
Object-Level Document Analysis of PDF Files

Tamir Hassan
Database and Artificial Intelligence Group

Information Systems Institute
Technische Universität Wien

Favoritenstraße 9-11, A-1040 Wien, Austria
hassan@dbai.tuwien.ac.at

ABSTRACT
The PDF format is commonly used for the exchange of doc-
uments on the Web and there is a growing need to under-
stand and extract or repurpose data held in PDF documents.
Many systems for processing PDF files use algorithms de-
signed for scanned documents, which analyse a page based
on its bitmap representation. We believe this approach to
be inefficient. Not only does the rasterization step cost pro-
cessing time, but information is also lost and errors can be
introduced.

Inspired primarily by the need to facilitate machine ex-
traction of data from PDF documents, we have developed
methods to extract textual and graphic content directly from
the PDF content stream and represent it as a list of“objects”
at a level of granularity suitable for structural understand-
ing of the document. These objects are then grouped into
lines, paragraphs and higher-level logical structures using
a novel bottom-up segmentation algorithm based on visual
perception principles. Experimental results demonstrate the
viability of our approach, which is currently used as a basis
for HTML conversion and data extraction methods.

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Cap-
ture—document analysis; H.3.3 [Information Systems]:
Information Search and Retrieval

General Terms
Algorithms, Experimentation

1. INTRODUCTION
In recent years, PDF has become the de facto standard for

exchanging print-oriented documents on the Web. Its pop-
ularity can be attributed to its roots as a page-description
language. Any document can be converted to PDF as easily
as sending it to the printer, with the confidence that the
formatting and layout will be preserved when it is viewed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’09, September 16–18, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-575-8/09/09 ...$10.00.

or printed across different computing platforms. However,
the print-oriented nature of PDF also provides a significant
drawback: PDFs contain very little structural information
about the content held within them, and extracting or re-
purposing this content is therefore a difficult task.

In the last few decades, there has been much work in the
field of document understanding which aims to detect logi-
cal structure in unstructured representations of documents;
usually scanned images. Many of these approaches have also
been applied to PDF. Many of these methods simply make
use of a bitmap rendition of each page of the PDF file at a
given resolution and apply methods similar to those designed
for scanned pages. Relatively little information, typically
just the text, is used from the original PDF source. Other
approaches do examine the PDF source code but make some-
what limited use of the data. Section 2 describes these ap-
proaches in more detail.

Semantic knowledge

Document structure
knowledge

Typical word processors
and DTP applications

Low-level geometric
structure (e.g. T X)

Page description language
(e.g. PDF, PostScript, PCL)

Bitmap image
(or printed page)

Document authoring Document understanding

E

Figure 1: Document representation hierarchy

Fig. 1 gives an overview of the document authoring pro-
cess and the various levels of abstraction in which a docu-
ment is represented during the document authoring process;
from semantic concepts before any words have been written
at the start to the printed image of the page at the end.
Document understanding is essentially the opposite of doc-
ument authoring. We believe the PDF representation to be
a logical step above the printed page1, and therefore that

1Please note that we are referring to PDF files which have
been generated digitally, usually directly from a DTP or
word-processing application, regardless of whether they are
tagged or not. More information is given in Section 6.

47

performing document analysis on a bitmap rendition of a
PDF page is taking a step “backwards”, resulting in use-
ful information being lost as well as additional processing
overhead.

In this paper we present PDF Analyser, a system for pro-
cessing, displaying and analysing PDF documents, which
works exclusively on the object level; this means that items
on the page are represented on various granular levels in
sets of rectangular objects. Section 3 contains the two main
contributions of this paper: we describe how these objects
are obtained from the text and graphic instructions in the
PDF source code and introduce the “best-first clustering”
algorithm, which segments the page in a bottom-up fashion
guided by principles based on visual cognition. Section 4
describes concisely how we use the results of our analysis in
real-world data-extraction applications and refer the inter-
ested reader to our other relevant publications. The final two
sections present our experimental results and a concluding
discussion.

2. RELATED WORK
There has been much research in analysing documents

based on scanned images [2, 3], in which segmentation is
primarily performed by carrying out pixel-based operations.
To our knowledge, the first publication that deals with the
analysis of PDF files is the paper by Lovegrove and Brails-
ford [10]. This paper focuses only on textual objects; the
Adobe Acrobat SDK is used to obtain pre-merged lines in
object form and bottom-up segmentation techniques are de-
scribed.

Since then, the PDF format has gained popularity and
there have been a number of research groups targeting PDF.
Anjewierden [4] developed a method in which text and
graphic objects are extracted from the PDF using meth-
ods based on top of xpdf. Further processing is performed
by grammars, which results in the system being domain-
specific. Hadjar et al. [7] also introduce a system for
analysing PDF using text and graphic objects and analyse
the results of several PDF extraction libraries (but not PDF-
Box, the library which we use here, as it was then at a very
early stage of development). Unfortunately, neither paper
describes in detail how the low-level text and graphic in-
structions are processed to generate the resulting objects.

Futrelle et al. [6] describe a system for graphics recogni-
tion from PDF. Here, the Etymon PJ Tools2 library is used
to obtain the graphics primitives in object form. Of course,
for this application, the extracted information is at a much
finer granular level than what we require for document anal-
ysis.

Chao and Fan [5] have developed a method in which a
combination of object-level and bitmap processing is used:
text and image objects are obtained directly from the PDF
code, whereas lines and vector objects are obtained from a
bitmap image. A bottom-up segmentation algorithm, which
works on rectangular text blocks obtained from the PDF,
is described in detail, but, as with the above two papers,
this paper is also rather short on details of how the initial
objects are obtained from PDF.

We hope that our publication fills the gap in providing
a detailed description of how the relevant PDF instruc-
tions can be processed to form a set of objects suitable for

2Etymon PJ Tools, http://www.etymon.com/epub.html

Generic
Segment

Text SegmentImage LineRectangle

Line Cluster

Text
Fragment

Composite
Text Segment

Page

inherits
contains

Figure 2: Element hierarchy

document analysis. The second main contribution of this
paper is our novel best-first clustering algorithm, a robust
bottom-up segmentation algorithm based on visual princi-
ples, which takes a list of rectangular-based objects as input
and produces good results, even on complex layouts such as
newsprint.

3. IMPLEMENTATION

3.1 Our PDF model
In order to perform our analysis on PDF documents and

facilitate further processing, we have devised a model based
on rectangular objects. The limitation of rectangular bound-
aries for objects allows our model to be relatively simple,
yet offers enough granularity to represent the document suc-
cessfully for document analysis and understanding purposes.
The object hierarchy is implemented in Java using inheri-
tance and is shown in Fig. 2. The root item in the hierarchy
is GenericSegment, which provides the four rectangular co-
ordinates and associate methods. Nesting of objects is made
possible with the class CompositeTextSegment.

3.2 Object extraction from PDF
Our PDF parsing method is based on PDFBox3, an open-

source library for processing PDFs. We extend the PDF-

StreamEngine class, which is responsible for processing the
stream of instructions on a page, to extract and store the ob-
jects for our representation, as well as deal with page bound-
aries and rotation.

By extending the OperatorProcessor class, it is possible
to define which actions are taken when a particular PDF
instruction occurs. As our goal was to obtain enough in-
formation to perform document understanding and text ex-
traction, we did not need to create methods for all possible
operators in the PDF specification. The operators that we
have implemented are shown in Fig. 6. In particular, we aim
to extract all text and bitmap image blocks, but only certain
vector items, such as ruling lines and rectangles, which are
likely to help us understand the page better, and not logos
or illustrations.

3.2.1 Text elements
The PDF specification [1] contains a number of operators

for positioning text on the page. The positioning of charac-
ters is already handled by PDFBox’s PDFStreamEngine class
3PDFBox, http://www.pdfbox.org

48

Figure 3: An example of a paragraph as represented
by the text fragments which are obtained directly
from the PDF source code and joined by edges rep-
resenting adjacency. Here we can see the“brickwork
effect”: the entire paragraph could be built by join-
ing just the vertical edges. The initial merging of
successive pairs of blocks has resulted in the line
with tightly-spaced being merged completely

in the showString method, leaving the developer to concen-
trate on the actions to be taken when a string is shown.

Text can be placed on the page by two operators: Tj (show
text), which takes a string as its operand, and TJ (show text
glyph), which takes an array of strings and numbers as its
operand. Whereas the former simply places text on the page,
allocating to each character its normal width as defined in
the font, the latter operator allows the individual spacing
between glyphs to be adjusted. As most desktop publishing
packages provide their own kerning algorithms, we found the
TJ operator to occur more frequently.

By default, the methods in the PDFBox source code split
each TJ instruction into its subinstructions and place each
individually positioned block separately on the page. This
results in initial text blocks of usually no more than 2–3
characters in length. We first tried to merge all text blocks
together that were created from the same TJ instruction. In
some documents, this gave us complete lines of text, whereas
in other documents it made little or no difference to the
result. Unfortunately, we also found that many tables were
generated by using a single TJ instruction for a complete
row, and that operands designed for kerning adjustments
were used to jump from one column to the next. It is worth
noting that this only occurred in certain tables and never
with columns of text.

As we did not wish to risk overmerging the blocks, we kept
our initial text fragments to the granularity of subinstruc-
tions of the TJ operator as well as individual Tj instructions.
These fragments are then used as input to our segmentation
algorithm as described in Section 3.4. Note that, in some
cases, we found that we could not completely avoid over-
merging text fragments at this stage and would therefore
need to split them later, as shown in the example in Fig. 9.
This problem is described in the penultimate paragraph of
section 3.4.

Finally, it is worth noting that characters (or complete
strings) are sometimes overprinted with a slight offset to
simulate boldface type. As long as these instructions follow
another, they are automatically detected and represented by
a single text fragment with the boldface flag set to true.

Coordinate systems. PDF has two coordinate sys-
tems: global and local. The local coordinate system can
be changed by altering the transformation matrix with the
cm (concatenate) operator. This way, parts of PDF code
can simply be reused at different sizes and positions of the
page without needing to be rewritten. In this way, external
artwork such as advertisements or diagrams can be easily
placed in a PDF. Fortunately for us, the existing PDFBox
methods take care of all the translation operators.

3.2.2 Graphic elements
Bitmap images are relatively straightforward. An image

is placed on the page either using the Do (invoke) instruc-
tion or as an inline image using the BI (begin inline image),
ID (image data) and EI (end inline image) instructions, to-
gether with its rectangular co-ordinates before scaling and
transformation. The only main pitfall is that of clipping
paths: we found it very common that the actual image would
occupy a larger area than what was visible on the page, and
that these extra parts of the image would be clipped using
a rectangular clipping path (see below). We imagine that
this is the result of the cropping functionality in common
desktop publishing systems, which simply send the data to
the printer in the most straightforward manner.

Vector elements are a greater challenge for us, as we
need to differentiate between objects which are parts of vec-
tor images (such as illustrations and diagrams) and objects
which play a dominant role in conveying the logical struc-
ture of the page to the reader, such as ruling lines and boxes.
It is worth noting that, in the latter, curved segments are
rarely used.

In PDF, vector graphics are drawn by defining a path,
which comprises one or more connected subpaths. A new
subpath is begun by the m (moveto) operator. Straight line
segments are drawn by the l (lineto) operator, curves by the
c (curve to), v (curve to replicate initial point) and y (curve
to replicate final point) operators, and rectangles by the re

(append rectangle to path) operator. The operator h (close)
closes the subpath with a straight line back to the starting
co-ordinate. A rectangle is equivalent to drawing three line
segments and closing the subpath.

As our simplified model only includes line and rectangle
objects, we approximate bezier curves with straight lines
through their coordinate parameters. (In fact, we discard
all paths which include curves; we only need to store them
at this stage in case they are later used to define a clipping
boundary). Subpaths which include curves are flagged as
such. We store all generated subpaths until they are either
stroked by the S (stroke path) or s (close and stroke path)
operators, filled by the f (fill non-zero rule) or f* (fill even-
odd rule) operators or the path is ended. The n (end path)
operator clears the path without stroking or filling; it is
generally only used to clear the path after a clipping path
has been defined (see the section below).

When we come across a stroking or filling operator, we
first check that the current colour’s grey value lies below a
certain threshold. If so, we represent each subpath which
contains only vertical and horizontal lines and/or rectangles
with its respective objects in our simplified model. If a clip-
ping area is active, we first clip the objects. If the width or
height is above a minimum threshold (defined as 3 × modal
font size of all text blocks on the page) and if, according
to our heuristic, no other smaller or curved graphic objects

49

Figure 4: Page display without clipping (left) and with clipping (right) of an image

are nearby, the objects are represented; otherwise they are
assumed to be part of a graphic.

We find that the above treatment of PDF vector graphic
instructions enables us to obtain a simplified representation
of the most inportant lines and boxes which are of material
importance for layout analysis, i.e. they are likely to be no-
ticed immediately by a human reader just scanning through
the page and are at the level of granularity we require for
performing document analysis.

Rectangles and lines. In many cases, we found that
ruling lines on pages are actually drawn as filled rectangles.
Conversely, in some rare cases, rectangular-looking objects
were actually drawn as very thickly stroked lines. After ob-
ject extraction, we examine the dimensions of each rectangle
and line and, if the shorter dimension is below or above a
given threshold based on modal font size (usually about 5
pt), the object is re-classified if necessary.

Clipping paths. The PDF specification allows the use of
any arbitrary path as a clipping path, which can be set using
the W (modify clipping path non-zero) and W* (modify clip-
ping path even-odd) operators. Thus it is possible to create
interesting graphic effects or clip images in a non-rectangular
fashion. As we are not aiming to precisely recreate the ap-
pearance of the PDF, these operators are not of particular
interest to us. Even the current version of PDFBox does not
yet provide support for this operator in its page rasteriza-
tion methods. However, as mentioned above, we have found
that clipping paths are often also used to rectangularly clip
images and, in some cases, also ruling lines. We therefore
approximate the result by storing the bounding box of the
clipping path and clipping all objects to this rectangular
area when they occur. We find that this gives satisfactory
results for our purposes, as shown in Figure 4.

To summarize, the table in Fig. 6 lists the PDF operators
that we have implemented, the PDF operators which were
already present in the PDFBox code and whose implemen-

tation was not altered by us, and the operators which are
not implemented at all in our system.

3.3 The GUI
In order to visually display our analysis and segmentation

results, we have built a GUI on top of the XMIllum frame-
work4, which allows a user to interactively open a document,
select the desired level of granularity and show or hide the
individual object types. A screenshot of the GUI is shown
in Fig. 5.

Upon opening a document, the GUI makes a call to
the PostScript/PDF interpreter Ghostscript5, to create a
bitmap version of the document, which we overlay as a back-
ground image. This makes it possible to easily compare the
output of our analysis and segmentation methods with the
original document.

We did have some initial problems in ensuring that
our processing results were correctly aligned with the
Ghostscript output. Whereas newer versions of gs automat-
ically rotate the page, older versions do not. Also, because
a PDF page can have several bounding boxes defined (e.g.
for crop marks), Ghostscript was not always consistent in
its choice of bounding box. Using the -dUseCropBox switch
seems to have solved this problem.

3.4 Best-first clustering algorithm
After parsing through all the instructions on a PDF page,

we obtain a list of text fragments, which correspond loosely
to the individual (sub)instructions for displaying text. The
best-first clustering algorithm merges these text fragments
in a bottom-up fashion to represent single logical elements.
For consistency, we will use the term clusters to refer to text
blocks at this final level of granularity.

4XMIllum, http://xmillum.sourceforge.net/
5Ghostscript, www.ghostscript.com

50

Figure 5: An example of the GUI, based on XMIllum, showing the results of our segmentation algorithm
overlaid on a bitmap rendition of the page

3.4.1 Initial processing
We take as input a list of text fragments, which may con-

tain anything from one to several characters each, and are
clearly oversegmented at this stage. As a complex page could
contain as many as ten thousand of these segments, we first
aim to reduce this to a more manageable number to keep
processing time of the later stages of our analysis within
reasonable bounds.

Although the text fragments could be written to the PDF
in any arbitrary order, we have found that the order usu-
ally somewhat corresponds to the reading order of the text,
at least at the line level. Certainly text fragments corre-
sponding to a single TJ instruction are always returned to-
gether. Therefore, it makes sense to first process this list
linearly (which costs relatively little processing time) and
join neighbouring segments if they are on the same line. We
use a threshold of 0.25 × font size; between 0.25 × font size
and 1.0 × font size, we merge the blocks but assume the
characters belong to separate words and a space is added.

After this initial step, we perform a merging procedure

to merge horizontally neighbouring blocks which were not
written sequentially to the PDF. We sort the blocks in Y-
then-X order; this means that blocks with similar baselines
are returned together in left-to-right order, and that these
individual lines of text are then sorted from top to bottom.
We then join any neighbouring blocks if they are on the same
line and so close together that they could not conceivably
belong to different columns. Therefore we use a very tight
threshold of 0.2 × font size.

The reason we allow for a greater threshold in the former
case is because we are only comparing neighbouring items at
this stage. As most text is written to the PDF in its reading
order, the chances of overmerging are very low. Further-
more, the threshold of 1.0 × font size is still low enough
not to merge across neighbouring columns of text. Should
overmerging occur, for example in tight tabular layouts as
shown in the example in Fig. 9, the method described in
the final paragraph of this section would take care of up to
two overmerged lines in a text block. In the latter merging
process, we are comparing each block with every other, and
the likelihood of overmerging is therefore greater.

51

Operators
Implemented by us B, BI,c, CS, cs, Do, f, F, f*, h, K, k, l, m, n, q, Q, re, RG, rg, s, S,

Tj, TJ, v, w, W, W*, y

Already implemented in PDFBox BT, cm, d, ET, gs, T*, Tc, Td, TD, Tf, TL, Tm, Tr, Ts, Tw, Tz, \’, \"
Not implemented b, b*, B*, BDC, BMC, BX, d0, d1, DP, El, EMC, EX, G, g, i, ID, j, J, M,

MP, ri, SC, sc, SCN, scn, sh

Figure 6: A list of operators which are implemented in our system

3.4.2 Adjacency graph representation
Now that we have reduced the amount of text fragments

to an acceptable number, we form an adjacency graph from
these text objects. This graph structure is used as a basis for
our best-first clustering algorithm and allows us to directly
access the neighbours of each text block. In our graph, di-
rect neighbours (regardless of distance) are joined by edges
in each of the four directions; north, south, west and east.
More precisely, the graph is formed in the following way:

• two lists are generated, horiz and vert, which contain
all text blocks sorted in horizontal and vertical order
of midpoint coordinate respectively;

• each text block is examined in turn and its position
located in both lists. Starting from these positions, the
lists are examined in ascending and descending order,
which corresponds to looking for the next neighbouring
block in each of the four directions of the compass;

• as soon as a block is reached whose midpoint Y coor-
dinate (if looking horizontally) or midpont X coordi-
nate (if looking vertically) intersects that of the cur-
rent block and vice versa, this block is stored as its
neighbour in that particular direction;

• after a neighbour is found in a particular direction, we
do not look any further in that direction.

- edges with vertical direction
- edges where the font size of both segments is
approximately the same
- smaller font sizes first
- smaller line spacing (edge length) first
- if the line spacing is approximately the same,
edges with approx. identical width first,
otherwise, order by line spacing (edge length);
lowest first

- if line spacing approx. same but widths different,
sort by width difference (lowest first)

- edges with horizontal direction
- shorter edges (edge length) first

Figure 7: Ordering of the edges in the best-first clus-
tering algorithm

The above method generates a list of neighbours within
“line of sight” of each block. We then ensure that, for every
neighbouring relation A → B, a corresponding relation B →
A exists and remove any duplicate adjacency relations. An
example of this graph structure is shown in Fig. 3. Our
graph structure is described in more detail in [8].

Each of the neighbourhood relations is represented as an
Edge object with attributes such as fontsize, the average
font size of the two nodes, and length, the closest distance

in points between the edges of both segments relative to
fontsize, as well as nodeFrom and nodeTo, the two text
blocks which the edge connects. Non-textual segments are
ignored. After generation, any edges which cross a detected
ruling line are also discounted.

True to its name, our best-first clustering algorithm first
clusters together edges where it is obvious that they belong
to the same logical block. After most of these blocks have
already been formed, the more problematic edges are then
examined, for which it is not possible to determine a priori
whether they should be clustered together or left apart. At
this stage, a better decision can be made, as the block struc-
ture is already partly present. As this process is based on
the Gestalt laws of proximity and similarity, we believe it to
be similar to the way a human reader would analyse a page,
even though most of these processes occur at a sub-conscious
level.

The first stage is to sort the edges into an appropriate
order such that the most likely edges will be visited first.
The ordering sequence is shown in Fig. 7.

Note that all edge lengths are always relative to font size,
i.e.:

edge length =
shortest length between the blocks

average font size

As we are working only with text blocks, we ignore any
edges which join text blocks to other objects or other objects
to each other.

It is worth noting that vertical edges are deemed the most
important in bottom-up page segmentation. In fact, it is
usually sufficient to join only the vertical edges to obtain all
blocks of text. This is because of the “brickwork effect”: we
find that words in a paragraph rarely occur directly below
each other, and that each word often has more than one
neighbour above or below. This way, we can build most
paragraphs completely just from the vertical edges alone
(See Fig. 3). In fact, in the rare case that words in a para-
graph do line up vertically, this already begins to appear as
tabulated data to the human reader, and this is why we need
to exercise great care when joining horizontal edges. There-
fore, horizontal edges are only visited after all vertical edges
have been processed. Only at the very end of processing,
any remaining unconnected horizontal neighbours (usually
single lines) are joined together if necessary.

The pseudocode for our clustering algorithm is shown in
Fig. 8 and refers to an external method clusterTogether.
In practice, the implementation is somewhat more compli-
cated, as hash maps are used to improve performance.

The method clusterTogether uses a number of heuristics
to decide whether the clusters belong to each other. For
vertical edges, this method returns true if:

• the new item(s) to be added are consistent with the
line spacing of the existing cluster; and

52

while (edges in list)
{

get next edge
if edge.nodeFrom and edge.nodeTo not yet in output
{
if (clusterTogether(edge.nodeFrom, edge.nodeTo, edge))
{
create new cluster with edge.nodeFrom
as single subitem

create new cluster with edge.nodeTo
as single subitem

add both clusters to output
}

}
else if edge.nodeFrom not yet in output
{
clust <- find cluster containing edge.nodeTo
if (clusterTogether(edge.nodeFrom, clust, edge))
{
add edge.nodeFrom to clust

}
}
else if edge.nodeTo not yet in output
{
clust <- find cluster containing edge.nodeFrom
if (clusterTogether(edge.nodeTo, clust, edge))
{
add edge.nodeFrom to clust

}
}
else // both nodes already in output
{
clust1 <- find cluster containing edge.nodeFrom
clust2 <- find cluster containing edge.nodeFrom
if (clust1 != clust2)
{
if (clusterTogether(clust1, clust2, edge))
{
merge clust1 with clust2

}
}

}
}

Figure 8: Pseudocode of the best-first clustering al-
gorithm

• the font sizes are approximately the same6

For horizontal edges, the nearest vertical neighbour of
both nodeFrom and nodeTo is found. If nodeFrom and nodeTo

have different nearest vertical neighbours, the closest (in
terms of Y-axis distance) is chosen. Based on this distance
and the number of lines of text that each text block contains,
a heuristic is used to compute a maximum width threshold.

This threshold is normally 0.75, but can be increased in
the following situations:

• As blocks containing fewer lines of text are most likely
to have been not fully clustered by the algorithm, the
heuristic allows for an increased edge width threshold
in such cases.

• Similarly, we have noticed that headings and other
freestanding items of text often exhibit a wider charac-

6This has the effect of leaving out superscript, subscript,
and other small items of text which may occasionally occur
in a paragraph. These are then added to their respective
paragraphs at the end of processing.

Figure 9: Example of tightly arranged column head-
ings, which need to be accounted for at a later stage
of the segmentation process

ter and word spacing. As long as they are not immedi-
ately surrounded by other text, it is clear to the reader
that they still form a complete line of text. Therefore,
the edge width threshold is also increased where the
nearest vertical neighbour distance is large.

clusterTogether then returns true if:

• the new item(s) to be added are consistent with the
font size of the existing cluster; and

• the edge width (i.e. the horizontal distance with re-
spect to font size) does not exceed the above computed
threshold.

Additionally, for each creation or modification of a cluster,
a further check is carried out on the new cluster; if this check
fails, merging of the edges is aborted. We have found that,
in certain very tight tabular layouts, the column headings
may be written so closely together that they appear a priori
to be a single, contiguous line of text. In fact, the spacing
between headings of adjacent columns can, in special cases,
even be less than the normal word spacing, as shown in the
example in Fig. 9. This can even occur if no ruling lines are
present.

The human reader still recognizes the delineation between
each individual column heading because of the clear column-
based structure below, and because the headings are still
consistently aligned with the data in these columns. We
therefore check for such structures at every iteration of the
segmentation process. After the columns have been clus-
tered together, our heuristic detects that the text block has
developed one or more “chasms” and splits the headings
(maximum 2 lines) appropriately.

4. FURTHER PROCESSING
As the motivation of our work stems from data extraction

from PDF, we use the results of our analysis algorithms in
the following two ways:

• Table detection: We use the list of blocks as in-
put to our table-detection algorithm [9]. As a later
improvement, we have replaced the candidate column
finding method with an updated version of the best-
first algorithm: we search for candidate columns simul-
taneously with clusters; a separate clusterTogether

method with increased thresholds is used to determine

53

Figure 10: An example of segmentation errors in
text inside a diagram

which blocks should be merged together to form these
columns. The resulting tables are then represented in
HTML, where they can be wrapped using commercial
HTML wrapping systems such as Lixto7.

• Wrapping using graph matching techniques: As
described in [8], we use our graph-based representation
as a basis to perform data extraction in an interactive
fashion using an algorithm based on subgraph isomor-
phism. After the segmentation is complete, a further
adjacency graph is created to join neighbouring clus-
ters in the result, which is used to represent the docu-
ment and perform data extraction. The user can also
choose to perform wrapping on the line level; in that
case, the blocks are split back up into lines before the
graph is generated.

5. EXPERIMENTAL RESULTS
We have tested our object extraction and segmentation

algorithms on the front pages of 50 different issues of the
Sydney Morning Herald8 and visually compared the found
objects with what a human reader would deem to be the
correct result or “ground truth”. The results are shown in
the table below.

Item type Total Detected False pos.
Clusters 3157 2978 (94.3%) 13 (0.4%)
Ruling lines 414 333 (80.4%) 22 (5.3%)
Bitmap images 527 510 (96.8%) 0 (0.0%)
Rectangles 568 536 (94.4%) 45 (7.9%)

The experimental evaluation raised two important issues:

7Lixto, www.lixto.com
8The Sydney Morning Herald, www.smh.com.au

Firstly, in our case, the ground truth was very open to in-
terpretation, as exemplified in the following questions:

• Which lines on the page are materially important in
gaining an understanding of the document’s structure
and which are not?

• Should indented paragraphs belong to individual
blocks?

There are, of course, several levels of granularity in which
a document could be represented and the results of our al-
gorithms can only be seen as a first step in the document
understanding process. For example, indented paragraphs
within blocks should then be detected by appropriate algo-
rithms at a later stage. It was therefore very difficult to
generate quantitatively measured results, as the evaluation
process is subject to a degree of subjectivity. For this rea-
son, we adopted a somewhat tolerant approach when judg-
ing whether a given object was represented correctly or not.
In the case of paragraphs beginning with indentations, we
allowed them to be merged, as we had not designed the seg-
mentation algorithm to specifically cope with such layout
conventions (this is actually planned for a later stage in the
processing pipeline).

In general, we found our best-first segmentation algorithm
to produce very good results, as objects were rarely split or
overmerged. Because our dataset included a large number
of diagrams with text labels, the ratio of correctly detected
clusters was not as high as expected. As these diagrams
do not have a Manhattan layout structure, the labels were
frequently overmerged, as shown in the example in Fig. 10.

An alternative interpretation would be to class these la-
bels as parts of images and therefore as false positives, which
would lead to a significantly higher recall value. In practice,
we are not interested in text in diagrams, which we ignore
later on in the processing pipeline. Unfortunately, we found
that our evaluation strategy did not discriminate between
unimportant errors in diagrams and catastrophic segmenta-
tion errors, for example when two columns of an article are
merged together. Fortunately, the latter type of error was a
seldom occurrence.

Our algorithms did also return some false positives, in
particular for ruling lines, which were found, on inspection,
to be part of illustrations or diagrams. When designing the
algorithms, we decided to err on the side of caution and out-
put false positives rather than miss important line objects.
For our purposes, this is not a big problem at all, as in our
later processing steps, vector objects not in the vicinity of
text are ignored anyway. Although the result is more than
adequate for our purposes, further development on our vec-
tor diagram/image recognition heuristic should result in this
number being significantly lower.

Even with digitally generated PDFs, certain graphic ele-
ments on the page (in particular advertisements) would have
their text included in bitmap or vector form, rather than as
text instructions. The same applies to logos. We found these
to be generally text items of little interest.

Finally, a number of errors occurred where major ruling
lines were not detected on the page at all or in the wrong
position. We found this to be due to a missing or incor-
rect implementation of the PDFBox code which handles the
transformation matrix, rather than a problem with our ap-
proach.

54

6. CONCLUSION AND DISCUSSION
In this paper we have presented in detail an efficient ap-

proach for extracting textual and graphical data from PDF
documents at a level of granularity suitable for document
analysis purposes. We have also presented a bottom-up seg-
mentation algorithm, which copes well even with complex
layouts, to group these segments into blocks representing
logical elements on the page. We have described two use-
cases in which this extracted data is processed further and
used in real-world applications. As the resulting data is de-
signed to be used for further processing, the numeric results
cannot be directly compared to the precision and recall val-
ues of other document analysis systems. However, we believe
that the resulting data is of more than sufficient quality for
these purposes.

In developing the extraction algorithms from PDF, we no-
ticed that the structure of the PDF and the ordering of the
operators usually represents how the document would have
been stored in the computer system’s memory at the gener-
ation stage. There is, in fact, a wealth of extra information
available in the source code of a PDF which is lost when the
PDF is printed, rasterized or converted. For example:

• the order in which text blocks are written to the PDF
usually resembles the reading order of the page;

• text in subinstructions within a single Tj instruction
almost always belongs to the same logical text block
(except in some tabular columns);

• the use of transformation matrices could provide hints
for identifying complex objects and how the various
parts of the page are grouped.

It is possible to code a PDF in a variety of different ways
and still end up with the same visual result. However, most
document authoring programs (such as DTPs and word pro-
cessors) simply generate the PDF (or printout) in the most
straightforward manner. Because the code structure cannot
in all cases be relied upon to reflect the logical structure of
the document, most PDF analysis approaches have ignored
it completely. We believe that this information could, if
correctly processed, be combined with traditional document
understanding techniques and used in a probabilistic fash-
ion to improve the robustness of such a system. This would
make for an interesting research project.

Further areas in which this work could be extended in-
clude: using tagging information (where present) to improve
the result, further development of the methods within the
PDFBox library to improve robustness and extending the
system to cope with non-Manhattan (rectangular) layouts.

7. ACKNOWLEDGEMENT
This work is supported by the Austrian Federal Ministry

of Transport, Innovation and Technology under programme
line 815128/9306.

8. REFERENCES
[1] Adobe Systems Incorporated. PDF Reference.

[2] M. Aiello, C. Monz, L. Todoran, and M. Worring.
Document understanding for a broad class of
documents. International Journal of Document
Analysis and Recognition, 5(1):1–16, 2002.

[3] O. Altamura, F. Esposito, and D. Malerba.
Transforming paper documents into xml format with
wisdom++. International Journal of Document
Analysis and Recognition, 4(1):2–17, 8 2001.

[4] A. Anjewierden. Aidas: incremental logical structure
discovery in pdf documents. In International
Conference on Document Analysis and Recognition
2001, Proceedings, 2001.

[5] H. Chao and J. Fan. Layout and content extraction for
pdf documents. Document Analysis Systems VI,
3163/2004:213–224, 2004.

[6] R. P. Futrelle, M. Shao, C. Cieslik, and A. E. Grimes.
Extraction, layout analysis and classification of
diagrams in pdf documents. In International
Conference on Document Analysis and Recognition
2003, Proceedings, volume 2, page 1007, 2003.

[7] K. Hadjar, M. Rigamonti, D. Lalanne, and R. Ingold.
Xed: a new tool for extracting hidden structures from
electronic documents. In Document Image Analysis for
Libraries, 2004. Proceedings, 2004.

[8] T. Hassan. User-guided wrapping of pdf documents
using graph matching techniques. In International
Conference on Document Analysis and Recognition
2009, Proceedings, 2009.

[9] T. Hassan and R. Baumgartner. Table recognition and
understanding from pdf files. In International
Conference on Document Analysis and Recognition
2007, Proceedings, volume 2, pages 1143–1147, 2007.

[10] W. Lovegrove and D. Brailsford. Document analysis of
pdf files: methods, results and implications. Electronic
Publishing – Origination, Dissemination and Design,
8(3):207–220, 1995.

55

