
Full Proofs for Submission #1565

Additional definitions and lemmas

Definition 15. LetR be a relation on a setX . Then we write
R−1 for the inverse relation defined by xR−1y iff yRx.

Observe that R−1 is a total order if and only if R is a total
order and R−1 is a linear order if and only if R is a linear
order.

Lemma 16. LetX be a set of objects and X ⊆ P(X)\{∅} a
family of sets. Assume that X isDIS-orderable with respect
to a linear order ≤. Then X is DIS-orderable with respect
to ≤−1.

Similarly, if we assume that X is DI-orderable with re-
spect to a linear order ≤, then X is DI-orderable with re-
spect to ≤−1.

Proof. Let � be an order on X that satisfies dominance
and strict independence with respect to ≤. Then we claim
that �−1 satisfies dominance and strict independence with
respect to ≤−1. Assume A,A ∪ {x} ∈ X , then ∀y ∈
A(y <−1 x) implies ∀y ∈ A(y > x), which implies
A ∪ {x} ≺ A by assumption, hence A ≺−1 A ∪ {x}. Simi-
larly, ∀y ∈ A(x <−1 y) implies A ∪ {x} ≺−1 A.

Now, assumeA,B,A∪{x}, B∪{x} ∈ X andA ≺−1 B.
Then B ≺ A and hence by assumption B ∪ {x} ≺ A ∪ {x}
which implies A ∪ {x} ≺−1 B ∪ {x}.

The argumentation for independence is the same.

The following definition is taken from (Murray and
Williams 2017).

Definition 17. An algorithm R : {0, 1}∗ × {0, 1}∗ →
{0, 1, ⋆} is a polylog-time reduction from L to L′ if there
are constants c ≥ 1 and k ≥ 1 such that for all x ∈ {0, 1}∗,

• R(x, i) has random access to x and runs in

O((log(|x|))k) time for all i ∈ {0, 1}⌈2c log(|x|)⌉

• there is an lx ≤ |x|c + c such that R(x, i) ∈ {0, 1} and
for all i ≤ lx and R(x, i) = ⋆ for all i > lx.

• x ∈ L iff R(x, 1) ·R(x, 2) · · ·R(x, lx) ∈ L′.

Here · is the string concatenation and ⋆ is the out of
bounds character that marks the end of a string.

Proof of Proposition 4

Let φ be a instance of SAT with n variables and m clauses.
Then we produce an instance (X,X ) of STRONG DIS -
ORDERABILITY. We produce this instance in a way that
there is a linear order ≤ such that X is DIS orderable with
respect to ≤ only if φ is satisfiable. Then, we sketch how to
use a satisfying assignment of φ to construct for any linear
order ≤′ onX a linear order � on X that satisfies dominance
and strict independence.

The set of elements X contains for every variable Vi
elements x−i,1, x

−
i,2, x

+
i,1 and x+i,2. Furthermore, it contains

for every clause Ci variables zai , y
a
i ,minai and maxai for

a ∈ {1, 2, 3}. We call the elements minai and maxai the

extremum-elements. Finally, it contains two elements v1 and
v2. Then we define the following linear order ≤ on X:

min11 < min2
1 < · · · < min3

m < x−1,1 < x−1,2 < . . .

< x−n,2 < v1 < v2 < z11 < z21 · · · < z3m <

y11 < y21 < · · · < y3m < x+1,1 < x+1,2 < . . .

< x+n,2 < max1
1 < max21 < · · · < max3

m

Next, we will construct a family X that is only DIS-
orderable with respect to ≤ if φ is satisfiable. In the follow-
ing, we write

Y := {x ∈ X | v1 ≤ x ≤ ym3 }

First, we add for every variable Vi setsX1
i = Y ∪{x−i,1, x

+
i,1}

and X2
i = Y ∪{x−i,2, x

+
i,2} We call these the class 1 sets and

write Cl1 for the collection of all class 1 sets.
Intuitively, the truth value of Vi will be coded by the pref-

erence between X1
i and X2

i , where X1
i ≺ X2

i equals Vi is
false and X2

i ≺ X1
i equals Vi is true.

We will now add for every clause new sets that lead to a
contradiction if the clause is not satisfied. Let Ci be a clause
with variables Vj , Vk, Vl. We add

X1
j \ {y1i }, X

2
j \ {y1i }, X

1
k \ {y2i },

X2
k \ {y2i }, X

1
l \ {y3i } and X2

l \ {y3i }.

We call these the class 2 sets and write Cl2 for the collection
of all class 2 sets. By “reverse strict independence”4we know
that the preference betweenX1

j \{y
1
i } andX2

j \{y
1
i } must be

the same as the preference between X1
j and X2

j . The same
holds for the other two variables. Now, if all variables occur
positively in Ci, we add sets such that X2

j \ {y1i } ≺ X1
k \

{y2i }, X2
k \ {y2i } ≺ X1

l \ {y3i } and X2
l \ {y3i } ≺ X1

j \ {y1i }
must hold in any order � on X that satisfies dominance and
strict independence with respect to ≤. We call this enforcing
these preferences. Then we get a contradiction if Vj , Vk and
Vl are false because

X1
j \ {y1i } ≺ X2

j \ {y1i } ≺ X1
k \ {y2i } ≺

X2
k \ {y2i } ≺ X1

l \ {y3i } ≺ X2
l \ {y3i } ≺ X1

j \ {y1i }

holds. If a variable, say Vj , occurs negatively in Ci, we

switch X1
j and X2

j and enforce X1
j \ {y1i } ≺ X1

k \ {y2i }

and X2
l \ {y3i } ≺ X2

j \ {y1i }.
Next, we show how we can enforce these preference. As-

sume we want to enforce Xa
j \ {y1i } ≺ Xb

k \ {y
2
i } for a, b ∈

{1, 2}. We add {z1i }, {zi,max1
i } and (Xa

j \{y
1
i })∪{max1i }.

Our goal is to enforce (Xa
j \ {y1i })∪{max1

i } ≺ {z1i ,max1i }

which forces by reverse strict independence Xa
j \ {y1i } ≺

{z1i }. Then we enforce {z1i } ≺ Xb
k \ {y2i } to get by transi-

tivity Xa
j \ {y1i } ≺ Xb

k \ {y
2
i } as desired. To enforce (Xa

j \

4Every linear order satisfying strict independence has to satisfy
reverse strict independence, i.e. A ∪ {x} ≺ B ∪ {x} implies A ≺
B: Assume otherwise B ≺ A holds, then by strict independence
B∪{x} ≺ A∪{x} must hold, contradicting A∪{x} ≺ B∪{x}.
Hence by the totality of � we have A ≺ B.



{y1i }) ∪ {max1
i } ≺ {zi,max1

i } we add a sequence of sets
A1, A2, . . . , Ak such that A1 = (Xa

j \ {y1i , z
1
i )} ∪ {max1

i },

Ai+1 = Ai \ min≤(Ai) and Ak = {max1
i }. This enforces

by dominance A1 ≺ A2 ≺ · · · ≺ Ak which enforces by
transitivity

A1 = (Xa
j \ {y1i , z

1
i }) ∪ {max1i } ≺ {max1i } = Ak.

Finally, this enforces by strict independence the desired
(Xa

j \ {y1i }) ∪ {max1
i } ≺ {zi,max1

i }. Using the same

idea and min1i we enforce {z1i } ≺ Xb
k \ {y2i } finishing

the construction for Xa
j \ {y1i } ≺ Xb

k \ {y2i }. We enforce

X2
k \ {y2i } ≺ X1

l \ {y3i } and X2
l \ {y3i } ≺ X1

j \ {y1i } simi-

larly using z2i ,max2
i and min2i resp. z3i ,max3

i and min3i .
We repeat this procedure for every clause. We call the sets

added in this step the class 3 sets and write Cl3 for the col-
lection of all class 3 sets. Now, by construction, X can only
be DIS-orderable with respect to ≤ if φ is a positive in-
stance of SAT.

Next, we pick an arbitrary linear order ≤′ on X . We dis-
tinguish two cases v1 <

′ v2 and v2 <
′ v1. By Lemma 16 it

suffices to show DIS orderability in the first case, because
v2 <′ v1 implies v1 <′−1 v2 and we only need to show
DIS orderability for one of these two orders. Hence, we can
assume in the following w.l.o.g. v1 <

′ v2. Now, we want to
construct an order � on X that satisfies dominance and strict
independence with respect to ≤′ if φ is satisfiable.

First, we order the sets X1
i and X2

i according to a satis-
fying assignment of φ, i.e. X1

i ≺ X2
i if Vi is false in the

assignment and X2
i ≺ X1

i if it is true. Then, we project this
order down to the class 2 sets by reverse strict independence.
Finally, we take the transitive closure of this order. It is clear
by construction, that this is an acyclic strict partial order if
and only if φ is satisfiable. Now, for any clause Ci, we fix
any linear order on the sets

X1
j \ {y1i }, X

2
j \ {y1i }, X

1
k \ {y2i },

X2
k \ {y2i }, X

1
l \ {y3i } and X2

l \ {y3i }.

that extends this order.
For the class 1 sets we have ordered all pairs (X1

i , X
2
i )

but we still have to fix an order between these pairs. For
the class 2 sets, we have fixed an order on between all sets
introduced for a single clause, but we have to fix an order
between sets from different clauses. Now, we observe that
A,A ∪ {x} ∈ Cl1 ∪ Cl2 implies that A ∈ Cl1, B ∈ Cl2
and x = yai for j ≤ m and a ≤ 3 as all Class 1 sets dif-
fer from all other class 1 sets in at least two elements and
all class 2 sets differ from all other class 2 sets in at least
two elements. Hence the only possible application of strict
independence on class 1 and 2 is the one already covered by
construction. Dominance is applicable only if yai for some i
and a is the minimal or maximal element of the set it gets
removed from. We fix an order on the pairs and clauses that
is compatible with these applications of dominance. First,

assume the minimal element ya
−

i−
of the form yai and the

maximal element ya
+

i+
of the form yai are used for the same

clause. LetXb
j andXc

k be the sets such thatXb
j \{y

a−

i−
} ∈ X

and Xc
k \ {y

a+

i+
} ∈ X holds. Then, by construction j 6= k. In

that case we fix any linear order ≤′′ on the pairs (X1
i , X

2
i )

such that (X1
j , X

2
j ) ≤

′′ (X1
k , X

2
k) holds and an arbitrary or-

der on the clauses. We set Xa
i is smaller than any class 2

set if (X1
i , X

2
i ) <

′′ (X1
j , X

2
j ). Furthermore, any set Xa

i is

bigger than any class 2 set if (X1
j , X

2
j ) <

′′ (X1
i , X

2
i ). This

is obviously a linear order and we have Xb
j ≺ Xb

j \ {ya
−

i−
}

and Xc
k \ {ya

+

i+
} ≺ Xc

k for b, c ≤ 2. Hence the constructed
order on Cl1 ∪ Cl2 satisfies dominance.

Now, assume the minimal element ya
−

i−
of the form yai and

the maximal element ya
+

i+
of the form yai are used for differ-

ent clauses Ci− and Ci+ . We fix any order on the clauses
such that Cli+ is smaller than Cli− and an arbitrary or-
der on the pairs. Additionally we set all sets from clauses
smaller or equal Cli+ smaller than any set from a class 1
and any set from a clause larger that Cli+ larger than any set
from class 1. This is obviously a linear order and we have

Xb
j ≺ Xb

j \ {y
a−

i−
} and Xc

k \ ya
+

i+
≺ Xc

k for b, c ≤ 2. Hence
the constructed order on Cl1 ∪ Cl2 satisfies dominance.

Next, we add the class 3 sets. First, we observe that if we
have a setA ∈ Cl1∪Cl2 andA∪{x} then we knowA ∈ Cl2
and x is an extremum-element. On the other hand, there is
no set A ∈ Cl3 such that A ∪ {x} ∈ Cl1 ∪ Cl2 holds, as
every set in C3 either contains an extremum-element or it is
a singleton and no set in class 1 and 2 contains an extremum-
element and every set in class 1 and 2 has more than three
elements.

Hence, for the interaction of class 3 with the other classes,
we only have to consider dominance if we add an extremum
element to a class 2 set that is smaller/larger than any ele-
ment already in the class 2 set. This is achieved by the fol-
lowing construction. Let A be a set in Cl3 containing an
extremum-element mm. Then A is in Cl+3 if v1 <′ mm

holds and in Cl−3 otherwise. Then we set A ≺ B if

• A ∈ Cl1 ∪ Cl2 and B ∈ Cl+3 ,

• A ∈ Cl−3 and B ∈ Cl1 ∪ Cl2.

Next, we order the sets in Cl+3 and Cl−3 . First, we define
an order between sets containing the same extremum ele-
ment. In the following, we write for a set A that contains an
extremum-element mm (which is, by construction unique)
AS := {x ∈ A | x <′ mm} for the set of elements in A
that are smaller than mm and AL := {x ∈ A | mm <′ x}
for the set of elements in A that are larger than mm

We set A ≺ B for sets A,B that both contain the same
extremum element of the form maxci if:

• max≤′(AL△BL) ∈ B,

• AL = BL and min≤′(AS△BS) ∈ A.

Here, △ is the symmetric difference operator, i.e. A△B :=
(A ∪ B) \ (A ∩ B). We claim that this order satisfies dom-
inance and strict independence. It satisfies strict indepen-
dence because for all sets S, T by definition S ∪ {x}△T ∪
{x} = S△T for any x 6∈ S ∪ T . For dominance, as-
sume x <′ min<′(A) and maxc

i ∈ A,A ∪ {x}. Then
AL = (A∪{x})L and min≤′(AS△(A∪{x})S) = xHence,
A ∪ {x} ≺ A. The case max<′(A) <′ x is similar.



We observe that we may have eitherXa
j \{y

b
i }∪{maxci} ≺

{zci ,maxci} or {zci ,maxc
i} ≺ Xa

j \{y
b
i }∪{maxci}. In the first

case, we add zci in the order exactly after Xa
j \ {ybi } and in

the second case exactly before Xa
j \ {yci }.

Now let Xd
k \ {yei } be the set for which we enforce the

preference Xa
j \ {yci } ≺ Xd

k \ {yei }. Then, this construction

implies {zci } ≺ Xd
k \{y

e
i }. Therefore, we have to make sure

that {zci ,minc
i} ≺ Xd

k \ {yei }∪ {minc
i} holds as intended by

the construction to avoid a contradiction. For this we use the
fact that v1 <

′ v2 holds. We set A ≺ B for elements A,B if
they both contain an element of the form minci if:

• v2 ∈ B and v2 6∈ A (⋆),

• v2 ∈ A,B or v2 6∈ A,B and max≤′(AL△BL) ∈ B,

• v2 ∈ A,B or v2 6∈ A,B, AL = BL and
min≤′(AS△BS) ∈ A.

It is clear that (⋆) implies {zci ,minc
i} ≺ Xd

k \{y
e
i }∪{minc

i}.
It is also clear that it satisfies strict independence because the
(⋆) implies a preference between sets A∪ {x} and B ∪ {x}
for x 6∈ A ∪ B iff it implies the same preference for A
and B. If (⋆) is not applicable, strict independence is sat-
isfied by the same argument as above. Now, for dominance
v2 ∈ (A△(A∪{x})) implies x = v2. Then, x < min<′(A)
is not possible because by construction v1 ∈ A holds and
we assume v1 <

′ v2. If we have max<′(A) <′ x then dom-
inance is satisfied because A ≺ A ∪ {x} holds by (⋆). If
x 6= v2, then (⋆) is not applicable and dominance is satisfied
by the same argument as above.

We observe that this is the only application of strict inde-
pendence with sets from class 3 and sets not from class 3
because if we have a set A ∈ Cl1 ∪Cl2 and A∪ {x} ∈ Cl3
there is no other set B ∈ Cl1 ∪ Cl2 such that B ∪ {x} ∈ X
holds. Finally, we have to extend the order � to the whole
class 3. However, any two sets not yet comparable differ in
at least two elements. Hence, any completion of � satisfies
dominance and strict independence. �

Proof of Theorem 5

Πp
2-membership is clear as we can universally guess a linear

order ≤ onX and then check via the NP-oracle if X isDIS-
orderable with respect to ≤.

It remains to show that STRONG DIS -ORDERABILITY is
Πp

2-hard. We do this by extending the reduction above to a

reduction from a Π2-SAT instance φ = ∀ ~W∃~V ψ( ~W, ~V ).
Let w1 . . . wl be the universally quantified variables. Then
X contains the same elements as in the construction above
and additionally for every universally quantified variable wi

elements w1
i and w2

i as well as elements y
q
i ,minqi ,maxqi

and y
q
i ,minqi ,maxqi . Then we add the same sets as in the

reduction above, except that the elements w1
i , w

2
i , y

q
i and

y
q
i are included in the set Y used in the construction. Fur-

thermore, we add for every universally quantified variable
wi sets X1

i \ {yqi }, X2
i \ {yqi } and {w1

i , w
2
i } Furthermore,

we enforce as described above X1
i \ {yqi } ≺ {w1

i } and
{w2

i } ≺ X2
i \ {yqi } using minqi and maxqi . Now, let ≤′ be a

linear order onX such thatw1
i <

′ w2
i holds. ThenX1

i ≺ X2
i

must hold for every order � on X that satisfies dominance
and strict independence with respect to ≤′. Now, we add ad-

ditionally sets X1
i \ {yqi } and X2

i \ {yqi }. Then, we enforce

X1
i \ {yqi } ≺ {w2

i } and {w1
i } ≺ X2

i \ {yqi } using minqi
and maxqi . Analogously to above X2

i ≺ X1
i must hold for

every order � on X that satisfies dominance and strict inde-
pendence with respect to a linear order ≤′′ on X such that
w2

i <
′′ w1

i holds.
We claim that we (X,X ) can only be a positive instance

of STRONG DIS -ORDERABILITY, if φ is a positive instance
of Π2-SAT. First, we fix the same order ≤ as above on the
elements that occur already in the first reduction. Then, for

every truth assignment T to the variables in ~W there is a
linear order ≤∗ on X that coincides with ≤ on the old ele-
ments such that w1

i <
∗ w2

i if wi is assigned false in T and
w2

i <∗ w1
i if wi is assigned true in T . Now, if there is no

satisfying assignment on φ that extends T , then there can be
no order on X satisfying dominance and strict independence
with respect to ≤∗. Hence (X,X ) can only be DIS order-
able with respect to every linear order ≤∗ if φ is a positive
instance of Π2-SAT.

It remains to show that if φ is satisfiable then (X,X ) is
a positive instance of STRONG DIS -ORDERABILITY. This
can be done using nearly the same construction as above
treating X1

i \ {yqi } and X2
i \ {yqi } as Class 2 sets, all other

new sets as Class 3 sets and inserting {w1
i } ≺ {w1

i , w
2
i } ≺

{w2
i } resp. {w2

i } ≺ {w1
i , w

2
i } ≺ {w1

i } where we would

insert z
j
i . The only exception has to be made if there is an

i such that y
q
i = min(X1

i ) and y
q
i = max(X1

i ) or y
q
i =

min(X2
i ) and y

q
i = max(X2

i ). In the first case, we set A ≺

B for the sets containing minqi if:

• y
q
i ∈ A and y

q
i 6∈ B

• y
q
i ∈ A,B or y

q
i 6∈ A,B and max(AL△BL) ∈ B,

• y
q
i ∈ A,B or y

q
i 6∈ A,B,AL = BL and min(AS△BS) ∈

A.

where AL := {x ∈ A | minqi <
′ x} and AS := {x ∈ A |

x <′ minqi }. And for A ≺ B for the sets containing maxqi if

• y
q
i ∈ B and y

q
i 6∈ A

• y
q
i ∈ A,B or y

q
i 6∈ A,B and max(AL△BL) ∈ B,

• y
q
i ∈ A,B or y

q
i 6∈ A,B,AL = BL and min(AS△BS) ∈

A.

where AL := {x ∈ A | maxqi <
′ x} and AS := {x ∈ A |

x <′ maxqi }.
It is clear that these orders satisfy dominance and strict

independence, similarly to the orders on the class 3 sets de-
fined above. Furthermore, we have {w1

i ,maxqi } ≺ (X1
i \

{yqi }) ∪ {maxqi } and (X1
i \ {yqi }) ∪ {minqi } ≺ {wi,minqi }

which allows us to set X1
i \ {yqi } ≺ {wi} ≺ X1

i \ {yqi }

which is consistent with the enforced X1
i \ {yqi } ≺ X1

i ≺
X2

i \ {yqi }. The second case can be treated analogously. �

Proof of Theorem 6

We need to change the reduction from a Π2-SAT instance
φ in two places compared to Theorem 5. First, we need to



modify the way we enforce a strict preference Xa
i \ {ybj} ≺

Xc
k \ {ydj } using independence instead of strict indepen-

dence. We replace every element zbj by two elements zbj and

zbj , set zbj < zbj and add the sets {zbj}, {z
b
j , z

b
j}, {z

b
j} to X .

Then, to enforce Xa
i \ {ybj , x

−
i } � {zbj} we add the same

sequence A1, . . . , Al as in the proof of Proposition 4 and,
additionally, the set (Xa

i \ {ybj , x
−
i })∪ {maxb

j}. We observe
l > 3 and that the following preference enforced by domi-
nance

A2 = (Xa
i \ {ybj , z

b
j , x

−
i }) ∪ {maxb

j} ≺ {maxbj} = Al

which enforces by independence

(Xa
i \ {ybj , x

−
i }) ∪ {maxbj} � {zbj ,maxb

j}

and hence by dominance

(Xa
i \ {ybj}) ∪ {maxbj} ≺ {zbj ,maxb

j}.

This gives us by ”reverse independence”5the desired Xa
i \

{ybj , x
−
i } � {zbj}. Now, we can enforce {zbj} � Xc

k \ {ydj }
similarly. Then, this enforces by dominance

Xa
i \ {ybj} � {zbj} ≺ {zbj , z

b
j} ≺ {zbj} � Xc

k \ {ydj }.

and hence by transitivity Xa
i \ {ybj} ≺ Xc

k \ {ydj }.

Second, we have to make sure that all preferences be-
tween sets X1

i and X2
i are strict. We borrow an idea from

(Maly and Woltran 2017) to achieve this. We add for every
variable Xi new elements ordered in ≤ as follows

a−i < b−i < c−i < d−i < ri < si < d+i < c+i < b+i < a+i .

such that v1 and v2 lie between di and ri in the order
≤. Then, we add new sets Ai := {a−i , v1, v2, ri, si, a

+
i },

Bi := {b−i , v1, v2, ri, si, b
+
i }, Ci := {c−i , v1, v2, ri, si, c

+
i }

and Di := {d−i , v1, v2, ri, si, d
+
i }. Now, let zai , zai , maxai

and mina
i be new elements where we set zai , z

a
i ∈ Y . Then,

we enforce with the method described above Ai ≺ X2
i us-

ing these new elements. Furthermore, we enforce X1
i ≺ Bi,

X2
i ≺ Ci and Di ≺ X1

i . Finally, we add the sets Ai \ {ri},
Bi \ {ri}, Ci \ {si} and Di \ {si} and enforce Bi \ {ri} ≺
Di \ {si} and Ci \ {si} ≺ Ai \ {ri}. We call the sets added
in this step the class 4 sets. These enforced preference are
shown as solid arrows in Figure 2.

Now, we claim that it is not possible for a weak order �
to satisfy dominance and independence with respect to ≤ if
X1

i ∼ X2
i holds. Assume otherwise that � is a weak order

that satisfies dominance and independence with respect to ≤
such that X1

i ∼ X2
i holds. Then Di ≺ X1

i � X2
i ≺ Ci

implies Di ≺ Ci by transitivity and hence Di \ {si} � Ci \
{si} by reverse independence. Similarly,Ai ≺ X2

i � X1
i ≺

Bi implies Ai ≺ Bi by transitivity and hence Ai \ {ri} �

5Every linear order satisfying independence has to satisfy re-
verse independence, i.e. A ∪ {x} ≺ B ∪ {x} implies A � B: As-
sume otherwise B ≺ A holds, then by independence B ∪ {x} �
A ∪ {x} must hold, contradicting A ∪ {x} ≺ B ∪ {x}. Hence by
the totality of � we have A � B.

X1
i

Bi

Di

X2
i

Ai

Ci

Ai \ {ri} Bi \ {ri} Di \ {si} Ci \ {si}

Figure 2: Enforcing strictness.

Bi \ {ri} by reverse independence. However, this leads to a
contradiction by

Ai \ {ri} � Bi \ {ri} ≺ Di \ {si} � Ci \ {si} ≺ Ai \ {ri}

Now, it is clear that X can only beDI-orderable with respect
to ≤ if φ is a positive instance of Π2-SAT.

It remains to show that the modified family X is strongly
DI-orderable if φ is a positive instance of Π2-SAT. The
new sets {zej}, {z

e
j , z

e
j}, {z

e
j} can be added to the order as

described in the proof of Theorem 5. Furthermore, the set
(Xa

i \{y
b
j , x

−
i })∪{max1j} can be added in the order � right

after (Xa
i \ {ybj}) ∪ {max1j} if x−i <′ v1 or right before

(Xa
i \ {ybj}) ∪ {max1j} if v1 <

′ x−i . The other new class 3
sets can be added the same way. It remains to add the class
4 sets to the order. The class 4 sets used to enforce the pref-
erences Ai ≺ X2

i , X1
i ≺ Bi, X

2
i ≺ Ci and Di ≺ X1

i can
be ordered the same way as the class 3 sets. As before, we
use the fact that we can assume v1 <

′ v2 to ensure that this
order is compatible with the enforced preferences. For a spe-
cific variable Vi we set by construction either X1

i ≺ X2
i or

X2
i ≺ X1

i . We assumeX1
i ≺ X2

i . The other case is symmet-
ric. Then we add Di in � exactly before X1

i and Bi exactly
after X1

i . Similarly, we add Ai exactly before X2
i and Ci

exactly after X2
i . Then we have

Di ≺ X1
i ≺ Bi ≺ Ai ≺ X2

i ≺ Ci

which is compatible with the forced preferences.
Now, consider the group Ai \ {ri}, Bi \ {ri}, Ci \ {si}

and Di \ {si}. We observe that all sets in this group dif-
fer in at least two elements. Therefore, we only have to set
Bi \ {ri} � Ai \ {ri} and Di \ {si} � Ci \ {si} in order
to satisfies independence. Furthermore, we have to satisfy
dominance if ri and/or si are the largest element of the set
they are removed from. This can be satisfied by a straight-
forward construction that respects the enforced preferences
unless ri is the maximal element of Ai and si is the minimal
element ofCi or alternatively if ri is the maximal element of
Bi and si is the minimal element ofDi. We describe the con-
struction for the first case: We have to setAi\{ri} ≺ Ai and



Ci ≺ Ci\{si} which impliesAi\{ri} ≺ Ci\{si} contrary
to the preference we wanted to enforce in the construction.
We use the fact that ri is the maximal element ofAi and si is
the minimal element of Ci achieve this. Let z

r,a
i and maxr,ai

be the new elements used to enforce {zr,ai } ≺ Ai \ {ri}.
Then we setA,B for the setsA,B such that maxr,ai ∈ A,B
if

• v2 ∈ A and v2 6∈ B

• v2 ∈ A,B or v2 6∈ A,B and max≤′(AL△BL) ∈ B,

• v2 ∈ A,B or v2 6∈ A,B, AL = BL and
min≤′(AS△BS) ∈ A.

where AL := {x ∈ A | maxr,ai <′ x} and AS := {x ∈ A |
x <′ maxr,ai }. This order satisfies dominance and indepen-
dence because the element si is smaller than v2 by assump-
tion and removed later in the sequence A1, . . . , Ak. Further-
more, this implies (Ai\{ri})∪{maxr,ai } ≺ {zr,ai ,maxr,ai },
which implies Ai \ {ri} ≺ {zr,ai }. This allows us to set
Ai \ {ri} ≺ Ci \ {si}. Then we can place Ai \ {ri} just
before Ai and Ci \ {si} just after Ci to get an order that
satisfies dominance and independence. �

Proof of Corollary 7

We claim that STRONGER DI -ORDERABILITY would be
in coNP if there exists a polynomial time algorithm that
produces on input (X,X ,≤) a weak order � on X that
satisfies dominance and independence. Observe that there
exists a linear order ≤ on X that can not be lifted if and
only if (X,X ) is negative instance of STRONGER DI -
ORDERABILITY. Hence ≤ is a certificate (of polynomial
size) for the fact that (X,X ) is a negative instance. Fur-
thermore, one can check the certificate by running A on
(X,X ,≤). Then, one only needs to check that the produced
order does not satisfy dominance and strict independence.
By definition, this can only be the case if (X,X ) is a nega-
tive instance of STRONGER DI -ORDERABILITY. The argu-
ment for strict independence is analog. �

Proof of Proposition 10

Let φ be an instance of TAUT. We assume w.l.o.g. that
no variable occurs twice in the same clause. We con-
struct an instance (S,X ) of the STRONG PARTIAL DIS -
ORDERABILITY. For every variable Xi in φ we add new el-
ements x1i and x2i to S. We call the set of these elements
X . We will treat every order on S as encoding a truth as-
signment by equating x1i < x2i to ”Xi is true” and x2i < x1i
to ”Xi is false”. Furthermore, we add for every clause new
variables y1j , y

2
j . We call the set of these elements Y . We also

add for every clause Cj elements cj as well as dkj and ekj for
k ≤ 3. Finally, we add new variables u, v, z1 and z2. In the
following we call any linear order on S that is derived by
replacingX with an arbitrary linear order on the elements in
X in the following linear order

u < c1 < · · · < cm < y11 < · · · < y1m <

d11 < · · · < d3m < X < e11 < · · · < e3m < y21 < · · · <

y2m < z1 < z2 < w

a critical linear order. In the following, we write ≺min for
the minimal partial order satisfying dominance and strict in-
dependence with respect to some linear order on S.

Next, we build the family X . We do this in a way such that
X is not strongly DIS-orderable if there is a non-satisfying
assignment of φ. First, we add singletons for all elements
of X and Y , and {x1i , x

2
i } for all elements of X . Then, for

every linear order ≤ we have {x1i } ≺min {x1i , x
2
i } ≺min

{x2i } and hence {x1i } ≺min {x2i } if x1i < x2i and, on the
other hand, {x2i } ≺min {x1i , x

2
i } ≺min {x1i } and hence

{x2i } ≺min {x1i } if x2i < x1i
Next, we add sets such that there is a critical linear order

≤ on S such that we have {y1i } ≺min {y2i } for all i ≤ m
if and only if φ is not a tautology. For every clause Cj =
Xi1 ∧Xi2 ∧Xi3 we add sets

{y1j , d
k
j }, {y

1
j , d

k
j , x

1
ik
}, {dkj , x

1
ik
}

for all k ∈ {1, 2, 3} as well as

{x2ik , e
k
j }, {x

2
ik
, ekj , z1}, {x

2
ik
, ekj , z1, z2},

{ekj , z1, z2}, {e
k
j , z1, z2, y

j
2}, {z1, z2, y

j
2}, {z2, y

j
2}.

If any of the variables occurs negatively in Cj , we switch

x1ik and x2ik in the construction. We claim that these sets en-

sure that {y1j } ≺min {y2j } holds for any critical linear order
whenever at least one literal in Cj is false. We have

{y1j } ≺min {y1j , d
k
j } ≺min

{y1j , d
k
j , x

1
ik
} ≺min {dkj , x

1
ik
} ≺min {x1ik}

by dominance and hence {y1j } ≺min {x1ik} by transitiv-

ity. By a similar argument, we get {x2ik} ≺ {y2j }. Hence,

{x1ik} ≺min {x2ik} implies {y1j } ≺min {y2j } by transitivity.

Next we add sets that lead to a contradiction if {y1j } ≺min

{y2j } holds for all clauses Cj . First we add

{u}, {u, c1}, {u, c1, y
1
1}, {u, c1, y

1
1 , v}, {u, v}.

Then we know for any critical linear order that

{u} ≺min {u, c1} ≺min {u, c1, y
1
1}

holds by dominance and therefore we have {u, v} ≺min

{u, c1, y
1
1 , v}. Now we add for every clause {cj , y

1
j } and

{cj , y
2
j }. Then we add new sets that are constructed by incre-

mentally adding to both sets, one by one, first all elements
cj−1 to c1, then all elements y2j−1 to y21 and finally u and v
in that order. In other words we add

{cj−1, cj , y
1
j } and {cj−1, cj , y

2
j },

{cj−2, cj−1, cj , y
1
j } and {cj−2, cj−1, cj , y

2
j }, . . . ,

{c1, . . . , cj , y
1
j } and {c1, . . . , cj , y

2
j }

as well as

{c1, . . . , cj , y
1
j , y

2
j−1} and {c1, . . . , cj , y

2
j , y

2
j−1}, . . . ,

{c1, . . . , cj , y
1
j , . . . , y

2
j−1} and {c1, . . . , cj , y

2
j , . . . , y

2
1}



and finally

{u, c1, . . . , cj , y
1
j , . . . , y

2
j−1} and

{u, c1, . . . , cj , y
2
j , . . . , y

2
1},

as well as

{u, c1, . . . , cj , y
1
j , . . . , y

2
j−1, v} and

{u, c1, . . . , cj , y
2
j , . . . , y

2
1 , v}.

By construction

{u, c1, . . . , cj , y
1
j , . . . , y

2
j−1, v} ≺min

{u, c1, . . . , cj , y
2
j , . . . , y

2
1 , v}

holds for the minimal partial order satisfying dominance and
strict independence for any linear order on X if and only if
{y1j } ≺min {y2j } holds for that partial order.

Next we add {u, c1, . . . , cj}, {u, c1, . . . , cj+1} and

{u, c1, . . . , cj+1, y
1
j+1}. Then we add new sets derived as

above by adding to both sets first all elements y2j to y21 and
then v, one by one, in that order until we reach

{u, c1, . . . , cj , y
2
j , . . . , y

2
1 , v} and

{u, c1, . . . , cj+1, y
1
j+1, y

2
j , . . . , y

2
1 , v}.

Then

{u, c1, . . . , cj , y
2
j , . . . , y

2
1 , v} ≺min

{u, c1, . . . , cj+1, y
1
j+1, y

2
j , . . . , y

2
1 , v}

holds for the critical linear order by strict independence be-
cause

{u, c1, . . . , cj} ≺ {u, c1, . . . , cj+1} ≺

{u, c1, . . . , cj+1, y
1
j+1}

holds by dominance. Finally, we add {v} and then {y21 , v},
{y22 , y

2
1 , v} and so on till we reach

{c1, . . . , cm, y
2
m, . . . , y

2
1 , v}.

This forces for any critical linear order

{u, c1, . . . , cm, y
2
m, . . . , y

2
1 , v} ≺min {u, v}.

Now, by construction and transitive we have for any critical
linear order

{u, v} ≺min {u, c1, y
1
1 , v} ≺min

{u, c1, y
2
1 , v} ≺min {u, c1, c2, y

1
2 , y

2
1 , v} ≺min . . .

≺min {u, c1, . . . , cm, y
2
m, . . . , y

2
1 , v} ≺min {u, v}

if (and only if) {y1j } ≺min {y2j } holds for all clauses, i.e.
if the critical linear order codes an unsatisfying assignment.
It follows that if φ is not a tautology, then (X,X ) is not
strongly partial DIS-orderable.

It remains to show that (X,X ) is strongly partial DIS-
orderable if φ is a tautology. Let ≤ be a linear order on S.
We construct a partial order � that satisfies dominance and

strict independence with respect to ≤. To avoid unnecessary
case distinctions, we will describe the construction only for
clauses with all positive variables. The only change in con-
struction required for negative variables is switching x1i and
x2i . By Lemma 16, we can assume w.l.o.g. that z1 < z2.
First we add the forced preferences between {x1i }, {x

1
i , x

2
i }

and {x2i }. Next, we consider the sets containing an element

dkj . We add all preferences that are implied by dominance
between sets from

{y1j }, {y
1
j , d

k
j }, {y

1
j , d

k
j , x

1
ik
}, {dkj , x

1
ik
}, {x1ik}

and close under transitivity. The only possible application
of strict independence on these sets is that any prefer-
ence between {y1j } and {x1ik} has to be lifted to {y1j , d

k
j }

and {dkj , x
1
ik
}. By construction however, there can only

be a preference between {y1j } and {x1ik} forced by domi-
nance and transitivity if the same preference holds between
{y1j , d

k
j } and {dkj , x

1
ik
}. Because we assume that no vari-

able occurs twice in a clause, a preference between {y1j } and

{x1ik} can not later be introduced through sets containing an-

other dk
′

j′ . Finally, to satisfy dominance and transitivity we

have to add for all x1i the preference {x1i , d
k1

j1
} ≺ {x1i , d

k2

j2
}

for all dk1

j1
, dk2

j2
such that dk1

j1
< dk2

j2
holds.

Using a similar construction, we can order all sets con-
taining an element ekj if we replace x1i by x2i and y1j by

{z1, z2, y
2
j }. Finally, we add the enforced preference be-

tween {z2, y
2
j } and {y2j } as well as {z1, z2, y

2
j } ≺ {z2, y

2
j }.

The later is enforced by dominance as we assume z1 < z2.
Then we close everything under transitivity. By construc-
tion, this does not produce any new instances of strict inde-
pendence.

Now, we observe that {z1, z2, y
2
j } ≺ {z2, y

2
j } implies that

{y1j } ≺ {y2j } can only hold if {x1i } ≺ {x2i } holds for a vari-
able occurring in clause Cj , i.e. if clause Cj is not satisfied.
As φ is a tautology, there is clause Cl that is satisfied by the
assignment coded by ≤. Hence, {y1l } ≺ {y2l } does not hold.
We now consider the sets containing an element ci for some
i. We partition these sets in partitions P1, . . . , Pm based on
the largest i for which they contain ci. We set S1 ≺ S2 if
S1 ∈ Pi1 , S2 ∈ Pi2 and one of the following holds:

• ci1 < ci2 and i1, i2 < l

• ci1 < ci2 and l < i1, i2

Then any set that contains ci also contains yi ex-
cept {u, c1, . . . , ci}. Hence the only possible applica-
tion of dominance between sets of different partitions is
{u, c1, . . . , ci} ≺ {u, c1, . . . , ci+1} which is satisfied by
construction for i, i + 1 6= l. Now for any set in any par-
tition Pi such that i 6= l we set S ≺ S′ if y1i ∈ S and
y1i 6∈ S′. This covers all applications of strict independence
in a partition. Finally, we add all preferences that are forced
by dominance in a partition and close under transitivity. We
observe that S, S ∪{x} ∈ Pi implies either y1i ∈ S, S ∪{x}
or y1i 6∈ S, S∪{x}, hence this can not lead to a contradiction.
Now, for a set S in Pl such that y1l ∈ S we set

• S′ ≺ S if S′ ∈ Pi for i < l and ci < cl



• S ≺ S′ if S′ ∈ Pi for i < l and cl < ci

Furthermore, for a set S in Pl such that y1l 6∈ S we set

• S′ ≺ S if S′ ∈ Pi for l < i and ci < cl

• S ≺ S′ if S′ ∈ Pi for l < i and cl < ci

And finally, we add again all preferences forced by dom-
inance and close by transitivity. As {y1l } and {y2l } are
incomparable in � this order is consistent. Furthermore,
{u, c1, y

1
1 , z1, z2, v} and {u, c1, . . . , cm, y

2
m, . . . , y

2
1 , v} are

incomparable in �. This allows us to add all preferences
forced by dominance and strict independence regarding
{u}, {v} and {u, v} without creating a contradiction. By
construction, � is now a partial order that satisfies domi-
nance and strict independence. �

Proof of Theorem 13

SUCCINCT DIS -ORDERABILITY can be solved in NEXP-
time by explicitly computing the family X and then solving
the (exponentially larger) explicit problem in NP-time.

For the hardness, we only have to check that the pre-
sented reduction is computable in polylog-time. Then, by
the Conversion Lemma, there is a ptime reduction from
SUCCINCT SAT to SUCCINCT DIS -ORDERABILITY resp.
SUCCINCT STRONG DIS -ORDERABILITY. The NEXP-
hardness of both problems then follows as SUCCINCT SAT

is known to be NEXP-complete (Papadimitriou 1994). We
have to show that we can compute a single bit of the out-
put in polylog-time if we have random access to the input.
For this, we have to take the binary representation of the
SAT into account. Unfortunately, (Papadimitriou 1994) does
not specify a binary representation for the NEXP-hardness
proof. However, the proof given in the book is not sensi-
tive to the representation as long as it is reasonable. The
same is true for our proof. Reasonable means in our con-
text that it is possible to determine the number of variables
n and clauses m in polylog-time. For any sensible encoding
of 3-CNF this is either explicitly encoded or can be deter-
mined via binary search. Furthermore, we assume that one
only needs polylog-time to read the i-th variable in the j-th
clause. This is trivially true if we assume that every clause
is encode by the same amount of bits. It is easy to see that
the proof in (Papadimitriou 1994) of the NEXP-hardness of
SUCCINCT SAT works for such an encoding.

Now, we fix a binary representation for instances ofDIS -
ORDERABILITY resp. STRONG DIS -ORDERABILITY. First,
we encode the number of elements k of X in binary. Then,
the family X is encoded as a series of strings of length k,
where a 1 in position l means the l-th element of X is in
the set and a 0 in position l means the l-th element is not in
the set. For an instance of DIS -ORDERABILITY, the linear
order ≤ is given by the natural order on these positions.

First observe that the size of X is 4n + 12m + 3 and the
size of X is p(n,m) for some polynomial p(x, y). Therefore,
we can determine it in polylog-time. Now, assume we want
to decide whether the i-th bit of the output is 0 or 1. It is clear
that this can be done in polylog-time if the i-th bit is part of
the representation of the size of X . Assume that the i-th bit
determines if the l-th element x is part of a k-th set A. We

can assume that we fixed an order in which we generate the
sets in X such that we can compute from m, n and i which
set A is supposed to be. Observe that if x is not of the form
x+j or x−j then, this already suffices to decide whether x is

in A. On the other hand, if x = x+j,a or x = x−j,a and A is

a class 1 set, then this already suffices. Finally, if x = x+j,a
or x = x−j,a and A is not a class 1 set then the question
whether x is in A only depends on the question if Xj occurs
(positively or negatively) in that clause in the right position.

The properties of the reduction from SAT to STRONG

DIS -ORDERABILITY resp. DIS -ORDERABILITY used in
the proof above hold also for the reduction from SAT

to STRONG DI -ORDERABILITY resp.DI -ORDERABILITY.
Therefore, Theorem 14 can be proven using the same argu-
mentation as above. �

Proof of Theorem 14

We observe that the reduction from TAUT to STRONG PAR-
TIAL DIS -ORDERABILITY satisfies the same properties as
the reduction from SAT to STRONG DIS -ORDERABILITY,
i.e. the number of elements in S as well as the number and
size of the sets in X only depends on the size and not on the
structure of the formula φ. Furthermore, if a element is in a
set or not only depends on one specific clause. Therefore, the
reduction can be done in polylog-time. By the Conversion
Lemma and the coNEXP-completeness of TAUT, this suf-
fices to show that STRONG PARTIAL DIS -ORDERABILITY

is coNEXP-complete. �


