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Abstract

We link two concepts from the literature, namely hard sequences for the sat-
isfiability problem sat and so-called pseudo proof systems proposed for study by
Kraj́ıček. Pseudo proof systems are elements of a particular nonstandard model con-
structed by forcing with random variables. We show that the existence of mad pseudo
proof systems is equivalent to the existence of a randomized polynomial time proce-
dure with a highly restrictive use of randomness which produces satisfiable formulas
whose satisfying assignments are probably hard to find.

1 Introduction

Pseudo proof systems It is a basic question of mathematical logic, unsettled to date,
whether there exists a propositional proof system that has short proofs for all tautologies.
Abstractly, a propositional proof system is a polynomial time function from the set of
binary strings {0, 1}∗ into the set taut of (binary strings coding) propositional tautologies.
Often [11] it is additionally required, that the function is not only into taut, meaning
soundness, but also onto, meaning completeness. Having short proofs means that the
system is polynomially bounded: every tautology has a proof, i.e., preimage, of length
polynomial in its length. Such proof systems exist if and only if NP = coNP [11].

As is well known, “one can think of length-of-proofs lower bounds as about problems
of how to construct suitable models of particular bounded arithmetic” [23, p.175]. A
general method to construct such models is developed in [23] following Scott’s [35] forc-
ing with random variables. An important instance of this method is the Boolean valued
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model K(F n
PV).1 Its universe is given by the set of all polynomial time functions on binary

strings of some fixed nonstandard length n ∈M , where M is some fixed large nonstandard
model of true arithmetic. The Boolean valuation considers two such functions equal if they
differ only on an infinitesimal fraction of input strings. The model interprets the language
having symbols for all polynomial time functions and relations, and it turns out that in
K(F n

PV) all true universal statements in this language are valid. In particular, this holds
for Cook’s theory PV [9] formalizing feasible reasoning. This together with its appealing
and familiar definition makes K(F n

PV) an object of interest. We shall mention some related
constructions (cf. Remark 16) once we gave the precise definition in Section 3.2.

The objects of K(F n
PV) “can be viewed from two different perspectives” [23, p.160],

namely, first as elements of the universe of K(F n
PV) and second as functions defined on

binary strings {0, 1}n. For example, viewed as an element of K(F n
PV) a propositional proof

system is a tautology in the sense of K(F n
PV). Conversely, a tautology in the sense of

K(F n
PV) is a pseudo proof system (Definition 17). Viewed as a function on binary strings

a pseudo proof system may be unsound. In fact, it is conceivable that mad pseudo proof
systems exist (Definition 20). Viewed as elements of K(F n

PV) these are tautologies in the
sense of K(F n

PV) but viewed as functions on binary strings they never output a tautology.
In [23, Section 24.4] Kraj́ıček asks for transfer principles concerning pseudo proof sys-

tems. Loosely speaking a transfer principle is a statement that allows to infer properties
of standard objects from properties of nonstandard objects, and vice-versa. In this note
we prove such a transfer principle that links the existence of mad pseudo proof systems to
a hypothesis concerning the computational complexity of the satisfiability problem sat of
independent interest, explained next.

Hard sequences For an algorithm solving a hard computational task there exist in-
stances of the problem witnessing that the algorithm is not feasible. For example, P 6= NP
if and only if every sat-algorithm has a hard sequence:

Definition 1. Let Q ⊆ {0, 1}∗ and A be a Q-algorithm, i.e., an algorithm deciding Q, and
let p be a polynomial. A sequence (xn)n∈N is p-hard for A if for infinitely many n ∈ N:

(H1) xn ∈ Q,

(H2) tA(xn) > p(|xn|, n).

Here, tA(x) denotes the running time of A on input x. Being hard for A means being
p-hard for A for all polynomials p.

It is a natural question to ask whether such a sequence could be computable in polyno-
mial time. Here, we say that a sequence (xn)n∈N of binary strings xn ∈ {0, 1}∗ is polynomial
time computable if so is the function that computes xn from 1n = 1 · · · 1 (n times).2

1A short introduction to the model-theoretic concepts is given in section 3, no knowledge of [23] is
assumed.

2Note that (H2) in the definition of a polynomial time computable hard sequence is equivalent to the
statement that tA(xn) is not nO(1), matching the definition in [8].
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Hard sequences have been studied from at least two perspectives. The first is speed-up,
going back at least to [36], and the second, more relevant to this paper, is to witness failure
of feasible algorithms, studied not only for deterministic but also for randomized [12, 37, 3]
and non-uniform algorithms [27, 2]. See [31, 6] for some recent discussions.

Hard Sequence Hypothesis For every sat-algorithm A there exists a polynomial time
computable sequence which is hard for A.

We are not aware of a place where this hypothesis has been formulated explicitly, but
it is certainly implicit in many papers. We are also not aware of any well-established
computational hardness hypothesis that would imply this hypothesis.

A natural (see e.g. [12]) weakening of the Hard Sequence Hypothesis is to allow random-
ness in the construction of hard sequences. One then asks for polynomial time samplable
(as opposed to computable) probably hard sequences (Definitions 4, 3). We observe that
sat-algorithms do have such sequences under cryptographic assumptions (Proposition 6).
Second, we observe that sat-solvers do have polynomial time computable hard sequences
under a well-established hypothesis (Proposition 9): sat-algorithms which upon accepting
a satisfiable input formula F also output a binary string of length 6 |F | that satisfies F .
We say that x = x1 · · ·xn ∈ {0, 1}n satisfies F if so does the truth assignment that maps
the i-th variable of F to xi if i 6 n and to 0 otherwise.

Transfer principle Our transfer principle links the existence of mad pseudo proof sys-
tems with the existence of probably hard sequences that are samplable with a quite restric-
tive use of randomness that we call invertibility (cf. Definition 10). Intuitively, the sampler
is required to witness its outputs by publishing the random seed used.

Theorem 2. Let M be an ℵ1-saturated elementary extension of N. Then the following are
equivalent:

(a) There is a nonstandard n ∈M such that K(F n
PV) contains mad pseudo proof systems.

(b) Every sat-solver has an invertibly samplable probably hard sequence.

(c) There is a polynomial time computable function f such that for all ε > 0 and all
polynomial time computable functions g there are infinitely many n ∈ N such that

(i) for all x ∈ {0, 1}n: f(x) is a falsifiable propositional formula;

(ii) for at most an ε-fraction of x ∈ {0, 1}n: g(x) is a falsifying assignment of f(x).

These statements are true if NE ∩ coNE 6⊆ E and pseudo-random generators exist.

The property in (c) could be taken as a standard definition of a mad pseudo proof
system, i.e. one not referring to nonstandard models. It is our notion of invertibility
that makes the equivalence of (b) and (c) an easy consequence of Levin’s optimal sat-
solver [26]. The equivalence to (a) is the remark this short paper wants to communicate,
as a contribution to the model-theory of the structures K(F n

PV).
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2 Hard sequences

Assuming NP 6⊆ P, Gutfreund et al. [12] showed that for every fixed polynomial p every
sat-algorithm has polynomial time computable p-hard sequence. A diagonalizing argument
shows that one can compute hard sequences in slightly superpolynomial time (see [12,
Theorem 1.6] for such a construction) but the construction of polynomial time computable
hard sequences is open.

Does randomness help? As for a notion of feasibility for sequences of random strings3

we borrow the following from average case complexity [4]:

Definition 3. A sequence of random strings (Xn)n∈N is (polynomial time) samplable if there
exists a polynomial time computable sampler for it, that is, a function D : {0, 1}∗ → {0, 1}∗
such that D◦Un has the same distribution as Xn for all n ∈ N. Here, Un denotes a random
variable uniformly distributed in {0, 1}n.

The following definition is convenient. With suitable adjustments, it makes sense for
randomized sat-algorithms, and has been implicitly studied in [12, 37]. Here, we restrict
attention to deterministic algorithms.

Definition 4. Let A be a Q-algorithm, p a polynomial and δ, ε > 0. A sequence (Xn)n∈N
of random strings is (δ, ε)-probably p-hard for A if for infinitely many n ∈ N:

(P1) Pr
(
Xn ∈ Q

)
> 1− δ,

(P2) Pr
(
tA(Xn) > p(|Xn|, n)

)
> 1− ε.

The sequence is (δ, ε)-probably hard for A if for all polynomials p it is (δ, ε)-probably p-hard
for A. And we call it probably hard for A if for all ε > 0 it is (0, ε)-probably hard for A.

We observe that, using randomness, (superpolynomial) hardness is achievable under
cryptographic assumptions:4

Definition 5. A cryptographic pseudo-random generator with stretch 2n is a polynomial
time computable function G : {0, 1}∗ → {0, 1}∗ such that |G(r)| = 2|r| for all r ∈ {0, 1}∗
and for all positive polynomials p and all randomized polynomial time algorithms A we
have for all sufficiently large n:∣∣Pr(A accepts G(Un))− Pr(A accepts U2n)

∣∣ 6 1/p(n). (1)

Proposition 6. Assume cryptographic pseudo-random generators with stretch 2n exist.
Then there is a samplable sequence which is probably hard for every sat-algorithm.

3A random string is a random variable with values in {0, 1}∗. Given any random variable we always
use Pr to denote the probability measure of the underlying probability space.

4Such assumptions are prohibitive in the context of [12, 2, 3] who are concerned with the problem to
reduce average-case hardness hypotheses to worst-case hardness hypotheses.
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Proof. Let G be a generator as assumed to exist. Clearly, its image

Q := {G(r) | r ∈ {0, 1}∗}

is in NP, so there is a polynomial time reduction f from Q to sat. Define

D(r) := f(G(r)),

and note Pr(D(Un) ∈ sat) = 1 for all n ∈ N. Assume for the sake of contradiction, that
(D(Un))n is not probably hard for some sat-algorithm B. Then there are a polynomial p
and ε > 0 such that Pr(tB(D(Un)) 6 p(n)) > ε for infinitely many good n.

Let A accept an input r if and only if B accepts f(r) in at most p(|r|) steps. Then
Pr(A accepts G(Un)) > ε for all good n. But the event that A accepts U2n implies the
event that B accepts f(U2n), hence f(U2n) ∈ sat, hence U2n ∈ Q. The latter event has
probability 6 2n/22n = 2−n. Thus, for all large enough good n the difference of the
probabilities in (1) is at least ε− 2−n > ε/2, a contradiction.

While we are not aware of a reference for the above result, its proof is certainly folk-
lore. Early references for similar constructions are [10, 5] where, instead of general sat-
algorithms, sat-solvers are considered. Cryptographic assumptions are not required in
this case, e.g. [24, 3] construct p-hard sequences assuming certain proof lower bounds and
NP 6⊆ P respectively. The sequences in [10, 5, 3] also produce formulas along with satis-
fying assignments, and it is clear that deterministic such sequences, namely dreambreakers
[3], cannot be (superpolynomially) hard for Levin’s optimal sat-solver L:

Theorem 7 (Levin [26]). There exists a sat-solver L such that for every sat-solver A
there exists a polynomial pA such that tL(F ) 6 pA(tA(F ) + |F |) for every F ∈ sat.

We shall use the following easy consequence mainly with δ = 0 by referring to “the
optimality of L”. Note the lemma applies to (deterministic) hard sequences because these
are (0, 0)-probably hard sequences.

Lemma 8. Let (Xn)n∈N be a sequence of random strings and ε > δ > 0. If (Xn)n∈N is
(δ, ε− δ)-probably hard for L, then it is (δ, ε)-probably hard for every sat-solver.

Proof. Let A be a sat-solver. Assume for the sake of a contradiction that (Xn)n∈N is
(δ, ε − δ)-probably hard for L but not for A. Then, let p be a polynomial such that for
almost all n ∈ N:

Pr(Xn ∈ sat) > 1− δ =⇒ Pr(tA(Xn) 6 p(|Xn|, n)) > ε. (2)

Choose a nondecreasing polynomial pA for A according to Theorem 7. Then (2) implies

Pr(Xn ∈ sat) > 1− δ =⇒ Pr(tL(Xn) 6 pA(p(|Xn|, n)) or Xn /∈ sat) > ε,

and thus

Pr(Xn ∈ sat) > 1− δ =⇒ Pr(tL(Xn) 6 pA(p(|Xn|, n))) > ε− δ.

Hence, (Xn)n∈N is not (δ, ε− δ)-probably hard for L. Contradiction.
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We point out that one can construct superpolynomially hard sequences for sat-solvers
under standard worst-case assumptions. The proof is essentially known. Recall, E and NE
denote deterministic and nondeterministic simply exponential time 2O(n), respectively.

Proposition 9. The following statements are equivalent, and implied by NE∩ coNE 6⊆ E.

(a) There exists a polynomial time computable sequence which is hard for L.

(b) There exists a polynomial time computable sequence which is hard for all sat-solvers.

(c) For every sat-solver A there exists a polynomial time computable sequence which is
hard for A.

(d) For every sat-solver A there exists an injective polynomial time computable sequence
(Fn)n∈N which is hard for A and such that |Fn| > n for all n ∈ N.

Proof. (a ⇒ b) follows from the optimality of L (Lemma 8). (b ⇒ c) and (d ⇒ a) are
trivial. To prove (c⇒ d) we proceed as in [8, Proposition 3.2] using a padding function: a
polynomial time computable function pad that maps a formula F and a string y ∈ {0, 1}∗
to a formula pad(F, y) of length at least |F |+ |y| that has the same satisfying assignments
as F , and such that there are two polynomial time functions mapping any input of the
form pad(F, y) to F and y, respectively.

Let A be a sat-solver and assume (c). Define an algorithm B as follows: given a
formula F , for t = 0, 1, . . . compute t steps of A on each of pad(F, 10), . . . , pad(F, 1t); as
soon as one of these computations halts, return the answer obtained.

Clearly, B is a sat-solver and there is a polynomial p such that for every t ∈ N and
every formula F we have tB(F ) 6 p(t + tA(pad(F, 1t))). By (c) there is a polynomial time
computable sequence (Fn)n hard for B. Then (pad(Fn, 1

n))n is polynomial time computable
and hard for A. This sequence is injective and satisfies |pad(Fn, 1

n)| > n for all n ∈ N.
We have proved that (a)-(d) are equivalent. We now derive (b) assuming there exists

a problem Q ∈ NE ∩ coNE \ E. For a binary string x let num(x) be the natural number
with binary expansion 1x. Then

Q′ := {1num(x) | x ∈ Q} ∈ NP ∩ coNP \ P.

We now proceed as in [7, Proposition 4.5]. By the NP-completeness of sat, there are
polynomial time reductions r1 and r0 from Q′ and {0, 1}∗ \Q′ to sat. We can assume that
r1(1n) and r0(1n) are propositional formulas. Then r1(1n) ∨ r0(1n) ∈ sat, and a satisfying
assignment satisfies exactly one of r1(1n) and r0(1n), namely r1(1n) if 1n ∈ Q′, and r0(1n)
if 1n /∈ Q′. Since Q′ /∈ P, there is no sat-solver A such that tA(r1(1n)∨r0(1n)) 6 nO(1).

We now consider sequences sampled with some restricted use of randomness, as an-
nounced in the Introduction.5

Definition 10. A sequence of random strings (Xn)n∈N is invertibly samplable if it has a
polynomial time sampler D which is invertible, i.e., D is injective and the partial func-
tion D−1 is computable in polynomial time.

5Our notion of invertibility is more restrictive than the one considered in [38].
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The sampler defined in the proof of Proposition 6 is not invertible. For invertible
samplers, hardness has the following handy reformulation.

Lemma 11. Let D be an invertible polynomial time sampler for (Xn)n∈N. Then the fol-
lowing are equivalent.

(a) (Xn)n∈N is probably hard for L.

(b) For every polynomial time function g and for all ε > 0 there are infinitely many n
such that Pr(Xn ∈ sat) = 1 and

Pr
(
|g(Un)| 6 |D(Un)| and g(Un) satisfies D(Un)

)
6 ε. (3)

Proof. (a ⇒ b) Assume (b) fails and choose g and ε witnessing this. Define the following
algorithm A: given as input a formula F , compute the string y := g(D−1(F )) and check
whether it has length 6 |F | and satisfies F ; if so, then accept with output y, else reject.

Further, define the algorithm B to run A in parallel with an arbitrary sat-solver. If
one of the two procedures halts accepting, then B accepts with the corresponding output.
If both procedures reject, so does B.

Since A is polynomial time bounded, there is a polynomial p such that tB(F ) 6 p(|F |)
for every formula F accepted by A. Since B is a sat-solver, there exists a polynomial pB
such that then tL(F ) 6 pB(p(|F |)) (Theorem 7). Thus

Pr
(
tL(Xn) 6 pB(p(|Xn|))

)
> Pr

(
A accepts Xn

)
= Pr

(
|g(D−1(Xn))| 6 |Xn| and g(D−1(Xn)) satisfies Xn

)
.

Note this last probability equals the probability in (3). By our assumption that (a) fails
this probability is > ε or Pr(Xn ∈ sat) < 1 for almost all n. Hence, (Xn)n∈N is not
(0, ε)-probably (pB ◦ p)-hard for L.

(b ⇒ a) If (a) fails, there is a polynomial p and an ε > 0 such that for almost all n,
Pr(Xn ∈ sat) < 1 or Pr

(
tL(Xn) 6 p(|Xn|, n)

)
> ε.

Define a polynomial time function g as follows. On input r run L on D(r) for at
most p(|D(r)|, |r|) steps. If this computation does not halt accepting, then return the
empty string; else return L’s output. Then |g(r)| 6 |D(r)| for all r, and the proba-
bility in (3) equals the probability of the event that g(Un) satisfies D(Un). For n with
Pr(Xn ∈ sat) = 1, this event is implied by the event that tL(Xn) 6 p(|Xn|, n), so has
probability > ε. Thus statement (b) fails.

An easy corollary is the equivalence of statement (b) and (c) of our main theorem.

Proof of Theorem 2 (b⇔ c). It follows from the optimality of L that there is D as in
Lemma 11 (a) if and only if if Theorem 2 (b) holds.
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We show that there is D as in Lemma 11 (b) if and only if Theorem 2 (c) holds. Given
a sampler D as in Lemma 11 (b), define

f(r) := neg(D(r)),

where neg maps (a binary string coding) a formula to a its negation. Conversely, given a
function f as in Theorem 2 (c), define the invertible sampler

D(r) := pad(neg(f(r)), r),

where pad is the padding function from the proof of Proposition 9.
For every n ∈ N and every polynomial time computable function g we have: D(r) is

a satisfiable formula for all r ∈ {0, 1}n if and only if f(r) is a falsifiable formula for all
r ∈ {0, 1}n; further, the probability that g(Un) satisfies D(Un) is 6 ε if and only if g(r) is
a falsifies f(r) for only a ε-fraction of r ∈ {0, 1}n.

Hard sequences can be transformed into invertibly samplable probably hard sequences
using pseudo-random generators (of the Nisan-Wigderson type). This is a standard appli-
cation of the “general framework for derandomization” of [21]. For definiteness we use the
parameter setting from the standard textbook [1].

Definition 12. Let S : N→ N. A function G : {0, 1}∗ → {0, 1}∗ is an S(`)-pseudo-random
generator if G(r) is computable in time 2O(|r|), has length S(|r|) and for all ` ∈ N and all
Boolean circuits C with at most S(`)3 gates and at most S(`) inputs

|Pr
(
C(G(U`)) = 1

)
− Pr

(
C(US(`)) = 1

)
| < 0.1. (4)

We say pseudo-random generators exist if there is δ > 0 such that 2bδ`c-pseudo-random
generators exist.

Proposition 13. Assume pseudo-random generators exist. If there exists a polynomial
time computable hard sequence for L, then there exists an invertibly samplable probably
hard sequence for L.

Proof. Let (Fn)n be polynomial time computable and hard for L. By Proposition 9 we can
assume that the sequence is injective and |Fn| > n for all n. Using the padding function
pad from the proof of this proposition, define a sampler

D(r) := pad(F|r|, r),

Clearly, D is polynomial time computable and invertible. Assume for the sake of
contradiction that (D(Un))n is not probably hard for L. Applying Lemma 11 we get a
polynomial time function g and ε > 0 and n0 ∈ N such that for all n > n0:

Pr(D(Un) ∈ sat) = 1 =⇒ Pr(|g(Un)| 6 |D(Un)| and g(Un) satisfies D(Un)) > ε. (5)
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Note Pr(D(Un) ∈ sat) is 1 or 0 depending on whether Fn ∈ sat or not. Further note
that a string satisfies D(Un) if and only if it satisfies Fn. Hence (5) implies

Fn ∈ sat =⇒ Pr(g(Un) satisfies Fn) > ε. (6)

Call n ∈ N good if n > n0 and Fn ∈ sat. We claim there is a sat-solver A such that
tA(Fn) 6 nO(1) for all good n. This implies that (Fn)n is not hard for A and thus also not
for L (Lemma 8), a contradiction.

Let c ∈ N be such that (1−ε)c 6 0.9. Let Cn be a size nO(1) circuit with c ·n inputs that
accepts r1 · · · rc with ri ∈ {0, 1}n if and only if at least one of g(r1), . . . , g(rc) satisfies Fn.
If n is good, then Pr(Cn(Ucn) = 1) > 0.1 by choice of c and (6). For every m > cn we can
view Cn as a circuit C ′m on m inputs. Further, there is a polynomial time function g such
that g(n, r) satisfies Fn whenever r ∈ {0, 1}m is such that C ′m(r) = 1.

If we set mn := 2bδ`nc where `n := bd log nc for a sufficiently large constant d ∈ N, then
mn > cn and C ′mn

has size 6 m3
n. Here, δ > 0 witnesses that there exists a pseudo-random

generator G. For all good n we have Pr(C ′mn
(Umn) = 1) > 0.1, so Pr(C ′mn

(G(U`n)) = 1) 6= 0
by (4). Hence, for good n, g(n,G(r)) satisfies Fn for at least one r ∈ {0, 1}`n .

Define the sat-solver A as follows. Given a formula F it runs some arbitrary sat-solver
and in parallel does the following: compute F0, . . . , F|F |; unless there is n0 < n 6 |F |
such that Fn = F , reject; otherwise compute the strings g(n,G(r)) for all 6 nd many
r ∈ {0, 1}`n ; if one of them satisfies F = Fn, then output it and accept; else reject.

It is easy to see that A is polynomially time bounded on Fn for good n, as desired.

3 Mad pseudo proof systems

3.1 Preliminaries: language LPV and model M

So far we considered polynomial time on the set of binary strings {0, 1}∗. To view poly-
nomial time on N, we view every n ∈ N as a binary string, say, by taking the binary
expansion of n and deleting the most significant bit. Then {0, 1}n corresponds to the
numbers between 2n and 2n+1 − 1, and we continue to write {0, 1}n for this interval.

We consider every r-ary polynomial time computable function f : Nr → N as an r-ary
function symbol and every r-ary polynomial time decidable relation R ⊆ Nr as an r-ary
relation symbol. Constants are nullary function symbols. Let LPV denote the resulting
first-order language. The standard LPV-structure has as universe N and interprets all
function and relation symbols from LPV by themselves. We denote this structure also by N
and in general do not distinguish structures from their universes notationally. The theory
Th∀(LPV) is the set of universal sentences true in N.

To fix some notation we list some symbols of the language LPV. It contains a unary
function |n| denoting the length of n as a binary string; the {0, 1}-valued binary function
bit(i, n) gives the i-th bit of this string, and 0 if i > |n|. We say n codes the set xny :=
{i ∈ N | bit(i, n) = 1}. For a set A ⊆ N coded in N let pAq denote its code. A finite
function α is coded by m if m codes the set of 〈i, α(i)〉 for i in the domain of α; here, 〈i, j〉
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is a bijection from N2 onto N. For readability we write i ∈ A for bit(i, pAq) = 1, and α(i)
for a suitable LPV-term applied to i and the code of α.

Positive rationals are coded by pairs 〈n,m〉 written n/m with m 6= 0 and ambiguously
we use the symbol 6 also with its meaning in the rationals. There is a unary function
card(n) in LPV giving the cardinality of xny. Further, LPV contains a unary function
mapping p∅q to 0, and pAq to the rational card(pAq)/2n = Pr(Un ∈ A) for every nonempty
A ⊆ {0, 1}n. We also write Pr for this function.

We fix an ℵ1-saturated elementary extension M of N. This means M is an extension
of N with the property that every countable family of definable subsets of M with the
finite intersection property has non-empty intersection. By definable we mean definable by
formulas with parameters from M . Elements of M \ N are nonstandard.

We speak of sets and functions coded in M in the same sense as explained above, in
particular, we have the notations xay and pAq for elements a of M and coded subsets A
of M . The interpretation of a symbol σ ∈ LPV in M is denoted σM but we shall often omit
the superscript M . Pairs 〈a, b〉 = 〈a, b〉M written a/b with b 6= 0 are M-rationals. E.g. the
values of PrM are M -rationals. Note that every (code of a) rational is an M -rational.

We use the following notions from nonstandard analysis (see e.g. [20]). The standard
part of an M -rational a/b is the real

(a/b)∗ := inf{q ∈ Q | a/b 6 q},

provided the set on the r.h.s. is non-empty; it is undefined otherwise. An M -rational with
standard part 0 is infinitesimal.

3.2 Kraj́ıček’s model K(F n
PV)

The model K(F n
PV) is Boolean valued with values in the Boolean algebra Bn, defined below.

The function n 7→ p{0, 1}nq is definable in the standard model N. Since M is an
elementary extension of N, this function extends to a function on M . Evaluating it on
n ∈ M gives the code of a subset of M that we denote by {0, 1}n. Let An be the set of
subsets of {0, 1}n that are coded in M . Then An is a Boolean algebra and {pAq | A ∈ An}
is coded in M . Note that for every LPV-formula ϕ(x) (even with parameters from M) we
have {ω ∈ {0, 1}n |M |= ϕ(ω)} ∈ An.

Let n ∈M be nonstandard. The set

Infn :=
{
A ∈ An | PrM(pAq) is infinitesimal

}
is an ideal in An (and not coded in M). Call A,A′ equivalent if their symmetric difference
is in Infn. The equivalence class of A ∈ An is denoted A/Infn. These classes form the
Boolean algebra Bn, defined as the factor

Bn := An/Infn.

Using the assumption that M is ℵ1-saturated one can show [23, Lemma 1.2.1]:
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Lemma 14. For every nonstandard n ∈M , the Boolean algebra Bn is complete.

We now describe the model K(F n
PV). Its universe is F n

PV, the set of all restrictions
fM�{0, 1}n of fM to {0, 1}n where f ∈ LPV is a unary function symbol (and fM its
interpretation in M). We use α, β, . . . to range over F n

PV. Observe that every α ∈ F n
PV is

coded in M (but not the set F n
PV, viewed as a set of codes). Further observe that for every

r-ary symbol f ∈ LPV and every r-tuple (α1, . . . , αr) the function

ω 7→ fM(α1(ω), . . . , αr(ω)) (7)

defined on ω ∈ {0, 1}n is in F n
PV. We interpret the function symbols of LPV in this way

over F n
PV. Then every closed LPV-term t with parameters from F n

PV denotes an element
tK(Fn

PV) of F n
PV. The Boolean valuation maps every LPV-sentence ϕ with parameters from

F n
PV to a Boolean value JϕK ∈ Bn. For atomic ϕ this Boolean value is defined setting:

JR(t1, . . . , tr)K :=
{
ω ∈ {0, 1}n | (tK(Fn

PV)
1 (ω), . . . , t

K(Fn
PV)

r (ω)) ∈ RM
}
/Infn,

Jt = sK :=
{
ω ∈ {0, 1}n | tK(Fn

PV)(ω) = sK(Fn
PV)(ω)

}
/Infn,

where t, s, t1, . . . tr are closed LPV-terms with parameters from F n
PV and R ∈ LPV is an

r-ary relation symbol. For arbitrary sentences with parameters in F n
PV the Boolean value

is then determined via the usual recurrence: J¬ϕK := ∼ JϕK, J(ϕ ∨ ψ)K := JϕK ∪ JψK,
J∃xϕ(x)K := supαJϕ(α)K where ∼,∪, sup denote the obvious operations of Bn as a complete
Boolean algebra. The minimal and maximal elements of Bn are respectively 0Bn := ∅/Infn
and 1Bn := {0, 1}n/Infn.

A sentence ϕ is valid in K(F n
PV) if JϕK = 1Bn . One straightforwardly verifies [23,

Lemma 1.4.2]:

Lemma 15. Let n ∈ M be nonstandard. If ϕ(x, y, . . .) is a quantifier-free LPV -formula
and α, β, . . . ∈ F n

PV, then

Jϕ(α, β, . . .)K = {ω ∈ {0, 1}n |M |= ϕ(α(ω), β(ω), . . .)}/Infn.

In particular, every sentence in Th∀(LPV) is valid in K(F n
PV).

We close this subsection with some historical notes meant to back up our claim from
the Introduction that the definition of K(F n

PV) follows natural and familiar lines.

Remark 16 (Historical notes). Boolean valued models date back to the work of Rasiowa
and Sikorski [34], and became popular when it was realized that Cohen’s method of forcing
can be viewed as a method to construct Boolean valued models of set theory. We refer to
[17, Chapter 14] and the references therein. In [35] Scott explained this view by construct-
ing a model based on random variables of a higher-order theory of the reals as an ordered
field. Such Boolean powers are studied in more generality in [30, 33].

The book [23] develops Scott’s [35] forcing with random variables as a method to build
models K(F ) (and two-sorted extensions thereof) of bounded arithmetics. Instead of F n

PV
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these use suitable families F ⊆MΩ for Ω coded in M , together with an analogously defined
complete Boolean algebra B. The crucial move being to restrict the construction to families
F of random variables samplable with limited computational complexity. Technically,
fullness ([17, p.208],[30, Theorem 1.4]) of the model is lost and much of the theory develops
around finding conditions ensuring partial fullness for certain classes of formulas.

The models K(F ) can be seen as partial randomizations of M in the sense of Keisler [19]:
the triple (F,PrM ,B) satisfies only a fragment of Keisler’s randomization theory. In partic-
ular, K(F ) satisfies Keisler’s “Fullness Axiom” [19, p.128] only for very special F (see [23,
Theorem 3.5.2]), and K(F n

PV) does not.
As remarked in [23, footnote 2, p.3] one can collapse K(F n

PV) to a usual two-valued
model by factoring Bn with a suitable ultrafilter (see [34, Lemma 9.1]). The result is a
restricted ultrapower of M . These have been studied for fragments of arithmetic [25, 16,
29, 22, 32, 13] ever since Skolem’s definable ultrapower (see [14, IV.1.(b)]).

3.3 Pseudo proof systems

Let Fml be the set of naturals which (viewed as binary strings) code propositional formulas,
and Sat contain the pairs (`,m) such that m ∈ Fml and ` (as a binary string) satisfies the
formula coded by m. Then Fml and Sat are relation symbols in LPV. The formula

Taut(x) := ∀y(|y| 6 |x| → Sat(y, x))

defines taut, viewed as a set of naturals. It follows from Lemma 15 that, if f ∈ LPV is a
proof system (i.e., ∀x Taut(f(x)) ∈ Th∀(LPV)), then fM�{0, 1}n ∈ F n

PV is a pseudo proof
system as defined in [23, p.162]:

Definition 17. Let n ∈M be nonstandard. An element α ∈ F n
PV is a pseudo proof system

in K(F n
PV) if Taut(α) is valid in K(F n

PV).

Remark 18. Hirsch et al. [15] study heuristic proof systems. These are randomized proof
systems that are allowed to prove non-tautologies (with constant probability) but only few
of them with respect to some distribution. Pseudo proof systems are conceptually different.
First, they are not randomized. More importantly, the point of a pseudo proof system is
that erroneous outputs (non-tautologies) are hard to detect as such, and not that there
are few of them. In fact, as we shall see in the next section, it is conceivable that there are
mad pseudo proof systems, pseudo proof systems all of whose outputs are erroneous. The
notion of a pseudo proof system is more akin to Kabanets’ pseudoP-classes [18].

Let neg ∈ LPV map every n ∈ Fml to its negation (to the number coding the negation
of the formula coded by n).

Lemma 19. Let n ∈M be nonstandard and f ∈ LPV. The following are equivalent.

(a) fM�{0, 1}n is a pseudo proof system in K(F n
PV).
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(b) For all g ∈ LPV:{
ω ∈ {0, 1}n |M |= |g(ω)| 6 |f(ω)| ∧ ¬Sat(g(ω), f(ω))

}
∈ Infn.

If M |= ∀x ∈ {0, 1}n Fml(f(x)), then these statements are equivalent to

(c) For all g ∈ LPV: {
ω ∈ {0, 1}n |M |= Sat(g(ω), neg(f(ω)))

}
∈ Infn.

Proof. Write α := fM�{0, 1}n. Let β range over F n
PV. Statement (a) means

0Bn = sup
β
∼ J|β| 6 |α| → Sat(β, α)K

= sup
β
∼ {ω ∈ {0, 1}n |M |= |β(ω)| 6 |α(ω)| → Sat(β(ω), α(ω))}/Infn,

using Lemma 15. Equivalently, for all β:{
ω ∈ {0, 1}n |M |= |β(ω)| 6 |f(ω)| ∧ ¬Sat(β(ω), f(ω))

}
∈ Infn.

This is equivalent to (b) because the β ∈ F n
PV are precisely the functions of the form

g�{0, 1}n for g ∈ LPV.
Suppose M |= ∀x ∈ {0, 1}n Fml(f(x)). Then for all g ∈ LPV, Sat(g(x), neg(f(x)) is

equivalent to ¬Sat(g(ω), f(ω)) in M , so (c) implies (b). Conversely, given g ∈ LPV there
is g′ ∈ LPV such that the set in (c) for g equals the set in (b) for g′: if |g(ω)| > |f(ω)|,
then g′(ω) deletes the last |g(ω)| − |f(ω)| many bits; this truncation does not change how
the variables of the formula f(ω) are evaluated.

We are interested in pseudo proof systems that never output a tautology.

Definition 20. Let n ∈M be nonstandard. A pseudo proof system fM�{0, 1}n in K(F n
PV)

is mad if
M |= ∀x ∈ {0, 1}n(Fml(f(x)) ∧ ¬Taut(f(x))). (8)

3.4 Proof of Theorem 2

We already showed that (b⇔ c), and now show (a⇔ c).

(a⇒ c) Suppose there are n ∈M \N and f ∈ LPV such that fM�{0, 1}n is a mad pseudo
proof system. We claim that fN satisfies (i) and (ii) of (c). By (8) we have M |= ψ(n)
where ψ(x) is the LPV-formula

∀y ∈ {0, 1}x ∃z Sat(z, neg(f(y))). (9)

Now, let Ag,f (x) be the function, definable in N, mapping m to the code of{
ω ∈ {0, 1}m | N |= |g(ω)| 6 |neg(f(ω))| ∧ Sat(g(ω), neg(f(ω))

}
.
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Since M |= ∀x ∈ {0, 1}nFml(f(x)) by (8), we get xAMg,f (n)y ∈ Infn by Lemma 19 (c). This
implies for all g ∈ LPV and all standard ` > 0 that M and hence N models

∃x > `
(
ψ(x) ∧ Pr(Ag,f (x)) < 1/`

)
.

This is equivalent to (c).

(c ⇒ a) Let f be a function as in (c), i.e. for all g ∈ LPV and all ε > 0 there are
infinitely many m ∈ N such that Pr(neg(f(Um)) ∈ sat) = 1 and

Pr
(
|g(Um)| 6 |f(Um)| and (g(Um), neg(f(Um))) ∈ Sat

)
6 ε.

Then f ∈ LPV and we claim that there is a nonstandard n ∈ M such that fM�{0, 1}n
is a mad pseudo proof system in K(F n

PV). We can assume that ∀yFml(f(y)) holds in N
and hence in M . So to get the madness property (8) it suffices to get M |= ψ(n) for the
formula ψ(x) defined in (9).

Now, for g ∈ LPV let Bg,f : N→ N map m ∈ N to

Bg,f (m) := p{ω ∈ {0, 1}m | N |= |g(ω)| 6 |f(ω)| ∧ ¬Sat(g(ω), f(ω))}q. (10)

This function is definable in the standard model N, so extends to a function BM
g,f on M .

We have for all n ∈M :

xBM
g,f (n)y := {ω ∈ {0, 1}n |M |= |g(ω)| 6 |f(ω)| ∧ ¬Sat(g(ω), f(ω))} ∈ An.

For g ∈ LPV and standard ` > 0 let ϕg,f,`(x) be the formula

x > ` ∧ ψ(x) ∧ Pr(Bg,f (x)) < 1/`. (11)

Given finitely many such formulas ϕg0,f,`0 , . . . , ϕgk,f,`k set ` := maxi6k `i and let g ∈
LPV be computed by the following polynomial time algorithm: on input ω, compute
f(ω), g0(ω), . . . , gk(ω); if there is i 6 k such that |gi(ω)| 6 |f(ω)| and (gi(ω), f(ω)) /∈ Sat,
then output such gi(ω) (say for the least such i 6 k); otherwise output 0.

Then we have for all m ∈ N that
⋃
i6kxBgi,f (m)y ⊆ xBg,f (m)y and thus for all i 6 k:

Pr(Bgi,f (m)) 6 Pr(Bg,f (m)). (12)

Now, by assumption, for every `, there are infinitely many m ∈ N such that N |=
ψ(m) and Pr(Bg,f (m)) < 1/`. So there is such m > `. By choice of ` and (12) we get
Pr(Bgi,f (m)) < 1/` 6 1/`i for all i 6 k. That is, m > ` > `i satisfies ϕgi,`i(x) for all i 6 k.

Hence, any finitely many of the formulas ϕg,f,`(x) for g ∈ LPV and standard ` > 0
are jointly satisfiable in N and hence in M . In other words, the family of subsets of M
defined by these formulas has the finite intersection property. Since M is ℵ1-saturated,
there is n ∈M satisfying all these formulas. This n is nonstandard and satisfies M |= ψ(n),
hence f is mad in K(F n

PV). Furthermore, PrM(Bg,f (n)) < 1/` for all standard ` > 0 and
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all g ∈ LPV. Hence, xBg,f (n)y ∈ Infn for all g ∈ LPV. This is Lemma 19 (b), so fM�{0, 1}n
is a pseudo proof system in K(F n

PV).

Finally, we show that statement (b) holds assuming NE ∩ coNE 6⊆ E and pseudoran-
dom generators exist. By Proposition 9, the first assumption gives a polynomial time
computable hard sequences for L. By Proposition 13, the second assumption gives an
invertibly samplable probably hard sequence for L. By optimality of L, this sequence is
probably hard for every sat-solver.
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