei+1 ∈ Evi+1

, and set i = i+ 1; otherwise, go to Step 3.

Step 2 Repeat Step 1.

Step 3 (note that all edges in Evi
have been traversed by Ti). If l(Ti) =

q go to Step 4; otherwise, backtrack on Ti until vj is reached with
Evj − E(Ti) 6= ∅. Set v′0 = vj and produce T ′i in the component
containing vj in G − E(Ti), analogously to Ti with respect to v0 and
T0 by applying Step 0 – Step 2 until Step 3 is reached again.

Now construct a larger trail T ∗i by inserting T ′i into Ti at vj .
That is, for Ti = v0, . . . , ej , vj , ej+1, . . . , v0 we define T ∗i =
v0, . . . , ej , T

′
i , ej+1, . . . , v0. Apply Step 3 to T ∗i .

Step 4 The trail constructed is an eulerian trail of G.

Note that the backtracking procedure in T ∗i in Hierholzer’s Algorithm need not
start at v0, but it suffices to start at v′0 by backtracking in T ′i .
In fact, Hierholzer’s Algorithm works faster than both the Splitting Algorithm
and Fleury’s Algorithm. This is not immediately clear: the reason lies in the
second part of Step 2 of Algorithm 5 where no indication is given of how to
find vi+1 for which Evi+1

− E(Ti) 6= ∅. In fact, it all depends on how the
graph has been stored and on the use of pointers. To see this, we need some
additional considerations from which we derive a ’pidgin-algol’ (pseudo-code)
formulation of Hierholzer’s Algorithm. To this end, let G be a simple connected
eulerian graph (this assumption implies no real restriction since S(S(G)) is a
simple graph for any graph G). The following is due to R.C. Read. Assume the
graph to be stored as a number of adjacency lists – one for each vertex – each
listing the adjacent vertices. Denote these lists by L(x), x ∈ V (G). The passing
of an edge e = uv from u to v by one of the subtrails Ti (see Algorithm 5)
amounts to deleting in L(u) the entry v and in L(v) the entry u. For this

34

deletion procedure it is sufficient to overwrite the entry [v in L(u), u in L(v)
respectively], and then decrease by one the length of the list, that is, decrease
by one the degree of the vertex. As for the simultaneous deletion of u in L(v), it
is necessary to have a pointer to the u-entry in the v-list, and vice versa. With
these data structures given we present R.C. Read’s ’pidgin-algol’ formulation of
Hierholzer’s Algorithm (see Algorithm 6).

Algorithm 6 R.C. Read’s ’pidgin-algol’ formulation of Hierholzer’s Algorithm

1: procedure Hierholzer(G)
2: u is any vertex of G.
3: HEAD and TAIL are stacks.
4: Initially HEAD = {u}, TAIL = ∅.
5: while HEAD 6= ∅ do
6: while degree of top vertex, u, of stack HEAD is > 0 do
7: Let v be a vertex adjacent to u.
8: Add v to HEAD. (v becomes new u).
9: Delete edge uv from G.

10: Decrease degrees of u and v by 1.
11: end while
12: while HEAD 6= ∅ and top vertex u of HEAD has degree 0 do
13: Remove u from HEAD.
14: Add u to TAIL.
15: end while
16: end while
17: Euler tour is TAIL.
18: end procedure

To see that the time and space complexity of this algorithm is O(q), observe first
that the search for v ∈ N(u) is easy – just take the first entry in L(u). For, at
any stage the first entry of L(u) is a vertex v for which uv has not been passed
yet. Moreover, the continuation of the subtrail Ti from v does not require any
search procedure since v is on top of the stack HEAD (thus HEAD contains at
most q objects at any given time), and L(v) is immediately accessible. Second,
if the construction of Ti is completed, that is, if Ti ends at its initial vertex u
after having used all entries of L(u), this vertex u is removed from HEAD as
the top vertex of this stack and put on top of the stack TAIL. Then Ti is traced
backwards by successively stacking the top vertex of HEAD on top of the stack
TAIL until a top vertex w of HEAD is reached such that d(w) > 0. This is the
only part of the algorithm which could absorb time unnecessarily. For, in this
backtracking procedure one has to check at every top vertex x of HEAD whether
d(x) = 0 or d(x) > 0, and this could cost time if one has to search for d(x) first
(d(x) = |L(x)| since G is simple). However, given an appropriate storage of
x and L(x) respectively, one reaches d(x) instantaneously so as to perform the
comparison d(x) = 0 or d(x) 6= 0. At the above w for which d(w) > 0 the tracing
of T ′i starts and ends. Then w is put on top of TAIL, and so forth. Thus, at any
given time TAIL also contains at most q objects. Finally, an eulerian trail T has
been read into TAIL in reverse order (’reverse’ with respect to the orientation
of the edges induced the first time an edge is used by the algorithm). Thus,
reading T in TAIL from top to bottom this eulerian trail appears as a sequence in

35

accordance with the orientation given by passing the edges in the construction
of the corresponding Ti.
Summarizing the preceding considerations on the working of Algorithm 6 we
can say that every edge e is considered no more than three times: the first time
in producing the corresponding subtrail Ti containing e; the second time in the
backtracking procedure searching for w with d(w) > 0 (if such w exists); and
finally in the reading of T in TAIL from top to bottom. Moreover, the latter
part of Step 3 of Algorithm 5 (Hierholzer’s Algorithm), that is, combining Ti
and T ′i to obtain T ∗i , does not require any particular effort inasmuch as this
construction is implicitly contained in the backtracking procedure and in the
way sections/segments of T are stacked in TAIL. In fact, this analysis shows
that Algorithm 6 is linear.
Another algorithm for constructing eulerian trails has been developed by A.
Tucker. It can be viewed as a combination of the Splitting Algorithm and
Hierholzer’s Algorithm. However, we need some additional concepts.
A trail decomposition S = {T1, . . . , Tk; k ≥ 1} is a set of pairwise edge-disjoint
closed trails of G such that every e ∈ E(G) belongs to some Ti, 1 ≤ i ≤ k. Note
that a graph is eulerian if and only if it has a trail decomposition.
A graph G is k-regular if d(v) = k for every v ∈ V (G).
Let T1, T2 be two edge-disjoint closed trails in a graph G with v ∈ V (T1)∩V (T2).
Suppose

T1 = x, . . . , e1, v, f1, . . . , x

T2 = v, e2, . . . , f2, v

where x ∈ V (G), and for i = 1, 2, ei, fi ∈ E(G).
Form T ∗ = x, . . . , e1, v, e2, . . . , f2, v, f1, . . . , x which is a closed trail with edge
set E(T1)∪E(T2). We say that T ∗ results from a κ-absorption from T1 and T2.
The idea of Tucker’s Algorithm is first to produce a trail decomposition S =
{T1, . . . , Tk; k ≥ 1} for the connected eulerian graph G by pairing arbitrarily the
elements of Ev for every v ∈ V (G), and then to produce an eulerian trail by a
sequence of κ-absorptions applied to pairs of connected subgraphs of G having
a vertex in common and being induced by subsets of S.

Algorithm 7. Tucker’s Algorithm

Step 0 Given the connected eulerian graph G, form a 2-regular detachment G1

from G by splitting away adjacent pairs of edges as long as possible.
Label the vertices of G1 with the same symbols attached to the cor-
responding vertices in G. Set i = 1 and let ci denote the number of
components of Gi.

Step 1 If ci = 1, set Ti = Gi and go to Step 3. If ci 6= 1, find two components
Ti and T ′i of Gi such that vi+1 ∈ V (Ti) ∩ V (T ′i) exists. Form a closed
trail Ti+1 by a κ-absorption at vi+1 applied to Ti and T ′i .

Step 2 Viewing Ti+1 as a graph define Gi+1 = (Gi − (Ti ∪ T ′i)) ∪ Ti+1. Set
i = i+ 1, and go to Step 1.

Step 3 Ti is an eulerian trail of G.

36

It should be noted that once c1 has been determined, the determination of ci,
i > 1, requires no efford. For, owing to Step 1 and the definition of Gi+1

in Step 2 it follows that ci+1 = ci − 1. Also, the construction of G1 can be
done instantaneously; and in the case ci+1 6= 1 one can simply remain with Ti+1

constructed in Step 2, and find T ′i+1 such that vi+2 exists. However, a search
for vi+2 can be avoided by using pointers again; they can be installed easily in
the course of the construction of G1. Thus, Algorithm 7 is also linear. It is left
as an exercise to work out the details of this argument and to produce a more
formalized version of Algorithm 7 analogous to the deduction of Algorithm 6
from Algorithm 5.

Mazes

The following historical remarks leading up to and including the formulation of
the maze search problem and the corresponding algorithms are essentially taken
from a book by Fleischner.2

The history of mazes and labyrinths, respectively, and the development of the
first escape algorithms are at least as old as Greek mythology itself. For, as the
story goes, Theseus used a thread given to him by Ariadne to track down the
Minotaur in a maze and – after killing the creature – to find his way out again.
Of course, mazes can be defined in different ways; e.g., as a system of catacombs
(in “real life”), or (mathematically) as a set of unit squares in the euclidean
plane, or as some other geometrical configuration. However, for our purposes, a
maze is a graph G (digraph D, mixed graph H) which admits a covering walk
W . Thus, G (D,H) must be (strongly) connected. In fact, the maze search
problem can be formulated in the following way (unless stated otherwise, we
restrict ourselves in the sequel to graphs):

Maze search problem (MSP). Describe a general algorithm which
constructs a closed covering walk W in a connected graph G such
that, in the course of constructing W , this algorithm can only handle
local information available at any vertex reached by W .

We note in passing that a labyrinth is in English often considered being different
from a maze in that a labyrinth is seen as an intricate curve in the plane or 3-
dimensional space, without intersecting itself, whereas a maze is – in the context
of this course – simply a graph.
Observe that the oldest maze search algorithm (from a mathematical point of
view) is Wiener’s Algorithm: it is derived from Greek mythology, using Ari-
adne’s thread. However, since Wiener’s Algorithm is slower than Trémaux’s
and Tarry’s Algorithms, we do not treat Wiener’s Algorithm in this course.
Note that the latter algorithms operate with local information only.
For the following considerations the expression λW (e) denotes the number of
uses of the edge e by a given walk W in the graph G = V ∪ E. Thus, W is a
covering walk if λW (e) > 0 for every e ∈ E, and it is called a double tracing if
W is a closed covering walk with λW (e) = 2 for every e ∈ E. A double tracing
W is called bidirectional if every edge of G is traversed in both directions.

2Herbert Fleischner, Eulerian Graphs and Related Topics, Annals of Discrete Mathematics,
Vol. 50, ISBN: 978-0-444-89110-5

37

Proposition 28. Every connected graph G = V ∪ E admits a bidirectional
double tracing.

Proof. For every e = xy ∈ E, replace e with the arcs (x, y) and (y, x) (if e
is a loop, i. e., x = y, proceed analogously). The resulting digraph D satisfies
V (D) = V , and it is eulerian (idD(v) = odD(v) for every v ∈ V (D)). By
Theorem 26, D has an eulerian trail T which – by construction of D from G –
corresponds in G to a bidirectional double tracing.

Proposition 29. In a tree G = V ∪ E, every closed covering walk W with
λW (e) ≤ 2 is a bidirectional double tracing.

Proof. Let DW be the digraph derived from G by replacing every e ∈ E by
λW (e) arcs whose orientation is defined by the traversal of e in W . As a conse-
quence, W corresponds to an eulerian trail TW in DW , i. e., DW is eulerian.
Considering an end-edge e0 = xy ∈ E with dG(y) = 1 it follows that (x, y), (y, x) ∈
A(DW) since DW is eulerian. Thus D1 := DW −y is also eulerian with eulerian
trail T1 of D1 corresponding to a closed covering walk W1 in G1 = G− y with
λW1

(f) ≤ 2 for every f ∈ E(G1). Since the proposition is true for |E| = 0, 1,
we conclude by induction that W1 is a bidirectional double tracing and so is, by
construction, W .

We thus obtain the following corollary.

Corollary 30. If G is a tree, then every double tracing of G is bidirectional.

The next algorithm makes use of the following hypothesis.

Hypothesis. Given a connected graph G = V ∪ E. Whenever we
reach a vertex v ∈ V in the construction of the walk W , λW (e) is
known for every e ∈ Ev. Observe that the direction(s) in which e
has been traversed by W so far, need not be known.

Algorithm 8. Trémaux’s Algorithm

Step 0 Set i = 0, choose v0 ∈ V (G). Set W = v0.

Step 1 Beginning at vi ∈ V (G) walk along any ei ∈ Evi − E(W) (this can
be decided on the basis of the hypothesis). Set W = W, ei, vi+1 where
ei = vivi+1. Set i = i+ 1.

Step 2 Suppose W = v0, e0, v1, . . . ei−1, vi has been constructed. If vi is not
an endvertex and vh 6= vi for 0 ≤ h < i, go to Step 1. Otherwise, go
to Step 3.

Step 3 (vi is an endvertex or vi = vj for some j < i). If λW (ei−1) > 1
go to Step 4. If λW (ei−1) = 1 set ei = ei−1, vi+1 = vi−1 and set
W = W, ei, vi+1. Set i = i+ 1 and go to Step 4.

Step 4 If λW (e) > 1 for every e ∈ Evi , go to Step 5. Otherwise, choose e ∈ Evi

such that λW (e) is minimal. Define ei = e and vi+1 = y, where y = vi
if e is a loop, and e ∈ Evi ∩ Ey if e is not a loop. Set W = W, ei, vi+1,
i = i+ 1 and go to Step 2.

Step 5 W is a bidirectional double tracing.

38

Justification. We now justify Trémaux’s Algorithm. First of all, Step 3 and
4 of the algorithm guarantee that no edge is traversed more than twice. Also,
the algorithm terminates in v0 with every e ∈ Ev0 traversed twice: for, upon
arriving at any vi 6= v0, the algorithm has traversed edges once more towards
vi than from vi, i. e., there must be an edge f ∈ Evi which has been traversed
only once so far. Thus, the final W is a closed walk, and it is easy to see that
W traverses every edge in Ev0 once in each of the two directions.
Next we construct an auxiliary digraph DW derived from the final W , as follows.
For every edge e = xy ∈ E(G), DW contains an arc (x, y) if W traverses e from
x to y. Consequently, if W traverses e twice, then DW contains both arcs (x, y)
and (y, x) (we leave it as an exercise to see that W does not traverse any edge
twice in the same direction). It follows that W corresponds to an eulerian trail
in DW ; i. e., DW is an eulerian digraph.
Assume that the final W is not a bidirectional double tracing of G; i. e., some
f ∈ E(G) is traversed by the final W at most once.
Now delete in DW all digons corresponding to a doubly traversed edge of G, to
obtain a digraph D∗ ⊆ DW . Clearly, D∗ is eulerian, so it has a cycle decom-
position S∗ whose elements contain arcs only which correspond to edges of G
used precisely once by the final W .

a) If S∗ = ∅, then D∗ = ∅, i. e., W is a bidirectional double tracing of a
proper subgraph of G. Consider a vertex w where Ew − E(W) 6= ∅. It
follows that Step 4 of the algorithm has been violated: For, upon leaving
w along the edge g = wy by which w has been reached for the first time,
W didn’t choose an edge e with λW ′(e) = minimum (W ′ is the subwalk
of W ending at w just before traversing g for the second time). So, this
case cannot happen.

b) S∗ 6= ∅. Let C∗ ∈ S∗,

C∗ = vi0 , ai1 , vi1 , ai2 , vi2 , . . . , vi0

which corresponds in G to the cycle

C = vk0
, ei1 , vk1

, ei2 , vk2
, . . . , vk0

whose edges have been traversed precisely once by the final W and where
the indices ij and kj , j = 0, 1, . . . , refer to the position of these vertices
and edges in the final W .

Looking at the sequence of indices derived from the edges of C

i1, i2, . . . , ir

we conclude that i1 < i2; otherwise (since vk1
had been reached before, and

the second part of Step 3 would require to backtrack on ei1 immediately).
By the same token, we conclude i2 < i3, reaching ultimately the sequence
of inequalities

i1 < i2 < · · · < ir.

39

However, we also obtain by the same argument the inequality

ir < i1;

i. e., i1 < i1 an obvious contradiction. Thus neither case a) or b) can
happen, so the final W is a bidirectional double tracing of G.

The next algorithm also works with local information only and is based on the
following hypothesis.

Hypothesis. At any vertex v ∈ V (G) reached in the course of the
construction of the walk W , the set Eo

v,W ⊆ Ev of edges already
passed from v is known. Moreover, the edge ein(v) by which v 6= v0

has been reached for the first time is known. For the initial vertex
v0 of W we set {ein(v0)} = ∅.

Algorithm 9. Tarry’s Algorithm

Step 0 Set i = 0, choose v0 ∈ V (G). Set W = v0.

Step 1 Beginning at vi ∈ V (G) walk along an arbitrary ei ∈ Evi which has not
yet been traversed from vi nor by which vi has been reached for the
first time. Set W = W, ei, vi+1 (ei ∈ Evi+1). Set i = i+ 1.

Step 2 Suppose W = v0, e0, v1, . . . ei−1, vi has been constructed. If Eo
vi,W

∪
{ein(vi)} 6= Evi , go to Step 1. Otherwise, go to Step 3.

Step 3 If {ein(vi)} ⊆ Eo
vi,W

go to Step 4. Otherwise, set ei = ein(vi), W =
W, ei, vi+1 (ei ∈ Evi+1), i = i+ 1; go to Step 2.

Step 4 W is a bidirectional double tracing in G.

Justification. Suppose the final walk W ends in v. If v 6= v0 then the number
of arrivals of W in v is by one larger than the number of departures of W from
v. That is, by Steps 1, 2, 3, Eo

v,W 6= Ev, and thus W could be continued by
Steps 2 and 3. Thus v = v0, and so W is a closed walk using every e ∈ Ev0

once in each direction (note that by Steps 2 and 3, W traverses no edge more
than twice). Suppose W is not a bidirectional double tracing of G. Thus some
edge of G is traversed at most once by W (Steps 2 and 3 guarantee that no
edge is traversed twice in the same direction).
Next construct DW just as in the justification of Trémaux’s algorithm. Whence
DW is an eulerian digraph with W corresponding to an eulerian trail TW of
DW . Traversing TW starting at v0, let vi be the first vertex at which TW arrives
for the first time and where W does not traverse every edge e ∈ Evi twice. So
for every j < i, W traverses every edge incident to vj once in each direction.
For j = i − 1, we have that TW traversed (vi−1, vi) to reach vi for the first
time, and (vi, vi−1) is also in DW because TW traverses in vi−1 every e ∈ Evi−1

once in each direction. Thus (vi, vi−1) is also traversed by TW , meaning that

40

W traverses the edge vivi−1, from vi to vi−1 after having reached vi for the
first time along vi−1vi. However, vi 6= v0 implying that W departs from vi as
often as it reaches vi. On the other hand, W traverses some e ∈ Evi no more
than once by the choice of vi; so there must be an e′ ∈ Evi not traversed by W
from vi. This contradicts Steps 1 and 2 of the algorithm. It follows that our
supposition by which W is not a bidirectional double tracing, is false. Thus the
algorithm produces what it claims: a bidirectional double tracing.

The similarities in the justifications of the above two algorithms is reflected in
the following corollary which we state without proof.

Corollary 31. If W is the final walk in G constructed by Trémaux’s algorithm,
then for any v ∈ V (G)−{v0}, the last edge passsed by W from v is the first edge
by which W reaches v. That is, W can be considered to have been constructed
by Tarry’s algorithm.

We now combine the above two algorithms to arrive at another algorithm.

Hypothesis. The hypotheses of Trémaux’s and Tarry’s algorithm
are used simultaneously. Consequently, for

EW,i := {e ∈ Ev | λW (e) = i}

defined upon reaching v in the course of constructing W , the sets
EW,0, EW,1, and Ein

v,W := EW,1 − Eo
v,W are known, where Ein

v,W is
the set of edges passed towards v but not from v.

Algorithm 10.

Define Step 0 – Step 4 as in Tarry’s algorithm with the only exception that
we choose e in Step 1 with minimal λW (e).

The working of Algorithm 10 is guaranteed by the working of Tarry’s algorithm
since the restriction concerning the choice of e in Step 1 has no negative impact;
that is, the final W is a bidirectional double tracing in G anyway. The relevance
of Algorithm 10 lies in its application to eulerian graphs which is demonstrated
by the next result. We state it without proof.

Theorem 32. Let G be a connected eulerian graph, and let W be a bidirectional
double tracing in G arising from an application of Algorithm 10. Let

T = ei1 , ei2 , . . . , eiq , q = E(G),

be the subsequence of W obtained by listing the edges of G according to their
second occurrence in W . It follows that T is an eulerian trail of G.

We note in passing that for the case of plane trees, no local information is
needed to produce a bidirectional double tracing, but a simple rule called the
“right-hand-on-the-wall” rule, suffices (Left-handers are permitted to walk with
their left hand on the wall).
Altough each of the Algorithms 8, 9 and 10 operates in O(q), q = |E|, time, bas-
ing itself on the existence of bidirectional double tracings in connected graphs,

41

the question arises whether one can solve (MSP) such that every edge is tra-
versed once and at most twice. In fact, if in addition to the local information
of Algorithm 10, one operates with a counter (e. g. in the form of pencil and
paper), Algorithm 10 can be improved.

Hypothesis. In addition to the hypothesis of Algorithm 10 we as-
sume that a function (the counter) c : {W} → N∪{0} is given, where
{W} denotes the set of walks produced algorithmically, such that
c(v0) = 1, and forW andW ′ = W, ei, vi+1 we have |c(W)− c(W ′)| ≤
1. We also use the sets defined in the hypothesis of Algorithm 10.

Algorithm 11. A.S. Fraenkel’s Algorithm

This Algorithm also gives preference to untraversed edges as in Algorithm 10.
The algorithm combines Algorithm 10 (except that Step 4 is replaced by Out-
come below) and the counter c according to the following rules.

Rule 1 As long as c(W) > 0 proceed as in Algorithm 10.

Rule 2 The changing of c is defined in accordance with a certain property
regarding vi+1 in W ′ = W, ei, vi+1

a) If vi+1 6= vj , 0 ≤ j ≤ i, set c(W ′) = c(W) + 1.

b) If vi+1 = vj for some j < i + 1 and if
∣∣Evi+1

− E(W)
∣∣ ≥ 1, while

|EW ′,0| ≤ 1 for the same vi+1 set c(W ′) = c(W)− 1.

c) If neither a) nor b) applies, set c(W ′) = c(W).

Rule 3 Suppose c(W) = 0. If EW,0 6= ∅ at vi, proceed as in Algorithm 10.
Otherwise, set ei = ein(vi) if vi 6= v0, while the algorithm terminates
for vi = v0.

Outcome The final W is a closed covering walk such that λW (e) ≤ 2 for
every e ∈ E(G). If λW (e) = 2 for some e ∈ E(G) then W uses e in
both directions.

Justification. First of all, the counter c is a function as described in the hypoth-
esis. For, c is increased by one if v ∈ V (G) is visited by (the final) W for the
first time. It is decreased by one at the same v if for the last time EW,0 6= ∅
for this v. Expressed differently, after this departure from v, all edges in Ev are
traversed at least once and c is not changed at v anymore. Whence at every
vertex, c is increased by one and decreased by one precisely once. This increase
and decrease of c is instantaneous if d(v) ≤ 2. It follows that c(W) is always a
non-negative integer.
Suppose now that c(W) = 0 for some W starting at v0 and ending at v ∈ V (G);
possibly v0 = v. If EW,0 6= ∅ at v, it follows from the above that no e ∈ EW,0

joins v to any x ∈ V (W); otherwise, c is not decreased at x which in turn
implies c(W) 6= 0 at v, a contradiction. Similarly, G0 := 〈E(W)〉 is an induced
subgraph satisfying Ex ⊂ E(G0) for every x ∈ V (G0)− {v}. Thus (see Rule 1
and Rule 3) Algorithm 11 deviates from Algorithm 10 only after having passed

42

all edges of G, at which point the algorithm stops if {ein(v)} = ∅ (i. e., v = v0),
or else reaches v0 via the unique path P (v, v0) satisfying E(P (v, v0)) ⊆ {ein(v) |
v ∈ V (G)}. It follows that Algorithm 11 constructs a closed covering walk such
that the doubly traversed edges are used in both directions.

The Chinese Postman Problem

Here, we follow in large parts the formulation of the topic as treated in Fleis-
chner’s book.3

Given a connected graph G, find a closed covering walk W in G of minimal
length. This is, basically, how the Chinese Postman Problem (CPP) was origi-
nally formulated. Such a walk W will be called a postman’s tour (PT for short).
The idea of dealing with this problem arose at the end of the 1950’s when Guan
Meigu studied the following question. “A mailman has to cover his assigned
segment before returning to the post office. The problem is to find the shortest
walking for the mailman.”
Whence the name Chinese Postman Problem; and it is quite common among
Guan Meigu’s colleagues worldwide to call him “The Chinese Postman”.
Clearly, since every connected graph G has a closed covering walk W using
every edge exactly twice (see Propositions 28, 29 and Corollary 30), the CPP
is not an existence problem but a characterization problem concerning those
closed covering walks which are postman’s tours, and an algorithmic problem
inasmuch as one seeks to determine a PT by a method which is as efficient as
possible.
We shall now consider graphs G together with a cost function c : E(G)→ R+;
c(e) can be viewed as the “length” of the edge e = xy, or the time it takes to
travel along e from vertex x to vertex y, or the costs connected with driving
a vehicle from x to y along e, and so on. For H ⊆ G, an edge sequence
W = e1, e2, . . . , er in G respectively, define

c(H) :=
∑

e∈E(H)

c(e), c(W) :=

r∑
i=1

c(ei)

respectively.

Thus the (general) CPP asks for a closed covering walk W in G such
that c(W) is minimal (CPP).

In this case we shall also speak of a postman’s tour PT, PT(G) respectively.
The following result has already been proved in principle, by Guan Meigu (for
the case where c(e) = 1, e ∈ E(G)).

Theorem 33. A closed covering walk W in the (connected) graph G with cost
function c : E(G) → R+ is a postman’s tour if and only if W satisfies the
following conditions:

1) 1 ≤ λW (e) ≤ 2 for every e ∈ E(G);

3Herbert Fleischner, Eulerian Graphs and Related Topics, Annals of Discrete Mathematics,
Vol. 50, ISBN: 978-0-444-89110-5

43

2) c(H ∩ C) ≤ 1
2c(C) for every cycle C ⊆ G,

where H = 〈{e ∈ E(G) | λW (e) = 2}〉

Proof. Necessity. Suppose W is a PT. Transform G into a supergraph G+ of G
by adding, for every e = xy ∈ E(G), precisely λW (e) − 1 edges joining x and
y. Consequently, W is transformed into an eulerian trail T+ of G+; i. e., G+ is
eulerian. Extend the cost function c onto E(G+) by assigning the same value
c(e) to each of the additional λW (e)− 1 edges, e ∈ E(G). Thus,

c(G+) = c(T+) = c(W).

Now, if λW (e) > 2 for any e = xy ∈ E(G), then delete in G+ two of these
additional λW (e)− 1 edges to obtain a connected eulerian graph H+. We have
G ⊆ H+ ⊂ G+. For every eulerian trail T of H+ we have

c(H+) = c(T) < c(T+) = c(W). (1)

Since T corresponds to a closed covering walk W ′ in G satisfying c(W ′) = c(T),
and since W is a PT, we obtained a contradiction.
Now suppose for H = 〈{e ∈ E(G) | λW (e) = 2}〉 and for some cycle C ⊆ G that

c(H ∩ C) > c(C − (H ∩ C)). (2)

Construct G+ as above and define H1 by

E(H1) := (E(H)− E(H ∩ C)) ∪ (E(C)− E(H ∩ C)). (3)

(note that e ∈ E(C)−E(H∩C) implies λW (e) = 1). Construct G+
1 ⊇ G from G

by introducing an additional edge for every element of E(H1). G+
1 is connected

and, by (3), eulerian. Extend the cost function c onto E(G+
1) in the above

manner. G+
1 has an eulerian trail T1 which corresponds to a closed covering

walk W1 of G, and

c(G+
1) = c(T1) = c(W1) = c(W)− c(H ∩ C) + c(C − (H ∩ C)).

Whence we conclude from (2) that

c(W1) < c(W),

a contradiction to W being a PT. Consequently, we must have

2c(H ∩ C) ≤ c(C − (H ∩ C)) + c(H ∩ C) = c(C),

i. e.,

c(H ∩ C) ≤ 1

2
c(C)

for every cycle C ⊆ G. That is, W satisfies condition 2) as well.
Sufficiency. Let W be any fixed PT and let W ′ be an arbitrary closed covering
walk of G satisfying the conditions stated in the theorem. We have to show that
c(W) = c(W ′). Consider H and H ′ defined correspondingly. It follows from the
definition of these graphs, and since W and W ′ are closed covering walks that

dH(v) ≡ dH′(v) ≡ dG(v)(mod 2), v ∈ V (G). (4)

44

Thus, H0 := (H∪H ′)−(H∩H ′) is eulerian. H0 need not be connected; however,
by Theorem 25, H0 has a cycle decomposition S0 (possibly S0 = ∅). Note that

c(W) = c(G) + c(H) = c(G) + c(H ∩H ′) +
∑
C∈S0

c(H ∩ C),

c(W ′) = c(G) + c(H ′) = c(G) + c(H ∩H ′) +
∑
C∈S0

c(H ′ ∩ C).

We conclude from the fact that W is a PT

c(W)− c(W ′) =
∑
C∈S0

(c(H ∩ C)− c(H ′ ∩ C)) ≤ 0. (5)

Suppose now c(W) 6= c(W ′); thus (5) is a strict inequality; i. e.,

c(H ∩ C0) < c(H ′ ∩ C0) for some C0 ∈ S0. (6)

However, by definition of H0

c(C0) = c(H ∩ C0) + c(H ′ ∩ C0). (7)

Thus we obtain from (6) and (7)

1

2
c(C0) < c(H ′ ∩ C0);

i. e., W ′ violates condition 2) of the theorem for C0 ∈ S0. This contradiction
forces c(W) = c(W ′). That is, W ′ is a PT. This finishes the proof of the
theorem.

Although Theorem 33 characterizes postman tours in a simple way, it is im-
practical from an algorithmic point of view since it requires, in principle, the
examination of all cycles of G in the context of condition 2). Guan Meigu him-
self, being aware of this problem, showed that it suffices to examine chordless
cycles when checking condition 2) for a closed covering walk W of G (of course,
first one has to check whether W satisfies condition 1) of Theorem 33). But even
this restriction to chordless cycle does not seem to be feasible for constructing
a good algorithm to solve the CPP.
However, this theorem contains the starting point for what is needed to produce
such a good algorithm. To this end, let us consider, for a postman’s tour W in
G, the graph

H = 〈{e ∈ E(G) | λW (e) = 2}〉

as defined in condition 2) of that theorem, together with the graph G+ obtained
from G by duplicating the elements of E(H). Since G+ is eulerian we have

dH(v) ≡ dG(v)(mod 2), v ∈ V (G) (4’)

(see (4) in the proof of Theorem 33, and define dH(v) = 0 for v 6∈ V (H)).
Moreover, H is acyclic because of condition 2) of the theorem., and the odd
vertices of H are the odd vertices of G by the above congruence; let these
vertices be denoted by v1, . . . , v2k. Denote by V1(P) the endpoints of a path P .

45

It is left as an exercise to show that there are k edge-disjoint paths P1, . . . , Pk

in H such that
k⋃

i=1

V1(Pi) = {v1, . . . , v2k}.

On the other hand, it does not require knowledge of H to find such k paths
P1, . . . , Pk; and if one has such k paths, then G+

1 which is obtained from G
by duplicating precisely the edges of these paths is a connected eulerian graph
satisfying condition 1) (but possibly not condition 2)) of Theorem 33. However,

if one knows H, it follows of necessity that H can be written as H =
⋃k

i=1 Pi

since G+ is eulerian and W is a PT.
Generalizing this idea of finding P1, . . . , Pk such that

Vodd = Vodd(G) := {v ∈ V (G) | d(v) = 1(mod 2)} =

k⋃
i=1

V1(Pi)

we consider Π2(Vodd), an arbitrary partition of Vodd into k classes of size 2, and
denote by P2(Vodd) the set of all these partitions. For fixed Π2 ∈ P2(Vodd) and
arbitrary {vi1 , vi2} ∈ Π2, let Pi1,i2 be a ’shortest’ path (in terms of the cost
function c) joining vi1 and vi2 in G, and denote

ci1,i2 = c(Pi1,i2).

Denote
c(Π2) =

∑
{vi1 ,vi2}∈Π2

ci1,i2 .

With this notation we are led to an alternate characterization of the solutions
of the CPP.

Theorem 34. The problem of finding a solution of the CPP for the connected
graph G with cost function c : E(G)→ R+ is equivalent to finding Π0

2 ∈ P2(Vodd)
such that

c(Π0
2) = min{c(Π2) | Π2 ∈ P2(Vodd)}.

That is, if W is a PT in G,

c(W) = c(G) + c(Π0
2).

The proof of Theorem 34 can be deduced easily from the preceding discus-
sion and is therefore left as an exercise. We note, however, that the k paths
corresponding to the elements of Π0

2 are edge-disjoint; this follows from the
minimality of c(Π0

2) and because c(e) > 0, e ∈ E(G).
At a first glance, Theorem 34 does not seem to be an essentially better char-
acterization of postman tours than Theorem 33. For, a simple combinatorial
argument shows that for k ≥ 4

|P2(Vodd)| = (2k − 1)(2k − 3) . . . 3.1 ≥ 3k

(The proof is left as an exercise). That is, if G has no even vertices, and
p := pG ≥ 8,

|P2(V (G))| ≥ 3
p
2 > (1.7p);

46

i. e., the number of partitions to be considered in determining c(Π0
2) grows, in

principle, exponentially.
However, Theorem 34 points in the right direction. Using the notation intro-
duced in the discussion preceding Theorem 34, we may obtain the following
criterion.

Theorem 35. Let G be a connected non-eulerian graph with cost function c :
E(G)→ R+, and let c∗ be the cost function of K2k defined by

c∗(vi, vj) = ci,j , vi, vj ∈ Vodd(G) = V (K2k).

For E0 ⊆ E(K2k) define c∗(E0) :=
∑

e∈E0
c∗(e).

A closed covering walk W of G is a PT if and only if

c(W) = c(G) + min{c∗(L) | L is a 1-factor of K2k}.

The proof of Theorem 35 follows from the observation that there is a 1-1-
correspondence between the partitions Π2 ∈ P2(Vodd) and the 1-factors L of
K2k and vice versa, and that c(Π2) = c∗(L) by the very definitions of c(Π2) and
c∗.
Thus, the above discussion shows that the Chinese Postman Problem can be
transformed into the following equivalent algorithmic form (CPP’) which is more
explicit than the original statement (CPP).

1) Input: Given the connected graph G with cost function c : E(G)→ R+,
let Vodd(G) = {v1, . . . , v2k} denote the set of odd vertices of G, k ≥ 1.

2) SPP (Shortest Path Problem): Determine ci,j = minc(Pi,j), 1 ≤ i < j ≤
2k, where Pi,j is an arbitrary path joining vi, vj ∈ Vodd(G) in G. Store
precisely one P ∗i,j satisfying ci,j = c(P ∗i,j), 1 ≤ i < j ≤ 2k.

3) MMP (Minimum Weight Perfect Matching Problem): ForK2k, V (K2k) =
Vodd(G), and for c∗ : E(K2k) → R+ satisfying c∗(vivj) = ci,j , determine
a 1-factor L ⊆ E(K2k) such that c∗(L) is minimal.

4) EUL (Euler Tour Problem): For every vivj ∈ L duplicate in G the edges
of P ∗i,j to obtain the connected eulerian graph G+. Construct an arbitrary
eulerian trail T+ of G+ and describe W , the closed covering walk of G
corresponding to T+. W is a PT.

This idea of transforming (CPP) into (CPP’) is already contained basically in
the work of J. Edmonds. As for the complexity of an algorithm based on (CPP’),
we take note of the following facts:

SPP. The Shortest Path Problem stated in 2) can be solved in polynomial time.
For, if we apply Dijkstra’s algorithm, say, for a fixed vi ∈ Vodd(G), we obtain
in O(p2) time at the most not only all values ci,j , but also corresponding paths
P ∗i,j , 1 ≤ j ≤ 2k, j 6= i. Thus, SPP can be solved in 2kO(p2) ≤ O(p3) time at
the most. Thus establishing K2k with cost function c∗ and a list of the above
paths P ∗i,j can be done in polynomial time S(p).

MMP. The Minimum Weight Perfect Matching Problem (i. e., finding a 1-factor
L in K2k with minimum cost c∗(L)) can be solved in at most polynomial time
M(p).

47

EUL. G+ can be constructed from G in polynomial time E1(P) since the paths
P ∗i,j corresponding to the elements of L can be found in polynomial time in the
above list of all P ∗i,j ’s. An eulerian trail T+ in G+ can be found in polynomial
time E2(p), where T+ can be transformed into W , a PT of G, in polynomial
time E3(p). Thus, the Euler Tour Problem can be solved in polynomial time
E(p) := E1(p) + E2(p) + E3(p).

Summarizing these considerations, we can say that the Chinese Postman Prob-
lem can be solved in polynomial time C(p), where

C(p) = S(p) +M(p) + E(p).

Associating a variable xe with every e ∈ E(G), the original (CPP) can be
expressed in the following equivalent form:

Determine xe ∈ {0, 1}, e ∈ E(G)

such that
∑

e∈E(G)

c(e)xe is minimized

subject to
∑
e∈Ev

(1 + xe) ≡ 0(mod 2), v ∈ V (G).


(CPP”)

The equivalence of (CPP”) and (CPP) follows from the fact that any postman’s
tour W of G corresponds to a solution of (CPP”) satisfying

H = 〈{e ∈ E(G) | xe = 1}〉

and c(H) =
∑

e∈E(G)

c(e)xe =
∑

e∈E(H)

c(e)xe,

(where H is the subgraph of G defined by W in condition 2) of Theorem 33),
and vice versa (also note that c(W) = c(G)+ c(H)). Moreover, the congruences
in (CPP”) are equivalent to saying that G+ obtained from G by duplicating the
edges of H is eulerian.

48

List of Symbols

∆(G) The maximum degree of the graph G.

δ(G) The minimum degree of the graph G.

κ(G) The connectivity of the graph G.

κ(x, y) The local connectivity of the vertices x and y.

λ(G) The edge connectivity of a graph G.

λ(x, y) The local edge connectivity of the vertices x and y.

λ(xy) Number of edges joining the adjacent vertices x and y.

λW (e) The number of uses of the edge e by a given walk W .

〈E0〉 The subgraph induced by the edges of E0.

〈V0〉 The subgraph induced by the vertices of V0.

Φ The flow in a network.

ρ(x, y) The maximum number of internally disjoint paths joining the
vertices x and y.

ρe(x, y) The maximum number of edge-disjoint paths joining the ver-
tices x and y.

ϕa The flow in arc a.

A(D) The set of arcs of the digraph D.

Av The set of arcs incident to vertex v or incident from v.

A+
v The set of arcs incident from vertex v.

A−v The set of arcs incident to vertex v.

bc(G) The block-cutpoint graph of the graph G.

ca The capacity of arc a.

d(v) The degree of vertex v.

E(G) The set of edges of the graph G.

Ev The set of edges incident to vertex v.

id(v) = d−(v) The number of arcs whose head is vertex v (in-degree).

L(G) The line graph of the graph G.

l(W) The length of the walk W .

od(v) = d+(v) The number of arcs whose tail is vertex v (out-degree).

P (x, y) A path from vertex x to vertex y.

49

S(G) The subdivision graph of G.

V (G) The set of vertices of the graph G.

W (x, y) A walk from vertex x to vertex y.

50

Index

Symbols
κ-absorption, 36

A
A.S. Fraenkel’s Algorithm, 42
acyclic, 7
adjacent, 2
arc, 2

B
bidirectional double tracing, 37
bipartite graph, 2
block, 8
block-chain, 10
block-cutpoint graph, 9
bridge, 5

C
capacity, 14
capacity of a cut, 17
chain, 5
Chinese Postman Problem, 43
closed walk, 3
complete bipartite graph, 2
complete graph, 2
component, 5
connected graph, 3
connectivity, 18
covering walk, 3
cut, 17
cutvertex, 8
cycle, 4

D
degree, 2
detachment, 13
digon, 4
digraph, 2
directed graph, 2
disconnected graph, 3
double tracing, 37

E
edge connectivity, 17
edge induced subgraph, 6
end-edge, 5
endvertex, 5
entry arcs, 14

eulerian digraph, 4
eulerian graph, 4
eulerian trail, 3
even graph, 4
exit arcs, 14

F
feasible flow, 15
Fleury’s Algorithm, 33
flow, 14
Ford-Fulkerson Algorithm, 16
forest, 7

G
graph, 2

H
Handshaking Lemma, 2
head, 3
Hierholzer’s Algorithm, 34
Hierholzer’s Algorithm (R.C. Read’s for-

mulation), 35

I
in-degree, 3
in-tree, 11
incident, 2
induced subgraph, 6
internal vertices, 4
isolated vertex, 5

K
k-gon, 4
k-regular, 36
k-valent, 2

L
length of a walk, 3
line graph, 22
local connectivity, 17
local edge connectivity, 17
loop, 2

M
Marking Procedure, 15
maximum degree, 2
maximum flow, 15
maze, 37

51

maze search problem, 37
minimum degree, 2
multiple edge, 2

N
n-connected, 23
network, 14
nonseparable, 8

O
open trail, 4
open walk, 3
order of a graph, 2
orientation, 3
out-degree, 3
out-tree, 11

P
path, 4
pillar, 20
postman’s tour, 43

Q
quadragle, 4

R
return arc, 14

S
simple chain, 5
simple graph, 2
sink, 7
size of a graph, 2
source, 7
spanning subgraph, 7
spanning tree, 7
splitting, 12
Splitting Algorithm, 31
strongly connected, 6
subdivision, 10
subdivision graph, 10
subgraph, 3

T
tail, 3
Tarry’s Algorithm, 40
Trémaux’s Algorithm, 38
trail, 3
trail decomposition, 36
tree, 7
triangle, 4

Tucker’s Algorithm, 36

U
unilaterally connected, 6

W
walk, 3, 5
weakly connected, 6

52

